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Non-uniformly hyperbolic diffeomorphisms derived from the standard map. Comm. Math.
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direction. The main novelty of our proof is that we do not use accessibility.
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1. Introduction

Let M be a smooth compact Riemannian manifold and let v be a Borel probability measure
on M. Given a measurable transformation f : M — M that preserves v, we say that
f is ergodic with respect to v if every invariant measurable set has either zero or full
measure. Ergodicity means that from the probabilistic point of view the system cannot be
decomposed into invariant smaller parts. In our scenario, f is ergodic if and only if for
every continuous function ¢ : M — M, for v-almost every point p € M, it is verified that

ln71 .
lim — itpy=[ gav.
n;tfwn;)¢0f(p) /Mw v
]=

In 1939, Hopf introduced in [19] an argument to prove that the geodesic flow on
compact surfaces with constant negative curvature is ergodic with respect to the Liouville
measure. Many years later, Anosov [1], and Anosov and Sinai [2] used the Hopf
argument to prove ergodicity of hyperbolic systems that preserve a smooth measure.
A diffeomorphism is hyperbolic, or Anosov, if its tangent bundle decomposes into two
invariant subbundles, one is contracted and the other one is expanded exponentially fast by
the action of the derivative. Hyperbolicity was the key property that allowed them to use
the Hopf argument in these settings.

Since then several publications have extended the Hopf argument to more general
settings, namely non-uniformly hyperbolic and partially hyperbolic systems.

For a C!-diffeomorphism f and an invariant measure v, Kingman’s ergodic theorem
implies that for v-almost every point p € M and for every v € T, M — {0} the limit exists,

o1
A(p, v)=ngriloo’—llog I1Df"(p) - vll. €]

Oseledets theorem states that A(p, -) can take at most dim(M) different values. Such
numbers are called Lyapunov exponents. An f-invariant measure v is non-uniformly
hyperbolic for f if, for v-almost every point, every Lyapunov exponent is non-zero.

In [23], Pesin uses the Hopf argument to prove that if v is a smooth, non-uniformly
hyperbolic measure and f is a C!**-diffeomorphism then v has at most countably many
ergodic components.

A diffeomorphism f is partially hyperbolic if there is a Df-invariant decomposition
TM = E* @ E° @ E"", such that Df|gss contracts, Df|gu expands and the behavior of
Df |Ec is bounded by the contraction of E*¢ and the expansion of E“*. See §2 for a precise
definition.
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A key property for discussing the ergodicity of partially hyperbolic systems is the
accessibility. A partially hyperbolic system is accessible if any two points can be joined
by a curve which is a concatenation of finitely many curves, each of them being contained
in a stable or an unstable leaf.

There are several publications that use accessibility to extend the Hopf argument and
prove ergodicity, see for instance [8, 10, 11, 16, 24] and [17]. Most proofs of the ergodicity
for partially hyperbolic systems uses accessibility. Several of the extensions of the Hopf
argument for accessible partially hyperbolic diffeormorphisms allow vanishing Lyapunov
exponents along the center direction.

Berger and Carrasco introduced in [5] an example of a volume-preserving, partially
hyperbolic diffeomorphism which is non-uniformly hyperbolic. This example has a two-
dimensional center bundle and Lebesgue almost every point has both positive and negative
Lyapunov exponents in the center direction. Furthermore, the properties of this example
are C2-robust. It is not known if this example is accessible or not.

Definition 1.1. A volume-preserving diffeomorphism f is C2-stably ergodic if it
admits a C2-neighborhood such that any volume-preserving diffeomorphism inside this
neighborhood is ergodic.

In this paper we prove the following theorem.
MAIN THEOREM The Berger—Carrasco example is C*-stably ergodic.

We stress two features of our work that distinguishes it from other previous work on
ergodicity of partially hyperbolic diffeomorphisms:

e the stable ergodicity with mixed behavior along the center direction and that does not
admit a dominated splitting of the center direction (as a strengthening of [5]); and
e aproof of stable ergodicity that does not uses accessibility.

We explain a couple of points on why in Definition 1.1 we use a C2-neighborhood
instead of a C!-neighborhood, which is the one usually used to define stable ergodicity,
see for instance [17]. First, the techniques we use depend on the uniform control of
C?-norms in a neighborhood. Second, it is not possible to have the mixed behavior
along the center for every volume-preserving C2-diffeomorphism in a C'-neighborhood of
Berger—Carrasco’s example. This is due to theorem A’ in [3], which implies that arbitrarily
C'-close to Berger—Carrasco’s example there is a volume-preserving C2-diffeomorphism
that is stably ergodic and whose Lyapunov exponents along the center have the same sign.

From now on we denote the normalized Lebesgue measure of a manifold by Leb, and
the set of C”-diffeomorphisms that preserve the Lebesgue measure by Diff] ., (M).

1.1. The Berger—Carrasco example and the precise statement of the main theorem.
For N e R we denote by sy(x,y)=2x —y -+ N sin(x), x) the standard map on
T? =R?/2n7Z?. For every N the map sy preserves the Lebesgue measure induced by
the usual metric of T2.

This map is related to several physical problems; see for instance [12, 21] and [30].

It is conjectured that for N 7% 0 the map sy has positive entropy for the Lebesgue
measure; see [31, p. 144]. By Pesin’s entropy formula, see [23, Theorem 5.1], this is
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equivalent to the existence of a set of positive Lebesgue measure and whose points have a
positive Lyapunov exponent. The existence of those sets is not known for any value of N.
See [6, 14] and [15] for some results related to this conjecture.

Let A € SL(2, Z) be a hyperbolic matrix which defines an Anosov diffeomorphism on
T? and let P, : T?> — T2 be the projection on the first coordinate of T?; this projection is
induced by the linear map of R?, which we will also denote by Py, given by Py (a, b) =
(a, 0). In a similar way define Py : T? — T2, the projection on the second coordinate of
the torus.

Consider the torus T* = T2 x T2 and represent it using the coordinates (x, y, z, w),
where x, y, z, w € [0, 27r). We may naturally identify a point (z, w) on the second torus
with a point (x, y) on the first torus by taking x = z and y = w. For each N > 0 define

fv: T?2xT? — T2 x T?
(X, y,z,w) = (sn(x,y) + Py o AN (z, w), A%V (z, w)),

where the point AV (z, w) on the second torus is identified with the same point in the first
torus as described previously.

This diffeomorphism preserves the Lebesgue measure. For N large enough it is a
partially hyperbolic diffeomorphism, with a two-dimensional center direction given by
E¢ =R? x {0}. This type of system was considered by Berger and Carrasco in [5], where
they proved the following theorem.

THEOREM 1.2. [5, Theorem 1] There exist No > 0 and ¢ > 0 such that for every N > N,
for Lebesgue almost every point m and for every v € R*,

1
lim |—log ||Dfy (m) - v|l| > clog N.
n—oo [ n

Moreover, the same holds for any volume-preserving diffeomorphism in a C*-
neighborhood of fn.

This theorem says that for N large enough the system fy is non-uniformly hyperbolic.
Indeed, along the center direction there is one positive and one negative Lyapunov
exponent for Lebesgue almost every point.

We remark that Viana constructed, in [32, Theorem B], an example of a non-
conservative partially hyperbolic diffeomorphism with similar properties to Berger and
Carrasco’s example, meaning Lebesgue almost every point has a positive and a negative
exponent in the center direction and there is no dominated splitting of the center, but in
the dissipative case. The approach used by Berger and Carrasco has some similarities with
Viana’s approach, which is to consider ‘unstable’ curves and use combinatorial arguments
to estimate the exponents over such a curve.

Definition 1.3. Let v be an invariant probability measure for f. We say that (f, v) is
Bernoulli if it is measurably conjugated to a Bernoulli shift. For volume-preserving
diffeomorphisms, we say that f is Bernoulli if ( f, Leb) is Bernoulli.

The Bernoulli property is stronger than ergodicity. We can now give the precise
statement of the main theorem.
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MAIN THEOREM RESTATED. For N large enough fy is C*-stably ergodic. Moreover,
any volume-preserving diffeomorphism in a C*-neighborhood of fy is Bernoulli.

In order to prove this theorem we will need to obtain precise estimates on the size of the
invariant manifolds in the center direction for certain points. For that we will need a better
estimate of the center exponents, given by the following proposition.

PROPOSITION 1.4. For every § € (0, 1), there exists Ny = No(8) such that for every N >
Ny there is a C*-neighborhood Uy of fv in Difffeb (T*) with the following property. If g €
U, then Lebesgue almost every point has a positive and a negative Lyapunov exponent in
the center direction whose absolute values are greater than (1 — §) log N.

We remark that one can show that fy is CZ-approximated by stably ergodic
diffeomorphisms using another approach. This approach uses accessibility, which can be
obtained using the results in [20], and the criteria of ergodicity in [11]. Such an approach
does not use the non-uniform hyperbolicity of the system.

1.2.  Strategy of the proof.  The strategy of the proof has two parts. The first part is the
construction of stable and unstable manifolds inside center leaves with precise estimates
of length and ‘geometry’. The second part is the global strategy to obtain the ergodicity.

For the first part, the main tool we use is the construction of stable manifolds for surface
diffeomorphisms, given by Crovisier and Pujals in [13, Theorem 5]. In order to do that,
two ingredients are needed. The first is good control of the Lyapunov exponents along the
center direction so it verifies some inequality; see the beginning of §3.3 for a discussion.
The second ingredient involves finding sets with positive measure of points with good
contraction and expansion for the Oseledets splitting, for any ergodic component.

Proposition 1.4 gives the required control of the Lyapunov exponents. To prove
Proposition 1.4, we follow the proof of Theorem 1.2, given by Berger and Carrasco
in [5], with the necessary adaptations to obtain a precise estimate of the Lyapunov
exponents along the center. For the second ingredient, we use a version of the Pliss
lemma, Lemma 3.4. Following the construction of Crovisier and Pujals in [13], we
obtain precise estimates of the lengths and the ‘geometries’ of stable and unstable curves
inside center leaves, given by Propositions 3.11 and 5.6. So far what is obtained with this
construction is that any ergodic component of the Lebesgue measure has a set of points
with positive measure having stable and unstable curves in the center leaves of uniform
size and controlled ‘geometry’. That alone guarantees that there are at most finitely many
ergodic components.

For the global strategy there are also two ingredients: the estimate on the measure of
points with good expansion and contraction, given by the Pliss lemma; and the density of
the orbit of almost every center leaf among the center leaves.

The estimate on the measure given by the Pliss lemma is used to obtain points that spend
a long time inside a region with good hyperbolicity. This together with the control on the
lengths and ‘geometries’ of the stable and unstable curves inside the center leaves allows
us to obtain points whose curves are very large inside the center direction. The density of
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the orbit of almost every center leaf together with these large stable and unstable manifolds
is then used to apply the Hopf argument and conclude the ergodicity.

We remark that in this proof we use the Hopf argument for non-uniformly hyperbolic
systems and not the version usually used for partially hyperbolic diffeomorphisms, see for
instance [11].

1.3. Organization of the paper. In §2 we will introduce several tools that will be used
in the proof. We will assume that Proposition 1.4 holds throughout §§3, 4, 5 and 6, which
are dedicated to proving the main theorem. The proof of Proposition 1.4 is then given
in §7.

2. Preliminaries

2.1. General theory and results.

2.1.1. Partial hyperbolicity and foliations. A C”-diffeomorphism f, with r > 1, is
partially hyperbolic if the tangent bundle has a decomposition TM = E** & E¢ & E**,
there is a Riemannian metric on M and continuous functions x*, x7 : M — R, for
* =88, ¢, uu, such that, for any m € M,

xym) <1< x"(m) and x3'(m) < xE(m) < xi(m) < x2(m),
and the following also hold:

X2 (m) <m(Df(m)|gss) < Df(m)|gss |l < x&° (m),
xE(m) <m(Df(m)|ge) < |IDf(m)|ec |l < x§(m),
x4 (m) <m(Df(m)|gu) < [|Df(m)|gue |l < xi*(m),

where m(Df(m)gz) = |(Df(m)|g:)~" 7" is the co-norm of Df(m)|g:, for x=
ss, ¢, uu. If the functions in the definition of partial hyperbolicity can be taken as constant,
we say that f is absolutely partially hyperbolic.

It is well known that the distributions E** and E** are uniquely integrable, that is, there
are two unique foliations F** and F*“*, with C”-leaves, that are tangent to E* and E**,
respectively. For a point p € M we will denote by W*¥(p) a leaf of the foliation F**,
we will call such a leaf the strong stable manifold of p. Similarly we define the strong
unstable manifold of p and denote it by W**(p).

Definition 2.1. A partially hyperbolic diffeomorphism is center bunched if

xE(m) x5 (m)
an _—
x5 (m) x& (m)

We denote E* = E* @ E€ and E“ = E€ @ E".

x5 m) < < x"(@m) foreveryme M.

Definition 2.2. A partially hyperbolic diffeomorphism f is dynamically coherent if there
are two invariant foliations F¢ and F<, with C!-leaves, tangent to E and E°*
respectively. From those two foliations one obtains another invariant foliation F¢ =
FE N FC that is tangent to E€. We call those foliations the center-stable, center-unstable
and center foliation, respectively.
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For any R >0 we denote W;(p) to be a disk of size R centered on p, for the
Riemannian metric induced by the metric on M, contained in the leaf W*(p), for * =
S, C, ull.

The definition below allows one to obtain higher regularity of the leaves of such
foliations.

Definition 2.3. We say that a partially hyperbolic diffeomorphism f is r-normally
hyperbolic if, for any m € M,

Xy m) < (x£m))" and  (x§(m))" < x2(m).

Definition 2.4. Let f and g be partially hyperbolic diffeomorphisms of M that are
dynamically coherent, denoted by ]-']5'- and ]-'éf the center foliations. We say that f and
g are leaf conjugated if there is a homeomorphism /& : M — M that takes leaves of .7-"}' to
leaves of 7 and such that for any L € .7-"} it is verified that

h(f (L)) = g(h(L)).

One may study the stability of partially hyperbolic systems up to leaf conjugacy.
Related to this there is a technical notion called plaque expansivity which we will not
define here; see [18, Ch. 7] for the definition. The next theorem is important for the theory
of stability of partially hyperbolic systems.

THEOREM 2.5. [18, Theorem 7.4] Let f: M — M be a C"-partially hyperbolic and
dynamically coherent diffeomorphism. If f is r-normally hyperbolic and plaque expansive
then any g : M — M in a C"-neighborhood of f is partially hyperbolic and dynamically
coherent. Moreover, g is leaf conjugated to f and the center leaves of g are C"-immersed
manifolds.

Remark 2.6. In the proof of the previous theorem, it is found that, for a fixed R > 0, if
f satisfies the hypothesis of the theorem, then for g sufficiently C”-close to f, for any
meM, W;’ gm)is C "-close to W;y g (m). In particular, if the center foliation is uniformly
compact then for every g sufficiently C"-close to f, for any m € M, W}i (m) is C"-close
to Wg (m).

It might be hard to check the condition of plaque expansiveness, but this is not the case
when the center foliation of a dynamically coherent, partially hyperbolic diffeomorphism
is at least C'; see [18, Theorem 7.4]. Usually the invariant foliations that appear in
dynamics are only Holder.

We can also obtain a better regularity for the center direction given by the following
theorem; see [27, §4] for a discussion on this topic.

THEOREM 2.7. Let f be a C*-partially hyperbolic diffeomorphism and let « > 0 be a
number such that, for every m € M, it holds that

Xy (m) < xEm)(xZm))*  and - x L (m) (X" (m)* < x2*(m),

and then E€ is a-Holder.
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2.1.2. Pesin’s theory. Let f be a C!-diffeomorphism. For a number A € R define E 1);
to be the subspace of the vector zero united with all vectors v € T, M — {0} such that the
number A(p, v) = A, where A(p, v) is the number defined in equation (1).

We say that a set R has full probability if, for any f-invariant probability measure v, it
is verified that v(R) = 1. The following theorem is known as Oseledets theorem.

THEOREM 2.8. [4, Theorems 2.1.1 and 2.1.2] For any C'-diffeomorphism f, there is

a set R of full probability, such that for every ¢ > 0 there exists a measurable function

C: : R — (1, 400) with the following properties:

(1) for any peR there are numbers s(p) €N, Ai(p) <---<Aiyp(p) and a
decomposition TyM = E}, DD Ef,(p);

@ s(F(P)=s(p) (f(P)=Ai(p) and Df(p)-Ey=Ei . for every i=

L....s(p);
(3) foreveryv e E;, — {0} andn € Z,
Df" .
Cs(p)*len'()»i(lﬂ)*g) < W < Cg(p)en-()»i(P)Jre) and A(p,v) = Ai(p);
v

(4) the angle between E;, and Ef) is greater than Co(p)~', ifi # j;
(&) Ce(f(p) =€ Ce(p).

We call the set R the set of regular points. For a fixed ¢ > 0 and each / € N we define
the Pesin block as

Ra,l:{PER:Cs(p)Sl}- (2)
We have the decomposition
R=JRes 3)
leN

A point p € R has k negative Lyapunov exponents if
Z dim(E’) = k.
i:Ai(p)<0
We say that p has k positive, or k-zero, Lyapunov exponents if a similar expression holds.
From now on, we assume that v is a f-invariant measure, not necessarily ergodic, and
there are numbers k and [/ such that v-almost every point p € R has k negative and /

positive Lyapunov exponents.
For a regular point we write

E) = EB Ei and EY%= @ Ei. 4)

i:Ai (p)<0 i:Ai(p)>0

Definition 2.9. For f a C2-diffeomorphism, the stable Pesin manifold of the point p € R,
is

n—+oo N

1
W (p) = {CI € M :limsup — logd(f"(p), f"(9)) < 0}-

Similarly one defines the unstable Pesin manifold as

1
W (p) = {q € M :limsup — logd(f™"(p), f"(q)) < 0}-

n—+4oo N
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Remark 2.10. If f is also partially hyperbolic, with TM = E** @& E¢ @ E"" then the
Oseledets splitting refines the partial hyperbolic splitting. This means that, for a regular
point p € R, there are numbers 1 <[; <[y < s(p) such that

L 153 s(p)
ss __ i c __ i uu __ i
E, _@E’ E,= @ E, and E,"= @ Ep.
i=1 i=l+1 i=lr+1

This follows from a standard argument similar to the proof of the unicity of dominated
splittings; see [7, §B.1.2]. It also holds that, for any regular point p, E}’ C E;, and
EMM C Eu

p P

Pesin’s manifolds are immersed submanifolds; see [23, §4]. A difficulty that appears
is that such submanifolds in general do not vary continuously with the point, but they
vary continuously on Pesin blocks. Let us make this more precise. For p € R, ;, define
W} .(p) to be the connected component D*(p) of W*(p) N B(p, r) containing p, such
that 9 D*(p) C dB(p, r) and r > 0 is a small fixed number depending only on ¢ > 0 and
leN.

THEOREM 2.11. [23, Theorems 4.1 and 4.2] Let f : M — M be a C2-diffeomorphism
preserving a smooth measure v and suppose that v-almost every regular point p has the
same number of negative and positive Lyapunov exponents. For eachl > 1, ¢ > 0 small
and p € R, the following are verified.

(1) Wy (p) contains a disk centered at p and tangent to Ej,.

(2)  pr> Wi (p) varies continuously in the Cl-topology over Re,.

A partition § of M is measurable with respect to a probability measure v if, up to a set
of v-zero measure, the quotient M /£ is separated by a countable number of measurable
sets. Denote by ¥ the quotient measure in M/&. By Rokhlin’s disintegration theorem [29],

for a measurable partition &, there is set of conditional measures {ng : D € &} such that for
v-almost every D € & the measure vf) is a probability measure supported on D, for each

measurable set B C M the application D +— v% (B) is measurable and it holds that

v(B) = / V5 (B) dd(D). (5)
M/s

Fix R, a Pesin block. For p € R, and for p > 0 small, define Bs(p, p) as the union
of the local stable Pesin manifolds of the points y € B(p, p) N R, ;. Consider the measure
Vp,p = VB, (p,p) and the measurable partition & given by the partition of B;(p, p) by local
stable Pesin manifolds. For such a partition let {vi“’ oD D € &} be the set of conditional
measures of the disintegration of v, , with respect to &;.

Definition 2.12. The measure v has absolute continuous conditional measures on stable
manifolds if for every Pesin block R, every p > 0 small enough, for ¥, ,-almost every
D € &, the measure vi‘ o.D is equivalent to the Lebesgue measure of a local stable Pesin

manifold.

We will also need the following definition.
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Definition 2.13. Take p € R and let T; and T; be two disks transverse to W*(p) close to
p. We define the holonomy map related to these disks as the map H defined on a subset of
Ty N'R, consisting of the points g such that W}} (g) intersects transversely 75.

Recall that we are assuming that the number of negative and positive Lyapunov
exponents are the same v-almost everywhere.

Definition 2.14. We say that the stable partition is absolutely continuous if all holonomy
maps are measurable and take sets with zero Lebesgue measure of 77 into sets of zero
Lebesgue measure of 75.

Analogously we define all the above for the unstable partition.

THEOREM 2.15. [23, Theorem 4.4] Let f be a C>-diffeomorphism preserving a non-
uniformly hyperbolic, smooth measure v. Then the stable and unstable partitions are
absolutely continuous.

Remark 2.16. This theorem implies that v has absolute continuous conditional measures
with respect to the stable, or unstable, manifolds; see [4, Theorem 5.11]. In particular, a
Fubini-like formula (5) holds locally.

The notion of absolute continuity also makes sense for foliations, except for the
holonomy maps of the foliation. The strong stable foliation F** of a C2-partially
hyperbolic diffeomorphism is absolutely continuous, see [1].

Usually the partition by strong stable leaves, given by the foliation F°°, is not
measurable. In a foliated chart U, one may consider the restricted foliation F**|y, and
the partition by strong stable leaves forms a measurable partition of U. Thus one can
disintegrate a smooth measure locally along such a foliation. The absolute continuity of
the strong stable foliation implies that the conditional measures of this disintegration are
equivalent to the Lebesgue measure of these manifolds; in particular a Fubini-like formula
also holds. See [28] for a discussion.

Recall that an f-invariant measure v is non-uniformly hyperbolic if for v-almost every
point all Lyapunov exponents are non-zero.

THEOREM 2.17. [23, Theorems 7.2 and 8.1] Let f be a C?-diffeomorphism preserving a
smooth measure v. If v is non-uniformly hyperbolic then there are at most countably many
ergodic components of v, that is,

v=>"cv,

ieN

where ¢; >0, Y .oy ¢i = 1, each v; is an f-invariant ergodic probability measure and if
i # j thenv; #v;. Moreover, for each i € N, there exists k; € N such that

k.

1 1
Vi = — E Vi j
ki 4 ]’

j=1

where each v; j is a fki-invariant probability measure, the system (f*i, v;,j) is Bernoulli
and v; j #v; j if j #1. Furthermore, f permutes the measures v; j, that is, fi(v ;) =
vijr1forj=1,..., ki —1and fi(vir,) = vi 1, where f,(v) denotes the pushforward of
a measure v by f.
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All the results for Pesin’s theory were stated for C2-diffeomorphisms, but they hold for
C'*e_diffeomorphisms.

2.2. The strong stable and strong unstable holonomies. ~Let f be a partially hyperbolic,
dynamically coherent diffeomorphism. Each leaf of the foliation 7 is foliated by strong
stable manifolds. For points p € M and g € W{*(p), where W{*(p) is the strong stable
manifold of size 1, we can define the stable holonomy map restricted to the center-stable
manifold, between center manifolds. Let us be more precise. We can choose two small
numbers R, Ry > 0, with the property that for any z € Wl‘él (p) there is only one point
in the intersection W5°(z) N W;éz (g). We define Hls,yq @=W"@@)N W§2 (g). With this
construction we obtain a map H, , : W§1 (p) = WI%Z (g¢). By the compactness of M we
can take the numbers R and R, to be constants, independent of p and gq.

We can define analogously the unstable holonomy map, for p € M and g € W{""(p),
which we will denote by H; , er] (p) — erz (q).

In [25] and [26], the authors prove that the map H , is C Vif £ is a partially hyperbolic,
center-bunched and dynamically coherent C2-diffeomorphism. Indeed, the authors prove
that the strong stable foliation is C! when restricted to a center-stable leaf. Consider the
family of C'-maps {H,S;,q}peM,quf‘S(p)-

THEOREM 2.18. Let f be an absolutely partially hyperbolic, dynamically coherent, 2-
normally hyperbolic and center-bunched C?-diffeomorphism. Suppose also that x¢ <
1 and x$ > 1. Then the family {H,s,,q}peM,qufS(p) is a family of C'-maps depending
continuously in the C'-topology with the choices of the points p and q.

Proof. We follow the approach found in [9], which is an approximation of the strong stable
holonomies argument. In [9], the author proves that such holonomies between center
manifolds are C! if f is C!THOMer and verifies some stronger bunching condition; see
[9, §2] for precise statements. For a detailed proof in our setting we refer the reader
to [22].

Let 7tA be an approximation of the holonomy HA This means that there is a
constant C > 0 such that, for any p € M and g € W;*(p), there is a C 2-map, which is
a diffeomorphism onto its image, 77, , : Wi (p) = W¢(q), that verifies:

() d(m, ,(p),q) =Cd(p, q);

2) d(Dnls,,q(p) -v,v) <Cd(p, q), where v € SEf, and SE;7 is the unit sphere on E¢;
and

(3) if Cp/ € Wlf)c(f) afld q' € Wi*(p") N W (q), then 7, 4 coincides with n;,,q/ on
Wi () N WEL(P). B

This can be done in the following way. Consider a smooth subbundle E which is
uniformly transverse to the subbundle E€. Observe that the restriction of E to any center
manifold is a C2-bundle, since the center manifolds are C? by the 2-normal hyperbolicity.
For each point ¢ € M and p > 0, consider L , := exp, (E(q, 0)) to be the projection of
the ball of radius p by the exponential map over g. By the uniform transversality and the
compactness of M, there exists a constant pg such that, for any center leaf W,‘él (p), the
set {Lg, po}qu§l (p) forms a uniform foliated neighborhood of erl (p). Let nf,’ q be the
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holonomy defined by this local foliation; up to rescaling of the metric we may assume that
it is well defined for p € M and g € Wi*(p). By the compactness of M we obtain the
constant C > 0 above. Observe also that, since the center leaves vary continuously in the
C?-topology, we obtain that the map JT;)’ 4 Varies continuously in the C 2_topology with the
points p and q.

For any p,q € M, with g € W*(p), and each n €N, write p, = f"(p) and g, =
f"(q). We define

Hygn=1"0mp, 401"

Since we are assuming that f is absolutely partially hyperbolic, for this proof only we
write its partially hyperbolic constants as x; = x3*(p), xc = x£(p) and X = (x5( )L
Also only for this proof, for a diffeomorphism g : Ny — N3, between manifolds N; and
N>, we will write g, : SN1 — SN, the action induced by the derivative on the unitary
bundles of Ny and N,.

Observe that the Lipschitz norm of f*_1 restricted to a fiber Sy E€ is (xcXe)~'. Also
since f is a C2-diffeomorphism, then £ Vis a C'-diffeomorphism of SM. Let C; > 0 be
the C'-norm of f~!' on M and C; be the C'-norm of f. ! on SM. For any two points
E=(x,v), =y, u) e SM, we write

Ee=fFx v = v and &= fFO.uw) =Gk u) forkel

In the setting that f is C1+H9lder and verifies a stronger bunching condition, Brown
proves in [9] that (H}, , ,)nen is a Cauchy sequence in the C'-topology. Furthermore, this
sequence converges exponentially fast to H, ;. The stronger bunching condition is used
to prove [9, Lemma 3.1]. In our C 2 gcenario, we can obtain a similar lemma, using that
fact that . < 1 and ¥, < 1.

LEMMA 2.19. There are constants §, o € (0, 1) and 6 € (0, 1) that verify the following: if
§=(x,v), £ =(y,u) € SWp), K >0andn=0verify d(x, yn) < Kxy, d(&, {n) <
KXS”Q and for every 0 <k <n,

d(xk, yi) <6,

then, forall0 <k <n,

Ak, y) < KxP - xo "0 and  d(&, &) < KxM - (xeXe)~ R0,

c

In particular,
dE O = Kx” - (xexe) ™.

Furthermore, 6 and o can be chosen such that

(14a)

Xse : (?cXc)_ <1

Proof. The proof is by backward induction in k. We will first denote by 8, 6, «
and & quantities that will be fixed later. Suppose that what we want holds for some
ke{l, ..., n}; we will prove that it holds for k — 1. Since x; and y; belong to the same
center manifold, it is easy to see that

d (X1, Y1) < x ' (xx, yi) < Ky - 3"
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We have

dCf7 O, o), £ ks wr)) < dCF7 e, o), £l Goks )
+d(F7 s ui)s £ ks wr))

< (XeXe) ' vk, u) + Cad (xk, yi)

< (XeXe) M1+ Co - (XeXe)d Gexs yi) ' =P
-max{d (xg, ye)?, d (v, ur)}

< (XeX) T M+ Ca - (xeXe)8' P
—(n—k P
K max(x)” - x"TOP q 0 (xe ) U0y

where the last inequality follows from our induction hypothesis.
We claim that we can choose «, 8 and 6 such that, for any n € N and 0 <k <n, the

following holds:
X;lﬂ . Xc—(n—k)ﬂ < X;ﬁ . (XCB(‘C)—("—k)(H-a)‘

This inequality is equivalent to

1< Xsn(9—l3) . (Xgﬁ—l—a)ic—(l-&-d))(n—k). (6)

Since X I'> 1, we can fix B arbitrarily close to 1 and « arbitrarily small such that
1< Xiﬂ_l_a)@_(HQ). For the inequality above to hold we can just take any 6 € (0, §),
so that 6 — B is negative.

We also want

X Rexe) ™ < 1. )

By the center-bunching condition, this holds if 6 is close enough to 1 and « is close enough
to 0. Fix B € (0, 1) close to 1, 8 € (0, B) close to § and o > 0 small such that inequalities
(6) and (7) hold.

Now take § > 0 small enough such that

[1+Ca- (xeXe)8' 1< (xeXe) ™.
We conclude that

d(f71ED, £71EH) = (X ™0 K (eRe) "0
— KX;’LH . (ch(\c)f(nf(kfl))(l+a)' O

This lemma is specifically used to prove that the sequence ((H [S) q,n)*)neN is Cauchy.
We can follow similar calculations as in [9] to conclude that for every p € M and g €
W{*(p) the sequence (H ; q,n)neN is a Cauchy sequence that converges exponentially fast
in the C!-topology to H 1‘; 4+ The rate of convergence depends only on xy, xc and Xe. In
particular, it is independent of the choices of the points p and q.

The family {rr[s,’ ¢ pem. qeEW (p) is a family of C?-maps depending continuously in the
C?-topology on the choice of points p and g. For each n € N, consider the family { f ™" o
Ty an © fn}peM,qui“(p) and observe that, since f is C2, this is a family of C2-maps
depending continuously in the C2-topology on the choice of the points p and .

Since the rate of convergence does not depend on the choice of the points p and ¢, we
conclude that the sequence of families ({f~" o nf,n’qn o fn}pEM,qEWfS(p))nEN converges
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uniformly in the C!-topology to the family {H]s;,q}peM,qEWl”(p)' Thus, the family
{HIS,’ q)pe M.geWss (p) is a family of C'-maps depending continuously in the C'-topology
on the choice of p and q. O

2.3. Berger—Carrasco’s example. Recall that for each N >0 and m = (x, y, z, w) €
T* we defined in §1 the diffeomorphism

fn(m) = (sy(x, y) + Py o AN (z, w), A*N (z, w)).

Observe that N
Dsy(x,y) ProA
Dfn(m) = ( 0 xAZN :
It is useful to introduce 2 (x, y) = N cos x + 2, so that
Q(x,y), —1
Dsy(x,y) = ( ) .
1, 0

For a point m = (x, y, z, w) € T4, we will write Q(m)=Q(x,y) and Dsy(m) =
Dspy (x, y). Observe that
1
oy SIDsvll<2N and D%yl < N. ®)
Let A € SL(2, Z) be the linear Anosov matrix considered in the definition of the
map fy. Denote by 0 <A <1 < u =2A""! the eigenvalues of A. Let ¢* and ¢” be unit
eigenvectors of A for A and u, respectively.
Consider the involution [ (x, y, z, w)=(y, x, z, w) for (x,y, z, w) € 2. An
important feature of the map fy is given by the following lemma.

LEMMA 2.20. [5, Lemma 1] The map f[;l is conjugated to the map
(¥, . 2, w) > (s (x, ¥) + Pro A7V (z, w), A7V (2, w),
by the involution I.

This lemma allows us to prove certain properties for fy and fy ! only by considering
the map fu, since the involution tells us that fy and f ! behave in the same way up to
exchange of the x and y coordinates. This will be used several times throughout the paper.

Recall that E€ = R? x {0} and that the system fy is dynamically coherent.

PROPOSITION 2.21. Fix ¢ >0 small, so that for N large enough there is a C?-
neighborhood Uy of fy such that if g € Uy, then g is dynamically coherent, its center
leaves are C?-submanifolds, g is leaf conjugated to fy and for every m € T* the C?-
distance between Wg (m) and W]‘} (m) is smaller than ¢.

Proof. Take N large enough such that
AN <N

This inequality implies that fy is 2-normally hyperbolic. Since its center foliation is
smooth, by [18, Theorem 7.4], fy is plaque expansive. By Theorem 2.5, for every g
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sufficiently C%-close to fy, g is dynamically coherent, leaf conjugated to f and its center
leaves are C2-submanifolds. Since the center foliation of fy is uniformly compact, from
Remark 2.6, if Uy is small enough then for every g € Uy and m € T* the center leaves
Wgc (m) and W}' (m) are e-close in the Cz—topology. O

Define m(x,y,z,w)=(x,y)€ T2  and m(x,y,z, w)=(z, w) € T2.  For
convenience, a vector (u, v) € RZ will be often identified with (u, v, 0, 0) € R?, so
that Dfy(m) - (u, v) = Dfy(m) - (u, v, 0,0). For a vector v € T, T* we will write
v = Dm(m) - v.

3. The size of the invariant manifolds and cone estimates
In this section we obtain the main estimates to prove the ergodicity of fy. Assuming
Proposition 1.4 and fixing a small § > 0, we prove the following.

PROPOSITION 3.1. For N large enough, for each ergodic component of the volume, for
fN, there exists a set with measure larger than 1 — 78/1 + 765, such that the following
holds.

For any x in that set, there exist a stable curve and an unstable curve inside W°(x),
with length bounded from below by N~'. Moreover, the stable curve is transverse, inside
WE€(x), to the horizontal direction and the unstable curve is transverse to the vertical
direction.

See Lemma 3.5 and Proposition 3.11 for precise statements.

Remark 3.2. From now on the norm || - || will be the norm induced by the usual metric of
T2 or T#. We will omit the dependence of N by writing f = f.

We fix two scales §; = N~2/5 and 6, = N —3/5.

3.1.  Points with good contraction and expansion. ~ Since f is non-uniformly hyperbolic,
by Theorem 2.17, there are at most countably many ergodic components. Therefore, Leb =
Y ien Civi» where ¢; > 0, and for every i € N the probability measure v; is f-invariant and
ergodic. As a consequence of Birkhoff’s theorem, for each measure v; there exists a set
A; with full v;-measure such that, for every m € A;,

-1 n—1
1 ”Z 3 ,
; 8f/(m) m Vi and ; ‘Sf_j(m) m) Vi, 1In the weak*-topology. (9)
j=0 Jj=0

Here §), is the Dirac mass on the point p. If v; # v; then A; N A; = {. Define

A=A (10)
ieN
Recall that R is the set of regular points given by Oseledets theorem. By Remark 2.10,
the center direction is decomposed by the Oseledets splitting for almost every point, that is,
for m € R there is a decomposition ES, = E,; @ E;}, where E,, is the Oseledets direction
related to the negative center exponent and E;! is the direction related to the positive
exponent.
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For each i € N define the sets
Z7 ={meRNA;:¥n=0wehave [ Df"(m)| | < (N~*°)"},
Z} ={meRNA;:¥n=0wehave | Df " (m)| g+ | < (N~>)"},
Zi=fZHn f~zhH.

Define also

Z:UZ,-. (a1

ieN
Remark 3.3. For each i € N, by the definition of Z;, f’l (Z;) C Z; . Observe that
1< IIDf(f‘l(m))IE;fl( - IDf~ )l - || < N=¥2 D~ m) - |-

We conclude that | Df~! (m)| g1l = N*/3_ Similarly IDf (m)| g+l = N4,
We will need the following version of the Pliss lemma.

LEMMA 34. [13, Lemma 3.1] For any ¢ >0, o) <a and any sequence (a;) €
(a1, +00)N satisfying

. ap+---+ap—1
limsuyp ——— < a,
n—-+00 n

there exists a sequence of integers 0 <ny <np <--- such that:

(1) foranyk > 1andn > ng, one has a,, +---+a,—1/(n —ng) <oy +¢&; and
(2) the upper density lim sup k/ny is larger than € /ay + € — «.

Using this lemma we prove the following.

LEMMA 3.5. Fix 6 > 0 small and assume that N is large enough such that Proposition 1.4
holds for f = fn. Then, it is verified that vi(Z;)>1—175/14+75 and Leb(Z) >
1—-78/1478.

Proof. Since N is large enough, by Proposition 1.4, for every m € R N A;, and since
E~(m) is one-dimensional, we obtain

1 1! )
lim —log [Df"(m)|y- | = lim = log [ Df(f/(m)lg- [I<—(1—8)logN.
ocon m n—>+o0o n 20 f7(m)

n—+

Take ¢ =1/6log N, a1 =—logN —log?2, ar =—(1 —48)log N and consider the
sequence (log || Df (f7 (m)) lg~ D jen. Applying the Pliss lemma (Lemma 3.4) for those
71 om)

quantities we obtain a sequence of integers (nx)xen such that, for every k € N and n > ny,

n—1
; 1
> " log IDF(f m)lg, 1 ==(1=8logN + 2 log N

n—ny
Jj=ni

=log N7/ —Jog N4/,
From this we conclude that

IDf"(f"™ Dl < (N3 foralln > 0.
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Thus, for every k € N we have f"(m) € Z;". Since m € A;, by Birkhoff’s theorem and
the second point in the Pliss lemma,

k
vi(Z;) > lim sup —
k——+oo0 Nk e

>
~ —(1 —08)logN + ¢ +1logN +log2
1 1

> .
(1+68)+ (6log2/logN) ~ 1+75

Similarly, vi(Zl.Jr ) > 1/1+76. This implies that

v (T* — ZhH < for * = —, +.

T 1+75

By choosing § > 0 small enough, the measure of these sets can be taken close to 1.
From the definition of Z; we conclude that
146§ 1-78

(Zy=1—v(T*—Z)>1 - ——— = ——.
vi(Z;) Vi ( i) = 1+75 1+75

Since Z = |J,; ¢y Z; and the previous estimate is valid for every i € N, then

1-78
Leb(Z) > ——. O
1+75

Let T =[1 4+ 75/285] and take § > 0 small enough such that T > 20. Define

T-1
X = ﬂ *2). (12)

k=—T+1

LEMMA 3.6. For N large enough, if v; is an ergodic component of the Lebesgue measure

then
v (X) > 0.

Proof. Recall that v;(Z;) > 1 —75/1 + 75; for N large enough, this implies that

148
(T — 7)) < .
Vi ( i) < 1+73
Therefore
T—1
viX)=1-v(X)=1— Y (AT - H))
j=—T+1

1478 148
>1—(2 A+ 5). > 0.

283 1+78 -
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3.2. Cone estimates. Let V C R? be a one-dimensional vector subspace inside R? and
let V* be the one-dimensional subspace perpendicular to V. For any vector w € R? we
can write w = wy + wy 1, the decomposition of w in V and V+ coordinates. For 6 > 0
define

(V) ={w eR*: 0wy = lwy I},

the cone inside R? around V of size 6. For simplicity, if V =R - (1, 0) then we just
write cgghor =%p(V) and 6, =6 (V1), and we will call them the horizontal and vertical
cones, respectively. Throughout this paper, for a direction V, we will write
Co(V, m) =% (V) x {0} C T,,T* = R?> x R%.
Recall that §; = N =2/,
LEMMA 3.7. For N large enough, for every m € Z we have that E,; C ‘Kehf’f (m), with 0y =
1

N~2/5. Furthermore, %QI/Z(E;;, m) C %‘?/‘gl (m). The same is valid for the E,; direction
and the vertical cone.

Proof. From Remark 3.3, we know that ||Df(m)|E$ | > N*/3, for m € Z. Take a vector
of the form (u, 1), with |u| < N~%/%; then for N large enough

IDf(m) - (u, DIl = |@R(m) — 1, w)|l < |ul|Q2m)|+ 1+ |u]
<|ul(N+2)+1+ul < N725. NIFI/2000 4 q
< N3/5H/200) 4 < N3/5+/100)  n4/s,

Hence, if m € Z then E}} C ‘5;‘?{ (m).
1

We want to determine 6 >0 such that the cone ‘Kehor(m) contains the cone
6o, /Z(En'*; , m). For this purpose we will consider a cone ¢, 2(V, m), where the direction
V belongs to the boundary of the cone € (m).

o,

Suppose that V is generated by the unit vector (x, x/60;), with x > 0. Observe that V-
is generated by (—x /61, x). One of the boundaries of the cone ‘K;“’r(m) we are looking for
is generated by the vector 61 /2(—x /61, x) + (x, x/61).

The size of the cone 6 is given by

gL IXOI D] _67+2 4
T w6 6

Since the horizontal cones are symmetric with respect to the horizontal direction, we

conclude that

Gouj2(Eyy. m) C 64 (m) S C4y (m).
By the symmetry of f, given by Lemma 2.20, the same holds for the stable direction

but using vertical cones. O

We define some critical regions. For that, define I} = I1(N) = (—2N /10, 2N —3/10),
I =05L(N)=11/2, and write Ci ={n/2+ L}U{3n/2+ 11} and Co ={r/2 + [} U
{37/2 + I,}. Consider the regions

Crit; = {C; x S! x T2} U {S! x C; x T?},
Critr = {C> x S! x T2} U {S! x C» x T?}.
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Write G, = (Crit,)¢, for x = 1, 2 and observe that G| C G,. Observe also that each
G« has four connected components, {G, j}‘}:l. Each G ; is a square and we can choose
the index j such that G1,; C G3;.

Remark 3.8. The distance between the boundaries of these two sets is
d@G1,j,3G2 ) =N3> N7 forl<j<4.
Recall that 8, = N—3/5.
LEMMA 3.9. If N is large enough then the following hold.
(1) ZcCGpcCaGs.
() Ifm & Gy then Df (m) - (€} (m)) CEL(f (m).
(3) Ify isa C'-curve inside a center leaf, with length 1(y) > N3/19 such that y C G»

and is tangent to %92‘” then I(f (y)) > 4.
Similar statements hold for the vertical cone and .

Proof.
(1) If m ¢ G then, for N large enough, |cos x| < 4N—3/10 and, in particular,
| Df (m)|gc | < Nicos x| +4 < ANT/N0=17200 4 g o NT/10-17100 - gr4/5

Using the symmetry given by Lemma 2.20 and since for m ¢ G; we have |cos y| <
4N—3/19_ 3 similar calculation gives

IDf = (m)| e || < N*5.

Thus Z C G1 C G».
(2) For any m € G, (u, v) € Cff/‘g] (m) we have

O2(1Qm)[Ju| — [v]) = Oalu|( - NT/10 — 2 — 4N3P)
=[u|(ANV10 — 2N —4) > jul.

(3) For any m € G, observe that

N-3/10
|cos x| > (13)
For (u, v) € ‘fegor(m) a unit vector, we must have
1Df(m) - (u, v)|| = 12(m)||u] — |v] > ul(|2(m)| — 62)
19 10 6yl — 62) = £ (Wlcos 11 — 2 — 62)
— 146, 2
7/10
SN B > N1/2,
- 4 2
Thus we have
I(f(y)) = NY2. N=3/10 = N2/10 5 g5, O

Remark 3.10. Observe that the condition y C G2 in the previous lemma can be replaced
by Py (m1(y)) C Px(r1(G2)). The same holds for backward iterates changing P, by Py
and horizontal to vertical cones.
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3.3. A lower bound on the size of the invariant manifolds. Let (Sn):;’g be a sequence
of surfaces, such that each surface has a metric that induces a distance d,(-, -) and
let (Yn)nen be a sequence of diffeomorphisms vy, : S,—1 — S,. A curve y C Sp is a
stable manifold for the sequence (vy,),en if any two points x and y on y verify that
dy(Ypo---oy(x), ¥, o---01(y)) converges to zero exponentially fast. We say that
y has size bounded from below by r > 0, if [o(y) > r, where [y(-) is the length of y inside
So.

The next proposition gives us the existence of stable and unstable curves tangent to the
center direction, with good estimates of their sizes and their tangent directions. The proof
of this proposition follows the exact same steps as [13, Theorem 5], but with the changes
necessary to get the estimates we need.

Theorem 5 in [13] proves the existence of stable manifolds with uniform size and
‘geometry’ in the following scenario. Let g : § — S be a C2-diffeomorphism of a compact
surface and let o, 7, p, p € (0, 1) be constants such that

L (14)
op
For any point x € S having a direction E C T, S such that, for all n > 0,
5" < IDg@Isl <o" and < IDEDIEL

= Jdet Dgn(x) ~°

there exist stable manifolds for such points. Inequality (14) is important in the
construction. That is why we need good control on the Lyapunov exponent along the
center, given by Proposition 1.4.

PROPOSITION 3.11. For N large enough, for eachm € Z, there are two C'-curves W*(m)
contained in W¢(m), tangent to E;, and with length bounded from below by ro = N =7

for x = —, +. Those curves are C'-stable and unstable manifolds for f, respectively.
Moreover, T, Wr'g (m) C ‘Kf/‘g] (p) and Ty W, (m) C ‘ﬂ’/e(;] (g), for every p € Wr'(’)' (m) and
€ Wy, (m).

Proof. We use some of the notation of the proof of [13, Theorem 5]. If m € Z, by the
definition of Z, m € Z; for some i € N. Since Z; = f(Z;) N f_l(Zl.‘") we have that
f~lm) e Z; ", and for this point the following holds:
QN <D (fT )= < (NP foralln = 0.
=

(m)

Since |det Df(p)|E§| = |det Dsy(p)| = 1 for every p € T*, the following also holds:

DS (f - I
N < e BT e = N foralla 20,
Ef7

Lm)

For each n €N consider v, :V,, — Tn (m)'JI‘2 to be the lifted dynamics by the
exponential map of the diffeomorphism f|yye( gn-1(,,)) along the orbit of m, that goes from
aneighborhood V, of 0in 7' (m)T2 to a neighborhood of 0 in T'fn ;) T2. Since the center
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leaves are C2, we have that f lwe(pn=1(my) 18 @ C 2_diffeomorphism; this implies that 1, is
a C2-diffeomorphism into its image.
Take o = N~%°,6 = (2N)~!, p =02 and 5 = 62. Consider

| -
A =2N"*’ =20 and M=——"F== B,
2-2N)?2 2
and take
o k Ao k
w5 (5) -5 )
LetE, = E;"_'(m) and F,, = E,J,- and use the basis E, & F,. We define

det Df"|ge(f! 1
mn — ”Dfn(f—l(m))lE;_l( ))” and Mn — | et f |E (f (m))| -

my m,
Using this notation we can also define
An = Z kl_kmn+k/mn,
k>0
n
M /M
Bn = Z )\‘g—l‘l mkjmn .
k=0 k n
The proof of [13, Theorem 5] gives
)\’ n n
A, < Co(Tl) and B, < co(ﬁ> . (15)
o %)

Define the change of coordinates in 7' (m)T2 given by A, = Diag(A,, A, By), where
the map A, is defined using the coordinates E,, @ F),. Observe that A, and B, are greater

than or equal to 1; in particular, ||A,|| = A, B, and ||A;1 I = A;‘ < 1.
Write 1, = Apt1 0 ¥y 0 Ayl and Hy = Ayy1 0 DY, (0) o A1, We have
1 d
ad -1 a ca
H,,:(O c) and H, = |
0 =
c

From the proof of [13, Theorem 5], we obtain

UIDflgell - IDf g™ <lal <h (16)
lalrs ' <lel <riay "IDFIeell - I1Df pell + 2D gell?

(17)

d| <IIDf|gell - 1Df " gelllal. (18)

Using inequalities (17) and (18), we have
d
o=

 IDflgell - IDfgellal — @N)* 1

< =
|a|)L2—l 2-2N)? 2
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Let us set &£ = U)\.Z/)\. o and observe that, for N large enough, £ > 4. For n <1/2 we
will consider ‘5(,7,,,) ¢, (E,) for the cone of size n around the direction E,. If (u, v) €
G (n.n+1)> using (16) and the estimate on |d/c|, we have

VH -, )] = 5‘— dv > |4 (1— "—”)
a ca a C
_ vl (1_Q>> Jw vl 13wl e vl
T4+ nr T @G/2)a 2 02 201 EM ’

We conclude that the vectors of the cone ‘5(,, n+1) are expanded by 1/21, by H L
Observe that if a linear map is n/6-close to H,~ ! then the vectors inside ‘5,7 n+1 are
expanded by at least (4A1)~! > (€A1)~!. It is easy to see that L(‘ﬁ(,7 n+1)) C ‘5(,7 ny for
any linear map L which is n/6-close to H,~ L

Recall that || Df|% |l <2N and ||D2f l|Wc|| < N. Since | A | < 1, we obtain

n+l|
DR (0) — Dhy ') < AWl 1A - ID2 F Hwell - 1AL - VI < NAuBallyll.
Using (15), we have that Dh,j1 (y) is n/4|a|-close to Hn’ in a ball of radius

A
U n_(oh @)
6N A, B, 6NC2 rMp 54N

Since Dh,; 1 expands the vectors inside the cone ‘g,,,nﬂ by at least @r)~t > (ék)_l,
we can take

fn—i—l =

Fo=—1_. A __n
S4N  4r;  216NA;~

The proof of [13, Theorem 5] gives us a C!-curve inside Tf—l(m)Tz tangent to the cone

%N,%o, of size ryp, which is a stable manifold for the sequence (1,),enN.

To obtain a stable manifold for the sequence (¥,,),en We need to apply Ag to this curve.
Recall that Ag = Diag(Ag, Ap); in particular, it preserves the size and direction of a cone.
Thus, we obtain that A()(%N(,7 0) =%, (E)‘*l(m))

To obtain a stable manifold for f, instead of the sequence (,),eN, We must project
this curve by the exponential map; this projection will be denoted by W~ (£~ (m)). Since
T? is the flat torus, the derivative of the exponential map is the identity. We conclude that
the stable manifold for f at the point f~!(m) is tangent to Cy(E J:,l (m)).

Now we estimate the size of the cones in the proposition at the point m. So far, the only
restriction we have is < 1/2. Since |[Df~!|gc|| and || Df|g<| are bounded from above
by 2N,

DF(f™Hm) - Cp(E s [ ) C Cyyzy (B, m).

Using the estimates from Lemma 3.7, we want 4N 277 <61/2=@2N 2/5 )_1; therefore,
the additional restriction we impose now is < (8N272/5)~1. Since N is large, we can
take n = N 3, for instance. By Lemma 3.7, we have E, C %evff and Gyn2, (E,) C Gy, -
This proves the estimate on the cones of the proposition. 1

With this restriction, now we estimate the size of the stable manifold at the point m. For
n= N3 and since A= 2N~—4/5 we obtain for N large enough,

n 1 1
T 216NA,  532- N+45 T NS

7o
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From this, one can conclude that the stable manifold at the point f ~L(m) has size
bounded below by N=>. This implies that at the point m the stable manifold has size
bounded by 2N y~1. N=3 > N7 = ry, which concludes the proof for W,; (m). The proof
for the unstable manifold is analogous. O

Remark 3.12. From item 1 of Lemma 3.9 and Remark 3.8, if m € Z then W;‘; (m) C Gy,
for x = —, +.

4. Ergodicity of the system fn
In this section, assuming Proposition 1.4, we prove the following.

THEOREM 4.1. For N large enough fy is ergodic.

The proof is by contradiction. Suppose that f = fy is not ergodic, so then there are
at least two different ergodic components, v; and vy. Let ¢ : T* — R be a continuous

function such that
/sodm#/wdw.

Consider the forward and backward Birkhoff’s average

n—1 n—1
1 . 1 .
¢ (m)= lim - E @o f/(m) and ¢ (m)= lim - E po f7/(m).
i=0 =0

n—+o00 n—-+00

Recall that we defined at the beginning of §3 the set A; as the set of points such that, for
any m; € Aj, ¢ (m;j) = ¢~ (m;) = [ ¢ dv; holds, fori = 1, 2 and any continuous function
¢:T* > R.

First we remark that for almost every m € T* the stable part of the Oseledets
decomposition, defined in (4), is given by ES, = E>° @ E,,. By Theorem 2.11 there is
a C! stable Pesin manifold, W*(m), such that T, W*(m) = E}¥ @ E,,, and this applies

analogously for the unstable direction. Recall that the stable Pesin manifold has a
topological characterization given by

1

W (m) = {y e T*: lim sup — log d(f™(m), f"(y)) < 0}.
n—>+oo N

The set Z was defined in (11). For m € Z consider

wim= J WU,

YEWyg (m)
where Wrg (m) is the stable manifold constructed in Proposition 3.11 and ro = N -,

Remark 4.2. By the topological characterization of the stable Pesin manifold we conclude
that WS (m) C W*(m). Observe that the strong stable manifold subfoliates the Pesin stable
manifold; in particular, ws (m) is open inside the Pesin manifold. We conclude that ws (m)
is a C!-submanifold and for every m € Z the stable Pesin manifold contains a disk of size
ro. This applies analogously for the unstable manifold.
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Since ¢ is continuous, for every z € W¥(m) and w € W¥(m), with m € A, we obtain
@t (m) =¢T(z) and ¢~ (w) = ¢~ (m), where A was defined in (10) and has full Lebesgue
measure.

CLAIM 1. There exists an invariant set B of full Lebesgue measure such that, for every
m € B and for Lebesgue almost every point z € W"(m), it is verified that ¢~ (z) = ¢ (2).

Proof. Let A be as before. By Theorem 2.15, the unstable partition is absolutely
continuous and, in particular, a Fubini-like formula holds. Since the set A has full
Lebesgue measure, this implies that there exists a set of full Lebesgue measure By C A
such that, for any m € By, the set W*(m) N A has full Lebesgue measure inside W*(m).
Consider

B= () f/(Bo.

JjEZ
This set is f-invariant, has full Lebesgue measure and verifies the conclusion of the
claim. O

Recall that we defined X = ﬂ,{T;iTH f*¥(Z) and 6, = N=3/5. Recall also that we
defined in §3.2 the sets G| and G».

LEMMA 4.3. For N large enough and n > 15, for every m € X there are two curves
Yo (m) C (W (m)) and y,"(m) C f"(W;(m)) with length greater than 4z. The
tangent vectors of each of those curves are contained in the cones (fgvfr and %ehzor,
respectively.

Proof. If m € X then
(F™ m), ..., fT7'm)} cZC Gy C Gy where T =1+ 78/285] > 20.

Define Wk+ (m) = fk(Wrt(m)) and observe that, for every z € Wk‘|r (m), if z € G, and
T. W, (m) C %g;’r then Ty W5, (m) C %g;’r.

By Proposition 3.11, TW(;r (m) C %f/oofl. Since m € Z C G|, by Remark 3.8 we
conclude that WJ (m) C G3. Item (2) of Lemma 3.9 implies that TWl+ (m) C %ghzor.

If p € Gy and (u, v) € 6 (p) is a unit vector, then || Df (p) - (u, v)|| > N'/2. For a
C!-curve y containing m with length N~7, such that y C G and Ty C ‘592‘“, let ke N
be the largest number such that f/(y) C Gy, for every j =1, ..., k. Since the vectors
inside %gz"r are expanded by at least N'/? and the cone %9};‘” is preserved by the derivative
of the points in G», we conclude that k < 14.

Let k(')Ir € N be the smallest number such that WkE (m) N 3G, # (. Recall thatif p € G,
and (u, v) € %411/051 is a unit vector then, by (13), [|Df(p) - (u, v)|| > 1. Since ro=N"",
we obtain that the curve W1+ (m) C %hzor has length at least N~ and is tangent to %hzor, by
the previous paragraph k:{ < 15.

If m € X, then the connected component of Wl:g* (m) N Gy containing f kg (m), which

we will denote by W]:(f), (m), intersects the boundary of G, and TWI;E" (m) C %0};‘“ .
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FIGURE 1. The curve yk‘:.
0

Since kO+ < T, we know that fkar (m)e Z C G1 C G,. We conclude that Wl:g* (m) also
intersects the boundary of G.

Let ykE be a connected component of Wk} (m) N (G2 — G1), such that ykg NoG1 #0
and y]:(_} N dG, # V; see Figure 1. The curve ykgr is a C'-curve that verifies the hypothesis
of item (3) from Lemma 3.9. Thus, l(f(yk}:*)) > 47, Tf(yk'g) C 6502‘” and by definition

f(ykg) C WkE,H(m). Define y;+ (m) = f(ykg).
Let

. <oN—3/10

5={(x,y,z, w)eT*: N30 < |y —

or N73/10 < 'x — 37”‘ §2N_3/10}.

It is easy to see that G has four connected components, each having two boundaries. Since
the critical region only depends on the coordinate x, for any point p € G, the derivative
Df (p) expands any vector inside %0};‘“ by at least N'1/2.

We build y," C f(y," ) inductively for n > kj + 1. Let us build it for n =k + 2.
Observe that Py (71 ()/ktJr 1)) = S!. Consider then )7kt+ | to be a connected component of
0 0

yktﬂ (m) N G that intersects the two boundaries of a connected component of G. Define
0

+ _ ot + h
yk;{+2(m) = f(ng+1)’ and observe that l(ykg+2(m)) > 4 and Tf(ykerrz(m)) - %ezor.

In this way we can build inductively the curves y,} (m) that satisfy the conclusions of the
lemma. In a similar way we construct the curves y_,(m). Since ka' <15 and ko_ <15,
then this certainly holds for n > 15. O

https://doi.org/10.1017/etds.2018.65 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2018.65

On the stable ergodicity of Berger—Carrasco’s example 1033

Foreach R > 0,n > 15 and m € X, define

Wi ,m= ) W¥@. (19)
geY_,(m)

where the curve y_, (im) is the curve given by Lemma 4.3. Define in a similar way the set
Wll;,n (m). For the same reason as we explained in Remark 4.2, we obtain that W;?,—n (m)
and Wl’é’n(m) are C!-submanifolds.

LEMMA 4.4. Fix 63 > 0 such that 65 > 6 and that satisfies ‘th;’r N ‘(fg‘ger ={0}. There
exists 0 < R < 1 such thatifn > 15, m € X andm™ € W;,q_n(m), then

T(Wzs’fn(m) NWm™)) C ng\;er.
A similar result holds for W}é’n(m).

Proof. For any p € T%, it holds that 72 (W** (p)) = W3 (r2(p)), where W3 (2 (p)) is the
stable manifold of the point 72 (p) for the linear Anosov system. Thus, given any point
g € Wi*(p), for every b € W¢(p) there is only one point in W**(b) N W¢(g). We define
the stable holonomy map

H . We(p) — W(q)
b > W (b) N WE(q).

Locally this map is given by the holonomy map defined in §2. This is a C !-diffeomorphism
and we can naturally write DH ,(p) : R2 - R2,

From Theorem 2.18 this family of maps varies continuously in the C'-topology with
the points (p, q). Since DH ;, = Id, by the compactness of T4, there exists R € ©, 1
such that, for any ¢ € Wy’ (p), we have DH} (p) - (%9‘;“) C ‘592“.

Observe that Wzsyf ,(m) is contained inside a center-stable leaf, which is subfoliated
by strong stable leaves. For this subfoliation, restricted to a center-stable leaf, the center
manifolds are transversals. Thus, for m~ € er’_n(m), the Wzsy_n (m) N W€(m™) is given

by H> _(y_,(m)). By our choice of R and since T'y_, (m) C <€6\;er the conclusion of the
lemma follows. o

LEMMA 4.5. There is a set of full measure D C T* such that for every p € D the orbit of
W< (p) is dense among the center leaves.

Proof. For the linear Anosov AV, there is a set D4 of full measure with the property

that every point in D4 has dense orbit. This follows from the ergodicity of A%V for the
Lebesgue measure.

Since the Lebesgue measure of T# is the product measure of the Lebesgue measure of
each T2, take D = T, ! (Da). Forany p € T# it holds that

m(f(We(p)) = AN (ma(p)).

For any g € T2, Ty ! (g) is a center leaf. Thus the dynamics among the center leaves is
conjugated to A%V by ;. Therefore, for any p € D, since m2(p) € D4 we conclude that
the orbit of W¢(p) is dense among the center leaves. O

https://doi.org/10.1017/etds.2018.65 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2018.65

1034 D. Obata

Takemi e XN DN BN Ajandmy € X N DN BN Ay. From the definition of A and
A», for these two points

o= [pan and ¢ = [ gan,
Fix a center leaf W¢(g). Since m1, my € D, there are two sequences ny — 400 and
lj — 00, such that
S WEm)) — W(g) and [ (WE(m2)) - WE(g).

By Lemma 4.3, there are curves ynt (mp) and 7—_1,- (m7) with length greater than 47

and contained in the cones %ghzm and %", respectively. Take R given by Lemma 4.4 and
consider the sets

Limn=|J W@ c W m)),

2V (m1)
andLim) = |J W@ W (f 7 ma)).
ZEV:,j(mz)

For k and j large enough, f™ (W¢(m1)) and f =% (W¢(m5)) are very close to the leaf
W¢(g). Thus, by the control on the angles that we obtained in Lemma 4.4, there is a
transversal intersection between Ly (m1) and L;‘.(mz). In particular, W*(f™ (m)) and
W (f~li(m2)) intersects transversely. Before we continue with the proof we make the
following remark.

Remark 4.6. This transverse intersection between stable and unstable manifolds is the
key property required to obtain ergodicity. We will see that the rest of the proof is
a standard application of the Hopf argument in the non-uniformly hyperbolic scenario.
Three properties imply this transverse intersection:

(1) for any point inside a certain set with full measure for any ergodic component,
there exists a stable curve inside the center manifold, with large size and controlled
geometry. There also exists a set with similar properties for the unstable curves. The
control is given by Lemma 4.3. Indeed, we can take the sets

X5 = U F(X) and X" = U f1(X);

n>15 n>15

(2) the control of the holonomies, which will give a control on the tangent space of
Pesin’s manifolds considered in (19). This is given by Lemma 4.4; and
(3) the density of the orbit of almost every center leaf, which is given by Lemma 4.5.

Now we continue with the proof. Fix ¢ > 0 small and / € N large enough such that the
Pesin block R ; has positive v, measure. By Theorem 2.11, there is a number 1 > 0 such
that every point g € R, has a disk contained in W*(g) of size &1, which we will denote
by Wi .(q). Furthermore, those disks vary C'-continuously with the point ¢ € R,.

Let p be a point of transversal intersection between L} (m1) and L; (my). Take M >0

large enough such that fM=Li(m,) € Ry and d(fM~1i(ma), fM(p)) < e1; such M
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f 'r-'(m_-)
£ (mo)
T
i ‘ |
Il
L;:.{!Nl} i :| 11
M (my) P J""”(L}.r{’”l}) f'”'[f’]'
L3(m2) .,I"”[L:[m-;})

FIGURE 2. The transverse intersection and the holonomy.

exists since my is a typical point for vy and the set R, ; has positive v-measure. We
may assume that f M—Ij (m2) is a density point of R.; N Ay. Fix a disk T transverse to
Wi (f M=lj(m5)) such that Rei N Ay N T has positive measure inside 7.

Consider a disk D" C f M (Ly(m1)) centered in f M p) and observe that this disk is
transverse to Wlf)c( f M—; (m2)). By the absolute continuity of the Pesin manifolds, we
conclude that the set A = {WfOC (z) N D" : z € Re; N Ax N T} has positive measure inside
WH(fMF ().

By the invariance of B, we know that fM*"(m ) € B and for almost every point ¢ €
WH(fM+1% (my)), it holds that ¢t (g) = ¢~ (¢). Fix Z € A such that ¢ (2) = ¢~ () and
let z € Rey N Ax N T be the point with Z € W} (2).

Since z € A, and Z € W¥(z), we know that ¢+ (m>) = @1 (z) = ¢ (Z). On the other
hand, z € W*(fM+"% (m)) implies that ¢~ () = ¢~ (m1). Thus,

/¢dV1 =<p_(m1)=<p‘(2)=<p+(2)=<0+(z)=¢>+(mz)=/¢dvz.

This is a contradiction since we assumed that f @ dvy # f ¢ dvy. We conclude that there
is only one ergodic component and, in particular, the Lebesgue measure is ergodic. Thus
we have proved that for N large enough, fy = f is ergodic.

5. Stable ergodicity of the system fn

In this section we show how to adapt the proof of the ergodicity of fy to obtain C2-stable
ergodicity. Recall that for a vector v € Ty, T4, we defined v; = D (m) - v. For a direction
E C T,,T* we will write (E); = Dy (m) - E. For this section we fix 0 < § < 1 small and
we assume that N is large and Uy is small enough such that Proposition 1.4 holds. Using
Proposition 2.21 and the estimates in (8), one easily obtains the following lemma.
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LEMMA 5.1. For each B >0, if N is large and Uy is small enough, for g € Uy the

following hold:

(1) g is partially hyperbolic, with a decomposition TM = E;' @ E, @ E,";

(2) g is dynamically coherent and leaf conjugated to f by a homeomorphism hy : T —
T4

(3) de2(WEm), Wm)) < B;

) IDgm)lgs,, I € € FIDFOm)Ige Il ePIDFOm)IEs 1D

(5)  |det Dg(m)lEg, | € (7, eF);

©)  I1D*g(m)lwgiml < 2N;

(1) max{||Dg(m)|kg,, Il IIDgfl(m)IEgym I} <2N;

(8)  min{m(Dg(m)|Eg,,) m(Dg_l(m)lEg,m)} > Q2N

) [IDg(m) - v°|| € (e P||Dg(m) - v, e?||Dg(m) - v§|), where v° € ES,, and v§ =
Dmy(m) - v¢; and

(10) for points p € T* and q € W (p), let expy : Ty W (p) — Wg(p) be the exponential
map of the center leaf: for any C'-curve y C B(0, %) C Ty Wq(p), we have that
ly(y) € (efﬁl(exp; ), eﬁl(expg (¥))), where l,(y) is the length of the curve with
respect to the inner product (- , -), on Ty Wg(p), the usual metric of T* at the point q.

From now on we fix 0 < 8 < 1. By Proposition 1.4, every diffeomorphism g € Uy
is non-uniformly hyperbolic. Using Theorem 2.17, we obtain the ergodic decomposition
Leb =7,y CiVg,i. We define similarly as in §3 the sets {A, ;}ien. Let R, be the set of
regular points for g. For a regular point p € Ry, let E, , and E;f p be the directions of the
Oseledets splitting. It holds that E§ , = E, , ® E .

We define the sets

Zg;={m€Ry N Ag,i:V¥n=>0wehave that | Dg" (m)|_ |l < (N~43ymy,
Zi ={meRgN Ag;:Vn=>0we have that || Dg™" (m)| g, 1l < (N~H3my,
Zei=28(Z;)Ng N (ZS),

Ze = Zs..

ieN
LEMMA 5.2. For every g € Uy, it holds that vg ;(Zg ;) > 1 —75/1 + 78 and Leb(Z,) >
1—-75/1476.

The proof is analogous to the proof of Lemma 3.5. Let T = [1 + 7§/288] and define

T-1

Xe= (] & (20)
k=—T+1

The proof of the next lemma is the same as the proof of Lemma 3.6.
LEMMA 5.3. For N large and Uy small enough, if vg ; is an ergodic component of the
Lebesgue measure then

Vg.i (Xg) > 0.

Now we make a few estimates on the cones. Recall that §; = N~2/°.
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LEMMA 5.4. If N is large and Uy is small enough then for each g € Uy, for everym € Z,,
it is verified that (E;:m)l - %;?f(m). Furthermore, %”91/2((E;m)1, m) C %f/‘gl (m). The

same holds for the E, ,, and the vertical cone.

Proof. For m € Z,, it holds that ||Dg(m)|E;m | > N*5. Take a vector of the form (u, 1),
identifying (u, 1) = (u, 1, 0, 0), with |u| < N=2/5 For N large enough and from the
calculations made in the proof of Lemma 3.7, which for this part does not use thatm € Z,,
we obtain

IDg(m) - (u, DIl < ePIDf(m) - (u, || < P N¥/5HA/100) < N3/5+1/30),
Suppose that such (u, 1) generates (E;:m) 1, then

B IDg(m) - (u, || < N3/5+1/25 - N4/5,
[ (u, 1]

which is a contradiction since m € Zg. The proof of the second part of the lemma is exactly
the same as in Lemma 3.7. O

I Dgom) g, I < e

Recall that we defined in §3.2 the sets Crit;, Critp, G; and G,. Also recall that
6, = N73/5. We obtain the following lemma, by continuity and Lemma 3.9.

LEMMA 5.5. For N large, Uy small enough and g € Uy, the following hold.

() Z,CcGiCGa.

(2) Ifm € Gy then (Dg(m) - €1} (m)1 C C5 " (g(m)).

(3) Ify C Gy is a C'-curve inside a center leaf such that the curve w\(y) is tangent to

o and has length 11 (y)) = N73/10 then 1(g(y)) > 4.

Similar statements hold for the vertical cone and g~".

Proof.
(1) For m ¢ G1, by item (4) of Lemma 5.1, it holds that

IDgm)l kg, I < P IDF (M)l s, | < P NT/1OTHI0 < NS,
(2) The proof of item (2) of Lemma 3.9 actually gives that, for m € G»,
Df (m) - (€} (m)) C G4 (f (m)),

where K = 1/2N'/10 —2N—3/5 — 4. In particular, the inclusion of item (2) of Lemma 3.9
is uniformly strict. Thus, if Uy is small enough the conclusion follows.

(3) From the estimates made in the proof of item (3) of Lemma 3.9 and by items (4) and
(9) of Lemma 5.1, it follows that

1(g(») = 1(g(m1 () > e PN23/10 5 4, .
Now we estimate the size of the stable and unstable manifolds analogous to

Proposition 3.11.
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PROPOSITION 5.6. Let N be large and Uy be small enough. For g € Uy and m € Z,,
there are two C'-curves, Wg*(m), contained in Wgc(m), tangent to E;m and with length
bounded from below by ro = N, for x = —, +. Those curves are C'-stable and unstable
manifolds for g, respectively. Moreover, (T, ng ro(m)1 C %4{1/051 (p) and (T, We ro(m)1 C
%ngl (q), for every p € W;fro (m) and g € W, (m).

Proof. The main difference in the proof is that we have to project by Dm; the tangent
directions of the curves constructed. By Lemma 5.1 we will have good control of what
happens after this projection, obtaining the desired estimates.

Using item (5) of Lemma 5.1, form € Z,,

QN < 11Dg" (g m)lg- | < (VT
8.8 *(m
and 1 5
[ Dg" (g~ " (m))| - I
(ZN)—Zne—n;‘} < I ) < (e,sN—z.(4/5))n_
~ ldet Dg(e~tm)lee |

In the same way as in the proof of Proposition 3.11, consider the lifted dynamics
Yn : Vo = Tognm)Wg (8" (m)) of the diffeomorphism g|W§(g"—l(m)), that goes from
a neighborhood V, of 0 in Ton-1(m) Wéf (g""'(m)) onto a neighborhood of 0 in
Tgn(m)Wg(g”(m)). Since the center leaves are C%, we have that g|W§(gn—l(m) isa C?-
diffeomorphism, which implies that 1, is a C2-diffeomorphism into its ‘image.

Take o = N4, 11 =20,6 =2N)" !, p=ePo? p=e"P52 1y =p/2and Cy = 3.
Leté =aiy/ A% p and observe that, for N large enough,

£= Gzﬁ =270 N5 5 4.
AP
Following the same construction as in Proposition 3.11, one obtains the maps A,,, h, and
H,,. Recall that

1 d
H:ad and H '=]¢% ¢
" 0c " 1
0 —
C
It also holds that
(IDglecll - 1Dg " |ec 1)) ™" <lal <hi, (€3}
lalry ! <lel <xi25 I1Dglecl - 1Dg ™ |egll + Al Dg ™ |eg |,
(22)
ld| <IIDglecl - 1Dg~ 1< llal. (23)

By item (4) of Lemma 5.1 and using the previous inequalities,

d

IDglecll - 1Dg  Eclllal  e28(2N)2  &f
< g g < —
lalrs ! 2e8 . 2N)2 2

cl=
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For n < 5 deﬁne the cone ‘ﬁ(n n) = 6y (Ey), with cone size 1 around the direction E,
inside Tpn- 1(m)W§ (g"~'(m)). Using the estimate on |d /c|, following the same steps as in
the proof of Proposition 3.11, we obtain that any linear map n/6-close to H,~ ! contracts
the cone %N(MJF 1y and expands any vector inside ﬁn,,ﬁ 1y by at least 1/4A1.

By item (6) of Lemma 5.1, for any point g € T*, it holds that ||D2g(q)|W§(q) | <2N.
Thus, (Dhn(y))_1 is 1/6-close to Hn_1 in the ball of radius

0
NI 108N

Fntl = 4r)".

Using a similar argument to that of the proof of Proposition 3.11, we can take

Fo=-—1—.
432N,

Also by similar reasoning as in the proof of Proposition 3.11, taking n = N3

obtain a stable manifold for the sequence (V,),eN With size bounded from below by 7y >
N~*t2/5 for N large enough. The projection of this stable manifold by the exponential
map gives the stable manifold Wg_ (g_l(m)) for g at the point g_l(m). By item 10 of
Lemma 5.1, this stable manifold has size bounded from below by e B . NTH2S5 S NS,
Thus, W (m) =g(W, (g~ '(m))) has size bounded from below by ro = N7,

The stable manifold for the sequence () is tangent to the cone %?E,,’o) and at the origin
is tangent to the direction E, - By items (3), (7) and (8) of Lemma 5.1, for any g € T,

we

(Dg(q) - (€an0)D)1 C Corpgnrg(Eg )1, m), (24)

where (%5,.0)1 is identified with (%2,.0)1 x {0}.
The stable manifold W’(g’l(m)) at the point g is tangent to Dexp,;,((exp,;,)’1

(@) - CK(U 0) If B > 0 is small enough, then D exp{, (p) is close to the identity, for any
p € B(0, 2) Thus, (T, W (g’l(m)))l C (‘52,7 0)1- By (24), we obtain

(Ty W o (m))1 C Capgn2, ((Eg )1, @)
By Lemma 5.4 and our choice of , we conclude that

(T, Wy, ()1 C 655 (). O

So far we have obtained the results analogous to §3. Now we will obtain the results
analogous to the results used in §4 to obtain the ergodicity of f. The following is analogous
to Lemma 4.3.

LEMMA 5.7. For N large, Uy small and n > 15, if vy ; is an ergodic component of the
Lebesgue measure, thenfor everym € X, there are two curves y, _,(m) C g (W P (m))
and y,' +.(m) C g"(W, g ro (M) with length greater than 4z, such that (Ty, _,(m))1 C cgg\;er

and (Tyg’n(m))l C ‘fhzor.

Proof. The difference from the fibered case is the need to consider the projection y. For
m € Xg, it holds that WJr ,m) C Ga. Define W+ (m) = gk(w < ro(m)) By Lemma 5.6,

(TWS,, (m) C ‘é?/‘g and by Lemma 5.5, (TW1 (m))1 c e
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Construct in a similar way as in the proof of Lemma 4.3 the number kar eN
and the curve y . Since this curve must intersect dG; and dGj, it has length

l(m(yk+ ) =N~ 310 and m(yk+ ) is tangent to 4. By Lemma 5.5, l(g(yk+ ) > 4n

and 7 (g()/k+ g)) is tangent to ‘Khzor. The rest of the proof is the same as the proof of
.
Lemma 4.3. O

For R > 0, let
Wie am= | W,
qE€Yq _n(m)
where the curve y, _,(m) is the curve given by the previous lemma. Define similarly
g r.a(m).  For the same reason as we explained in Remark 4.2, we obtain that

,(m) and W” Rn(m) are Cl-submanifolds. The next lemma is similar to
Lemrna 4.4,

LEMMA 5.8. Fix 63 > 0 such that 63 > 6, and it satisfies %hor N ‘Ke‘fr {0}. For g € Uy,
there exists 0 < R < 1 such that if n > 15, m € Xz and m™ e WY _,(m) C Wg 5, (m),
then

(T(Wéf’z’in(m) N W;(m_))h - ‘ngfr.

A similar result holds for W;’R’n(m).

The main difference for the non-fibered case is given in the following proposition.

PROPOSITION 5.9. For N large and Uy small enough, if g € Uy then for Lebesgue almost
every point m € T* its central leaf Wéf (m) has dense orbit among the center leaves.

Proof. For Uy small enough, for every g € Uy there is a homeomorphism 4, : T4 — T*,
which takes center leaves of fy to center leaves of g, such that for every m € T it is
verified that

g o hg(Wim) =hg o f(Wim).

Consider the quotients My = T4/ ~ and M, = =T/ ~ , where p ~¢ ¢ if and only if

q € W, (p) for x = f, g. We denote nf : T — My and ng : T* — M, as the respective
projections. Observe that M ; = T2 and that the induced dynamics f: My — My of f
is given by A%V, Endow M ¢ with the distance d, given by the Hausdorff distance on the
center leaves, that is,

dg(L, W) = digaus (7 ' (L), 71 (W)).

By the leaf conjugacy equation, the induced dynamics g : My, — M, of g is conjugated
to the linear Anosov A%N on T2 by the homeomorphism induced by & ¢» Which we will
denote by /.. Denote by WZQ + () the stable manifold of A* on T? and let

W)= W eM,: lim d(z"(L), §"(W) =0},

be the stable set of L.
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CLAIM 2. For every m € T*, for every q € ng(m), it is verified that

g (We* (@) = W3 (g (m)) = hg (Wiay (5 (g (),

and 7, is a bijection from Wgs (q) to ng (774 (m)).

Proof. The leaf conjugacy equation implies that ng (mg(m)) = fzg(Wj‘ZN (s (hgl(m))))
and, in particular, Wg (7rg(m)) is a continuous curve homeomorphic to a line.

It is immediately clear that JTg(WgS (9)) C Wg (wg(m)). We also have that Wé“ @) n
W¢(q) = {gq}. Indeed, since the angle between E, and E,’ is uniformly bounded away
from zero and the center foliation is uniformly compact, the map 7| Wo. @) is injective, for
every z € T* and for some small uniform size of stable leaf which we write Wlof3 (2). If there
were two points {p, g} C Wgs(q) N Wg(q) then for, n large enough, {g"(p), g"(q)} C
W;floc(g" (g»Hn W;(g" (g)), which contradicts the fact that 7Tg|W§jOC(q) is injective. It
remains to show the surjectivity.

We work inside W (m), which is foliated by strong stable manifolds. Take P €
Wg (7g(m)) and consider its central leaf F = Ty L(P). This is a transversal section of

s

the C! foliation by strong stable manifolds inside the manifold W¢*(m). Consider the set
Lur={ze Wg(m) : ng(z) N F # ¢}

Fix a small ¢ > 0. Since the angle between ng and E€ is uniformly bounded away
from zero and the center foliation is uniformly compact, for any point p € T*, the set

vipy= | W@,
qeW¢(p)

contains a neighborhood of Wg’( p) inside W;S (p) of uniform size, independent of p.

Since P e ng (74 (m)), take n large enough such that ng_l(g"(P)) NV, (8" (m)) # 0.
Thus, there exists some ¢, € Wéf(g” (m)) such that ngs(qn) N ng_l(g”(P)) #. We
conclude that Wgs (87" (gn)) N F # @, in particular, L, r # 0.

If p € L, rFlet ys p be asimple C! curve contained in W,*(p) connecting p and F.
There is a foliated chart containing y . Since F is transversal to the foliation, we have
that there is an open neighborhood of p inside W¢ (m) such that the strong stable manifold
of every point in this neighborhood intersects F', and thus L, r is open.

Since Wg (m) and F are compact, the distance, inside ngs (m), between them is smaller
than a constant R > 0. Observe that the tangent spaces of stable manifolds are contained
inside a cone, transverse to the central direction in Wgs (m). Thus, for p € L, f, the length
of the piece of Wgs (p) starting in p and ending in F is bounded by a constant C > 0.

Let (pn)nen C L, F be a sequence such that p, — p € Wg(m). Consider W;fzc (p),
the strong stable manifold of size 2C. Since compact parts of the strong stable manifold
vary continuously with the point, W;°,~(p,) converges in the C 2_topology to W;fzc (p).

g
Take the sequence of points (g,),en defined as g, € Wl‘g”2c (pp) N F. Thus, g, > g €

W;sx (p) and, since F is closed, ¢ € F. Therefore, g € W;‘zc (p) N F and Ly, F is closed.
Since Wg (m) is connected, it follows that L, r = W; (m). O

For the linear Anosov A2V the stable foliation is minimal. Let m be a generic point of
an ergodic component v, ; of the Lebesgue measure for g. Suppose also that m is a density
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point for the set A, ; defined at the beginning of this section. By absolute continuity of the
strong stable foliation almost every point inside Wg“ (g) is in the ergodic component of m,
for g € Ag ;. Using the minimality of the stable foliation of the linear Anosov and by the
leaf conjugacy W§, (74 (m)) is dense in M.

Take U a small open set in M. Since the center foliation is uniformly compact, U=
Ty 1(U) is a saturated open set such that any two center leaves in U are C2-close to each
other. By the previous claim Wy* (m) N U #0.

Let B(m, &) be a small ball around m such that Leb(B(m, €) N Ag ;) has almost full
measure inside B(m, ). By absolute continuity

Leb(W}* (B(m, 8) N Ag i) NU N Ag;) > 0.

In particular, vg ; (Ag; N U ) > 0. Since m is a generic point for vy ;, its future orbit visits
U infinitely many times. This is true for any open set U inside M, which concludes the
proof of the proposition. O

Now let N be large and Uy be small enough such that Lemmas 5.7, 5.8 and
Proposition 5.9 hold. For g € Uy, if g is not ergodic, we can follow the exact same steps
as in the proof of ergodicity of f and find a contradiction. We conclude that every g € Uy
is ergodic.

6. The Bernoulli property

In this section we explain how to adapt the proof of ergodicity to obtain the Bernoulli
property. Let f = fun for N large enough. By Theorem 2.17, since the Lebesgue measure
is ergodic for f, there exists k € N and probability measures vy, . .., v, which are f k.
invariant, such that

1 k
Leb:zzgvi,
j=

where each (f¥, v;) is Bernoulli. Suppose k > 1. The measures {vi}f.‘zl form the ergodic
decomposition of the Lebesgue measure for f%. As we stated in Remark 4.6, three
properties imply the existence of transverse intersections between Pesin’s manifolds of
points in different ergodic components.

Observe that f~%(X*) C X*, where we defined the set X* in item (1) of Remark 4.6.
Similarly f*(X*) c X*. Thus, item (1) of Remark 4.6 is valid for f*.

Once we have the curves obtained in item (1) of Remark 4.6 and since a stable manifold
for f is a stable manifold for £, using the control on the holonomies given by Lemma 4.4
we obtain item (2) of Remark 4.6.

To obtain item (3) of Remark 4.6 we need the following lemma.

LEMMA 6.1. There is a set of full measure D C T* such that for every p € D the f*-orbit
of W¢(p) is dense among the center leaves.

Proof. The linear Anosov A2V is totally ergodic, that is, for any j € N, A*N/ is ergodic.
In particular, A2N* is ergodic. The proof is analogous to the proof of Lemma 4.5. O
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Following the same steps of the proof of ergodicity for f, which is just the Hopf
argument in the non-uniformly hyperbolic scenario, we conclude that f¥ is ergodic. This
is a contradiction, since the ergodic decomposition of the Lebesgue measure is given by
the measures {v; }f: ; and k > 1. Thus k = 1. In particular, f is Bernoulli.

For g € Uy to prove that g is Bernoulli one follows the same steps as in the proof that
f is Bernoulli. Observe that the stable and unstable foliations of A2NJ are minimal, for
any j € N. With this observation one easily proves a lemma analogous to Lemma 5.9.

7. Proof of Proposition 1.4

To prove Proposition 1.4, we follow and adapt the proof of Theorem 1.2 given by Berger
and Carrasco in [5] with the necessary changes. For a C!-curve y and a measurable set
A C y, write Leb(A) the measure of A with respect to the Lebesgue measure in y induced
by the metric of T%. Also denote f = fy. In this section we will refer to the strong
unstable manifold as the "unstable manifold’.

7.1. The estimate for fn. The goal of this section is to prove the estimate given by
Proposition 1.4 for f.

Recall that we denoted e" = (ef, €}) € R? as a unit eigenvector of A for the eigenvalue
1 < =211, where A € (0, 1) is the eigenvalue for the contractive direction of A. Recall
also that we defined the linear map Py : R?> — R? given by Py (a, b) = (a, 0).

LEMMA 7.1. [S, Proposition 1] There is a differentiable function « : T* — R2 such that
the unstable direction of f is generated by the vector field (a(m), e*), where

Df(m) - (a(m), &) = p*N(@(f(m)), ey and |a(m) — 1" Pe(e)| < 2*N.

Definition 7.2. A u-curve is a C'-curve y :[0,27]— M such that dy/dt(t) =
(@(y (1)), ¢) /AN [ Py ()], for every ¢ € [0, 27].

Observe that, for a u-curve y,

dffoy ) = N (fF (), )
dt B AN Py (e

forall ¢ € [0, 2] and for all k > 0. 25)

The u-curves will play a fundamental role in the proof. The key property of a u-curve is
that la(y (1)) - AN || Pe(e®)[)~! — (1, 0)]| < A*"N. This will allow us to control the amount
of time that a u-curve spends in a critical region, which is a region on T* that only depends
on the x coordinate.

Since we are interested in Lyapunov exponents along the center direction we will
introduce certain types of vector fields along u-curves that will be useful in this task. After
that we will be ready to give a criterion to obtain large positive Lyapunov exponents along
the center direction for almost every point in T*.

Definition 7.3. An adapted field (y, X) over a u-curve y is a unitary vector field X such
that:
(1) X is tangent to the center direction; and
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(2) Xis(Cyx, 1/2)-Holder along y, that is
I Xm — Xl < Cxd, (m, m)"/* forallm, m' €y,
where Cy < 20N?A" and d,, is the distance measured along y .
Berger and Carrasco proved that, for N large enough and for every (y, X) adapted field,
1Xm — Xl <AN3 forallm, m' € y.
Fix an adapted field X and denote by X* = (%), X/II(f%)+X |, where
((f4X0m = DFF SR - X iy

LEMMA 7.4. [5, Lemma 2] For N large enough, for every adapted field (v, X), for every
k > 0and every 1 < j < [u*NK), the pair (y]].‘, Xklyk) is an adapted field.
J
Denote by dy the Lebesgue measure induced on y and by |y | the length of y. Define
1
A —— / log | Df" - X|| dy.
vl Jy
Now we prove the following criterion to obtain positive Lyapunov exponents along the

center direction.

PROPOSITION 7.5. Suppose that there exists C > O such that for every u-curve y there is
an adapted vector field X which satisfies, for n large enough,

1%
1 > C.

n

Then Lebesgue almost every point in T* has a Lyapunov exponent along the central
direction which is larger than (1 — 2)*N)C.

Proof. We will prove that, for every p > 0, for almost every point there is a Lyapunov
exponent greater than (1 — 222N
there is a set with positive measure B such that every point in this set does not have
a Lyapunov exponent greater than (1 —21*N — p)C. Since the unstable foliation is
absolutely continuous there is an unstable manifold L* that intersects B in a subset with
positive Lebesgue measure inside L*. Let g € L" be a Lebesgue density point of L* N B.
Let ri = 27 22M% and let Yr, - [=7k, re] = M be a piece of u-curve such that y,, (0) =gq.
Since g is a density point then

— p)C in the center direction. Suppose not. Then

Leb(y,, N B)
Leb(y,)
Take § < p and let k be large enough such that Leb(y,, N B€) < BC/ log 2NLeb(y;, ).

Observe that f¥ oy, is a u-curve, and let X,, be the vector field over y,,, such that
(f*o Vs (fk)*X,k) satisfies the hypothesis of the lemma. Let

1 Dfn X
X (m) = lim sup —2 IDf™m) - X )

n— 00 n
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Thus, foreverym € B, x(m) < (1 — 222N p)C. From (25) and Lemma 7.1, for N large

enough, we obtain
1 1 —2A2N

>
ld(f* oy de]| =  n2Nk

In particular,

1
xdy =/ xof fee——0————d(f* oy
'/):rk b fko}’rk ”d(fk ° yrk)/dt ” "
1 — 222N ke ok
Z vk xo fd(f" oyr)
fkoy,k

w
log | Df"(m) - (f%)..X
= 22Nk —222Y) lim sup/ it r"”d(fkom)
n—+oo J fkoy, "
> A2Nk(1 _ Z)LZN)U‘]‘ oYrlIC > (1 — ZAZN)CerL

On the other hand,

/ xdm=/ xdm+/ X d¥r,
Vr Yry NB Yk NB¢

< (1= 222N — p)Clyy | +1og 2N - C - Blog 2N) |y,
=1 =222 — p+ B)Clyy| < A =222N)Cly,, |

which is a contradiction. Since it holds for every p > 0, one concludes the proof of the
proposition. O

k

We can represent the curve f ko y as the concatenation f¥ oy = ylk H ek y[l; vk *

2Nk]

k k : . k . .
L where y;* is a u-curve for every 1 <i <[n s Vj2nkpy 1S @ piece of a u-

curve, [-] denotes the integer part of a number and * denotes the concatenation between
the curves. Berger and Carrasco proved the following formula, see [5, §3].

LEMMA 7.6. For every adapted field (y, X) and n € N, for eachk =0, ..., n — 1 there
exists a number By € [—2A2N 222N such that

1
In”=—| / log | Df" - Xl dy

Nk]
1+
S (U et v+
IVIN = vk

where By € [—2A2N 232N,

log [|Df - X" dV[MZNkHl),

Viu2Nk )1

This formula will allow us to study the growth of I} X by studying the pieces
/, VK log | Df - X¥|| dyjl-‘ . In order to analyze these pieces we will define the notion of
J

‘good’ and ‘bad’ pieces. The estimate on the growth of 1] X will come from an induction
on n and a combinatorial argument, to estimate the number of ‘good’ and ‘bad’ pieces
that appears in this formula. Fix § > 0 small, the number N will be chosen afterwards
depending on 5. Let

1
E(y.X)=1""= W / log [Df(m) - Xmll dy.
v
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Recall that form = (x, y, z, w) € T*, we defined 2 (m) = N cos(x) + 2. Define v,, =
(1, (@m)) and u,, = (2(m), —1). They form an orthogonal basis of the center direction.
Let X be a unit vector field tangent to the center direction, and thus using this basis we

have
cos(fx (m)) sin(fx (m))

m+ mo
J1+ Q(m)ZU V1 + Q(m)2u

where 6y (m) is the angle that X, makes with v,,. Using the basis (v,,, u,,) the derivative
can be written as

O e 2’Cos(9x(m))+5in(9X(m))'Q(m)>,
f(m) (Sm< x(m) - V1+Q(m)? 1+ (Q(m))2

so then

IDf (m) - Xl = Isin(@x (m))| - 1 + 2 (m)* = [sin(@x (m))] - |2 (m)].

If N is large enough and if |x —m/2|>2- N=% and |x —37/2|>2-N~% then
lcos(x)| > N8,
Define the critical strip as

Crit={(x, y, 2, w) € T*: |x — /2| <2- NS or |x — 37/2| <2- N9},

and thus the length of the projection of the critical strip on the first coordinate is /(Crit) <
8 - N, which converges to zero as N goes to infinity.

LEMMA 7.7. For N large enough, if m ¢ Crit then |2 (m)| > N'=2 and IDf@m) - Xl >
N'=28 . |sin(6x (m))].

The proof is straightforward with the fact that if m ¢ Crit then |cos(x)| > N -3,

Definition 7.8. Consider the cone Az = {(u, v) € RZ: N‘§|u| > |v|}. If an adapted vector
field (y, X) is tangent to this cone we say that it is a §-good adapted vector field. Otherwise
we say that it is 8-bad.

LEMMA 7.9. For N sufficiently large and for every §-good adapted vector field (y, X),
Isin(@x (m))| > N~ forall m ¢ Crit.
Furthermore, for a S-gOOd adapted field (y, X), if m ¢ Crit then | Df (m) - Xp|| > N1-63,

Proof. Recall that v, = (1, Q(m)) and suppose that Q(m) > 0. Let b,, = (1, NS) and
consider the triangle formed by the points 0, b,, and v,,; see Figure 3. Denote by £ (u, v)
the angle between two vectors u, v € R2. By the law of sines
sin(£ (v, bm)) _ sin(L(vm — by, b))
lVm = bmll llvm |l
For a good adapted field (y, X), it holds that | sin(6x (m))| > |sin(£(vy,, biy))|. Recall
that m ¢ Crit, so that by Lemma 7.7 we have N 1-25 < |Q(m)| < N. Observe that

(26)

sin(£L (v — by, b)) =

. 27
1Dm I @7
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Hm) o Um

Ay (m)

1

FIGURE 3. The triangle formed by 0, by, and vy,.

By (26) and (27), for N large enough we obtain

QeI =N 4
VI+ N . /1+4Q(m)?
It follows from this inequality and Lemma 7.7, that for a §-good adapted field (y, X),

if m ¢ Crit then || Df (m) - Xy || > Nl_ﬁg. If Q(m) < 0 we can obtain the same estimate
taking b,, = (1, —N?%). m

|sin(0x (m))| =

PROPOSITION 7.10. For N sufficiently large if (v, X) is a 8-good adapted vector field
then E(y, X) > (1 —75) log N.

Proof. Recall that for a u-curve dy /dt(t) = (a(y (1)), ") /AN | Pc(e")|l and [la(y (@) -
QNP )~ = (1, 0)] < A*N. In particular, using that /(Crit) <8N, for N large
enough the measure of y N Crit is smaller than 10N ~%|y|.

The previous lemma give us an estimate for points outside the critical strip. For points
inside the critical strips we use that | Df|gc|| = (2N)~!. Thus for N large enough we get

lYIE(y, X)=/ log [ Df (m) - Xoml dy+/ log [Df (m) - Xl dy
y N Crit y N Crit®
10 = 10 -
>1——)-(1—=68)logN|y|—|— ) -log2N|y| > (1 —78)log N|y|.
N? N?
O
Recall that f¥ oy = ylk Kok V[ILZNk] * V[IL2N’<]+1 and define
2Nk k ka <
G = Gi(y, X)={1Sj§[u ]:<y]’7 T )iSS-gOOd.}, (28)
£ X1
2Nk v EX z
Bi = B (y, X):{lgji[u ]:(yj, ’;( )isS—bad.}. (29)
£ Xl
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LEMMA 7.11. For N sufficiently large, if (y, X) is a 8-good adapted field and =" ()/jl) N
cm=ﬂﬂmuﬁ,ﬁxmﬁxmmdm&@w.
Proof. Letm ¢ Critand v € (—NS, NS). It is verified that

Df(m)-(1,v) =(&(m) —v, 1).

By Lemma 7.9 i i
1Q(m) — v| > [Q(m)| — [v| > N'72 — N,

which is arbitrarily large as N grows. This implies that the vector (2(m) — v, 1) is inside
the cone A 5 because it will be very close to the x-axis. O

The next lemma is the same as [5, Lemma 6].
LEMMA 7.12. For N sufficiently large, for every 8-bad adapted vector field, there is a
strip Sx of length  such that iff_l(yjl) C Sx then (yjl, F X/ f X ) is 8-good.

Letny = (/7N S). The following proposition is analogous to [5, Proposition 4].
PROPOSITION 7.13. For N large enough, for every 8-bad adapted field,

#G > %/LZN and #Bj < %uzN.
For every §-good adapted field,
#G1 = (1 —nqn)p?Y and  #By < ().

Proof. Using Lemma 7.12 there is a strip Sx of length 7 such that if £~! (yjl) C Sy, then

this represents almost half of the pieces y jl, and for N large enough we conclude the first
part of the proposition. The second part of the proposition follows from a similar argument,
using Lemma 7.11 and the fact that /(Crit) < 8N -5, O

Now in general, for any k € N,
#Grp1 > (1 — nn)*N#Gy + JuN 4By,
#Bi1 < nvu*V#Gy + %MzN#Bk-

LEMMA 7.14. For any K > 1, if N is large enough then for any k > 0 and any §-good
adapted vector field (y, X), it is verified that #Gy > K - #B.

Proof. Since (y, X) is 8-good then By =0 and #Go=1> K - #By. By our previous
remark if N is large enough then it is also valid for k = 1. Let us suppose that it is valid
for k and prove it for k + 1:

#Biy1 _  aniwN#GK+ Q3N #B vV G + 2/3) N K Gy

#Grr1 — (1 —qn)pN#Gr + (1/3)u>N 4B, — (1 — nn)u?N4Gy
N+ (2/3)K! - 3
N 1 —ny 4K’

where the last inequality holds for N large. Thus #Gy41 > (4K /3)#Biky1 > K#By+1. O
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Now we can get the estimate on the Lyapunov exponent that we wanted.

LEMMA 7.15. For N large enough and for every §-good adapted vector field (y, X) and
for every large enough n > 1 we have

V. X

105) log N.

Proof. Fix K > 0 large enough such that K~! <§. Let (y, X) be a -good adapted
vector field. By the previous lemma #Gy > 1/1 + K ~'?N*. Using the formula given
by Lemma 7.6, the estimate obtained for a 5-good adapted vector field in Proposition 7.10
and for every §-bad adapted vector field using that | Df |gc]| > 2N )~1, we conclude that

X 1—2)\2N <
> Z( )(#G (1 =78)log N — (#By + 1) log 2N)
n
1 .
>-> -2 —— -1 -751log N
_n? )<1+K—1 (1—76) log
_Klog2— K~ log N — 082N
g ) J2NE
> (1 —108) log N,
for N large enough. O

With this lemma we can prove the estimate of Proposition 1.4 for fy.

COROLLARY 7.16. For$ > O, if N is large enough then almost every point has a Lyapunov
exponent on the center direction greater than (1 — §) log N for fn.

Proof. Take § =§/30 and let N be large enough such that the previous lemma holds.
Thus we can take C = (1 — 108) log N = (1 — §/3) log N, where C is the constant from
Proposition 7.5. Assume that N is large enough such that (1 — 2221 = 8/3) > (1 - 9).
The result follows from Proposition 7.5. O

7.2. Robustness of the estimate. In this section we prove Proposition 1.4. For a C'-
curve y we will denote by Leb, the Lebesgue measure induced by the Riemannian
metric in the curve. Recall that for each N € N we denote by Uy C Diff]%eb (T* a C2-
neighborhood of fy.

LEMMA 7.17. Forey > 0small, if N is large and Uy is small enough then for every g € U
and for all unit vectors v* € Ey’, v° € Eg and v" € Ey", the following hold:

(1) e 22N < g < e A,

@ e PN < |IDg)| < et pPV;

(3) 1/2N < | Dg(v)|| <2N;

@) ID?g~ !l <2N and | D*g|| <2N; and

%) Eg is 1/2-Holder.

https://doi.org/10.1017/etds.2018.65 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2018.65

1050 D. Obata

Proof. The only statement that does not follow directly from C?-continuity for N large
enough is (5). Observe that

NN < AN) e/ 2)N
Hence, by Theorem 2.7 it follows that Eg is %—Hélder. O
Definition 7.18. A u-curve for g is a Cl-curve y = (yy, Yys Vo Yw) i [0, 2] — M
tangent to Eg and such that |dy,/dt(t)| =1, forall ¢ € [0, 2r]. For every k > 0 there

exists an integer Ny = Ni(y) € [[(e =8 w*V)¥], [(e=2 u*N)¥]] such that the curve gk oy
can be written as

k k k
8§ OV =Y R RYN XY N 41
where y;‘ for j =1, ..., Ni, are u-curves and yll\‘,ﬁl is a segment of u-curve.

Observe that this definition of a u-curve is different from the one given in Definition 7.2.
The advantage of Definition 7.2 is that during the calculations we do not have to deal with
bounded distortion estimates. Since for the general case it is natural to observe bounded
distortion estimates, see Lemma 7.20, we just normalize the curve on the x-direction in
the previous definition.

LEMMA 7.19. [5, Corollary 5] For e, > 0 small, if N is large and Uy is small enough

then for every g € Uy and any unit vector v" € Ey",,, it holds that

|Pe(D7y - v € [N (1Pe(e") = 32N, WV (1 Pr(e) + 32N DL
In particular, any two u-curves (v, y') satisfy
e 2U(y) <1(y) < el(y).

Define similarly as in Definition 7.3 an adapted field (y, X). Also define the unstable
Jacobian of g as

A (m) = |det ng(m)|Egu| for all m € T*.
By item (2) of Lemma 7.17, for g € Uy and for every m € T*,
e 12N < J;ﬁ’. (m) < A2V,
The proof of the next lemma is classical and can be found in [S, Lemma 8].

LEMMA 7.20. Bounded distortion For &3 > O small, if N is large and Uy is small enough,
for every g € Uy and any u-curve y for g, for every k > 0, it holds that
J ! (m)
forallm,m' ey, e 8 <-5 <,
’ ’ =T ) "
g

This lemma implies that for g € Uy and for any u-curve y for g, if A C y is any
measurable set, for every k > 0, it holds that
ey Leb(4) Leb(g*(A)) < g leb(d)
Leb(y) ~ Leb(g7*(y)) ~  Leb(y)
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Let (y, X) be an adapted field, and define
x_ 1
17 = [ toglng" Xl dy.
vl Jy,

For the fibered case, Proposition 7.5 gives us precise estimates for the Lyapunov exponent
along the center direction. In the general case we have the following proposition.

PROPOSITION 7.21. Suppose that there exists C > 0 with the following property: for every
u-curve y there exists an adapted vector field (y, X) for g and for all n > 0 large enough,

17X
1 >C.

n

Then the map g has a positive exponent in the center direction greater than e=>3C for
Leb-almost every point.

Proof. The new ingredient in the proof is the bounded distortion estimates. Suppose not,
then there exists a measurable set B with positive measure such that every point in B has
exponents in the center direction strictly smaller than e~2*3C. By the absolute continuity
of the unstable foliation, there is an unstable manifold y that intersects B on a set of
positive measure, for the Lebesgue measure of y. Let b € y N B be a density point and
take yx = g% o B, where By is a u-curve with B¢ (0) = g¥(b). We have that [(y;) — 0
and by bounded distortion, Lemma 7.20
Leb(yx N B)
Leb(yx)

Take k large enough such that

Leb(yx N BS) e 23(ef3 — 1)C
<
Leb(yx) 2log 2N

Using bounded distortion again, for any m* € g*(y),

uu k Leb(yk) —&3
) Z e ¢

Define xx(m) =limsup,_, , ., 1/nlog || Dg" (gk (m)).ng(m) || for all m € yx, where X
is the vector field such that (8, X) verifies the hypothesis of the lemma:

[ man= [, weg st on
Yk gk
_ey  Leb(y)

—k k —&
BlVi2 Xk 0 8 ¥ d(g" () = e~ CLeb(y).
Leb(g* (7)) /gk(yk) § A8l Y

On the other hand,

/ Xk dJ/k=/ Xk dJ/k+/ Xk AV
Yk vkNB vkNB¢

log 2Ne™ 283 (%3 — 1)CLeb
Se*2€3CLeb(yk)+ og € (e ) eb(vk)

2log 2N
< e 5 CLeb(y)

which is a contradiction. O
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Denote by
1
E(y, X)=|y—|/10g |Dg(m) - Xpll dy (m),
Y

where (y, X) is an adapted field. For X a vector field on y define
~ X
Zomy = X))
ll7z1 (X (m)) |l
Definition 7.22. An adapted field (y, X) is 8-good if for every m € y, X(m) € Agj.

If Uy is small enough then the center leaves are very close to the horizontal tori. Using
very similar reasoning to the proof of Proposition 7.10 we obtain the following.

PROPOSITION 7.23. For N large and Uy small enough, for all g € Uy and (y, X) an
§-good adapted field for g, it is verified that E(y, X) > (1 — 83) log N.

Recall that for k >0 and a u-curve y the number Ny = Ni(y) was the maximum
number of u-curves that subdivide g% oy. For an adapted field (y, X) define Y* =
gkX/11g¥X||. The following lemma is the analogous to Lemma 7.4.

LEMMA 7.24. [5, Lemma 9] For N large and Uy small enough, let g € Uy and (v, X)

be an adapted field for g. For k > 0, every possible pair (yjl-‘, vk |y4»), with 1 < j < Ni(y)
J

is an adapted field.

Similar to Lemma 7.6, Berger and Carrasco proved the following formula, see [S, §6].

LEMMA 7.25. For every adapted field (y, X) and any n € N,

n—1

Nk
X 1
e=7 (Rk+§ |y—|/klog ||Dg(m).y/;,||1;‘£’kdyjf),
j=0 Vi

k=0
where Ry = 1/|y| f”/]\clkﬂ log || Dg(m) - Y,],‘lHJ;i‘kdyI]\‘,kH.

We remark that this formula and the formula obtained in Lemma 7.6 are obtained in the
same way, just by using the change of variables formula multiple times. The difference in
this case is that we keep the unstable Jacobian in the formula. As a consequence of this
formula we obtain

n—1 Ny
=y <Rk + > (min 714 ) EGrf, Yk)>. (30)
k=0 i=0 Vi
Observe that INK
A log 2N N
Re| < (e ) og k—+00 0.
AN = 2AN) || P (e™) |l
Hence

1 n—1
- > IRl — 0.
k=0
For (y, X) an adapted field we define similarly as in the previous section the sets

Gy = Gi(y, X) and By = Bx(y, X). The key lemma is the next one. It is the analog
of Lemma 7.14.
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LEMMA 7.26. For K > 1, for N large and Uy small enough, for every g € Uy and every
(v, X) a 8-good adapted field, it holds that

min J* > K E max J",.
k8 k8
jeGy Vi jeBy Vi

The proof uses the next lemma, which is the analog of Lemmas 7.11 and 7.12.

LEMMA 7.27. For N large and U small enough, for every g € Uy, and for every adapted

field (y, X) the following hold.

(1) If (y, X) is a 8-good adapted field and if j is such that g~ yjl does not intersect the
strip Crit, then the field (yjl, 2+ X /g X ) is 8-good.

() If (v, X) is 8-bad, there exists a strip S of length 7 such that for every j satisfying
g~ v} C S, the field (v, g« X/lIg:X1) is b-good.

The proof of this lemma is similar to the proof of [5, Lemma 12] and uses the estimate
obtained in Lemma 7.9.

Proof of Lemma 7.26. We follow exactly the Berger—Carrasco proof of [5, Lemma 10]
with the constants we chose and taking ny = 5/ N°. The proof is by induction; it is valid
for k = 0 and suppose it is true for k. Using Lemmas 7.19 and 7.27, and following exactly
the same proof of Berger and Carrasco, we obtain

: uu —(&2+¢ : uu
Z min Jg,k,1 > e~ (e2+e3) (] — nN) Z min J 5.
j€Grp Vi jeGy Vi

It is also obtained that

2.2
Z mix J;fk,l < <662+263nN + T Ke€3) . ( Z mikn J;ﬂ) 4 AN/2p83

j€Bry Vi jeGy Vi
Thus
uu
2 jeBg Maxyk I _ ety 4 (22/3 - K)ets AN/2 1
< —,
D jeGryy Minye T T emCFE (1 — ) e~@+2)(1 —ny) K
J

since we fixed &3 and 3 very small, for N large enough we obtain the last inequality. O

From now on we fix K > (§)~! and assume that N is large and Uy is small enough
such that Lemma 7.26 holds.

LEMMA 7.28. For N large and Uy small enough, for every g € Uy, every adapted field
(v, X) and k > 0, it holds that

e~ (e2tes) < E miAn J:ﬁ‘k + E max J:ﬁ‘k < gHeates)
k k
jeGy Vi jeBe Vi
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Proof. Of course the lemma is true for k = 0. Following the same steps as the proof of
[5, Lemma 11], one obtains
/ syt

y—_
I)/I/ vl 4

Nk+1

bl 1%
uu —&3 J uu
= Z _Iyl mlkn Jg_k +e Z _|y| max Jg_k /k max JH gk dyNH]
J€Gk Yi Jj€Bxk Vi YN+l VN,\-H
- —2Nk
=1> e(€2+53)<< > min J; ) ( max Jg" ) e )
- jeGe Vi jem v ¢ AN(1 = 2AN) || Pe(em) |
For N large enough
14 e—(62+£3)(6—51 . M)—ZNk otes
AN (1= 22N) [ Pe (el
Hence
uu uu 2(e2+e€3)
<Zm1n] >+(Zmz}tx.]gk>§e .
jeGr Vi jeBe Vi
Similarly one obtains the other inequality. O

We remark that this lemma for the fibered case is immediate, since in this case
#Gy + #By = [MZN k] and by the way we parametrize u-curves for the fibered case,
J", = 2Nk Since the calculations for the fibered case are more direct, the application
of this lemma is hidden inside the proof of Lemma 7.15. For the general case we use this
lemma to obtain inequality (31) below. This is done in the following way. By Lemmas 7.26

and 7.28,
—2(82+83) <(1+K~ 1) Z mm J Py
jeGg yJ
which implies that
—2(e2+e€3)
e
- < min J*¥, . 31
1+K*1_Zy}.‘ gk ()
jeGy Vi

PROPOSITION 7.29. For N large and Uy small enough, for every g € Uy, any §-good
adapted field (v, X) and every k > 0, it holds that

N
3 (mikn Jg“f’k)E(y]’f, Y¥) > (1 — 125) log N.
j=0 Vi
Proof. We have
Ni
Z (mln JH )E(y;‘, Y5 = Z (miknJ )E(y/ YR + Z (mmJ )E(yl ,Yh.
j=0 v} jeGy Vi jE€By vf
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By Lemma 7.26, Lemma 7.28 and Proposition 7.23 we obtain

N
. k vk 3 . .
Z (m}(n Jg"fk)E(yj, Y*) > (1 —88) log N Z min Jgf’k —log 2N Z min J;l‘k
j=0 Y jeGy Vi jeBi Vi
<~ log2N .
> <(1 —88) — — ) > min J %,
jeGy Vi
—2e2+83) (1 — 108) log N .
> € ( Joe N (1 —125) log N .

- 1+ K-!

Proof of Proposition 1.4. Take § =§/15. By Proposition 7.29, for N large and Uy small
enough, for g € Uy and any g—good adapted field (y, X), for g, it holds that

N
3 (m%{n Jg“fk)E(yJ’F, Y%y > (1 — 125) log N.
j=0 7

Using inequality (30), for n large enough

y. X
1) 3
> (1 — 148) log N.
n

Since we could have chosen 3 > 0 small enough such that ¢ ~%3 (1 — 148) > (1 — 156) by
Proposition 7.21, almost every point has a Lyapunov exponent for g in the center direction
larger than

(1—158)log N = (1 —8) log N.

All we have shown is also valid for g~!, if Uy is small enough, and thus almost every point
has a negative Lyapunov exponent in the center direction smaller than —(1 — §) log N. O
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