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Classifying spaces for étale algebras with
generators

Abhishek Kumar Shukla and Ben Williams

Abstract. We construct a scheme B(r;An) such that amap X → B(r;An) corresponds to a degree-n
étale algebra on X equipped with r generating global sections. We then show that when n = 2, i.e.,
in the quadratic étale case, the singular cohomology of B(r;An)(R) can be used to reconstruct a
famous example of S. Chase and to extend its application to showing that there is a smooth affine
r − 1-dimensional R-variety on which there are étale algebrasAn of arbitrary degrees n that cannot
be generated by fewer than r elements.�is shows that in the étale algebra case, a bound established
by U. First and Z. Reichstein in [6] is sharp.

1 Introduction

Given a topological group G, one may form the classifying space, well-defined up to
homotopy equivalence, as the base space of any numerable principal G-bundle EG →
BG where the total space is contractible, [3, �eorem 7.5]. �e space BG is a universal
space for G-bundles, in that the set of homotopy classes of maps [X , BG] is in natural
bijection with the set of numerable principal G-bundles on X.

If G is a finite nontrivial group, then BG is necessarily infinite dimensional, [20],
and so there is no hope of producing BG as a variety even over C. Nonetheless, as
in [22], one can approximate BG by taking a large representation V of G on which
G acts freely outside of a high-codimension closed set Z, and such that (V − Z)/G is
defined as a quasiprojective scheme.�e higher the codimension of Z in V, the better
an approximation (V − Z)/G is to the notional BG.

In this paper, we consider the case of G = Sn , the symmetric group on n letters.
�e representations we consider as our Vs are the most obvious ones, r copies of the
permutation representation of Sn on A

n . �e closed loci we consider are minimal:
the loci where the action is not free. We use the language of étale algebras to give an
interpretation of the resulting spaces. Our main result, �eorem 3.13, says that the
scheme B(r;An) ∶= (V − Z)/Sn produced by this machine represents “étale algebras
equipped with r generating global sections” up to isomorphism of these data. �e
schemes B(r;An) are therefore in the same relation to the group Sn as the projective
spaces Pr are to the group schemeGm .
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Section 2 is concerned with preliminary results on generation of étale algebras.�e
main construction of the paper, that of B(r;An), is made in Section 3, and the functor
it represents is described. Since we are working with schemes, and not in a homotopy
category, the space B(r;An) does not classify bundles; rather it represents a functor
of “bundles along with chosen generators”, which we now explain.

A choice of r global sections generating an étale algebraA of degreen on a schemeX
corresponds to a map ϕ ∶ X → B(r;An). While the map ϕ is dependent on the chosen
generating sections, we show in Section 4 that if one is prepared to pass to a limit, in a
sense made precise there, the A1-homotopy class of a composite ϕ̃ ∶ X → B(r;An)→
B(∞;An) depends only on the isomorphism class of A and not the generators. As a
practical matter, this means that for a wide range of cohomology theories, E∗, themap
E∗(ϕ̃) depends only onA and not on the generators used to define it.

In Section 5, working over a field, we observe that the motivic cohomology, and
therefore theChow groups, of the varieties B(r;A2)has already been calculated in [4].

A degree-2 or quadratic étale algebra A over a ring R carries an involution σ
and a trace map Tr ∶ A→ R. �ere is a close connection between A and the rank-
1 projective module L = ker(Tr). In Section 6, we show that the algebra A can be
generated by r elements if and only if the projective module L can be generated by r
elements.

A famous counterexample of S. Chase, appearing in [21], shows that there is a
smooth affine r − 1-dimensional R-variety SpecR and a line bundle L on SpecR
requiring r global sections to generate. �is shows a that a bound of O. Forster [8]
on the minimal number of sections required to generate a line bundle on SpecR,
namely dim R + 1, is sharp. In light of Section 6, the same smooth affine R-variety
of dimension r − 1 can be used to produce étale algebras A, of arbitrary degree n,
requiring r global sections to generate. �is fact was observed independently by M.
Ojanguren. It shows that a bound established by U. First and Z. Reichstein in [6]
is sharp in the case of étale algebras: they can always be generated by dim R + 1
global sections and this cannot be improved in general. �e details are worked out
in Section 7, and we incidentally show that the example of S. Chase follows easily
from our construction of B(r;A2) and some elementary calculations in the singular
cohomology of B(r;A2)(R).

Finally, we offer some thoughts about determining whether the bound of First and
Reichstein is sharp if one restricts to varieties over algebraically closed fields.

1.1 Notation and other preliminaries

• All rings in this paper are assumed to be unital, associative, and commutative.
• k denotes a base ring.
• A variety X is a geometrically reduced, separated scheme of finite type over a field.
We do not require the base field to be algebraically closed, nor do we require
varieties to be irreducible.

• C2 denotes the cyclic group of order 2.

We use the functor-of-points formalism ([5, Part IV]) heavily throughout, which is
to say we view a scheme X as the sheaf of sets it represents on the big Zariski site of
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all schemes

X(U) =MorSch(U , X).

2 Étale algebras

Let R be a ring and S an R-algebra.�en there is a morphism of rings µ ∶ S ⊗R Sop → S
sending a ⊗ b to ab. We obtain an exact sequence

0→ ker(µ)→ S ⊗R Sop
µ
Ð→ S → 0

We recall ([7, Chapter 4]) that an R-algebra S is called separable if S is a projective
S ⊗R Sop-module.

Definition 2.1 Let R be a ring. A commutative R-algebra S is called étale if S is a flat,
separable, finitely presented R-algebra.

Proposition 2.2 Let R be a commutative ring, and S a commutative R-algebra. �en
the following are equivalent:

1. S is an étale R-algebra.
2. S is a finitely presented R-algebra and Spec S → SpecR is formally étale in the sense

of [9, Section 17.1].

Proof By [7, Corollary 4.7.3], we see that 1 implies 2. Conversely, a finitely generated
and formally étale map is flat and unramified [9, Corollaire 17.6.2], and a finitely
generated commutative unramified R-algebra S is separable [7, �eorem 8.3.6]. ∎
Definition 2.3 An R-algebra S is called finite étale if S is an étale R-algebra and a
finitely generated R-module.

Remark 2.4 If S is a finitely presented R-algebra that is finitely generated as an R-
module then it is also finitely presented as an R-module ([11, 1.4.7]). Moreover, finitely
presented and flat modules are projective ([2, tag 058Q]), so a finite étale algebra S
over R is, in particular, a projective R-module of finite rank.

Definition 2.5 We say that an étale algebra is of degree n if the rank of S as a projective
R-module is n. A degree-n étale algebra is necessarily finite étale.

Over a ring R, and for any integer n > 0, there exists the trivial rank n étale algebra
Rn with componentwise addition and multiplication. �e next lemma states that all
étale algebras are étale-locally isomorphic to the trivial one.

Lemma 2.6 Let R be a ring and S an R-algebra.�e following statements are equiva-
lent:

• S is an étale algebra of degree n.
• �ere is a finite étale R-algebra T such that S ⊗R T ≅ Tn as T-algebras.

A proof may be found in [7, Corollary 1.1.16, Corollary 4.4.6, Proposition 4.6.11].
We may extend this definition to schemes. Fix a ground ring k throughout.
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Definition 2.7 Let X be a k-scheme. Let A be a locally free sheaf of OX-algebras of
constant rank n. We say thatA is an étale X-algebra or étale algebra over X if for every
open affine subset U ⊂ X the OX(U)-algebraA(U) is an étale algebra. If the algebras
A(U) are étale of rank n, we sayA is a degree-n étale algebra.

By Remark 2.4 it is clear that a sheaf of degree-n étale algebrasA over X is a quasi-
coherent sheaf of OX-modules.

If X is a k-scheme and n a positive integer, then there exists a trivial rank-n étale
algebra On

X with componentwise addition and multiplication.

Lemma 2.8 Let X be a k-scheme andA be a finitely presented, quasi-coherent sheaf of
OX-algebras.�en the following are equivalent:

• A is an étale X-algebra of degree n.

• �ere is an affine étale cover {U i
f i
Ð→ X} such that f ∗i A ≅ On

U i
as OU i

-algebras.

Proof �is is immediate from Lemma 2.6. ∎

Definition 2.9 If A is an algebra over a ring R, then a subset Λ ⊂ A is said to generate
A over R if no strict R-subalgebra of A contains Λ.

If Λ = {a1 , . . . , ar} ⊂ A is a finite subset, then the smallest subalgebra ofA contain-

ing Λ agrees with the image of the evaluationmap k[x1 , . . . , xr]
(a1 , . . . ,ar)
→ A.�erefore,

saying that Λ generates A is equivalent to saying this map is surjective.

Proposition 2.10 Let Λ = {a1 , . . . , ar} be a finite set of elements of A, an algebra over
a ring R.�e following are equivalent:

1. Λ generates A as an R-algebra.
2. �ere exists a set of elements { f1 , . . . , fn} ⊂ R that generate the unit ideal and

such that, for each i ∈ {1, . . . , n}, the image of Λ in A f i generates A f i as an
R f i -algebra.

3. For each m ∈MaxSpecR, the image of Λ in Am generates Am as an Rm-algebra.
4. Let k(m) denote the residue field of the local ring Rm. For each m ∈MaxSpecR, the

image of Λ in A⊗R k(m) generates A⊗R k(m) as a k(m)-algebra.

Proof In the case of a finite subset, Λ = {a1 , . . . , ar}, the condition that Λ generates
A is equivalent to the surjectivity of the evaluation map R[x1 , . . . , xr]→ A.

�e question of generation is therefore a question of whether a certain map is an
epimorphism in the category of R-modules, and conditions (2)–(4) are well-known
equivalent conditions saying that this map is an epimorphism. ∎

Using Proposition 2.10, we extend the definition of “generation of an algebra” from
the case where the base is affine to the case of a general scheme.

Definition 2.11 LetA be an algebra over a schemeX. For Λ ⊂ Γ(X ,A)we say that Λ
generates A if, for each open affine U ⊂ X the OX(U)-algebraA(U) is generated by
restriction of sections in Λ to U.
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2.1 Generation of trivial algebras

Let n ≥ 2 and r ≥ 1. Consider the trivial étale algebra On
X over a scheme X. A global

section of this algebra is equivalent to a morphism X → A
n , and an r-tuple Λ of

sections is a morphism X → (An)r . Onemight hope that the subfunctorF ⊆ (An)r of
r-tuples of sections generating On

X as an étale algebra is representable, and this turns
out to be the case.

In order to define subschemes of (An)r , it will be necessary to name coordinates:

(x11 , x12 , . . . , x1n , x21 , . . . , x2n , . . . , xr1 , . . . , xrn).

It will also be useful to retain the grouping into n-tuples, so we define x⃗ l =
(x l 1 , x l2 , . . . , x l n).

Notation 2.12 Fix n and r as above. For (i , j) ∈ {1, . . . , n}2 with i < j, let Z i j ⊂ (An)r
denote the closed subscheme given by the sum of the ideals (xki − xk j)where k varies
from 1 to n.

WriteU(r;An), or U(r)when n is clear from the context, for the open subscheme
of (An)r given by

U(r;An) = (An)r −⋃
i< j

Z i j

Proposition 2.13 Let n ≥ 2 and r ≥ 1. �e open subscheme U(r;An) ⊂ (An)r repre-
sents the functor sending a scheme X to r-tuples (a1 , . . . , ar) of global sections of On

X
that generate it as an OX-algebra.

Proof Temporarily, let F denote the subfunctor of (An)r defined by

F(X) = {Λ ⊆ (Γ(X ,On
X)r ∣ Λ generates On

X}.

It follows from Proposition 2.10 and Definition 2.11 thatF is actually a sheaf on the big
Zariski site.

Both U(r;An) and F are subsheaves of the sheaf represented by (An)r , and
therefore in order to show they agree, it suffices to show U(r;An)(R) = F(R) when
R is a local ring.

Let R be a local ring. �e set U(r;An)(R) consists of certain r-tuples (a⃗1 , . . . , a⃗r)
of elements of Rn . Letting aki denote the ith element of a⃗k , then the r-tuples are those
with the property that for each i ≠ j, there exists some k such that aki − ak j ∈ R×. �e
proposition now follows from Lemma 2.14 below. ∎

Lemma 2.14 Let R be a local ring, with maximal ideal m. Let (a⃗1 , . . . , a⃗r) denote an
r-tuple of elements in Rn , and let aki denote the ith element of a⃗k . �e following are
equivalent:

• �e set {a⃗1 , . . . , a⃗r} generates the (trivial) étale R-algebra Rn .
• For each pair (i , j) satisfying 1 ≤ i < j ≤ n, there is some k ∈ {1, . . . , r} such that the
element aki − ak j is a unit in R×.
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Proof Each condition is equivalent to the same condition over R/m: the first by
virtue of 2.10, and the second by elementary algebra. �erefore, it suffices to prove
this when R is a field.

Suppose {a⃗1 , . . . , a⃗r} generates Rn as an algebra. �en, for any pair of indices
(i , j) with 1 ≤ i < j ≤ n, it is possible to find a polynomial p ∈ R[X1 , . . . , Xr] such that
p(a1i , a2i , . . . , ar i) = 1 and p(a1 j , a2 j , . . . , ar j) = 0. In particular, there exists some l
such that a l i ≠ a l j .

Conversely, suppose that for each pair i < j, we can find some l such that a l i ≠ a l j .
For each pair i ≠ j, we can find a polynomial p i , j ∈ R[x1 , . . . , xr] with the property
that p i , j(a1i , . . . , ar i) = 1 and p i , j(a1 j , . . . , ar j) = 0 by taking

p i , j = (aki − ak j)−1(xk − ak j)
for instance. Consequently, we may produce a polynomial p i ∈ R[x1 , . . . , xr] with
the property that p i(a1 j , . . . , ar j) = δ i , j (Kronecker delta). It follows that {a⃗1 , . . . , a⃗r}
generates the trivial algebra. ∎

3 Classifying spaces

Fix n ≥ 2 and r ≥ 1.

Notation 3.1 For a given k-scheme X, a degree-n étale algebra A with r generating
sections denotes the data of a degree-n étale algebra A over X, and an r-tuple of
sections (a1 , . . . , ar) ∈ Γ(X ,A) that generate A. �ese data will be briefly denoted
(A, a1 , . . . , ar). A morphism ψ ∶ (A, a1 , . . . , ar)→ (A′ , a′1 , . . . , a′r) of such data con-
sists of a map ψ ∶ A→ A

′ of étale algebras over X such that ψ(a i) = a′i for all i ∈
{1, . . . , r}. It is immediate that all morphisms are isomorphisms, and between any two
objects, there is at most one isomorphism. �e isomorphism class of (A, a1 , . . . , ar)
will be denoted [A, a1 , . . . , ar].
Definition 3.2 For a givenX, there is a set, rather than a proper class, of isomorphism
classes of degree-n étale algebras overX, and so there is a set of isomorphism classes of
degree-n étale algebras with r generating sections. Since generation is a local condition
by Proposition 2.10, it follows that there is a functor

F(r;An) ∶ k-Sch→ Set,

F(r;An)(X) = {[A, a1 , . . . , ar] ∣ (A, a1 , . . . , ar) is a degree-n
étale algebra over X and r generating sections}

�epurpose of this section is to produce a varietyB(r;An) representing the functor
F(r;An) on the category of k-schemes.

3.1 Descent for F(r,An)

Proposition 3.3 �e functor F(r;An) is a sheaf on the big étale site of Spec k.

In fact, it is a sheaf on the big fpqc site, but we will require only the étale descent
condition.
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Proof Suppose X is a k-scheme and { f i ∶ Yi → X}i∈I is an étale covering. We must
identify F(r;An)(X) with the equalizer in

E →∏
i∈I

F(r,An)(Yi)⇉ ∏
i , j∈I2

F(r;An)(Yi ×X Yj).

�ere is clearly a map F(r;An)(X)→ E.
Suppose we have an i-tuple of elements ([Ai , a⃗(i)])i∈I in this equalizer. Choosing

representatives in each case, we have degree-n étale algebras Ai on each Yi , along
with chosen generating global sections. �e equalizer condition is that there is an

isomorphism over Yi ×X Yj of the form ϕ i j ∶ pr∗1 (Ai , a⃗(i)) ≅Ð→pr∗2(A j , a⃗( j)). �e
fact that there is at most one isomorphism between étale algebras with r generating
sections implies that we have a descent datum (Ai , ϕ i j), and it is well known, [2, Tag
023S], that quasi-coherent sheaves satisfy étale descent. We therefore obtain a quasi-
coherent sheaf of algebrasA onX, and sinceA is an étale sheaf, the generating sections
of each Ai glue to give generating sections of A. �is implies that F(r;An)(X)→ E
is surjective.

To see it is injective, suppose (A, a⃗) and (A′ , a⃗′) become isomorphic when
restricted to each Yi . �en, since there can be at most a unique isomorphism between
two étale algebras with generating sections, the local isomorphisms between (A, a⃗)
and (A′ , a⃗′) assemble to give an isomorphism of descent data. Since there is an
equivalence of categories between descent data and quasi-coherent sheaves, [2, Tag

023S], it follows that there is an isomorphism ϕ ∶ A ∼
→ A

′. �is isomorphism takes a⃗
to a⃗′, as required. ∎

3.2 Construction of B(r;An)

Proposition 3.4 Let R be a nonzero connected ring.�en the automorphism group of
the trivial étale R-algebra Rn is the symmetric group Sn , acting on the terms.

Proof Since the equation x2 − x = 0 has only the two solutions 1, 0 in R, the condi-
tion a2 = a for a ∈ Rn implies that each component of a is either 0 or 1.

Consider the elements

e i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn .

�e set of these elements is determined by the conditions: e2i = e i , e i ≠ 0, e i e j = 0 for
i ≠ j and∑n

i=1 e i = 1 ∈ R
n .

�erefore any automorphism of Rn as an R-algebra permutes the e i and is deter-
mined by this permutation. ∎

�ere is an action of the symmetric group Sn on A
n , given by permuting the

coordinates, and from there, there is a diagonal action of Sn on (An)r , and the action
restricts to the open subscheme U(r;An).

Proposition 3.5 �e action of Sn on U(r;An) is scheme-theoretically free.
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Proof It suffices to verify that the action is free on the setsU(r;An)(K)whereK is a
separably closed field over k. Here one is considering the diagonal Sn action on r-tuples
(a⃗1 , . . . , a⃗r) where each a⃗ l ∈ K

n is a vector and such that for all indices i ≠ j, there
exists some a⃗ l such that the ith and jth entries of a⃗ l are different. �e result
follows. ∎

Construction 3.6 �ere is a free diagonal action of Sn on U(r;An) ×An , such that
the projection p ∶ U(r;An) ×An

→ U(r;An) is equivariant.�e quotient schemes for
these actions exist by reference to [10, Exposé V, Proposition 1.8] and [15, Proposition
3.3.36].Write q ∶ E(r;An)→ B(r;An) for the inducedmapof quotient schemes.�ere
is a commutative square

Proposition 3.7 In the notation above, the maps π and π′ are finite.

Proof We concentrate on the case of π; that of π′ is similar. �e map π is formed
as follows (see [10, Exposé V, §1]): it is possible to cover U(r;An) by Sn-invariant
open affine subschemes SpecR ⊆ Anr . �en π∣Spec R ∶ SpecR → SpecRSn , induced by
the inclusion of RSn in R. �e map RSn → R is of finite type, since R is of finite type
over k. By [1, Exercise 5.12, p68], the extension RSn → R is integral, and being of finite
type, it is finite. ∎

Corollary 3.8 �e maps π ∶ U(r;An)→ B(r;An) and π′ ∶ U(r;An) ×An
→

E(r;An) are Sn-torsors.

�at is, each satisfies the conditions of [10, Exposé V, Proposition 2.6].

Remark 3.9 �e sheaf of sections of the map p ∶ U(r;An) ×An
→ U(r;An) is the

trivial degree-n étale algebraOn
U(r;An) onU(r;An). �e action of Sn on these sections

is by algebra automorphisms, and so the sheaf of sections of the quotient map
q ∶ E(r;An)→ B(r;An) is endowed with the structure of a degree-n étale algebra
E(r;An) on B(r;An). We will o�en confuse the scheme E(r;An) over B(r;An) with
the étale algebra of sections E(r;An).

�e map p has r canonical sections {s j}rj=1 given as follows:

s j(x⃗1 , x⃗2 , . . . , x⃗r) = ((x⃗1 , x⃗2 , . . . , x⃗r , ), x⃗ j).

�ese sections are Sn-equivariant, and so induce sections {t i ∶ B(r;An)→
E(r;An)}ri=1 of the map q.

Remark 3.10 By reference to [2, Lemma 05B5], the quotient k-scheme B(r;An) is
smooth over k since U(r;An) is and π is faithfully flat ([10, Exposé V, Proposition
2.6]) and locally finitely presented. Since π is finite it is a proper map.When the base k
is a field, the variety B(r;An) is a quasiprojective variety but not projective. Indeed, if
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B(r;An)→ Spec(k) were proper then U(r;An)→ Spec(k) would be proper too, but
U(r;An) is a nonempty open subvariety of affine space.

3.3 The functor represented by B(r,An)

We now establish the identity of functors B(r,An)(X) = F(r;An)(X).

Construction 3.11 �ere is a canonical element [E(r;An), t1 , . . . , tr] in
F(r;An)(B(r;An)), see 3.9. �erefore, there exists a natural transformation
of presheaves of k-schemes B(r,An)(⋅)→ F(r;An)(⋅) given by sending a map
ϕ ∶ X → B(r;An) to the pull-back of the canonical element.

Lemma 3.12 If [A, s1 , . . . , sr] ∈ F(r;An)(R) where R is a strictly henselian local ring,
then there exists a unique morphism of schemes ϕ ∶ Spec(R)→ B(r;An) such that

[A, s1 , . . . , sr] = [ϕ∗(E(r;An)), ϕ∗t1 , . . . , ϕ∗tr]

Proof Since R is a strictly henselian local ring, there exists an R-isomorphism

A
ψ
Ð→ Rn of algebras, by virtue of [17, Proposition 1.4.4]. Let {ψ(s i)} ⊂ Rn denote the

corresponding sections of Rn .
We thus obtain a map ϕ̃ ∶ Spec(R)→ U(r;An) defined by giving the R-point

(ψ(s1), . . . ,ψ(sr)). Post-composing this map with the projection U(r;An)→
B(r;An), we obtain a morphism ϕ ∶ Spec(R)→ B(r;An). It is a tautology that
ϕ∗(E(r;An)) = A and ϕ∗(t i) = s i .

It now behooves us to show that ϕ does not depend on the choices made in the
construction.

Suppose ϕ′ ∶ SpecR → B(r;An) is another morphism satisfying the conditions of
the lemma.Wemay li� thisR-point of B(r;An) to an R-point ϕ̃′ ∶ SpecR → U(r;An),
since π is an étale covering, and therefore represents an epimorphism of étale sheaves
[2, Lemma 00WT]. By hypothesis we have

[A, s1 , . . . , sr] = [ϕ′∗(E(r;An)), ϕ′∗t1 , . . . , ϕ′∗tr].

�us ϕ̃ and ϕ̃′ differ by an automorphism of Rn , i.e., by an element of Sn since local
rings are connected so 3.4 applies. �erefore ϕ = ϕ′ as required. ∎

�eorem 3.13 If X is a k-scheme, then the map

B(r,An)(X)→ F(r;An)(X)

is a bijection.

Proof We note that B(r,An) represents a sheaf on the big étale site of Spec k, since
it is a k-scheme. �e presheaf F(r;An) is also an étale sheaf, by virtue of Proposition
3.3. It therefore suffices to prove that B(r,An)(SpecR)→ F(r;An)(SpecR) when R
is a strictly henselian local ring, but this is Lemma 3.12. ∎

Example 3.14 Let us consider the toy example where k is a field and X = SpecK for
some field extension K/k, where n ≥ 2, and where r = 1. �at is, we are considering
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étale algebras A/K along with a chosen generating element a ∈ A. A�er base change
to the separable closure, K s , we obtain an Sn-equivariant isomorphism of K s-algebras:

ψ ∶ AK s

≅
Ð→(K s)×n .

For the sake of the exposition, use ψ to identify source and target. �e element a ∈ A
yields a chosen generating element ã ∈ (K s)n . �e element ã is a vector of n pairwise
distinct elements of K s . �e element ã is a K s-point ofU(1;An). In general, this point
is not defined over K, but its image in B(1;An) is.

SinceU(1;An) ⊆ An , and B(1;An) = U(1;An)/Σn , the image of ã in B(1;An)(K s)
may be presented as the elementary symmetric polynomials in the a i . To say that the
image of ã = (a1 , . . . , an) in B(1;An) is defined over K is to say that the coefficients
of the polynomial∏n

i=1(x − a i) are defined in K.
�e variety B(1;An) is the k-variety parametrizing degree-n polynomials with

distinct roots, i.e., with invertible discriminant.

Example 3.15 To reduce the toy example even further, let us consider the case of
k = K a field of characteristic different from 2, and n = 2.

�e variety B(1;A2) may be presented as spectrum of the C2-fixed subring of
k[x , y, (x − y)−1] under the action interchanging x and y. �is is k[(x + y), (x −
y)2 , (x − y)−2], although it ismore elegant to present it a�er the change of coordinates
c1 = x + y and c0 = xy:

B(1;A2) = Spec k[c1 , c0 , (c21 − 4c0)−1]
A quadratic étale k-algebra equipped with the generating element a corresponds to

the point (c1 , c0) ∈ B(1;A2)(k) where a satisfies the minimal polynomial a2 − c1a +
c0 = 0.

For instance if k = R, the quadratic étale algebra of complex numbers C with gen-
erator s + ti over R (here t ≠ 0), corresponds to the point (2s, s2 + t2) ∈ B(1;A2)(R),
whereas R ×R, generated by (s + t, s − t) over R (again t ≠ 0) , corresponds to the
point (2s, s2 − t2).

4 Stabilization in cohomology

We might wish to use the schemes B(r;An) to define cohomological invariants of
étale algebras. �e idea is the following: suppose given such an algebra A on a k-
scheme X, and suppose one can find generators (a1 , . . . ar) for A. �en one has a
classifying map ϕ ∶ X → B(r;An), and one may apply a cohomology functor E∗, such
as Chow groups or algebraic K-theory, to obtain “characteristic classes” for A-along-
with-(a1 , . . . , ar), in the form of ϕ∗ ∶ E∗(B(r;An))→ E∗(X).�e dependence on the
specific generators chosen is a nuisance, andwe see in this section that this dependence
goes away provided we are prepared to pass to a limit “B(∞)” and assume that the
theory E∗ is A1-invariant, in that E∗(X)→ E∗(X ×A1) is an isomorphism.

Definition 4.1 �ere are stabilization maps U(r;An)→ U(r + 1;An) obtained by
augmenting an r-tuple ofn-tuples by then-tuple (0, 0, . . . , 0).�ese stabilizationmaps
are Sn-equivariant and therefore descend to maps B(r;An)→ B(r + 1;An).
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�e stabilization maps defined above may be composed with one another, to yield
maps B(r;An)→ B(r′;An) for all r < r′. �ese maps will also be called stabilization
maps.

Proposition 4.2 Let X be a k-scheme. Suppose

[A, a1 , . . . , ar] ∈ F(r;An)(X) and [A′ , a′1 , . . . , a′r′] ∈ F(r′;An)(X)

have the property that A ≅ A′ as étale algebras. Let ϕ ∶ X → B(r;An) and ϕ′ ∶ X →
B(r′;An) be the corresponding classifyingmorphism. For R = r + r′, the composite maps
ϕ̃ ∶ X → B(r;An)→ B(R;An) and ϕ̃′ ∶ X → B(r′;An)→ B(R;An) given by stabiliza-
tion are naively A1-homotopic.

An “elementaryA1-homotopy” betweenmaps ϕ, ϕ′ ∶ X → B is a map Φ ∶ X ×A1
→

B specializing to ϕ at 0 and ϕ′ at 1. Twomaps ϕ, ϕ′ ∶ X → B are “naivelyA1-homotopic”
if they may be joined by a finite sequence of elementary homotopies. Two naively
homotopic maps between smooth finite-type k-schemes are identified in the A

1-
homotopy theory of schemes of [18], but they do not account for all identifications
in that theory.

Proof We may assume that A = A′. We may also assume that r = r′—if r < r′, then
pad the vector (a1 , . . . , ar) with 0s to produce a vector (a1 , . . . , ar , 0, . . . , 0) of length
r′, and similarly in the other case.

Write t for the parameter of A1. Let A[t] denote the pull-back of A along the
projection X ×A1

→ X.
Consider the sections ((1 − t)a1 , . . . , (1 − t)ar , ta′1 , . . . , ta′r) ofA[t]. Since either t

or (1 − t) is a unit at all local rings of pointsA1, by appeal to Proposition 2.10 and con-
sideration of the restrictions to X × (A1

− {0}) and X × (A1
− {1}), we see that ((1 −

t)a1 , . . . , (1 − t)ar , ta′1 , . . . , ta′r) furnish a set of generators for A[t]. At t = 0, they
specialize to (a1 , . . . , ar , 0, . . . , 0), viz., the generators specified by the stabilized map
ϕ ∶ X → B(r;An)→ B(2r;An). At t = 1, they specialize to (0, . . . , 0, a′1 , . . . , a′r), which
is not precisely the list of generators specified by ϕ′ ∶ X → B(r;An)→ B(2r;An), but
may be brought to this form by another elementary A1-homotopy. ∎

Corollary 4.3 Let ϕ and ϕ′ be as in the previous proposition. If E∗ denotes any
A

1-invariant cohomology theory, then E∗(ϕ̃) = E∗(ϕ̃′).

5 The motivic cohomology of the spaces B(r;A2)

For this section, let k denote a fixed field of characteristic different from 2.�emotivic
cohomology of the spaces B(r;A2) has already been calculated in [4].

5.1 Change of coordinates

Lemma 5.1 �ere is an equivariant isomorphism U(r;A2) ≅ Ar/{0} ×Ar , where C2

acts as multiplication by −1 on the first factor Ar/{0} and trivially on the second factor
A

r . Taking quotient by C2-action yields B(r;A2) ≅ (Ar/{0})/C2 ×A
r .
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Proof By means of the change of coordinates

x i − y i = z i , x i + y i = w i

we see that U(r;A2)≅(Ar/{0}) ×Ar . Moreover, the action of C2 on U(r;A2) is
given by z i ↦ −z i and w i ↦ w i . We therefore obtain an isomorphism B(r;A2) =
U(r;A2)/C2≅(Ar/{0})/C2 ×A

r . Write V(r;A2) forAr/{0}/C2. It is immediate that
B(r;A2)≅V(r;A2) ×Ar , and so there is a split inclusion V(r;A2)→ B(r;A2) which
is moreover an A

1-equivalence. ∎

5.2 The deleted quadric presentation

Definition 5.2 EndowP
2r−1 with the projective coordinates a1 , . . . , ar , b1 , . . . , br . Let

Q2r−2 denote the closed subvariety given by the vanishing of∑r
i=1 a ib i , and letDQ2r−1

denote the open complement P2r−1/Q2r−2.

�emain computation of [4] is a calculation of themodulo- 2motivic cohomology
of DQ2r−1, and of a family of related spaces DQ2r . Our reference for the motivic
cohomology of k-varieties is [16]. For a given abelian group A, either Z or F2 in this
paper, and a given varietyX, themotivic cohomologyH∗,∗(X;A) is a bigraded algebra
over the cohomology of the ground field, Spec k.

Denote the modulo- 2 motivic cohomology of Spec k by M2. �is is a bigraded
ring,

M2 =⊕
i ,n

M
n , i
2 ,

nonzero only in degrees 0 ≤ n ≤ i. �ere are two notable classes, ρ ∈M1,1
2 , the reduc-

tionmodulo 2 of {−1} ∈ KM
1 (k) = H1,1(Spec k,Z), and τ ∈M0,1

2 , corresponding to the
identity (−1)2 = 1. If −1 is a square in k, then ρ = 0, but τ is always a nonzero class.

Proposition 5.3. (Dugger–Isaksen, [4] �eorem 4.9) �ere is an isomorphism of
graded rings

H∗,∗(DQ2r−1;F2)≅ M2[a, b]
(a2 − ρa − τb, br)

where ∣a∣ = (1, 1) and ∣b∣ = (2, 1).
Moreover, the inclusion DQ2r−1 → DQ2r+1 given by ar+1 = br+1 = 0 induces the map

H∗,∗(DQ2r+1;F2)→ H∗,∗(DQ2r−1;F2) sending a to a and b to b.
�is proposition subsumes two other notable calculations of invariants. In the

first place, owing to the Beilinson–Lichtenbaum conjecture [23], it subsumes the
calculation of H∗ét(DQ2r−1;F2). For instance, if k is algebraically closed, then M2 =

F[τ], and one deduces that H∗ét(DQ2r−1;F2)≅F2[a, b]/(a2 − b, br) = F2[a]/(a2r).
In the second, since H2n ,n(⋅;F2) is identified with CHn(⋅)⊗ZF2, the calculation of

the proposition subsumes that of the Chow groups modulo 2. In fact, the extension
problems that prevented Dugger and Isaksen from calculating H∗,∗(DQ2r−1;Z) do
not arise in this range, and by reference to the appendix of [4], which in turn refers to
[13], one can calculate the integral Chow rings.�is is done in the first two paragraphs
of the proof of [4, �eorem 4.9].

https://doi.org/10.4153/S0008414X20000206 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000206


866 A. Kumar Shukla and B. Williams

Proposition 5.4 One may present

CH∗(DQ2r−1) = Z[b̃]
(2b̃, b̃r)

, ∣b∣ = 1.

As before, the map DQ2r−1 → DQ2r+1 given by adding 0s induces the map b ↦ b
on Chow rings. Moreover CH∗(DQ2r−1)⊗ZF2 can be identified with the subring of
H∗,∗(DQ2r−1;F2) generated by b.

�e reason we have explained all this is that there is a composite of maps

DQ2r−1 → (Ar/{0})/C2 → B(r;A2),(1)

both of which are A
1-equivalences, and so Propositions 5.3 and 5.4 amount to a

calculation of the motivic and étale cohomologies and Chow rings of B(r;A2). Both
maps in diagram (5.2) are compatible in the evident way with an increase in r, so that
we may use the material of this section to compute the stable invariants of B(r;A2) in
the sense of Section 4.

�e A
1-equivalence B(r;A2)→ (Ar/{0})/C2 was constructed above in Lemma

5.1, so it remains to prove the following.

Lemma 5.5 Let r ≥ 1.�e variety DQ2r−1 is affine and has coordinate ring

R =
⎡
⎢
⎢
⎢
⎣

k[x1 , . . . , xr , y1 , . . . , yr]
(1 −∑r

i=1 x i y i)
⎤⎥⎥⎥
⎦

C2

where the C2 action on x i and y i is by x i ↦ −x i and y i ↦ −y i .

Proof �e variety DQ2r−1 is a complement of a hypersurface in P
2r−1, and is

therefore affine.
LetQ denote a1b1 + ⋅ ⋅ ⋅ + arbr . �e coordinate ring of DQ2r−1 is the ring of degree-

0 terms in the graded ring S = k[a1 , . . . , ar , b1 , . . . , br ,Q−1], where ∣a i ∣ = ∣b i ∣ = 1 and
∣Q−1∣ = −2. �is ring is the subring of S generated by the terms a ia jQ

−1, a ib jQ
−1 and

b ib jQ
−1.

Consider the ring

T =
k[x1 , . . . , xr , y1 , . . . , yr]
(1 −∑r

i=1 x i y i)
.

One may define a map of rings ϕ ∶ S → T by sending a i ↦ x i and b i ↦ y i , since
Q ↦ 1 under this assignment. Restricting to Γ(DQ2r−1 ,ODQ2r−1

) ⊂ S, one obtains a
map Γ(DQ2r−1 ,ODQ2r−1

)→ T for which the image is precisely the subring generated
by terms x ix j , x i y j and y i y j , i.e., the fixed subring under the C2 action given by x i ↦
−x i and y i ↦ −y i .

It remains to establish this map is injective. We show that the kernel of the map
ϕ ∶ S → T contains only one homogeneous element, 0, so that the restriction of this
map to the subring of degree-0 terms in S is injective. �e kernel of ϕ is the ideal
(Q − 1). Since S is an integral domain, degree considerations imply that no nonzero
multiple of (Q − 1) is homogeneous. ∎

https://doi.org/10.4153/S0008414X20000206 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000206


Classifying spaces for étale algebras with generators 867

Proposition 5.6 For all r, there is an A
1-equivalence

DQ2r−1 → (Ar/{0})/C2 .

Proof Let T be as in the proof of Lemma 5.5. It is well known that SpecT is an
affine vector bundle torsor over Ar/{0}. In fact, for each j ∈ {1, . . . , r}, if we define
U j≅A

1/{0} ×Ar−1 to be the open subscheme of Ar/{0} where the jth coordinate is
invertible, then we arrive at a pull-back diagram

SinceU j inherits a free C2-action, it follows that in the quotient we obtain a vector
bundle (Ar−1

×U j)/C2 → U j/C2, and so the map (SpecT)/C2 → (Ar/{0})/C2 is an
A

1-equivalence, as claimed. ∎

As a consequence of Proposition 5.6 we observe that the affine variety DQ2r−1 is an
affine approximation of B(r;A2).

6 Relation to line bundles in the quadratic case

We continue to work over a field k, and to require that the characteristic of k be
different from 2.

In the case where n = 2, the structure group of the degree-n étale algebra is C2,
the cyclic group of order 2, which happens to be a subgroup of Gm . More explicitly,
H1

ét(SpecR;C2) is an abelian group which is isomorphic to the isomorphism classes
of quadratic étale algebras on SpecR. On the other hand due to the Kummer sequence
and C2 ⊂ Gm we have

0→ R∗/R∗2 → H1
ét(SpecR;C2)→ 2Pic(R)→ 0

which means that H1
ét(SpecR;C2) is identified with the set of isomorphism classes of

2-torsion line bundles L with a choice of trivialization ϕ ∶ L⊗L
≅
Ð→OR .

�is is the basis of the following construction.

Construction 6.1 Let X be a scheme such that 2 is invertible in all residue fields, and
letA be a quadratic étale algebra on X. �ere is a trace map [14, Section I.1]:

Tr ∶ A→ O

and an involution σ ∶ A→ A given by σ = Tr − id. Define L to be the kernel of Tr ∶
A→ O. �e sequence of sheaves on X

0→ L→ A→ O→ 0

is split short exact, where the splitting O→ A is given on sections by x ↦ 1
2 x.
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�e construction of L from A gives an explicit instantiation of the map
H1

ét(X ,C2)→ H1
ét(X ,Gm) on isomorphism classes. We note that Lmust necessarily

be a 2-torsion line bundles, in that L⊗L is trivial.

It is partly possible to reverse the construction of L fromA.

Construction 6.2 Let X be as above, and let L be a line-bundle on X such that there
is an isomorphismL⊗L→ O. Let ϕ ∶ L⊗L→ O be a specific choice of isomorphism.
From the data (L, ϕ), we may produce an étale algebra A = O⊕L on which the
multiplication is given, on sections, by (r, x) ⋅ (r′ , x′) = (rr′ + ϕ(x⊗x′), rx′ + r′x).

Proposition 6.3 Let X be a scheme such that 2 is invertible in all residue fields of points
of X. LetA a quadratic étale algebra on X. LetL be the associated line bundle toA, as in
Construction 6.1. Suppose a1 , . . . , ar are global sections ofA.�en a1 , . . . , ar generateA
as an algebra if and only if a1 −

1
2Tr(a1), . . . , ar − 1

2Tr(ar) generateL as a line bundle.

Proof Write q for the map a ↦ a − 1
2Tr(a). �e questions of generation ofA and of

L may be reduced to residue fields at points of X, by Proposition 2.10 for the algebra
and Nakayama’s lemma for the line bundle.

Wemay therefore supposeF is a field of characteristic different from2, and thatA/F
is a quadratic étale algebra. Since 2 is invertible, we may write A = F[z]/(z2 − c) for
some element c ∈ F×. In this presentation, σ(z) = −z and Tr(az + b) = 2b.�e kernel
of the tracemap, i.e. L, is therefore Fz.�emap q ∶ A→ Fz is given by q(az + b) = az.

An r-tuple a⃗ = (a1z + b1 , . . . , arz + br) of elements of A generate it as an F-algebra
if and only if q(a⃗) = (a1z, . . . arz) do. �is tuple generates A as an algebra if and only
if at least one of the a i is nonzero, which is exactly the condition for it to generate Fz
as an F-vector space. ∎

Remark 6.4 Let k be a field of characteristic different from 2. Let X be a k-variety.
An étale algebra of degree 2 generated by r global sections corresponds to a map X →
B(r;A2). A line bundle generated by r global sections corresponds to amap X → P

r−1.
In light of Proposition 6.3, there must be a map of varieties B(r;A2)→ P

r−1.�is map
is given by

B(r;A2) ≅→ (Ar/{0})/C2 ×A
r p1
→ (Ar/{0})/C2 → (Ar/{0})/Gm

≅
Ð→P

r−1

where themorphisms are, le� to right, the isomorphismof Lemma 5.1, projection onto
the second factor, and the map induced by the inclusion C2 ⊂ Gm .

7 The example of Chase

�e following will be referred to as “the example of Chase”.

Construction 7.1 Let S = R[z1 , . . . , zr]/(∑r
i=1 z

2
i − 1) and equip this with the C2-

action given by z i ↦ −z i . Let R = S
C2 . �e dimension of both R and S is r − 1.

�e ring R carries a projective module of rank 1, i.e., a line bundle, that requires r
global sections in order to generate it. �is example is given in [21, �eorem 4].
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Remark 7.2 In fact, the line bundle in question is of order 2 in the Picard group, so
Proposition 6.3 applies and there is an associated quadratic étale algebra on SpecR =
Y(r) requiring r generators. �e algebra is, of course, dependent on a choice of
trivialization of the square of the line bundle, but one may choose the trivialization
so the étale algebra in question is S itself as an R-algebra.

Remark 7.3 �is construction shows that the bound of First and Reichstein, [6], on
the number of generators required by an étale algebra of degree 2 is tight.�is was first
observed, to the best of our knowledge, by M. Ojanguren in private communication.

Even better, replacing S by S × Rn−2 over R, one produces a degree-n étale algebra
over R requiring r elements to generate, so the bound is tight in the case of étale
algebras of arbitrary degrees. We owe this observation to Zinovy Reichstein.

�e original method of proof that the line bundle in the example of Chase cannot
be generated by fewer than r global sections uses the Borsuk–Ulam theorem. Here
we show that a variation on that proof follows naturally from our general theory
of classifying objects. �e Borsuk–Ulam theorem is a theorem about the topology
of RPr , so it can be no surprise that it is replaced here by facts about the singular
cohomology of RPr .

7.1 The homotopy type of the real points of B(r;A2)

In addition to the general results about the motivic cohomology of B(r;A2), we can
give a complete description of the homotopy type of the real points B(r;A2)(R).

If X is a nonsingular R-variety, then it is possible to produce a complex manifold
from X by first extending scalars to C and then employing the usual Betti realization
functor to produce amanifold X(C). SinceX is defined overR, however, the resulting
manifold is equipped with an action of the Galois group Gal(C/R)≅C2. We write
X(R) for the Galois-fixed points of X(C).
Remark 7.4 �e real realization functor X ↝ X(R) preserves finite products, so that
if f , g ∶ X → Y are two maps of varieties and H ∶ X ×A1

→ X′ is an A
1-homotopy

between them, then f (R), g(R) are homotopic maps of varieties, via the homotopy
obtained by restricting H(R) ∶ X(R) ×A1(R) = X(R) ×R→ X′(R) to the subspace
X(R) × [0, 1].

Using Lemma 5.1, present U(r;A2) as the variety of 2r-tuples
(z1 , . . . , zr ,w1 , . . . ,wr) such that (z1 , . . . , zr) ≠ (0, . . . , 0).

�is variety carries an action by C2 sending z i ↦ −z i and fixing the w i . We know
U(r;A2) and B(r;A2) are naively homotopy equivalent to A

r/{0} and A
r/{0}/C2

respectively.

Construction 7.5 We now consider an inclusion that is not, in general,
an equivalence. Let P(r) = Spec S denote the subvariety of A

r/{0}
consisting of r-tuples (z1 , . . . , zr) such that ∑r

i=1 z
2
i = 1. �is is an (r − 1)-

dimensional closed affine subscheme of A
r/{0}, invariant under the C2

action on A
r/{0}. �e quotient of P(r) by C2 is Y(r) = SpecR, and is
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equipped with an evident map Y(r)→ (Ar/{0})/C2 → B(r;A2). Here S and
R take on the same meanings as in Construction 7.1.

Proposition 7.6 Let notation be as in Construction 7.5.�e real manifold B(r;A2)(R)
has the homotopy type of

B(r;A2)(R) ≃ RPr−1
∐RPr−1 .

�e closed inclusion Y(r)→ B(r;A2) includes Y(r)(R)→ B(r;A2)(R) as a deforma-
tion retract of one of the connected components.

Proof By Lemma 5.1 and Remark 7.4, the manifold B(r,A2)(R) is homotopy equiv-
alent to (Ar/{0}/C2)(R). �e manifold (Ar/{0}/C2)(C) consists of equivalence
classes of r-tuples of complex numbers (z1 , ..., zr), where the z i are not all 0, under
the relation

(z1 , . . . , zr) ∼ (−z1 , . . . ,−zr).

�e real points of (Ar/{0})/C2 consist of Galois-invariant equivalence classes. �ere
are two components of this manifold: either the terms in (z1 , . . . , zr) are all real or
they are all imaginary. In either case, the connected component is homeomorphic to
the manifold RPr−1.

We now consider the manifold Y(r)(R). �is arises as the Galois-fixed points
of Y(r)(C), which in turn is the quotient of P(r)(C) by a sign action. �at is,
P(r)(C) is the complex manifold of r-tuples (z1 , . . . , zr) satisfying∑r

i=1 z
2
i = 1. Again,

in the R-points, the z i are either all real or all purely imaginary. �e condition

∑r
i=1 z

2
i = 1 is incompatible with purely imaginary z i , so Y(r)(R) is the manifold of

r-tuples of real numbers (z1 , . . . , zr) satisfying∑r
i=1 z

2
i = 1, taken up to sign. In short,

Y r(R) = RPr−1.
As for the inclusion Y(r)(R)→ B(r;A2)(R), it admits the following description,

as can be seen by tracing through all the morphisms defined so far. Suppose given
an equivalence class of real numbers (z1 , . . . , zr), satisfying ∑r

i=1 z
2
i = 1, taken up

to sign. �en embed (z1 , . . . , zr) as the point of B(r;A2)(R) given by the class of
(z1 , z2 , . . . , zr , 0, . . . , 0). �at is, embedRPr−1 inR

r
× (Rr−1/{0}) /C2 by embedding

RPr−1
⊂ (Rr/{0})/C2 as a deformation retract, and then embedding the latter space

as the zero section of the trivial bundle. It is elementary that this composite is also a
deformation retract. ∎

Remark 7.7 We remark that the functor X ↝ X(R) does not commute with
colimits. For instance U(r;A2)(R)/C2, which is connected, is not the same as
B(r;A2)(R).

In fact, the two components of B(r;A2)(R) as calculated above correspond to two
isomorphism classes of quadratic étaleR-algebras: one component corresponds to the
split algebra R ×R, and the other to the nonsplit C.

We will need two properties of H∗(RPr ;F2) here. Both are standard and may be
found in [12].

• H∗(RPr ;F2)≅F2[θ]/(θ r+1) where ∣θ∣ = 1.

https://doi.org/10.4153/S0008414X20000206 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000206


Classifying spaces for étale algebras with generators 871

• �e standard inclusion of RPr
↪ RPr+1 given by augmenting by 0 induces the

evident reduction map θ ↦ θ on cohomology.

Proposition 7.8 We continue to work over k = R. Let sr ∶ B(r;A2)→ B(r + 1;A2) be
the stabilization map of Definition 4.1.�e induced map on cohomology groups

s∗r ∶ H
j(B(r + 1;A2)(R);F2)→ H j(B(r;A2)(R);F2)

is an isomorphism when j ≤ r and is 0 otherwise.

Proof �e map s∗r is arrived at by considering the inclusion U(r;A2)→ U(r +
1;A2), which is given by augmenting an r-tuple of pairs (a1 , b1 , . . . , ar , br) by (0, 0),
and then taking the quotient by C2. A�er R-realization, one is le� with a map
B(r;A2)(R)→ B(r + 1;A2)(R) which on each connected component is homotopy
equivalent to the standard inclusion RPr

→ RPr+1. �e result follows. ∎

Proposition 7.9 (Ojanguren) Let S and R be as in Construction 7.1.�e quadratic étale
algebra S/R cannot be generated by fewer than r elements.

Sketch of proof Write Y(r) = SpecR as in Construction 7.5. �e morphism
Y(r)→ B(r;A2) of Construction 7.5 classifies a quadratic étale algebra over Y(r),
and we can identify this algebra as S.

�emap ϕ ∶ Y(r)→ B(r;A2) induces stable maps ϕ̃ ∶ Y(r)→ B(R;A2). Any such
stable map induces a surjective map

ϕ̃∗ ∶ H∗(B(R;A2)(R);F2)→ H∗(Y(r)(R);F2)

by Proposition 7.6 and 7.8. In particular, it is a surjection when ∗ = r − 1.
Suppose S can be generated by r − 1 elements, then there is a classifying map ϕ′ ∶

Y(r)→ B(r − 1;A2), from which one can produce a stable map

(ϕ̃′)∗ ∶ H∗(B(R;A2)(R) ∶ F2)→ H∗(B(r − 1;A2);F2)→ H∗(Y(r)(R);F2).

By reference to Corollary 4.3, for sufficiently large values of R, the maps ϕ̃∗ and (ϕ̃′)∗
agree. But (ϕ̃′)∗ induces the 0-map when ∗ = r − 1, since H∗(B(r − 1;A2)(R);F2) is
a direct sum of two copies of F2[θ]/(θ r−1). �is contradicts the surjectivity of ϕ̃∗ in
this degree.

7.2 Algebras over fields containing a square root of −1

Remark 7.10 When the field k contains a square root i of −1, the analogous construc-
tion to that of Chase exhibits markedly different behaviour. For simplicity, suppose r
is an even integer. Consider the ring

S′ =
k[z1 , . . . , zr]
(∑r

i=1 z
2
i − 1)

https://doi.org/10.4153/S0008414X20000206 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000206


872 A. Kumar Shukla and B. Williams

with the action of C2 given by z i ↦ −z i . Let R
′
= (S′)C2 . A�er making the change of

variables x j = z2 j−1 + iz2 j and y j = z2 j−1 − iz2 j , we see that S
′ is isomorphic to

k[x1 , . . . , xr/2 , y1 , . . . , yr/2]
(∑r/2

j=1 x j y j − 1)

andR′ is isomorphic to the subring consisting of terms of even degree.�e smallestR′-
subalgebra of S′ containing the r/2-terms x1 , . . . , xr/2 contains each of the y j because
of the relation

y j =
r/2

∑
l=1

x l(y l y j)

so S′ may be generated over R′ by r/2 elements. In fact, R′ is the coordinate ring of
DQr−1, by Lemma 5.5. In Proposition 7.13 below, we show that S′ cannot be generated
by fewer than r/2 elements over R′.

One may reasonably ask, therefore, over a field k containing a square root of −1:

Question 7.11 For a given dimension d, is there a smooth d-dimensional affine variety
SpecR and a finite étale algebra A over SpecR such that A cannot be generated by
fewer than d + 1 elements?

�e result of [6] implies that if d + 1 is increased, then the answer is negative.

Remark 7.12 If d = 1, the answer to the question is positive. An example can be
produced using any smooth affine curve Y for which 2Pic(Y) ≠ 0. Specifically, one
may take a smooth elliptic curve and discard a point to produce such a Y. A nontrivial
2-torsion line bundle L on Y cannot be generated by 1 section, since it is not trivial.
One may choose a trivialization ϕ ∶ L⊗L→ O, and therefore endow L⊕O with the
structure of a quadratic étale algebra, as in Construction 6.2, and this algebra also
cannot be generated by 1 element.

Proposition 7.13 Let k be a field containing a square root i of −1. Let T denote the
ring

T =
k[x1 , . . . , xr , y1 , . . . , yr]
(∑r

i=1 x i y i − 1)
endowed with the C2 action given by x i ↦ −x i and y i ↦ −y i . Let R = T

C2 . �en the
quadratic étale algebra T over R can be generated by the r elements x1 , . . . , xr , but cannot
be generated by fewer than r elements.

Proof �e ring R is the coordinate ring of the variety DQ2r−1 in Lemma 5.5. In
particular, there is an A

1-equivalence ϕ ∶ DQ2r−1 → B(r;A2), as in equation (5.2).
Tracing through this composite, one sees it classifies the quadratic étale algebra
generated by x1 , . . . , xr , i.e., T itself—the argument being as given for DQr−1 in
Remark 7.10.

Suppose for the sake of contradiction that T can be generated by r − 1 elements
over R. Let ϕ′ ∶ DQ2r−1 → B(r − 1;A2) be a classifying map for some such r − 1-tuple
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of generators. Let ϕ̃ and ϕ̃′ denote the composite maps DQ2r−1 → B(2r − 1;A2). By
Corollary 4.3, these maps induce the same map on Chow groups. But in degree r − 1,
the map ϕ̃∗ ∶ CHr−1(B(2r − 1;A2))→ CHr−1(B(r;A2))→ CHr−1(DQ2r−1) is an
isomorphism of cyclic groups of order 2, by reference to Proposition 5.4, while by the
same proposition, (ϕ̃′)∗ ∶ CHr−1(B(2r − 1;A2))→ CHr−1(B(r − 1;A2))→
CHr−1(DQ2r−1) is 0. ∎

�e following shows that the bound of [6] is not quite sharp when applied to
quadratic étale algebras over smooth k̄-algebraswhere k̄ is an algebraically closed field.

Proposition 7.14 Let k̄ be an algebraically closed field. Let n ≥ 2, and SpecR an n-
dimensional smooth affine k̄-variety. IfA is a quadratic étale algebra on SpecR, thenA
may be generated by n global sections.

Proof Let L be a torsion line bundle on SpecR, or, equivalently, a rank- 1 projective
module on R. A result of Murthy’s, [19, Corollary 3.16], implies that L may be
generated by n elements if and only if c1(L)n = 0. By another result of Murthy’s,
[19, �eorem 2.14], the group CHn(R) is torsion free, so it follows that if L is a 2-
torsion line bundle, then L can be generated by n elements. �e proposition follows
by Proposition 6.3. ∎
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