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The localization theorem for framed motivic spaces

Marc Hoyois

ABSTRACT

We prove the analog of the Morel-Voevodsky localization theorem for framed motivic
spaces. We deduce that framed motivic spectra are equivalent to motivic spectra
over arbitrary schemes, and we give a new construction of the motivic cohomology
of arbitrary schemes.

In this article we show that the theory of framed motivic spaces introduced in [EHK™19] satisfies
localization: if i: Z <— S is a closed immersion of schemes, j: U < S is the complementary open
immersion, and F € H™(S) is a framed motivic space over S, then there is a cofiber sequence

T = F = i3 F

(see Theorem 10). Consequently, the theory of framed motivic spectra satisfies Ayoub’s axioms
[Ayo08], which implies that it admits a full-fledged formalism of six operations. Using this for-
malism, we show that the equivalence SHY(S) ~ SH(S), proved in [EHK*19] for S the spectrum
of a perfect field, holds for any scheme S (see Theorem 18).

The co-category H(S) of framed motivic spaces consists of A'-invariant Nisnevich sheaves
on the oo-category Corrfr(Sms) of smooth S-schemes and framed correspondences. A framed
correspondence between S-schemes X and Y is a span

X%Z\Y

over S, where f is a finite syntomic morphism equipped with a trivialization of its cotangent
complex in the K-theory of Z. Our result stands in contrast to the case of finite correspondences in
the sense of Voevodsky, where the analog of the Morel-Voevodsky localization theorem remains
unknown. The essential ingredient in our proof is the fact that the Hilbert scheme of framed
points [EHK 19, Definition 5.1.7] is smooth.

1. Review of the Morel-Voevodsky localization theorem

We start by reviewing the localization theorem of Morel and Voevodsky [MV99, §3, Theorem
2.21]. We refer to [Hoyl4, Appendix C] for the definition of the Morel-Voevodsky oo-category
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H(S) for S an arbitrary scheme. We shall denote by Ly;s, a1, and Lyt the localization functors
enforcing Nisnevich descent, A'-invariance, and both, respectively.

THEOREM 1 (Morel-Voevodsky). Let i: Z < S be a closed immersion of schemes, j: U < S the
complementary open immersion, and § € H(S) a motivic space over S. Then the square

w3 F —F

o

Ji(¥) —— 0, 3" F
is cocartesian in H(S).

This theorem was proved in this generality in [Hoy14, Proposition C.10], but we give here a
more direct proof that was alluded to in that paper. In the sequel, we will actually use a slightly
different form of this theorem; see Corollary 5 below.

Let i: Z — S be a closed immersion with open complement j: U < S. For an S-scheme X
and an S-morphism ¢: Z — X, we define the presheaf

hs(X,t): Schd” — Set

by the cartesian square

hg(X, ) *

! I

hs(X) Lth(XU) hs(U) E— i*hz(Xz),

where hg: Schg — PSh(Schg) is the Yoneda embedding. Explicitly,

Mapss (Y, X) Xntaps, (vy Xp) 1Yz — Z — Xz} if Yz # 2,
* ifYy, =0.

hg(X, £)(Y) = {

If S is a Henselian local scheme, we have the following well-known facts:

(a) if X is étale over S, then hg(X,¢)(S) is contractible;
(b) if X is smooth over S, then hg(X,#)(S) is connective (i.e. not empty).

Both assertions hold by definition of hg(X, ) if Z = @. Otherwise, (S,Z) is an affine Henselian
pair where Z has a unique closed point, so we can assume X affine. Assertion (a) is then a special
case of [Gro67, Proposition 18.5.4], and assertion (b) is a special case of [Gru72, Théoreme 1.8].
For general S, it follows immediately that:

(a) if X is étale over S, then Lyishs(X, ¢) is contractible;
(b") if X is smooth over S, then Lyishs(X,t) is connective.

Assertion (b’) is an abstract version of Hensel’s lemma in several variables. The crux of
the Morel-Voevodsky localization theorem is a refinement of (b’) asserting that the motivic
localization Lyethg (X, ¢) is contractible.
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LEMMA 2. Let f: X — Y be a morphism of locally finitely presented S-schemes that is étale
in a neighborhood of t(Z). Then the induced map hg(X,t) — hg(Y, fot) is a Nisnevich local
isomorphism.

Proof. Since the presheaves hg(X, t) and hg(Y, f o t) transform cofiltered limits of quasicompact,
quasiseparated (qcgs) schemes into colimits [Gro66, Théoreme 8.8.2(i)], it suffices to show that
the given map is an isomorphism on Henselian local schemes. Since hg(X, ¢)(T) = hr (X, t1)(T),
we are reduced to proving that the map hg (X, ¢)(S) — hg(Y, f o ¢)(S) is an isomorphism when S is
Henselian local; we will show that its fibers are contractible. Let X’ C X be an open neighborhood
of t(Z) where f is étale. Given a section s: S — Y extending f ot, we have a cartesian square

hS(X, Xy S7 (t,Z))(S) E—

! Js

hs (X, 1)(S) ——— hs(Y, f o £)(S)
By assertion (a) above, hg(X’ xy S, (¢,7)) is contractible, as desired. O

THEOREM 3 (A!'-Hensel lemma). Let S be a scheme, Z C S a closed subscheme, X an S-scheme,
and t: Z — X an S-morphism. If X is smooth over S, then Ly,othg(X,t) is contractible.

Proof. By Lemma 2, we can replace X by any open neighborhood of ¢(Z) in X. Since the ques-
tion is Nisnevich local on S, we can assume that S and X are both affine. Since Lyishg(X, t) is
connective, we can further assume that there exists a section s: S — X extending ¢t. Then there
exists an S-morphism f: X — V(N;), étale in a neighborhood of s(S), such that f o s is the zero
section of the normal bundle V(N5) — S. Using Lemma 2 again, we are reduced to the case
where X — S is a vector bundle and ¢: Z — X is the restriction of its zero section. In this case,
an obvious A'-homotopy shows that L1hg(X,t) is contractible. O

Remark 4. The proof of Theorem 3 actually shows that LpsLa1Lnishg(X, ) o~ *.

COROLLARY 5. Leti: Z — S be a closed immersion with open complement j: U — S. For every
F € PSh(Smyg), the square

W —7

! |

F(@) x hg(U) —— 03" F
is motivically cocartesian, that is, its motivic localization is cocartesian in H(S).

Proof. Since this square preserves colimits in F, we can assume that F = hg(X) for some smooth
S-scheme X. We must then show that the canonical map

hg(X) Ung(xy) hs(U) — ihz(Xz)

is a motivic equivalence in PSh(Smg). In fact, we will show that it is a motivic equivalence
in PSh(Schg). Writing the target as a colimit of representables, it suffices to show that for
every morphism f: T — S and every map hg(T) — i.hz(Xz), corresponding to a T-morphism
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t: Zt — X7, the projection
(hS(X) l_th(XU) hS (U)) ><i*hz(Xz) hS(T) - hS(T)

is a motivic equivalence. This map is the image by the functor fy: PSh(Scht) — PSh(Schg) of
the map

hT(XT,t) — hT(T) ~ k,

Indeed, this follows from the projection formula f;(f*(B) X p+(a) C) =~ B x4 f3(C), which holds
for any morphisms B — A in PSh(Schg) and C — f*(A) in PSh(Schr), and the base change
equivalence f*i, ~ it f7. Since f; preserves motivic equivalences and Xt is smooth over T,
Theorem 3 concludes the proof. ]

Proof of Theorem 1. The functors jy, 7%, and ¢* between oo-categories of presheaves preserve
motivic equivalences, as does the functor i,: PShy(Smy) — PShy(Smg) by [BH20, Proposi-
tion 2.11]. Thus, for F € H(S), the given square is the motivic localization of the square of
Corollary 5. g

Remark 6. Arguing as in the proof of Corollary 11, we can deduce from Theorem 1 that
H(U) % H(S) 5 H(Z)

is a cofiber sequence of presentable oo-categories (in fact, it is also a fiber sequence).

2. The localization theorem for framed motivic spaces

We now turn to the proof of localization for framed motivic spaces. We use the notation from
[EHK'19].

LEMMA 7. The forgetful functor ~.: PShy(Corr™(Smg)) — PShx(Smg) detects Nisnevich and
motivic equivalences.

Proof. This follows from [EHK ™19, Proposition 3.2.14]. O

ProrosiTiON 8. Let f: T — S be an integral morphism. Then the functor
f+: PShyy(Corr(Smr)) — PShy (Corr™(Smg))
preserves Nisnevich and motivic equivalences.

Proof. By Lemma 7, this follows from the fact that the functor fi: PShy(Smt) — PShy(Sms)
preserves Nisnevich and motivic equivalences [BH20, Proposition 2.11]. O

COROLLARY 9. Let f: T — S be an integral morphism. Then the functor
fo: HE(T) — HT(S)

preserves colimits.

https://doi.org/10.1112/50010437X20007575 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007575

THE LOCALIZATION THEOREM FOR FRAMED MOTIVIC SPACES

Proof. 1t follows from Proposition 8 that f, preserves sifted colimits. It also preserves limits,
hence finite sums since H(S) is semiadditive [EHK 19, Proposition 3.2.10(iii)]. O

If i: Z — S is a closed immersion, it follows from Corollary 9 that we have an adjunction
iv s HY(Z) = HY(S) : 4",

THEOREM 10 (Framed localization). Leti: Z < S be a closed immersion with open complement
j: U< S. Then the null sequence
Jpi" —id — iyd”
of endofunctors of H™(S) is a cofiber sequence. Dually, the null sequence
ivi' = id — j.j*
of endofunctors of H¥(8) is a fiber sequence.

Proof. 1t suffices to prove the first statement. Since all functors involved preserve colimits by
Corollary 9, it suffices to check that the sequence is a cofiber sequence when evaluated on
v*(X4) where X is smooth over S and affine [EHK'19, Proposition 3.2.10(i)]. By Proposition 8
and Lemma 7, it suffices to show that the map

b (X)/h§ (Xv) — i4hi(Xz)

in PSh(Smg) is a motivic equivalence, where hif (X)/hf(Xy) denotes the quotient in commutative
monoids. Note that if Y € Schg is connected then

* if Yy # @,

fr —
hg (Xu)(Y) = {hg(X)(Y) ifYy, =02.

It follows that the canonical map
B (X) W, pte ) bs(U) — b (X) /b (Xv)

is an equivalence on connected essentially smooth S-schemes, hence it is a Zariski-local
equivalence in PSh(Smg).! We are thus reduced to showing that the map

hg(X) Ujont (x) Bs(U) — ixhy (Xz)

is a motivic equivalence. By [EHK'19, Corollary 2.3.27] and the non-framed version of
Proposition 8, we can replace ht by h™f: it suffices to show that the map

hg" (X) Uj,note (xyp) bs(U) — ihy" (Xz)

is a motivic equivalence in PSh(Smg). By [EHK*19, Theorem 5.1.5], the presheaf hgfr(X) on all
S-schemes is ind-representable by smooth S-schemes and compatible with any base change
S’ — S. Considering h2™(X) as a presheaf on smooth S-schemes, this implies that i*(h3¥ (X)) ~

h2f(Xy) and j*(h&" (X)) ~ h#¥(Xy). Thus, the result follows from Corollary 5. O

! Here, we use the fact that hf(X) transforms cofiltered limits of qcqs schemes into colimits (since X is locally
finitely presented over S), as well as the hypercompleteness of the clopen topology on schemes.
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COROLLARY 11. Let i: Z — S be a closed immersion with open complement j: U — S. Then
HE(U) % HY(S) & HY(2)

is a cofiber sequence of presentable co-categories, that is, the functor i, : H(Z) — H™(S) is fully
faithful with image (j*)~1(0).

Proof. Theorem 10 implies that j*(A) ~ 0 if and only if A ~4,i*(A). It also implies that the
unit map i, — 444744 is an equivalence, hence also the counit map i4i*i, — i, by the triangle
identities. It remains to show that i, is conservative. This follows immediately from the fact
that every smooth Z-scheme admits an open covering by pullbacks of smooth S-schemes [Gro67,

Proposition 18.1.1]. O

Remark 12. Similarly, the localization theorem holds for motivic spaces with finite étale transfers
or with finite syntomic transfers, because the corresponding Hilbert schemes of points in A™ are
smooth.

The localization theorem implies as usual the closed base change property and the closed
projection formula, which states that i,: H™(Z) — HT(S) is an HT(S)-module functor, as well
as S'-stable and T-stable versions.

In the T-stable case, using the work of Ayoub [Ayo08] and Cisinski and Déglise [CD19], we
obtain for every separated morphism of finite type f: X — Y an exceptional adjunction

fi: SH™(X) = SH (V) : f*

satisfying the usual properties. In particular, framed motivic spectra satisfy proper base change
and the proper projection formula.

Note that the cofiber sequence of Corollary 11 is not part of a recollement in the sense of
[Lurl?, Definition A.8.1], because i* is not left exact and the pair (i*,j*) is not conservative.
These properties are, however, automatic in a stable setting.

COROLLARY 13. Let i: Z — S be a closed immersion with open complement j: U — S. Then
the following pairs of fully faithful functors are recollements:

(i) SHS"(z) i sHS F(5) L= SHS ' (U);
(i) SH™(z) = sSH(S) <= sHT(U).

COROLLARY 14. Let S be a scheme locally of finite Krull dimension. Then the following pullback
functors are conservative:

(i) SHY(S) — [] s SH® (s);
(ii) SHT(S) — [ cq SH(s).

Proof. We can assume S qcqgs and we prove the claim by induction on the dimension of S. For
s €8S, let 15: Spec Og s — S be the canonical map. Since ¢4 is pro-smooth, the pullback functor

/s PShy(Corr'™ (Smg)) — PShy(Corr™ (Smy ,))

preserves Al-invariant Nisnevich sheaves and commutes with the internal Hom from compact
objects (in particular, with Q and Q). Hence, for a framed motivic S!-spectrum or T-spectrum
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E = (E,)n>0 over S and a qegs smooth S-scheme X, the Zariski stalk of EX at s may be computed
as 15 (E), (X xg Spec Og 5). By the hypercompleteness of the Zariski oo-topos of S [CM19, § 3],
equivalences between Zariski sheaves on S are detected on stalks. Since the family of functors
E — EX(S) is conservative, so is the family ¢ for s € S. We can therefore assume S local. Then
the result follows from Corollary 13 and the induction hypothesis. O

Remark 15. Corollary 14 is also true if S is locally Noetherian of arbitrary dimension; see the
proof of [Ayol4, Proposition 3.24].

3. The reconstruction theorem over a general base scheme

Next, we extend the reconstruction theorem [EHK'19, Theorem 3.5.12] to more general base
schemes.

LEMMA 16. Let f: T — S be a morphism of schemes. Then the canonical transformation
T Hfr(S) — H(T)
is an equivalence, and similarly for SHS' and SH.

Proof. The stable statements follow from the unstable one, using the fact that the functors
v« and f* can be computed levelwise on prespectra. Since f* and ~, preserve sifted colimits
and commute with Ly [EHK'19, Propositions 3.2.14 and 3.2.15], it suffices to check that the
canonical map

FhE(X) = hil(X xg T)

is a motivic equivalence for every X € Smg affine, where we regard hfSr(X) as a presheaf on Smg.
By [EHK*19, Corollary 2.3.27], we can replace h'" by h*. But the map

FhEH(X) — b (X x5 T)

is an isomorphism because hgfr(X) is a smooth ind-S-scheme that is stable under base change
[EHK 19, Theorem 5.1.5]. O

LEMMA 17. Let p: T — S be a proper morphism of schemes. Then the canonical transformation
Y*pe — poy*: SH(T) — SHT(S)
is an equivalence.

Proof. If p is a closed immersion, this follows from Theorem 10 and its non-framed version. If
p is smooth and proper, it follows from the ambidexterity equivalences p, ~ pﬁE_QP. Together
with Zariski descent, this implies the result for p locally projective. The general case (which we
will not use) follows by a standard use of Chow’s lemma; see [CD19, Proposition 2.3.11(2)] and
[Hoy14, Proposition C.13] for details. ([

THEOREM 18 (Reconstruction theorem). Let S be a scheme. Then the functor
~*: SH(S) — SHT(S)

is an equivalence of symmetric monoidal co-categories
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Proof. Since the right adjoint 7, is conservative [EHK'19, Proposition 3.5.2], it suffices to show
that ~* is fully faithful, that is, that the unit transformation id — ,v* is an equivalence. By
Zariski descent, we may assume S qcgs. In this case, the oo-category SH(S) is generated under
colimits by the objects ¥%p,1x for n € Z and p: X — S a projective morphism [Ayo08, Lemme
2.2.23]. By Lemma 17, we are thus reduced to proving that 1g — 7,7*1g is an equivalence. By
Lemma 16, we can now assume that S = Spec Z. By the non-framed version of Corollary 14 and
again Lemma 16, the result follows from the cases S = SpecQ and S = SpecF,, for p prime,

which are known by [EHK'19, Theorem 3.5.12]. O

Remark 19. The argument used in the proof of Theorem 18 can be axiomatized as follows. Let
S be a qcgs scheme of finite Krull dimension, let

A,B: (Schd®®)°P — co-Cat®™

be functors satisfying Ayoub’s axioms [Ayo08, §1.4.1], and let ¢: A — B be a natural
transformation that commutes with f; for f smooth. Suppose that:

(i) each A(X) is cocomplete and generated under colimits by objects of the form f;f*p*(A)
where f: Y — X is smooth, p: X — S is the structure map, and A € A(S);
(ii) ¢ has a right adjoint that preserves colimits and commutes with f* for any f;
(iii) ¢s: A(s) — B(s) is fully faithful for every s € S.

Then ¢x: A(X) — B(X) is fully faithful for every X € Schd“®.

Since SH(S) ~ SH(S) QH(S) H(S), the reconstruction theorem implies that the right-lax
symmetric monoidal functor QF : SH(S) — H(S) factors uniquely as

H(S) «—=— H"(S).

Indeed, the oco-groupoid of such factorizations is equivalent to that of colimit-preserving sym-
metric monoidal retractions of the functor v*: SH(S) — SH(S). In particular, the underlying
cohomology theory Smgp — Spc of a motivic spectrum extends canonically to the oo-category
Corr™(Smg)°P. As proved in [EHK*20, Theorem 3.3.10], this enhanced functoriality of cohomol-
ogy theories can be described using the Gysin morphisms constructed using Verdier’s deformation
to the normal cone (see [DJK18]).

4. Application to motivic cohomology

In this final section, we obtain a simple presentation of the motivic cohomology spectrum in terms
of framed correspondences. Let us denote by HZg € SH(S) Spitzweck’s motivic cohomology
spectrum over a base scheme S [Spil8]. By construction, it is stable under arbitrary base change,
and when S is a Dedekind domain it represents Bloch—Levine motivic cohomology. More precisely,
for such S, the presheaf X — MapsSH(S)(EOTOXJF,E%HZS) on smooth S-schemes is the Zariski
sheafification of Bloch’s cycle complex X — 2"(X, %) (which is known to already be a Zariski
sheaf when S is semilocal [Lev0l, Theorem 1.7]). When S is the spectrum of a field, HZg is
equivalent to Voevodsky’s motivic cohomology spectrum.
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For any commutative monoid A, the constant sheaf Ag on Smg admits a canonical extension
to Corrﬂf(Sms), where ‘flf’ denotes the class of finite locally free morphisms: to a span

VRN

X Y

with f finite locally free and a locally constant function a: Y — A, we associate the locally
constant function

X—A 2z Z degz ~a(g(2))
zef-t

(see [BH20, Lemma 13.13]). In particular, Ag can be regarded as an object of H(S) via the
forgetful functor Corr™(Smg) — Corr(Smg).

If f: T— S is a morphism, there is an obvious map Ag — f,Ar in HT(S), whence by
adjunction a map f*Ag — A in HF(T).

LEMMA 20. Let A be a commutative monoid and f: T — S a morphism of schemes. Then the
canonical map f*Ag — At in H(T) is an equivalence.

Proof. We consider the following commutative triangle in PShy(Smr):

T s As

L

’Y*f*AS ” V*AT

The vertical map is a motivic equivalence by Lemma 16, and the diagonal map is trivially a
Zariski equivalence. Hence, the lower horizontal map is a motivic equivalence. Since -, detects
motivic equivalences (Lemma 7), we are done. O

THEOREM 21. Let S be a scheme. Then there is an equivalence of motivic €o-ring spectra
HZS ~ ’y*z%cifrZS.

Proof. By Lemmas 16 and 20, it suffices to prove this when S is a Dedekind domain. In this case,
there is an isomorphism of presheaves of commutative rings

QFHZg ~ Zs.

We claim that this isomorphism is compatible with the framed transfers on either side, the ones
on the left coming from Theorem 18. Since we are dealing with discrete constant sheaves, it
suffices to compare the transfers for a framed correspondence of the form n « T — n where 7 is
a generic point of a smooth S-scheme. Thus we may assume that S is a field, in which case we
can compute the framed transfers on QFHZg using [EHK 19, Proposition 5.3.6], verifying the
claim.

By adjunction, we obtain a morphism of €.,-algebras

¢s: Y7 pls — v HZg
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in SHY(S). We show that ¢g is an equivalence. By construction, g is functorial in S. By
Corollary 14(2), we may therefore assume that S is the spectrum of a perfect field. In this case,
the recognition principle [EHK 19, Theorem 3.5.14(i)] implies that ¢g exhibits Y+ XF Lg as the
very effective cover of HZg. Since HZg is already very effective [BH20, Lemma 13.7], we conclude
that ¢g is an equivalence. O

If S is a Dedekind domain, the motivic spectrum HZg € SH(S) lies in the heart of the
effective homotopy t-structure [BH20, Lemma 13.7]. It follows that it admits a unique strictly
commutative monoid structure in SH(S), in the sense of [Hoy18, § 7]. Hence, for any scheme S,
HZg € SH(S) is a module over the Eilenberg—Mac Lane spectrum Z € Spt. In particular, for any
A € Modz(Spt), we can form the tensor product HAg = HZg ®z A. This construction defines
a symmetric monoidal functor

MOdz(Spt) — MOdHZS(SH(S)), A — HAg.

When S is the spectrum of a field and A is an abelian group, HAg is equivalent to Voevodsky’s
motivic Eilenberg—Mac Lane spectrum with coefficients in A.

COROLLARY 22. Let S be a scheme and A an abelian group (respectively, a ring; a commutative
ring). Then there is a canonical equivalence of HZg-modules (respectively, of Ao.-HZg-algebras;
of E-HZg-algebras) HAg ~ 7,35 As.

Proof. By Lemmas 16 and 20, we may assume that S is a Dedekind domain. Since the equivalence
of Theorem 21 takes place in the heart of the effective homotopy t-structure, it can be uniquely
promoted to an equivalence of &€.,-rings in strictly commutative monoids. Hence, for any A €
Modz(Spt), we obtain an equivalence HAg =~ W*E%‘ifr(zs ®z A). To conclude, note that Zg ®z

A ~ Ag when A is discrete. ]
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