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Generalized torsion for knots with
arbitrarily high genus

Kimihiko Motegi and Masakazu Teragaito

Abstract. Let G be a group, and let g be a nontrivial element in G. If some nonempty finite product
of conjugates of g equals the identity, then g is called a generalized torsion element. We say that a
knot K has generalized torsion if G(K) = π1(S3 − K) admits such an element. For a (2, 2q + 1)-torus
knot K, we demonstrate that there are infinitely many unknots cn in S3 such that p-twisting K about
cn yields a twist family {Kq ,n , p}p∈Z in which Kq ,n , p is a hyperbolic knot with generalized torsion
whenever ∣p∣ > 3. This gives a new infinite class of hyperbolic knots having generalized torsion. In
particular, each class contains knots with arbitrarily high genus. We also show that some twisted torus
knots, including the (−2, 3, 7)-pretzel knot, have generalized torsion. Because generalized torsion is
an obstruction for having bi-order, these knots have non-bi-orderable knot groups.

1 Introduction

Let G be a group, and let g be a nontrivial element in G. If some nonempty finite
product of conjugates of g equals the identity, then g is called a generalized torsion
element. In particular, any nontrivial torsion element is a generalized torsion element.

A group G is said to be bi-orderable if G admits a strict total ordering < which
is invariant under multiplication from the left and the right. That is, if g < h, then
agb < ahb for any g , h, a, b ∈ G. In this paper, the trivial group {1} is considered to
be bi-orderable.

It is easy to see that a bi-orderable group does not have a generalized torsion
element. Thus, the existence of generalized torsion element is an obstruction for a
group to be bi-orderable. It is known that the converse does not hold in general
[16, Chapter 4]. However, among 3-manifold groups (fundamental groups of 3-
manifolds), one may expect that the converse does hold, and the authors proposed
the following conjecture [15].

Conjecture 1.1 Let G be the fundamental group of a 3-manifold. Then, G is bi-
orderable if and only if G has no generalized torsion element.
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Let us restrict our attention to a knot group G(K), the fundamental group of the
exterior E(K) of a knot K in S3. Then, G(K) is known to be left-orderable, i.e., it has
a strict total ordering < which is invariant under multiplication from the left [2, 9].
On the other hand, little is known for having generalized torsion elements or being
bi-orderable.

In what follows, for short, we often say that K has generalized torsion if its
knot group G(K) has a generalized torsion element. Any nontrivial torus knot has
generalized torsion [17], and hence any satellite of a nontrivial torus knot also has
generalized torsion.

Using this simple fact, we may observe the following in ad hoc fashion.

Proposition 1.2 For a given knot K, there are infinitely many twisting circles c such
that Kp, the knot obtained from K by p twisting about c, has generalized torsion.

Proof Let us take an unknotted solid torus V which contains K in its interior,
so that K is not a core of V and not embedded in a 3-ball in V. Note that there are
infinitely many such solid tori. Then, let c be an unknotting circle on ∂V which wraps
m (≥2) times in the meridional direction and once in the longitudinal direction of
V. If we perform p-twisting about c, then the core of V becomes a (m, pm + 1)-torus
knot. Thus, Kp is a satellite knot which has the torus knot Tm , pm+1 as a companion
knot. Recall that π1(E(Tm , pm+1)) has a generalized torsion element (see [17]; cf. [15]).
Because π1(E(Tm , pm+1)) injects into π1(E(Kp)), π1(E(Kp)) also has a generalized
torsion element. ∎

By construction, the knots given in Proposition 1.2 are satellite knots. Turning to
hyperbolic knots, Naylor and Rolfsen [17] discovered a generalized torsion element
in the knot group of the hyperbolic knot 52 by using a computer. It is surprising that
this is the first example of hyperbolic knot with generalized torsion. The knot 52 is the
(−2)-twist knot, and the second-named author extends this example to all negative
twist knots [19]. As far as we know, these twist knots are the only known hyperbolic
knots with generalized torsion. We emphasize that all twist knots have genus one.

In this paper, applying twisting operation, we demonstrate the following theorem.

Theorem 1.3 Let Kq be a (2, 2q + 1)-torus knot T2,2q+1(q ≥ 1). Then, there are
infinitely many unknots cn (indexed by positive integers) in S3 disjoint from Kq such
that each cn enjoys the following property. Let Kq ,n , p be a knot obtained from Kq by
p-twisting about cn . Then, for each infinite family {Kq ,n , p}p∈Z, Kq ,n , p is a hyperbolic
knot with generalized torsion whenever ∣p∣ > 3.

Because the linking number between cn and Kq is greater than 1, [1, Theorem 2.1]
shows that the genus of Kq ,n , p tends to∞ as ∣p∣ → ∞.

Corollary 1.4 There are infinitely many hyperbolic knots with arbitrarily high genus,
each of which has generalized torsion.

Furthermore, we will show that some twisted torus knots, including the (−2, 3, 7)-
pretzel knot, have generalized torsion. This implies the following.
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Corollary 1.5 The knot group of the pretzel knot of type (−2, 3, 2s + 5) is not bi-
orderable for s ≥ 0.

Lidman and Moore [13] showed that the pretzel knots of type (−2, 3, 2s + 1) are
L-space knots which are not bi-orderable by [4, Theorem 1.2]. Thus, our result gives
an alternative proof, but the absence of bi-ordering does not imply the existence of
generalized torsion.

2 Decomposition of commutators

We prepare a few useful facts which will be exploited to identify a generalized torsion
element. Throughout this paper, [x , y] denotes the commutator x−1 y−1x y, and x g =
g−1x g in a group G.

Recall the well-known commutator identity which holds in a group.

Lemma 2.1 [x , yz] = [x , z][x , y]z .

Proof [x , yz] = x−1(yz)−1x(yz) = (x−1z−1xz)z−1(x−1 y−1x y)z = [x , z][x , y]z . ∎

Lemma 2.2 In a group, let w(aεa , bεb)(εa and εb are either 1 or −1) be any word in
which only aεa and bεb appear; neither a−εa nor b−εb appears. Then, the commutator
[x , w(aεa , bεb)] can be decomposed into a product of conjugates of [x , aεa ] and [x , bεb ].

Proof The proof is done by the induction on the length of w(aεa , bεb). For
simplicity, we assume εa = εb = 1. The other cases are similar.

If the length of w(a, b) is 1, then w(a, b) = a or b by the assumption, and
[x , w(a, b)] is nothing but [x , a] or [x , b].

Assume that for any word w′(a, b) with length n − 1, [x , w′(a, b)] can be written
as a product of conjugates of [x , a] and [x , b]. Then, we show that the same is true
for [x , w(a, b)] for w(a, b) with length n. Here, we suppose that the initial letter of
w(a, b) is a, i.e., w(a, b) = aw′(a, b). Then, [x , w(a, b)] = [x , aw′(a, b)]. Applying
Lemma 2.1, we have [x , aw′(a, b)] = [x , w′(a, b)][x , a]w

′(a ,b). Because w′(a, b) has
length n − 1, we may write [x , w′(a, b)] as a product of conjugates of [x , a] and [x , b],
completing the proof. ∎

Because [b, b] = [b, b−1] = 1, we have the following proposition.

Proposition 2.3 The commutator [b, w(aεa , bεb)] can be decomposed into a product
of conjugates of [b, aεa ].

3 Generalized torsion which arises from twisting torus knots T2,2q+1

The goal of this section is to prove the following theorem.

Theorem 1.3 Let Kq be a (2, 2q + 1)-torus knot T2,2q+1(q ≥ 1). Then, there are
infinitely many unknots cn (indexed by positive integers) in S3 disjoint from Kq such
that each cn enjoys the following property. Let Kq ,n , p be a knot obtained from Kq by
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2

Figure 1: A braid with an axis cn .

p-twisting about cn . Then, for each infinite family {Kq ,n , p}p∈Z, Kq ,n , p is a hyperbolic
knot with generalized torsion whenever ∣p∣ > 3.

Proof For integers q, n ≥ 1, we consider the braid

(σ1σ2⋯σ2q+n+1)(σ1σ2⋯σ2q)

of 2q + n + 2 strands, where σi ’s are the standard generators of the braid group.
Figure 1 shows this braid and its axis cn . Let Kq be its closure. Then, Kq ∪ cn is
deformed as shown in Figures 2–5, where full twists are right-handed. Hence, Kq is
the torus knot T2,2q+1.

Then, as shown in Figures 2–5, the link Kq ∪ cn is deformed into a link given in
Figure 6.

We first claim that the link Kq ∪ cn is a hyperbolic link whose link group contains
a generalized torsion element.

Claim 3.1 Kq ∪ cn is hyperbolic. ∎

Proof The braid given by Figure 1 is the mirror image of the braid in [8, Figure
18(c)]. So, it is pseudo-Anosov by [8, Theorem 3.11]. (In [12], Theorem 6.7 treats the
case where n = 1. Furthermore, in Figure 18(b) and (c) of [8], there is a mistake.
The number 2m − 1 of strands should be 2m.) Hence, the link complement of Kq ∪ cn
is hyperbolic. ∎

Claim 3.2 The link group of Kq ∪ cn contains a generalized torsion element.

Proof The link Kq ∪ cn has tunnel number 1. Let γ be its unknotting tunnel as
shown in Figure 5. This means that the outside of the regular neighborhood N(Kq ∪
cn ∪ γ) is a genus-two handlebody. Let � be the co-core loop of N(γ) ⊂ N(Kq ∪
cn ∪ γ). We deform N = N(cn ∪ γ) with � as shown in Figure 7, where q + n + 2
full twists are expressed as −1/(q + n + 2)-surgery along an unknotted circle. Figures
8, 9, and 10 show the deformation of N with �, where � is expressed as a band sum of
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Figure 2: Deform Kq ∪ cn .

Figure 3: Deform Kq ∪ cn .

two circles on ∂N as shown in Figure 7. Then, subsequently, deform N as shown in
Figures 8 and 9. Finally, the q twists in Figure 9 are absorbed as illustrated in Figure 11.

In the final form of Figure 10, it is obvious to see that the outside of N(Kq ∪ cn ∪ γ)
is a genus-two handlebody denoted by H. As shown in Figure 12, the loops α and β,
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Figure 4: Deform Kq ∪ cn .

Figure 5: The link Kq ∪ cn with unknotting tunnel γ.

Figure 6: Kq ∪ cn .

which lie on ∂N , bound mutually disjoint nonseparating meridian disks of H. If
we take generators a and b of π1(H) as duals of α and β, then π1(H) is a rank- 2
free group generated by a and b. The link exterior of Kq ∪ cn is obtained from H by
attaching a 2-handle along �. By following the intersection points of � with α and β,
we can represent � as a word w of a and b, in fact, by choosing the base point and an
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Figure 7: Deform N with �.

Figure 8: Deform N with �.

Figure 9: Deform N with �.

orientation for � as shown in Figure 11. Then, referring to Figure 12, we obtain

wq ,n = a(b−1a−1)qb−1(ab)q an+2b(ab)q(a−1b−1)q a−1a−(n+2)

= a(b−1a−1)qb−1(ab)q an+2(ba)qb(a−1b−1)q a−(n+3) .
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Figure 10: Deform N with �; � is twisted in N as in the right-hand side of Figure 11.

Figure 11: Absorb q twists.

Figure 12: Two loops α and β bound mutually disjoint meridian disks of the outside handle-
body H.

Hence, we have

π1(S3 − Kq ∪ cn) = ⟨a, b ∣ wq ,n = 1⟩
= ⟨a, b ∣ (ab)q an+2(ba)qb = b(ab)q an+2(ba)q⟩

= ⟨a, b ∣ [b, (ab)q an+2(ba)q] = 1⟩.

Proposition 2.3 shows that the commutator [b, (ab)q an+2(ba)q] is decomposed
into a product of conjugates of [b, a]. Hence, [b, a] is a generalized torsion element
in π1(S3 − Kq ∪ cn) if it is nontrivial. Assume for a contradiction that [b, a] = 1 in
π1(S3 − Kq ∪ cn). Then, because a and b generate π1(S3 − Kq ∪ cn), π1(S3 − Kq ∪ cn)
would be abelian. However, the unknot and the Hopf link are the only knot and link
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with abelian knot or link group, contradicting Claim 3.1. Thus, [b, a] is nontrivial
and, hence, a generalized torsion element in π1(S3 − Kq ∪ cn).

Claim 3.3 [b, a] is a generalized torsion element of G(Kq ,n , p), provided if ∣p∣ ≠ 1.

Proof We remark that E(Kq ,n , p) is obtained from S3 − intN(Kq ∪ cn) by (− 1
p )-

Dehn filling along ∂N(cn). This gives us an epimorphism

φ∶ π1(S3 − intN(Kq ∪ cn)) → G(Kq ,n , p) = π1(E(Kq ,n , p)).

Recall that a and b generate π1(S3 − intN(Kq ∪ cn)) and satisfy [b, (ab)q an+2(ba)q] =
1. For notational simplicity, in the following, we use the same symbols a and
b to denote φ(a) and φ(b). Then, G(Kq ,n , p) is generated by a and b. Because
[b, (ab)q an+2(ba)q] = 1 ∈ G(Kq ,n , p), by Proposition 2.3, [b, a] is a generalized
torsion element of G(Kq ,n , p) whenever it is nontrivial.

Let us assume that [b, a] is trivial in G(Kq ,n , p). Then, G(Kq ,n , p) is abelian, and
hence G(Kq ,n , p) ≅ Z, i.e., Kq ,n , p is a trivial knot. If p = 0, then Kq ,n ,0 = Kq is a
nontrivial torus knot T2,2q+1. Hence, p ≠ 0. Note that the torus knot space E(Kq) =
E(Kq ,n ,0) = E(T2,2q+1) is obtained from the solid torus V = S3 − intN(Kq ,n , p) by 1

p -
surgery on cn . Furthermore, V − intN(cn) is homeomorphic to the exterior of the
link Kq ∪ cn , so it is hyperbolic by Claim 3.1. Thus, cn is not contained in a 3-ball in V
and, moreover, is neither a core of V nor a cable of a 0-braid in V. Because E(Kq) is
a Seifert fiber space, we may apply [14, Theorem 1.2] to conclude that ∣p∣ = 1. ∎

Remark 3.4 In Claim 3.3, Kq ,n ,±1 also has a generalized torsion element. We may
observe that Kq ,n ,1 is a closure of a positive braid, and Kq ,n ,−1 is a closure of a negative
braid. Hence, [18] shows that both have a positive genus. This implies that Kq ,n ,±1 is
nontrivial.

Claim 3.5 Kq ,n , p is a hyperbolic knot if ∣p∣ > 3.

Proof Because Kq ,n is a nontrivial torus knot T2,2q+1 and S3 − intN(Kq ∪ cn)
is hyperbolic (Claim 3.1), [6, Proposition 5.11] shows that Kq ,n , p is hyperbolic if
∣p∣ > 3. ∎

Claim 3.6 Kq ∪ cn and Kq ∪ cn′ are not isotopic when n ≠ n′.

Proof As shown in Figure 1, the linking number between Kq and cn is 2q + n + 2
with a suitable orientation. Hence, if n ≠ n′, Kq ∪ cn and Kq ∪ cn′ are not isotopic. ∎

Thus, we obtain infinitely many twisting circles cn for Kq = T2,2q+1 by varying n.

Now, the proof of Theorem 1.3 follows from Claims 3.3, 3.5, and 3.6.

Remark 3.7 (1) When q = 0, the link K0 ∪ cn is equivalent to the pretzel link of
type (−2, 3, 2n + 6). This special case is treated in [20].

(2) The generalized torsion element for Kq ,n , p is derived from that of the link Kq ∪
cn . Hence, the element lies in the complement of Kq ∪ cn , and furthermore, the
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2-complex which realizes the triviality of the product of its conjugates also lies
there. The word representing the element is [b, a] in common, but the generators
a and b of π1(S3 − intN(Kq ∪ cn)) depend on the parameters q and n.

As an application, we have the following corollary.

Corollary 1.4 There are infinitely many hyperbolic knots with arbitrarily high genus,
each of which has generalized torsion.

Proof Let us take the twist family {Kq ,n , p}p∈Z given in Theorem 1.3. Then, Kq ,n , p
is a hyperbolic knot with a generalized torsion element whenever ∣p∣ > 3. Because the
linking number between Kq and cn is greater than 1, [1, Theorem 2.1] shows that the
genus of Kq ,n , p tends to∞ as p →∞. ∎

The next is a slight generalization of [12, Theorem 6.7]. An n-strand braid naturally
induces an automorphism of the free group Fn of rank n. It is well known that Fn is bi-
orderable. The braid is said to be order-preserving if the corresponding automorphism
preserves some bi-ordering of Fn . See [12] for details.

Corollary 3.8 For an integer q ≥ 1 and n ≥ 1, the braid

(σ1σ2⋯σ2q+n+1)(σ1σ2⋯σ2q)

is not order-preserving.

Proof As shown in the proof of Theorem 1.3 (Claim 3.2), the link Kq ∪ cn has a
generalized torsion element in its link group, so the group is not bi-orderable. By [12,
Proposition 4.1], this is equivalent to the conclusion. ∎

4 Twisted torus knots

In this section, we give several families of twisted torus knots, whose knot groups have
generalized torsion elements.

Let p ≥ 2 and m, s ≥ 1, and let K be the twisted torus knot K(p(m + 1) + 1, pm +
1; 2, s).

Lemma 4.1 The knot group G(K) has a presentation

⟨a, c ∣ a(p−1)(m+1)+1(a−(p−2)(m+1)−1c(p−2)m+1)s am+1

= c(p−1)m+1(a−(p−2)(m+1)−1c(p−2)m+1)s cm⟩ .(4.1)

Proof We follow the argument of [3, 5]. Let Σ be the standard genus-two Heegaard
surface of S3 with the standard generators a, b, c, d of π1(Σ). Then, it bounds genus-
two handlebodies U inside and V outside. Note that a, b generate π1(U) and c, d gen-
erate π1(V). For convenience, we use the same symbols a, b to denote i∗(a), i∗(b) ∈
π1(U), where i∶Σ → U is the inclusion, and similarly use the same symbols c, d to
denote j∗(c), j∗(d) ∈ π1(V), where j ∶Σ → V is the inclusion.
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Figure 13: The Heegaard surface Σ and the standard generators a, b, c, d of π1(Σ).

Figure 14: K0 and the generators [G0], [R0], [P0] of π1(Σ − K0) (left); the circles C1 , C2 , C3 ,
and C4 (right).

We put K0 as illustrated in Figure 13. Then, Σ − K0 retracts to the wedge of three
circles G0, R0, and P0. Hence, G0, R0, and P0 represent generators of π1(Σ − K0). We
also note that G0, R0, and P0 represent b, d, and c, respectively.

Let us take the circles C1, C2, C3, and C4 on Σ, as shown in Figure 14, so that these
curves are disjoint from the base point x0 of the fundamental group π1(Σ).

Let φ∶Σ → Σ be an automorphism which is obtained by composing Dehn twists
along these curves in the following order:
(D1) 2 times along C1 to the left.
(D2) p − 2 times along C2 to the left.
(D3) m times along C3 to the right.
(D4) Once along C2 to the left.
(D5) s times along C4 to the right.
We may assume that each Dehn twist fixes a base point x0 ∈ Σ, and hence so does φ.
Then, K = φ(K0) is our twisted torus knot K(p(m + 1) + 1, pm + 1; 2, s); we denote
G = φ(G0), R = φ(R0), and P = φ(P0). They represent generators of π1(Σ − K).

To give a presentation of G(K), we consider the following decomposition: S3 − K =
(U − K) ∪ (V − K), (U − K) ∩ (V − K) = Σ − K. Recall that π1(U − K) ≅ π1(U) is
generated by a, b, and π1(V − K) ≅ π1(V) is generated by c, d. We also recall that
π1(Σ − K) is generated by [G], [R], and [P].

We express [G], [R], and [P] in π1(Σ) using the standard generators a, b, c, and d,
and then push them into π1(U) = π1(U − K) and π1(V) = π1(V − K). To this end, for
convenience, we collect the effect of the above Dehn twists (D1)–(D5) on generators
a, b, c, and d.
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a ↦ b ↦ c ↦ d ↦
D1 a b c(ab)2 d(ab)2

D2 a b ap−2c d
D3 acm b c d
D4 a b ac d
D5 a d sb c d

Recall that [G] = b, [R] = d, and [P] = c. Following the table, for [G] = b, we have:

[G] = b ↦ b ↦ b ↦ b ↦ b ↦ d sb.

Thus, [G] = b ∈ π1(U) (putting d = 1) and [G] = d s ∈ π1(V) (putting b = 1). Similarly,
for [R] = d, we have

[R] = d ↦ d(ab)2 ↦ d(ab)2 ↦ d((acm)b)2
↦ d(a(ac)mb)2

↦ d(a(ac)m(d sb))2 .

Thus, [R] = am+1bam+1b ∈ π1(U) (putting c = d = 1) and [R] = dcmd s cmd s ∈ π1(V)
(putting a = b = 1).

For [P] = c, we have

[P] =c ↦ c(ab)2 ↦ (ap−2c)(ab)2 ↦ (acm)p−2c((acm)b)2

↦ (a(ac)m)
p−2
(ac)(a(ac)mb)2

↦ (a(ac)m)p−2ac(a(ac)m(d sb))2 .

Thus, [P] = a(m+1)(p−2)a(am+1b)2 = a(p−1)(m+1)+1bam+1b ∈ π1(U) (putting c = d =
1) and [P] = c(p−1)m+1d s cmd s ∈ π1(V) (putting a = b = 1) .

The results are summarized as follows.

π1(U) π1(V)
[G] b d s

[R] am+1bam+1b dcmd s cmd s

[P] a(p−1)(m+1)+1bam+1b c(p−1)m+1d s cmd s

By the Seifert–van Kampen theorem, G(K) has a presentation

G = ⟨a, b, c, d ∣ b = d s , am+1bam+1b = dcmd s cmd s

a(p−1)(m+1)+1bam+1b = c(p−1)m+1d s cmd s⟩.

This is equivalent to

⟨a, c, d ∣ am+1d s am+1 = dcmd s cm , a(p−1)(m+1)+1d s am+1 = c(p−1)m+1d s cm⟩.

The second relation is changed to

a(p−2)(m+1)+1 ⋅ am+1d s am+1 = c(p−1)m+1d s cm .

By using the first relation, this gives

a(p−2)(m+1)+1 ⋅ dcmd s cm = c(p−1)m+1d s cm .
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So, we have

a(p−2)(m+1)+1d = c(p−2)m+1 .

By deleting the generator d, we have

⟨a, c ∣ am+1(a−(p−2)(m+1)−1c(p−2)m+1)s am+1 =

a−(p−2)(m+1)−1c(p−2)m+1cm(a−(p−2)(m+1)−1c(p−2)m+1)s cm⟩.

Finally, this is equivalent to

⟨a, c ∣ a(p−1)(m+1)+1(a−(p−2)(m+1)−1c(p−2)m+1)s am+1 =

c(p−1)m+1(a−(p−2)(m+1)−1c(p−2)m+1)s cm⟩ ,

as desired. ∎

Remark 4.2 The twisted torus knot K(p(m + 1) + 1, pm + 1; 2, s) (p ≥ 2, m, s ≥ 1) is
the closure of a positive braid with braid index p(m + 1) + 1 and word length (p(m +
1) + 1 − 1)(pm + 1) + 2s = p(m + 1)(pm + 1) + 2s. Hence, the genus of K(p(m + 1) +

1, pm + 1; 2, s) is given by 1 − (p(m + 1) + 1) + p(m + 1)(pm + 1) + 2s
2

=
p2m(m + 1)

2
+ s (see [18]).

Theorem 4.3 Let p ≥ 2 and m ≥ 1. The knot group G of the twisted torus knot
K(p(m + 1) + 1, pm + 1; 2, 1) admits a generalized torsion element.

Proof Putting s = 1 in (4.1) and rewriting the relation, G has a presentation

G = ⟨a, c ∣ a(p−1)(m+1)+1 a−(p−2)(m+1)−1c(p−2)m+1am+1 =

c(p−1)m+1a−(p−2)(m+1)−1c(p−2)m+1cm⟩

= ⟨a, c ∣ am+1c(p−2)m+1am+1 = c(p−1)m+1a−(p−2)(m+1)−1c(p−1)m+1⟩.

The relation is changed to

c(p−2)m+1 = a−(m+1)c(p−1)m+1a−(p−2)(m+1)−1c(p−1)m+1a−(m+1) .

Let w(a−1 , c) be the right-hand side of this relation. Then, the commutator
[c, w(a−1 , c)] is the identity, and it is decomposed into a product of conjugates of
[c, a−1] (Proposition 2.3).

Once we know that [c, a−1] ≠ 1, this give a generalized torsion element in G. If
[c, a−1] = 1 in G, then G would be abelian. Hence, K must be trivial. However, this
is impossible, because K is a closure of a positive braid, so a fibered knot of genus
p2m(m + 1)/2 + 1. ∎

In Theorem 4.3, for a technical reason, we assumed s = 1, while we may vary p
and m. On the other hand, if we put p = 2 and m = 1, then we may vary the twisting
parameter s ≥ 0.

Theorem 4.4 The knot group G of the twisted torus knot K(5, 3; 2, s) admits a
generalized torsion element for any s ≥ 0.
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Proof Applying Tietze transformations to the presentation (4.1), we have:

G = ⟨a, c ∣ a3(a−1c)s a2 = c2(a−1c)s c⟩
= ⟨a, c, b ∣ a3bs a2 = c2bs c, b = a−1c⟩
= ⟨a, b ∣ a2bs a2 = babs+1ab⟩
= ⟨a, b, x ∣ a2bs a2 = babs+1ab, x = abs−1⟩

= ⟨b, x ∣ (xb−(s−1))2bs(xb−(s−1))2 = bxb−(s−1)bs+1xb−(s−1)b⟩

= ⟨b, x ∣ xb−(s−1)xbxb−(s−1)x = bxb2xb⟩

= ⟨b, x , y ∣ xb−(s−1)xbxb−(s−1)x = bxb2xb, y = bxb⟩

= ⟨b, x , y ∣ xb−(s−1)xbxb−(s−1)x = y2 , y = bxb⟩

= ⟨b, y ∣ y2 = (b−1 yb−1)b−(s−1)(b−1 yb−1)b(b−1 yb−1)b−(s−1)(b−1 yb−1)⟩

= ⟨b, y ∣ y2 = b−1 yb−(s+1)yb−1 yb−(s+1)yb−1⟩.

Let w(b−1 , y) = b−1 yb−(s+1)yb−1 yb−(s+1)yb−1. Then, the relation says y2 =
w(b−1 , y). Consider the commutator [y, w(b−1 , y)], which is the identity. However,
Proposition 2.3 shows that this commutator can be decomposed into a product
of conjugates of [y, b−1] only. Here, [y, b−1] ≠ 1, for otherwise K(5, 3; 2, s) would be
trivial. However, K(5, 3; 2, s) is a fibered knot of genus s + 4 as in the proof of Theorem
4.3. Thus, [y, w(b−1 , y)] is a generalized torsion element in G. ∎

We should remark that the twisted torus knot K(5, 3; 2, s) is the (−2, 3, 2s + 5)-
pretzel knot. In particular, (−2, 3, 7)-pretzel knot admits a generalized torsion ele-
ment in its knot group. Moreover, as mentioned in the proof of Theorem 4.4, this knot
has genus s + 4. Furthermore, this is hyperbolic, except the torus knot K(5, 3; 2, 0) [11].
Thus, these pretzel knots give another examples of Corollary 1.4 realizing arbitrarily
high genus.

Furthermore, Theorem 4.4 implies the following corollary.

Corollary 1.5 The knot group of the pretzel knot of type (−2, 3, 2n + 5) is not
bi-orderable for n ≥ 0.

Because this pretzel knot is fibered, if the Alexander polynomial has no positive
real root, then the knot group is not bi-orderable [4]. In fact, the Alexander polyno-
mial of the pretzel knot of type (−2, 3, 2n + 5) is

Δ(t) = t2n+8 − t2n+7 + (t2n+5 − t2n+4 + t2n+3 − t2n+2 + ⋅ ⋅ ⋅ − t4 + t3) − t + 1 ,

as given in [7]. It is easy to see that there is no positive real root (consider the cases
t ≥ 1 and 0 ≤ t < 1). Hence, this gives another proof of Corollary 1.5. (Note that the
absence of bi-ordering does not imply the existence of generalized torsion elements.)

Recently, Johnson [10] examines the bi-orderability for genus-one pretzel knots.

Remark 4.5 It should be interesting to compare twist families given in Theorem
1.3 and that given in Theorem 4.4. In the former, we may twist Kq about cn in both
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positive and negative directions to obtain knots with generalized torsion. On the
contrary, the latter family forces us to perform only positive twisting for a technical
reason. We wonder if this condition is necessary in the latter. In other words, if s < 0,
then does the knot obtained by s twisting have bi-ordering?
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