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Abstract

We prove the analog of the Morel–Voevodsky localization theorem for framed motivic
spaces. We deduce that framed motivic spectra are equivalent to motivic spectra
over arbitrary schemes, and we give a new construction of the motivic cohomology
of arbitrary schemes.

In this article we show that the theory of framed motivic spaces introduced in [EHK+19] satisfies
localization: if i : Z ↪→ S is a closed immersion of schemes, j : U ↪→ S is the complementary open
immersion, and F ∈ Hfr(S) is a framed motivic space over S, then there is a cofiber sequence

j�j
∗F → F → i∗i∗F

(see Theorem 10). Consequently, the theory of framed motivic spectra satisfies Ayoub’s axioms
[Ayo08], which implies that it admits a full-fledged formalism of six operations. Using this for-
malism, we show that the equivalence SHfr(S) � SH(S), proved in [EHK+19] for S the spectrum
of a perfect field, holds for any scheme S (see Theorem 18).

The ∞-category Hfr(S) of framed motivic spaces consists of A1-invariant Nisnevich sheaves
on the ∞-category Corrfr(SmS) of smooth S-schemes and framed correspondences. A framed
correspondence between S-schemes X and Y is a span

over S, where f is a finite syntomic morphism equipped with a trivialization of its cotangent
complex in the K-theory of Z. Our result stands in contrast to the case of finite correspondences in
the sense of Voevodsky, where the analog of the Morel–Voevodsky localization theorem remains
unknown. The essential ingredient in our proof is the fact that the Hilbert scheme of framed
points [EHK+19, Definition 5.1.7] is smooth.

1. Review of the Morel–Voevodsky localization theorem

We start by reviewing the localization theorem of Morel and Voevodsky [MV99, § 3, Theorem
2.21]. We refer to [Hoy14, Appendix C] for the definition of the Morel–Voevodsky ∞-category
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M. Hoyois

H(S) for S an arbitrary scheme. We shall denote by Lnis, LA1 , and Lmot the localization functors
enforcing Nisnevich descent, A1-invariance, and both, respectively.

Theorem 1 (Morel–Voevodsky). Let i : Z ↪→ S be a closed immersion of schemes, j : U ↪→ S the

complementary open immersion, and F ∈ H(S) a motivic space over S. Then the square

is cocartesian in H(S).

This theorem was proved in this generality in [Hoy14, Proposition C.10], but we give here a
more direct proof that was alluded to in that paper. In the sequel, we will actually use a slightly
different form of this theorem; see Corollary 5 below.

Let i : Z ↪→ S be a closed immersion with open complement j : U ↪→ S. For an S-scheme X
and an S-morphism t : Z→ X, we define the presheaf

hS(X, t) : Schop
S → Set

by the cartesian square

where hS : SchS → PSh(SchS) is the Yoneda embedding. Explicitly,

hS(X, t)(Y) =

{
MapsS(Y, X)×MapsZ(YZ,XZ) {YZ → Z t−→ XZ} if YZ �= ∅,

∗ if YZ = ∅.

If S is a Henselian local scheme, we have the following well-known facts:

(a) if X is étale over S, then hS(X, t)(S) is contractible;
(b) if X is smooth over S, then hS(X, t)(S) is connective (i.e. not empty).

Both assertions hold by definition of hS(X, t) if Z = ∅. Otherwise, (S, Z) is an affine Henselian
pair where Z has a unique closed point, so we can assume X affine. Assertion (a) is then a special
case of [Gro67, Proposition 18.5.4], and assertion (b) is a special case of [Gru72, Théorème I.8].
For general S, it follows immediately that:

(a′) if X is étale over S, then LnishS(X, t) is contractible;
(b′) if X is smooth over S, then LnishS(X, t) is connective.

Assertion (b′) is an abstract version of Hensel’s lemma in several variables. The crux of
the Morel–Voevodsky localization theorem is a refinement of (b′) asserting that the motivic
localization LmothS(X, t) is contractible.
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Lemma 2. Let f : X→ Y be a morphism of locally finitely presented S-schemes that is étale

in a neighborhood of t(Z). Then the induced map hS(X, t)→ hS(Y, f ◦ t) is a Nisnevich local

isomorphism.

Proof. Since the presheaves hS(X, t) and hS(Y, f ◦ t) transform cofiltered limits of quasicompact,
quasiseparated (qcqs) schemes into colimits [Gro66, Théorème 8.8.2(i)], it suffices to show that
the given map is an isomorphism on Henselian local schemes. Since hS(X, t)(T) = hT(XT, tT)(T),
we are reduced to proving that the map hS(X, t)(S)→ hS(Y, f ◦ t)(S) is an isomorphism when S is
Henselian local; we will show that its fibers are contractible. Let X′ ⊂ X be an open neighborhood
of t(Z) where f is étale. Given a section s : S→ Y extending f ◦ t, we have a cartesian square

By assertion (a) above, hS(X′ ×Y S, (t, i)) is contractible, as desired. �

Theorem 3 (A1-Hensel lemma). Let S be a scheme, Z ⊂ S a closed subscheme, X an S-scheme,

and t : Z→ X an S-morphism. If X is smooth over S, then LmothS(X, t) is contractible.

Proof. By Lemma 2, we can replace X by any open neighborhood of t(Z) in X. Since the ques-
tion is Nisnevich local on S, we can assume that S and X are both affine. Since LnishS(X, t) is
connective, we can further assume that there exists a section s : S→ X extending t. Then there
exists an S-morphism f : X→ V(Ns), étale in a neighborhood of s(S), such that f ◦ s is the zero
section of the normal bundle V(Ns)→ S. Using Lemma 2 again, we are reduced to the case
where X→ S is a vector bundle and t : Z→ X is the restriction of its zero section. In this case,
an obvious A1-homotopy shows that LA1hS(X, t) is contractible. �

Remark 4. The proof of Theorem 3 actually shows that LnisLA1LnishS(X, t) � ∗.

Corollary 5. Let i : Z ↪→ S be a closed immersion with open complement j : U ↪→ S. For every

F ∈ PSh(SmS), the square

is motivically cocartesian, that is, its motivic localization is cocartesian in H(S).

Proof. Since this square preserves colimits in F, we can assume that F = hS(X) for some smooth
S-scheme X. We must then show that the canonical map

hS(X) 
hS(XU) hS(U)→ i∗hZ(XZ)

is a motivic equivalence in PSh(SmS). In fact, we will show that it is a motivic equivalence
in PSh(SchS). Writing the target as a colimit of representables, it suffices to show that for
every morphism f : T→ S and every map hS(T)→ i∗hZ(XZ), corresponding to a T-morphism
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t : ZT → XT, the projection(
hS(X) 
hS(XU) hS(U)

)×i∗hZ(XZ) hS(T)→ hS(T)

is a motivic equivalence. This map is the image by the functor f� : PSh(SchT)→ PSh(SchS) of
the map

hT(XT, t)→ hT(T) � ∗.
Indeed, this follows from the projection formula f�(f∗(B)×f∗(A) C) � B×A f�(C), which holds
for any morphisms B→ A in PSh(SchS) and C→ f∗(A) in PSh(SchT), and the base change
equivalence f∗i∗ � iT∗f∗

Z. Since f� preserves motivic equivalences and XT is smooth over T,
Theorem 3 concludes the proof. �

Proof of Theorem 1. The functors j�, j∗, and i∗ between ∞-categories of presheaves preserve
motivic equivalences, as does the functor i∗ : PShΣ(SmZ)→ PShΣ(SmS) by [BH20, Proposi-
tion 2.11]. Thus, for F ∈ H(S), the given square is the motivic localization of the square of
Corollary 5. �

Remark 6. Arguing as in the proof of Corollary 11, we can deduce from Theorem 1 that

H(U)
j�−→ H(S) i∗−→ H(Z)

is a cofiber sequence of presentable ∞-categories (in fact, it is also a fiber sequence).

2. The localization theorem for framed motivic spaces

We now turn to the proof of localization for framed motivic spaces. We use the notation from
[EHK+19].

Lemma 7. The forgetful functor γ∗ : PShΣ(Corrfr(SmS))→ PShΣ(SmS) detects Nisnevich and

motivic equivalences.

Proof. This follows from [EHK+19, Proposition 3.2.14]. �

Proposition 8. Let f : T→ S be an integral morphism. Then the functor

f∗ : PShΣ(Corrfr(SmT))→ PShΣ(Corrfr(SmS))

preserves Nisnevich and motivic equivalences.

Proof. By Lemma 7, this follows from the fact that the functor f∗ : PShΣ(SmT)→ PShΣ(SmS)
preserves Nisnevich and motivic equivalences [BH20, Proposition 2.11]. �

Corollary 9. Let f : T→ S be an integral morphism. Then the functor

f∗ : Hfr(T)→ Hfr(S)

preserves colimits.
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Proof. It follows from Proposition 8 that f∗ preserves sifted colimits. It also preserves limits,
hence finite sums since Hfr(S) is semiadditive [EHK+19, Proposition 3.2.10(iii)]. �

If i : Z ↪→ S is a closed immersion, it follows from Corollary 9 that we have an adjunction

i∗ : Hfr(Z) � Hfr(S) : i!.

Theorem 10 (Framed localization). Let i : Z ↪→ S be a closed immersion with open complement

j : U ↪→ S. Then the null sequence

j�j
∗ → id→ i∗i∗

of endofunctors of Hfr(S) is a cofiber sequence. Dually, the null sequence

i∗i! → id→ j∗j∗

of endofunctors of Hfr(S) is a fiber sequence.

Proof. It suffices to prove the first statement. Since all functors involved preserve colimits by
Corollary 9, it suffices to check that the sequence is a cofiber sequence when evaluated on
γ∗(X+) where X is smooth over S and affine [EHK+19, Proposition 3.2.10(i)]. By Proposition 8
and Lemma 7, it suffices to show that the map

hfr
S (X)/hfr

S (XU)→ i∗hfr
Z(XZ)

in PSh(SmS) is a motivic equivalence, where hfr
S (X)/hfr

S (XU) denotes the quotient in commutative
monoids. Note that if Y ∈ SchS is connected then

hfr
S (XU)(Y) =

{
∗ if YZ �= ∅,

hfr
S (X)(Y) if YZ = ∅.

It follows that the canonical map

hfr
S (X) 
j�h

fr
U(XU) hS(U)→ hfr

S (X)/hfr
S (XU)

is an equivalence on connected essentially smooth S-schemes, hence it is a Zariski-local
equivalence in PSh(SmS).1 We are thus reduced to showing that the map

hfr
S (X) 
j�h

fr
U(XU) hS(U)→ i∗hfr

Z(XZ)

is a motivic equivalence. By [EHK+19, Corollary 2.3.27] and the non-framed version of
Proposition 8, we can replace hfr by hnfr: it suffices to show that the map

hnfr
S (X) 
j�h

nfr
U (XU) hS(U)→ i∗hnfr

Z (XZ)

is a motivic equivalence in PSh(SmS). By [EHK+19, Theorem 5.1.5], the presheaf hnfr
S (X) on all

S-schemes is ind-representable by smooth S-schemes and compatible with any base change
S′ → S. Considering hnfr

S (X) as a presheaf on smooth S-schemes, this implies that i∗(hnfr
S (X)) �

hnfr
Z (XZ) and j∗(hnfr

S (X)) � hnfr
U (XU). Thus, the result follows from Corollary 5. �

1 Here, we use the fact that hfr
S (X) transforms cofiltered limits of qcqs schemes into colimits (since X is locally

finitely presented over S), as well as the hypercompleteness of the clopen topology on schemes.
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Corollary 11. Let i : Z ↪→ S be a closed immersion with open complement j : U ↪→ S. Then

Hfr(U)
j�−→ Hfr(S) i∗−→ Hfr(Z)

is a cofiber sequence of presentable∞-categories, that is, the functor i∗ : Hfr(Z)→ Hfr(S) is fully

faithful with image (j∗)−1(0).

Proof. Theorem 10 implies that j∗(A) � 0 if and only if A � i∗i∗(A). It also implies that the
unit map i∗ → i∗i∗i∗ is an equivalence, hence also the counit map i∗i∗i∗ → i∗ by the triangle
identities. It remains to show that i∗ is conservative. This follows immediately from the fact
that every smooth Z-scheme admits an open covering by pullbacks of smooth S-schemes [Gro67,
Proposition 18.1.1]. �

Remark 12. Similarly, the localization theorem holds for motivic spaces with finite étale transfers
or with finite syntomic transfers, because the corresponding Hilbert schemes of points in An are
smooth.

The localization theorem implies as usual the closed base change property and the closed
projection formula, which states that i∗ : Hfr(Z)→ Hfr(S) is an Hfr(S)-module functor, as well
as S1-stable and T-stable versions.

In the T-stable case, using the work of Ayoub [Ayo08] and Cisinski and Déglise [CD19], we
obtain for every separated morphism of finite type f : X→ Y an exceptional adjunction

f! : SHfr(X) � SHfr(Y) : f !

satisfying the usual properties. In particular, framed motivic spectra satisfy proper base change
and the proper projection formula.

Note that the cofiber sequence of Corollary 11 is not part of a recollement in the sense of
[Lur17, Definition A.8.1], because i∗ is not left exact and the pair (i∗, j∗) is not conservative.
These properties are, however, automatic in a stable setting.

Corollary 13. Let i : Z ↪→ S be a closed immersion with open complement j : U ↪→ S. Then

the following pairs of fully faithful functors are recollements:

(i) SHS1,fr(Z) i∗−→ SHS1,fr(S)
j∗←− SHS1,fr(U);

(ii) SHfr(Z) i∗−→ SHfr(S)
j∗←− SHfr(U).

Corollary 14. Let S be a scheme locally of finite Krull dimension. Then the following pullback

functors are conservative:

(i) SHS1,fr(S)→∏
s∈S SHS1,fr(s);

(ii) SHfr(S)→∏
s∈S SHfr(s).

Proof. We can assume S qcqs and we prove the claim by induction on the dimension of S. For
s ∈ S, let ιs : Spec OS,s → S be the canonical map. Since ιs is pro-smooth, the pullback functor

ι∗s : PShΣ(Corrfr(SmS))→ PShΣ(Corrfr(SmOS,s
))

preserves A1-invariant Nisnevich sheaves and commutes with the internal Hom from compact
objects (in particular, with Ω and ΩT). Hence, for a framed motivic S1-spectrum or T-spectrum
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E = (En)n�0 over S and a qcqs smooth S-scheme X, the Zariski stalk of EX
n at s may be computed

as ι∗s(E)n(X×S Spec OS,s). By the hypercompleteness of the Zariski ∞-topos of S [CM19, § 3],
equivalences between Zariski sheaves on S are detected on stalks. Since the family of functors
E �→ EX

n (S) is conservative, so is the family ι∗s for s ∈ S. We can therefore assume S local. Then
the result follows from Corollary 13 and the induction hypothesis. �

Remark 15. Corollary 14 is also true if S is locally Noetherian of arbitrary dimension; see the
proof of [Ayo14, Proposition 3.24].

3. The reconstruction theorem over a general base scheme

Next, we extend the reconstruction theorem [EHK+19, Theorem 3.5.12] to more general base
schemes.

Lemma 16. Let f : T→ S be a morphism of schemes. Then the canonical transformation

f∗γ∗ → γ∗f∗ : Hfr(S)→ H(T)

is an equivalence, and similarly for SHS1
and SH.

Proof. The stable statements follow from the unstable one, using the fact that the functors
γ∗ and f∗ can be computed levelwise on prespectra. Since f∗ and γ∗ preserve sifted colimits
and commute with Lmot [EHK+19, Propositions 3.2.14 and 3.2.15], it suffices to check that the
canonical map

f∗hfr
S (X)→ hfr

T(X×S T)

is a motivic equivalence for every X ∈ SmS affine, where we regard hfr
S (X) as a presheaf on SmS.

By [EHK+19, Corollary 2.3.27], we can replace hfr by hnfr. But the map

f∗hnfr
S (X)→ hnfr

T (X×S T)

is an isomorphism because hnfr
S (X) is a smooth ind-S-scheme that is stable under base change

[EHK+19, Theorem 5.1.5]. �

Lemma 17. Let p : T→ S be a proper morphism of schemes. Then the canonical transformation

γ∗p∗ → p∗γ∗ : SH(T)→ SHfr(S)

is an equivalence.

Proof. If p is a closed immersion, this follows from Theorem 10 and its non-framed version. If
p is smooth and proper, it follows from the ambidexterity equivalences p∗ � p�Σ−Ωp . Together
with Zariski descent, this implies the result for p locally projective. The general case (which we
will not use) follows by a standard use of Chow’s lemma; see [CD19, Proposition 2.3.11(2)] and
[Hoy14, Proposition C.13] for details. �

Theorem 18 (Reconstruction theorem). Let S be a scheme. Then the functor

γ∗ : SH(S)→ SHfr(S)

is an equivalence of symmetric monoidal ∞-categories
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Proof. Since the right adjoint γ∗ is conservative [EHK+19, Proposition 3.5.2], it suffices to show
that γ∗ is fully faithful, that is, that the unit transformation id→ γ∗γ∗ is an equivalence. By
Zariski descent, we may assume S qcqs. In this case, the ∞-category SH(S) is generated under
colimits by the objects Σn

Tp∗1X for n ∈ Z and p : X→ S a projective morphism [Ayo08, Lemme
2.2.23]. By Lemma 17, we are thus reduced to proving that 1S → γ∗γ∗1S is an equivalence. By
Lemma 16, we can now assume that S = SpecZ. By the non-framed version of Corollary 14 and
again Lemma 16, the result follows from the cases S = SpecQ and S = SpecFp for p prime,
which are known by [EHK+19, Theorem 3.5.12]. �

Remark 19. The argument used in the proof of Theorem 18 can be axiomatized as follows. Let
S be a qcqs scheme of finite Krull dimension, let

A,B : (Schqcqs
S )op →∞-Catst

be functors satisfying Ayoub’s axioms [Ayo08, § 1.4.1], and let ϕ : A→ B be a natural
transformation that commutes with f� for f smooth. Suppose that:

(i) each A(X) is cocomplete and generated under colimits by objects of the form f�f
∗p∗(A)

where f : Y → X is smooth, p : X→ S is the structure map, and A ∈ A(S);
(ii) ϕ has a right adjoint that preserves colimits and commutes with f∗ for any f ;
(iii) ϕs : A(s)→ B(s) is fully faithful for every s ∈ S.

Then ϕX : A(X)→ B(X) is fully faithful for every X ∈ Schqcqs
S .

Since SHfr(S) � SH(S)⊗H(S) Hfr(S), the reconstruction theorem implies that the right-lax
symmetric monoidal functor Ω∞

T : SH(S)→ H(S) factors uniquely as

Indeed, the ∞-groupoid of such factorizations is equivalent to that of colimit-preserving sym-
metric monoidal retractions of the functor γ∗ : SH(S)→ SHfr(S). In particular, the underlying
cohomology theory Smop

S → Spc of a motivic spectrum extends canonically to the ∞-category
Corrfr(SmS)op. As proved in [EHK+20, Theorem 3.3.10], this enhanced functoriality of cohomol-
ogy theories can be described using the Gysin morphisms constructed using Verdier’s deformation
to the normal cone (see [DJK18]).

4. Application to motivic cohomology

In this final section, we obtain a simple presentation of the motivic cohomology spectrum in terms
of framed correspondences. Let us denote by HZS ∈ SH(S) Spitzweck’s motivic cohomology
spectrum over a base scheme S [Spi18]. By construction, it is stable under arbitrary base change,
and when S is a Dedekind domain it represents Bloch–Levine motivic cohomology. More precisely,
for such S, the presheaf X �→ MapsSH(S)(Σ∞

T X+, Σn
THZS) on smooth S-schemes is the Zariski

sheafification of Bloch’s cycle complex X �→ zn(X, ∗) (which is known to already be a Zariski
sheaf when S is semilocal [Lev01, Theorem 1.7]). When S is the spectrum of a field, HZS is
equivalent to Voevodsky’s motivic cohomology spectrum.
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For any commutative monoid A, the constant sheaf AS on SmS admits a canonical extension
to Corrflf(SmS), where ‘flf’ denotes the class of finite locally free morphisms: to a span

with f finite locally free and a locally constant function a : Y → A, we associate the locally
constant function

X → A, x �→
∑

z∈f−1(x)

degz(f) · a(g(z))

(see [BH20, Lemma 13.13]). In particular, AS can be regarded as an object of Hfr(S) via the
forgetful functor Corrfr(SmS)→ Corrflf(SmS).

If f : T→ S is a morphism, there is an obvious map AS → f∗AT in Hfr(S), whence by
adjunction a map f∗AS → AT in Hfr(T).

Lemma 20. Let A be a commutative monoid and f : T→ S a morphism of schemes. Then the

canonical map f∗AS → AT in Hfr(T) is an equivalence.

Proof. We consider the following commutative triangle in PShΣ(SmT):

The vertical map is a motivic equivalence by Lemma 16, and the diagonal map is trivially a
Zariski equivalence. Hence, the lower horizontal map is a motivic equivalence. Since γ∗ detects
motivic equivalences (Lemma 7), we are done. �

Theorem 21. Let S be a scheme. Then there is an equivalence of motivic E∞-ring spectra

HZS � γ∗Σ∞
T,frZS.

Proof. By Lemmas 16 and 20, it suffices to prove this when S is a Dedekind domain. In this case,
there is an isomorphism of presheaves of commutative rings

Ω∞
T HZS � ZS.

We claim that this isomorphism is compatible with the framed transfers on either side, the ones
on the left coming from Theorem 18. Since we are dealing with discrete constant sheaves, it
suffices to compare the transfers for a framed correspondence of the form η ← T→ η where η is
a generic point of a smooth S-scheme. Thus we may assume that S is a field, in which case we
can compute the framed transfers on Ω∞

T HZS using [EHK+19, Proposition 5.3.6], verifying the
claim.

By adjunction, we obtain a morphism of E∞-algebras

ϕS : Σ∞
T,frZS → γ∗HZS
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in SHfr(S). We show that ϕS is an equivalence. By construction, ϕS is functorial in S. By
Corollary 14(2), we may therefore assume that S is the spectrum of a perfect field. In this case,
the recognition principle [EHK+19, Theorem 3.5.14(i)] implies that ϕS exhibits γ∗Σ∞

T,frZS as the
very effective cover of HZS. Since HZS is already very effective [BH20, Lemma 13.7], we conclude
that ϕS is an equivalence. �

If S is a Dedekind domain, the motivic spectrum HZS ∈ SH(S) lies in the heart of the
effective homotopy t-structure [BH20, Lemma 13.7]. It follows that it admits a unique strictly
commutative monoid structure in SH(S), in the sense of [Hoy18, § 7]. Hence, for any scheme S,
HZS ∈ SH(S) is a module over the Eilenberg–Mac Lane spectrum Z ∈ Spt. In particular, for any
A ∈ModZ(Spt), we can form the tensor product HAS = HZS ⊗Z A. This construction defines
a symmetric monoidal functor

ModZ(Spt)→ModHZS
(SH(S)), A �→ HAS.

When S is the spectrum of a field and A is an abelian group, HAS is equivalent to Voevodsky’s
motivic Eilenberg–Mac Lane spectrum with coefficients in A.

Corollary 22. Let S be a scheme and A an abelian group (respectively, a ring; a commutative

ring). Then there is a canonical equivalence of HZS-modules (respectively, of A∞-HZS-algebras;

of E∞-HZS-algebras) HAS � γ∗Σ∞
T,frAS.

Proof. By Lemmas 16 and 20, we may assume that S is a Dedekind domain. Since the equivalence
of Theorem 21 takes place in the heart of the effective homotopy t-structure, it can be uniquely
promoted to an equivalence of E∞-rings in strictly commutative monoids. Hence, for any A ∈
ModZ(Spt�0), we obtain an equivalence HAS � γ∗Σ∞

T,fr(ZS ⊗Z A). To conclude, note that ZS ⊗Z

A � AS when A is discrete. �
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Hoy14 M. Hoyois, A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula,
Algebr. Geom. Topol. 14 (2014), 3603–3658.
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