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1. Introduction
Let M be a smooth compact Riemannian manifold and let ν be a Borel probability measure
on M . Given a measurable transformation f : M→ M that preserves ν, we say that
f is ergodic with respect to ν if every invariant measurable set has either zero or full
measure. Ergodicity means that from the probabilistic point of view the system cannot be
decomposed into invariant smaller parts. In our scenario, f is ergodic if and only if for
every continuous function ϕ : M→ M , for ν-almost every point p ∈ M , it is verified that

lim
n→+∞

1
n

n−1∑
j=0

ϕ ◦ f j (p)=
∫

M
ϕ dν.

In 1939, Hopf introduced in [19] an argument to prove that the geodesic flow on
compact surfaces with constant negative curvature is ergodic with respect to the Liouville
measure. Many years later, Anosov [1], and Anosov and Sinai [2] used the Hopf
argument to prove ergodicity of hyperbolic systems that preserve a smooth measure.
A diffeomorphism is hyperbolic, or Anosov, if its tangent bundle decomposes into two
invariant subbundles, one is contracted and the other one is expanded exponentially fast by
the action of the derivative. Hyperbolicity was the key property that allowed them to use
the Hopf argument in these settings.

Since then several publications have extended the Hopf argument to more general
settings, namely non-uniformly hyperbolic and partially hyperbolic systems.

For a C1-diffeomorphism f and an invariant measure ν, Kingman’s ergodic theorem
implies that for ν-almost every point p ∈ M and for every v ∈ Tp M − {0} the limit exists,

λ(p, v)= lim
n→±∞

1
n

log ‖D f n(p) · v‖. (1)

Oseledets theorem states that λ(p, ·) can take at most dim(M) different values. Such
numbers are called Lyapunov exponents. An f -invariant measure ν is non-uniformly
hyperbolic for f if, for ν-almost every point, every Lyapunov exponent is non-zero.

In [23], Pesin uses the Hopf argument to prove that if ν is a smooth, non-uniformly
hyperbolic measure and f is a C1+α-diffeomorphism then ν has at most countably many
ergodic components.

A diffeomorphism f is partially hyperbolic if there is a D f -invariant decomposition
T M = E ss

⊕ Ec
⊕ Euu , such that D f |Ess contracts, D f |Euu expands and the behavior of

D f |Ec is bounded by the contraction of E ss and the expansion of Euu . See §2 for a precise
definition.
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1010 D. Obata

A key property for discussing the ergodicity of partially hyperbolic systems is the
accessibility. A partially hyperbolic system is accessible if any two points can be joined
by a curve which is a concatenation of finitely many curves, each of them being contained
in a stable or an unstable leaf.

There are several publications that use accessibility to extend the Hopf argument and
prove ergodicity, see for instance [8, 10, 11, 16, 24] and [17]. Most proofs of the ergodicity
for partially hyperbolic systems uses accessibility. Several of the extensions of the Hopf
argument for accessible partially hyperbolic diffeormorphisms allow vanishing Lyapunov
exponents along the center direction.

Berger and Carrasco introduced in [5] an example of a volume-preserving, partially
hyperbolic diffeomorphism which is non-uniformly hyperbolic. This example has a two-
dimensional center bundle and Lebesgue almost every point has both positive and negative
Lyapunov exponents in the center direction. Furthermore, the properties of this example
are C2-robust. It is not known if this example is accessible or not.

Definition 1.1. A volume-preserving diffeomorphism f is C2-stably ergodic if it
admits a C2-neighborhood such that any volume-preserving diffeomorphism inside this
neighborhood is ergodic.

In this paper we prove the following theorem.

MAIN THEOREM The Berger–Carrasco example is C2-stably ergodic.

We stress two features of our work that distinguishes it from other previous work on
ergodicity of partially hyperbolic diffeomorphisms:
• the stable ergodicity with mixed behavior along the center direction and that does not

admit a dominated splitting of the center direction (as a strengthening of [5]); and
• a proof of stable ergodicity that does not uses accessibility.

We explain a couple of points on why in Definition 1.1 we use a C2-neighborhood
instead of a C1-neighborhood, which is the one usually used to define stable ergodicity,
see for instance [17]. First, the techniques we use depend on the uniform control of
C2-norms in a neighborhood. Second, it is not possible to have the mixed behavior
along the center for every volume-preserving C2-diffeomorphism in a C1-neighborhood of
Berger–Carrasco’s example. This is due to theorem A’ in [3], which implies that arbitrarily
C1-close to Berger–Carrasco’s example there is a volume-preserving C2-diffeomorphism
that is stably ergodic and whose Lyapunov exponents along the center have the same sign.

From now on we denote the normalized Lebesgue measure of a manifold by Leb, and
the set of Cr -diffeomorphisms that preserve the Lebesgue measure by Diffr

Leb(M).

1.1. The Berger–Carrasco example and the precise statement of the main theorem.
For N ∈ R we denote by sN (x, y)= (2x − y + N sin(x), x) the standard map on
T2
= R2/2πZ2. For every N the map sN preserves the Lebesgue measure induced by

the usual metric of T2.
This map is related to several physical problems; see for instance [12, 21] and [30].
It is conjectured that for N 6= 0 the map sN has positive entropy for the Lebesgue

measure; see [31, p. 144]. By Pesin’s entropy formula, see [23, Theorem 5.1], this is
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equivalent to the existence of a set of positive Lebesgue measure and whose points have a
positive Lyapunov exponent. The existence of those sets is not known for any value of N .
See [6, 14] and [15] for some results related to this conjecture.

Let A ∈ SL(2, Z) be a hyperbolic matrix which defines an Anosov diffeomorphism on
T2 and let Px : T2

→ T2 be the projection on the first coordinate of T2; this projection is
induced by the linear map of R2, which we will also denote by Px , given by Px (a, b)=
(a, 0). In a similar way define Py : T2

→ T2, the projection on the second coordinate of
the torus.

Consider the torus T4
= T2

× T2 and represent it using the coordinates (x, y, z, w),
where x, y, z, w ∈ [0, 2π). We may naturally identify a point (z, w) on the second torus
with a point (x, y) on the first torus by taking x = z and y = w. For each N ≥ 0 define

fN : T2
× T2

−→ T2
× T2

(x, y, z, w) 7→ (sN (x, y)+ Px ◦ AN (z, w), A2N (z, w)),

where the point AN (z, w) on the second torus is identified with the same point in the first
torus as described previously.

This diffeomorphism preserves the Lebesgue measure. For N large enough it is a
partially hyperbolic diffeomorphism, with a two-dimensional center direction given by
Ec
= R2

× {0}. This type of system was considered by Berger and Carrasco in [5], where
they proved the following theorem.

THEOREM 1.2. [5, Theorem 1] There exist N0 > 0 and c > 0 such that for every N ≥ N0,
for Lebesgue almost every point m and for every v ∈ R4,

lim
n→∞

∣∣∣∣1n log ‖D f n
N (m) · v‖

∣∣∣∣> c log N .

Moreover, the same holds for any volume-preserving diffeomorphism in a C2-
neighborhood of fN .

This theorem says that for N large enough the system fN is non-uniformly hyperbolic.
Indeed, along the center direction there is one positive and one negative Lyapunov
exponent for Lebesgue almost every point.

We remark that Viana constructed, in [32, Theorem B], an example of a non-
conservative partially hyperbolic diffeomorphism with similar properties to Berger and
Carrasco’s example, meaning Lebesgue almost every point has a positive and a negative
exponent in the center direction and there is no dominated splitting of the center, but in
the dissipative case. The approach used by Berger and Carrasco has some similarities with
Viana’s approach, which is to consider ‘unstable’ curves and use combinatorial arguments
to estimate the exponents over such a curve.

Definition 1.3. Let ν be an invariant probability measure for f . We say that ( f, ν) is
Bernoulli if it is measurably conjugated to a Bernoulli shift. For volume-preserving
diffeomorphisms, we say that f is Bernoulli if ( f, Leb) is Bernoulli.

The Bernoulli property is stronger than ergodicity. We can now give the precise
statement of the main theorem.
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MAIN THEOREM RESTATED. For N large enough fN is C2-stably ergodic. Moreover,
any volume-preserving diffeomorphism in a C2-neighborhood of fN is Bernoulli.

In order to prove this theorem we will need to obtain precise estimates on the size of the
invariant manifolds in the center direction for certain points. For that we will need a better
estimate of the center exponents, given by the following proposition.

PROPOSITION 1.4. For every δ ∈ (0, 1), there exists N0 = N0(δ) such that for every N ≥
N0 there is a C2-neighborhood UN of fN in Diff2

Leb(T
4) with the following property. If g ∈

UN , then Lebesgue almost every point has a positive and a negative Lyapunov exponent in
the center direction whose absolute values are greater than (1− δ) log N.

We remark that one can show that fN is C2-approximated by stably ergodic
diffeomorphisms using another approach. This approach uses accessibility, which can be
obtained using the results in [20], and the criteria of ergodicity in [11]. Such an approach
does not use the non-uniform hyperbolicity of the system.

1.2. Strategy of the proof. The strategy of the proof has two parts. The first part is the
construction of stable and unstable manifolds inside center leaves with precise estimates
of length and ‘geometry’. The second part is the global strategy to obtain the ergodicity.

For the first part, the main tool we use is the construction of stable manifolds for surface
diffeomorphisms, given by Crovisier and Pujals in [13, Theorem 5]. In order to do that,
two ingredients are needed. The first is good control of the Lyapunov exponents along the
center direction so it verifies some inequality; see the beginning of §3.3 for a discussion.
The second ingredient involves finding sets with positive measure of points with good
contraction and expansion for the Oseledets splitting, for any ergodic component.

Proposition 1.4 gives the required control of the Lyapunov exponents. To prove
Proposition 1.4, we follow the proof of Theorem 1.2, given by Berger and Carrasco
in [5], with the necessary adaptations to obtain a precise estimate of the Lyapunov
exponents along the center. For the second ingredient, we use a version of the Pliss
lemma, Lemma 3.4. Following the construction of Crovisier and Pujals in [13], we
obtain precise estimates of the lengths and the ‘geometries’ of stable and unstable curves
inside center leaves, given by Propositions 3.11 and 5.6. So far what is obtained with this
construction is that any ergodic component of the Lebesgue measure has a set of points
with positive measure having stable and unstable curves in the center leaves of uniform
size and controlled ‘geometry’. That alone guarantees that there are at most finitely many
ergodic components.

For the global strategy there are also two ingredients: the estimate on the measure of
points with good expansion and contraction, given by the Pliss lemma; and the density of
the orbit of almost every center leaf among the center leaves.

The estimate on the measure given by the Pliss lemma is used to obtain points that spend
a long time inside a region with good hyperbolicity. This together with the control on the
lengths and ‘geometries’ of the stable and unstable curves inside the center leaves allows
us to obtain points whose curves are very large inside the center direction. The density of
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the orbit of almost every center leaf together with these large stable and unstable manifolds
is then used to apply the Hopf argument and conclude the ergodicity.

We remark that in this proof we use the Hopf argument for non-uniformly hyperbolic
systems and not the version usually used for partially hyperbolic diffeomorphisms, see for
instance [11].

1.3. Organization of the paper. In §2 we will introduce several tools that will be used
in the proof. We will assume that Proposition 1.4 holds throughout §§3, 4, 5 and 6, which
are dedicated to proving the main theorem. The proof of Proposition 1.4 is then given
in §7.

2. Preliminaries
2.1. General theory and results.
2.1.1. Partial hyperbolicity and foliations. A Cr -diffeomorphism f , with r ≥ 1, is
partially hyperbolic if the tangent bundle has a decomposition T M = E ss

⊕ Ec
⊕ Euu ,

there is a Riemannian metric on M and continuous functions χ∗−, χ
∗
+ : M→ R, for

∗ = ss, c, uu, such that, for any m ∈ M ,

χ ss
+ (m) < 1< χuu

− (m) and χ ss
+ (m) < χ

c
−(m)≤ χ

c
+(m) < χ

uu
− (m),

and the following also hold:

χ ss
− (m) ≤ m(D f (m)|Ess

m ) ≤ ‖D f (m)|Ess
m ‖ ≤ χ

ss
+ (m),

χc
−(m) ≤ m(D f (m)|Ec

m ) ≤ ‖D f (m)|Ec
m‖ ≤ χ

c
+(m),

χuu
− (m) ≤ m(D f (m)|Euu

m ) ≤ ‖D f (m)|Euu
m ‖ ≤ χ

uu
+ (m),

where m(D f (m)E∗m )= ‖(D f (m)|E∗m )
−1
‖
−1 is the co-norm of D f (m)|E∗m , for ∗ =

ss, c, uu. If the functions in the definition of partial hyperbolicity can be taken as constant,
we say that f is absolutely partially hyperbolic.

It is well known that the distributions E ss and Euu are uniquely integrable, that is, there
are two unique foliations F ss and Fuu , with Cr -leaves, that are tangent to E ss and Euu ,
respectively. For a point p ∈ M we will denote by W ss(p) a leaf of the foliation F ss ,
we will call such a leaf the strong stable manifold of p. Similarly we define the strong
unstable manifold of p and denote it by W uu(p).

Definition 2.1. A partially hyperbolic diffeomorphism is center bunched if

χ ss
+ (m) <

χc
−(m)
χc
+(m)

and
χc
+(m)
χc
−(m)

< χuu
− (m) for every m ∈ M.

We denote Ecs
= E s

⊕ Ec and Ecu
= Ec

⊕ Eu .

Definition 2.2. A partially hyperbolic diffeomorphism f is dynamically coherent if there
are two invariant foliations Fcs and Fcu , with C1-leaves, tangent to Ecs and Ecu

respectively. From those two foliations one obtains another invariant foliation Fc
=

Fcs
∩ Fcu that is tangent to Ec. We call those foliations the center-stable, center-unstable

and center foliation, respectively.
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1014 D. Obata

For any R > 0 we denote W ∗R(p) to be a disk of size R centered on p, for the
Riemannian metric induced by the metric on M , contained in the leaf W ∗(p), for ∗ =
ss, c, uu.

The definition below allows one to obtain higher regularity of the leaves of such
foliations.

Definition 2.3. We say that a partially hyperbolic diffeomorphism f is r -normally
hyperbolic if, for any m ∈ M ,

χ ss
+ (m) < (χ

c
−(m))

r and (χc
+(m))

r < χuu
− (m).

Definition 2.4. Let f and g be partially hyperbolic diffeomorphisms of M that are
dynamically coherent, denoted by Fc

f and Fc
g the center foliations. We say that f and

g are leaf conjugated if there is a homeomorphism h : M→ M that takes leaves of Fc
f to

leaves of Fc
g and such that for any L ∈ Fc

f it is verified that

h( f (L))= g(h(L)).

One may study the stability of partially hyperbolic systems up to leaf conjugacy.
Related to this there is a technical notion called plaque expansivity which we will not
define here; see [18, Ch. 7] for the definition. The next theorem is important for the theory
of stability of partially hyperbolic systems.

THEOREM 2.5. [18, Theorem 7.4] Let f : M→ M be a Cr -partially hyperbolic and
dynamically coherent diffeomorphism. If f is r-normally hyperbolic and plaque expansive
then any g : M→ M in a Cr -neighborhood of f is partially hyperbolic and dynamically
coherent. Moreover, g is leaf conjugated to f and the center leaves of g are Cr -immersed
manifolds.

Remark 2.6. In the proof of the previous theorem, it is found that, for a fixed R > 0, if
f satisfies the hypothesis of the theorem, then for g sufficiently Cr -close to f , for any
m ∈ M , W c

f,R(m) is Cr -close to W c
g,R(m). In particular, if the center foliation is uniformly

compact then for every g sufficiently Cr -close to f , for any m ∈ M , W c
f (m) is Cr -close

to W c
g (m).

It might be hard to check the condition of plaque expansiveness, but this is not the case
when the center foliation of a dynamically coherent, partially hyperbolic diffeomorphism
is at least C1; see [18, Theorem 7.4]. Usually the invariant foliations that appear in
dynamics are only Hölder.

We can also obtain a better regularity for the center direction given by the following
theorem; see [27, §4] for a discussion on this topic.

THEOREM 2.7. Let f be a C2-partially hyperbolic diffeomorphism and let α > 0 be a
number such that, for every m ∈ M, it holds that

χ ss
+ (m) < χ

c
−(m)(χ

ss
− (m))

α and χc
+(m)(χ

uu
+ (m))

α < χuu
− (m),

and then Ec is α-Hölder.
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2.1.2. Pesin’s theory. Let f be a C1-diffeomorphism. For a number λ ∈ R define Eλp
to be the subspace of the vector zero united with all vectors v ∈ Tp M − {0} such that the
number λ(p, v)= λ, where λ(p, v) is the number defined in equation (1).

We say that a set R has full probability if, for any f -invariant probability measure ν, it
is verified that ν(R)= 1. The following theorem is known as Oseledets theorem.

THEOREM 2.8. [4, Theorems 2.1.1 and 2.1.2] For any C1-diffeomorphism f , there is
a set R of full probability, such that for every ε > 0 there exists a measurable function
Cε :R→ (1,+∞) with the following properties:
(1) for any p ∈R there are numbers s(p) ∈ N, λ1(p) < · · ·< λs(p)(p) and a

decomposition Tp M = E1
p ⊕ · · · ⊕ E s(p)

p ;
(2) s( f (p))= s(p), λi ( f (p))= λi (p) and D f (p) · E i

p = E i
f (p), for every i =

1, . . . , s(p);
(3) for every v ∈ E i

p − {0} and n ∈ Z,

Cε(p)−1en·(λi (p)−ε) ≤
‖D f n(p) · v‖
‖v‖

≤ Cε(p)en·(λi (p)+ε) and λ(p, v)= λi (p);

(4) the angle between E i
p and E j

p is greater than Cε(p)−1, if i 6= j ;
(5) Cε( f (p))≤ eεCε(p).

We call the set R the set of regular points. For a fixed ε > 0 and each l ∈ N we define
the Pesin block as

Rε,l = {p ∈R : Cε(p)≤ l}. (2)

We have the decomposition
R=

⋃
l∈N

Rε,l . (3)

A point p ∈R has k negative Lyapunov exponents if∑
i :λi (p)<0

dim(E i
p)= k.

We say that p has k positive, or k-zero, Lyapunov exponents if a similar expression holds.
From now on, we assume that ν is a f -invariant measure, not necessarily ergodic, and
there are numbers k and l such that ν-almost every point p ∈R has k negative and l
positive Lyapunov exponents.

For a regular point we write

E s
p =

⊕
i :λi (p)<0

E i
p and Eu

p =
⊕

i :λi (p)>0

E i
p. (4)

Definition 2.9. For f a C2-diffeomorphism, the stable Pesin manifold of the point p ∈R,
is

W s(p)=
{

q ∈ M : lim sup
n→+∞

1
n

log d( f n(p), f n(q)) < 0
}
.

Similarly one defines the unstable Pesin manifold as

W u(p)=
{

q ∈ M : lim sup
n→+∞

1
n

log d( f −n(p), f −n(q)) < 0
}
.
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Remark 2.10. If f is also partially hyperbolic, with T M = E ss
⊕ Ec

⊕ Euu then the
Oseledets splitting refines the partial hyperbolic splitting. This means that, for a regular
point p ∈R, there are numbers 1≤ l1 < l2 < s(p) such that

E ss
p =

l1⊕
i=1

E i
p, Ec

p =

l2⊕
i=l1+1

E i
p and Euu

p =

s(p)⊕
i=l2+1

E i
p.

This follows from a standard argument similar to the proof of the unicity of dominated
splittings; see [7, §B.1.2]. It also holds that, for any regular point p, E ss

p ⊂ E s
p and

Euu
p ⊂ Eu

p.

Pesin’s manifolds are immersed submanifolds; see [23, §4]. A difficulty that appears
is that such submanifolds in general do not vary continuously with the point, but they
vary continuously on Pesin blocks. Let us make this more precise. For p ∈Rε,l , define
W s

loc(p) to be the connected component Ds(p) of W s(p) ∩ B(p, r) containing p, such
that ∂Ds(p)⊂ ∂B(p, r) and r > 0 is a small fixed number depending only on ε > 0 and
l ∈ N.

THEOREM 2.11. [23, Theorems 4.1 and 4.2] Let f : M→ M be a C2-diffeomorphism
preserving a smooth measure ν and suppose that ν-almost every regular point p has the
same number of negative and positive Lyapunov exponents. For each l > 1, ε > 0 small
and p ∈Rε,l , the following are verified.
(1) W s

loc(p) contains a disk centered at p and tangent to E s
p.

(2) p 7→W s
loc(p) varies continuously in the C1-topology over Rε,l .

A partition ξ of M is measurable with respect to a probability measure ν if, up to a set
of ν-zero measure, the quotient M/ξ is separated by a countable number of measurable
sets. Denote by ν̂ the quotient measure in M/ξ . By Rokhlin’s disintegration theorem [29],
for a measurable partition ξ , there is set of conditional measures {νξD : D ∈ ξ} such that for
ν̂-almost every D ∈ ξ the measure νξD is a probability measure supported on D, for each
measurable set B ⊂ M the application D 7→ ν

ξ
D(B) is measurable and it holds that

ν(B)=
∫

M/ξ
ν
ξ
D(B) d ν̂(D). (5)

Fix Rε,l , a Pesin block. For p ∈Rε,l and for ρ > 0 small, define Bs(p, ρ) as the union
of the local stable Pesin manifolds of the points y ∈ B(p, ρ) ∩Rε,l . Consider the measure
νp,ρ = ν|Bs (p,ρ) and the measurable partition ξs given by the partition of Bs(p, ρ) by local
stable Pesin manifolds. For such a partition let {νξs

p,ρ,D : D ∈ ξs} be the set of conditional
measures of the disintegration of νp,ρ with respect to ξs .

Definition 2.12. The measure ν has absolute continuous conditional measures on stable
manifolds if for every Pesin block Rε,l , every ρ > 0 small enough, for ν̂p,ρ-almost every
D ∈ ξs , the measure νξs

p,ρ,D is equivalent to the Lebesgue measure of a local stable Pesin
manifold.

We will also need the following definition.
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Definition 2.13. Take p ∈R and let T1 and T2 be two disks transverse to W s(p) close to
p. We define the holonomy map related to these disks as the map H defined on a subset of
T1 ∩R, consisting of the points q such that W s

loc(q) intersects transversely T2.

Recall that we are assuming that the number of negative and positive Lyapunov
exponents are the same ν-almost everywhere.

Definition 2.14. We say that the stable partition is absolutely continuous if all holonomy
maps are measurable and take sets with zero Lebesgue measure of T1 into sets of zero
Lebesgue measure of T2.

Analogously we define all the above for the unstable partition.

THEOREM 2.15. [23, Theorem 4.4] Let f be a C2-diffeomorphism preserving a non-
uniformly hyperbolic, smooth measure ν. Then the stable and unstable partitions are
absolutely continuous.

Remark 2.16. This theorem implies that ν has absolute continuous conditional measures
with respect to the stable, or unstable, manifolds; see [4, Theorem 5.11]. In particular, a
Fubini-like formula (5) holds locally.

The notion of absolute continuity also makes sense for foliations, except for the
holonomy maps of the foliation. The strong stable foliation F ss of a C2-partially
hyperbolic diffeomorphism is absolutely continuous, see [1].

Usually the partition by strong stable leaves, given by the foliation F ss , is not
measurable. In a foliated chart U , one may consider the restricted foliation F ss

|U , and
the partition by strong stable leaves forms a measurable partition of U . Thus one can
disintegrate a smooth measure locally along such a foliation. The absolute continuity of
the strong stable foliation implies that the conditional measures of this disintegration are
equivalent to the Lebesgue measure of these manifolds; in particular a Fubini-like formula
also holds. See [28] for a discussion.

Recall that an f -invariant measure ν is non-uniformly hyperbolic if for ν-almost every
point all Lyapunov exponents are non-zero.

THEOREM 2.17. [23, Theorems 7.2 and 8.1] Let f be a C2-diffeomorphism preserving a
smooth measure ν. If ν is non-uniformly hyperbolic then there are at most countably many
ergodic components of ν, that is,

ν =
∑
i∈N

ciνi ,

where ci ≥ 0,
∑

i∈N ci = 1, each νi is an f -invariant ergodic probability measure and if
i 6= j then νi 6= ν j . Moreover, for each i ∈ N, there exists ki ∈ N such that

νi =
1
ki

ki∑
j=1

νi, j ,

where each νi, j is a f ki -invariant probability measure, the system ( f ki , νi, j ) is Bernoulli
and νi, j 6= νi, j if j 6= l. Furthermore, f permutes the measures νi, j , that is, f∗(νi, j )=

νi, j+1 for j = 1, . . . , ki − 1 and f∗(νi,ki )= νi,1, where f∗(ν) denotes the pushforward of
a measure ν by f .
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All the results for Pesin’s theory were stated for C2-diffeomorphisms, but they hold for
C1+α-diffeomorphisms.

2.2. The strong stable and strong unstable holonomies. Let f be a partially hyperbolic,
dynamically coherent diffeomorphism. Each leaf of the foliation Fcs is foliated by strong
stable manifolds. For points p ∈ M and q ∈W ss

1 (p), where W ss
1 (p) is the strong stable

manifold of size 1, we can define the stable holonomy map restricted to the center-stable
manifold, between center manifolds. Let us be more precise. We can choose two small
numbers R1, R2 > 0, with the property that for any z ∈W c

R1
(p) there is only one point

in the intersection W ss
2 (z) ∩W c

R2
(q). We define H s

p,q(z)=W ss
2 (z) ∩W c

R2
(q). With this

construction we obtain a map H s
p,q :W

c
R1
(p)→W c

R2
(q). By the compactness of M we

can take the numbers R1 and R2 to be constants, independent of p and q.
We can define analogously the unstable holonomy map, for p ∈ M and q ∈W uu

1 (p),
which we will denote by Hu

p,q :W
c
R1
(p)→W c

R2
(q).

In [25] and [26], the authors prove that the map H s
p,q is C1 if f is a partially hyperbolic,

center-bunched and dynamically coherent C2-diffeomorphism. Indeed, the authors prove
that the strong stable foliation is C1 when restricted to a center-stable leaf. Consider the
family of C1-maps {H s

p,q}p∈M,q∈W ss
1 (p)

.

THEOREM 2.18. Let f be an absolutely partially hyperbolic, dynamically coherent, 2-
normally hyperbolic and center-bunched C2-diffeomorphism. Suppose also that χc

− <

1 and χc
+ > 1. Then the family {H s

p,q}p∈M,q∈W ss
1 (p)

is a family of C1-maps depending
continuously in the C1-topology with the choices of the points p and q.

Proof. We follow the approach found in [9], which is an approximation of the strong stable
holonomies argument. In [9], the author proves that such holonomies between center
manifolds are C1 if f is C1+Hölder and verifies some stronger bunching condition; see
[9, §2] for precise statements. For a detailed proof in our setting we refer the reader
to [22].

Let π s
·,· be an approximation of the holonomy H s

·,·. This means that there is a
constant C > 0 such that, for any p ∈ M and q ∈W ss

1 (p), there is a C2-map, which is
a diffeomorphism onto its image, π s

p,q :W
c
R1
(p)→W c(q), that verifies:

(1) d(π s
p,q(p), q)≤ Cd(p, q);

(2) d(Dπ s
p,q(p) · v, v)≤ Cd(p, q), where v ∈ SEc

p and SEc
p is the unit sphere on Ec

p;
and

(3) if p′ ∈W c
loc(p) and q ′ ∈W ss

1 (p
′) ∩W c

loc(q), then π s
p,q coincides with π s

p′,q ′ on
W c

loc(p) ∩W c
loc(p

′).
This can be done in the following way. Consider a smooth subbundle Ẽ which is

uniformly transverse to the subbundle Ec. Observe that the restriction of Ẽ to any center
manifold is a C2-bundle, since the center manifolds are C2 by the 2-normal hyperbolicity.
For each point q ∈ M and ρ > 0, consider Lq,ρ := expq(Ẽ(q, ρ)) to be the projection of
the ball of radius ρ by the exponential map over q . By the uniform transversality and the
compactness of M , there exists a constant ρ0 such that, for any center leaf W c

R1
(p), the

set {Lq,ρ0}q∈W c
R1
(p) forms a uniform foliated neighborhood of W c

R1
(p). Let π s

p,q be the
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holonomy defined by this local foliation; up to rescaling of the metric we may assume that
it is well defined for p ∈ M and q ∈W ss

1 (p). By the compactness of M we obtain the
constant C > 0 above. Observe also that, since the center leaves vary continuously in the
C2-topology, we obtain that the map π s

p,q varies continuously in the C2-topology with the
points p and q.

For any p, q ∈ M , with q ∈W ss
1 (p), and each n ∈ N, write pn = f n(p) and qn =

f n(q). We define
H s

p,q,n = f −n
◦ π s

pn ,qn
◦ f n .

Since we are assuming that f is absolutely partially hyperbolic, for this proof only we
write its partially hyperbolic constants as χs = χ

ss
+ (p), χc = χ

c
−(p) and χ̂c = (χ

c
+(p))

−1.
Also only for this proof, for a diffeomorphism g : N1→ N2, between manifolds N1 and
N2, we will write g∗ : SN1→ SN2, the action induced by the derivative on the unitary
bundles of N1 and N2.

Observe that the Lipschitz norm of f −1
∗ restricted to a fiber Sx Ec is (χcχ̂c)

−1. Also
since f is a C2-diffeomorphism, then f −1

∗ is a C1-diffeomorphism of SM . Let C1 > 0 be
the C1-norm of f −1 on M and C2 be the C1-norm of f −1

∗ on SM . For any two points
ξ = (x, v), ζ = (y, u) ∈ SM , we write

ξk = f k
∗ (x, v)= (xk, vk) and ζk = f k

∗ (y, u)= (yk, uk) for k ∈ Z.

In the setting that f is C1+Hölder and verifies a stronger bunching condition, Brown
proves in [9] that (H s

p,q,n)n∈N is a Cauchy sequence in the C1-topology. Furthermore, this
sequence converges exponentially fast to H s

p,q . The stronger bunching condition is used
to prove [9, Lemma 3.1]. In our C2 scenario, we can obtain a similar lemma, using that
fact that χc < 1 and χ̂c < 1.

LEMMA 2.19. There are constants δ, α ∈ (0, 1) and θ ∈ (0, 1) that verify the following: if
ξ = (x, v), ζ = (y, u) ∈ SW c(p), K > 0 and n ≥ 0 verify d(xn, yn) < Kχn

s , d(ξn, ζn)≤

Kχnθ
s and for every 0≤ k ≤ n,

d(xk, yk)≤ δ,

then, for all 0≤ k ≤ n,

d(xk, yk)≤ Kχn
s · χ

−(n−k)
c and d(ξk, ζk)≤ Kχnθ

s · (χcχ̂c)
−(n−k)(1+α).

In particular,
d(ξ, ζ )≤ Kχnθ

s · (χcχ̂c)
−n(1+α).

Furthermore, θ and α can be chosen such that

χθs · (χ̂cχc)
−(1+α) < 1.

Proof. The proof is by backward induction in k. We will first denote by β, θ , α
and δ quantities that will be fixed later. Suppose that what we want holds for some
k ∈ {1, . . . , n}; we will prove that it holds for k − 1. Since xk and yk belong to the same
center manifold, it is easy to see that

d(xk−1, yk−1)≤ χ
−1
c d(xk, yk)≤ Kχn

s · χ
−n+k+1
c .
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We have

d( f −1
∗ (xk, vk), f −1

∗ (yk, uk)) ≤ d( f −1
∗ (xk, vk), f −1

∗ (xk, uk))

+ d( f −1
∗ (xk, uk), f −1

∗ (yk, uk))

≤ (χcχ̂c)
−1d(vk, uk)+ C2d(xk, yk)

≤ (χcχ̂c)
−1
[1+ C2 · (χcχ̂c)d(xk, yk)

1−β
]

·max{d(xk, yk)
β , d(vk, uk)}

≤ (χcχ̂c)
−1
[1+ C2 · (χcχ̂c)δ

1−β
]

· K max{χnβ
s · χ

−(n−k)β
c , χnθ

s · (χcχ̂c)
−(n−k)(1+α)

},

where the last inequality follows from our induction hypothesis.
We claim that we can choose α, β and θ such that, for any n ∈ N and 0≤ k ≤ n, the

following holds:
χnβ

s · χ
−(n−k)β
c ≤ χnθ

s · (χcχ̂c)
−(n−k)(1+α).

This inequality is equivalent to

1≤ χn(θ−β)
s · (χ (β−1−α)

c χ̂−(1+α)c )(n−k). (6)

Since χ̂−1
c > 1, we can fix β arbitrarily close to 1 and α arbitrarily small such that

1< χ (β−1−α)
c χ̂

−(1+α)
c . For the inequality above to hold we can just take any θ ∈ (0, β),

so that θ − β is negative.
We also want

χθs · (χ̂cχc)
−(1+α) < 1. (7)

By the center-bunching condition, this holds if θ is close enough to 1 and α is close enough
to 0. Fix β ∈ (0, 1) close to 1, θ ∈ (0, β) close to β and α > 0 small such that inequalities
(6) and (7) hold.

Now take δ > 0 small enough such that

[1+ C2 · (χcχ̂c)δ
1−β
] ≤ (χcχ̂c)

−α.

We conclude that

d( f −1
∗ (ξ k), f −1

∗ (ζ k) ≤ (χcχ̂c)
−(1+α)

· Kχnθ
s · (χcχ̂c)

−(n−k)(1+α)

= Kχnθ
s · (χcχ̂c)

−(n−(k−1))(1+α). �

This lemma is specifically used to prove that the sequence ((H s
p,q,n)∗)n∈N is Cauchy.

We can follow similar calculations as in [9] to conclude that for every p ∈ M and q ∈
W ss

1 (p) the sequence (H s
p,q,n)n∈N is a Cauchy sequence that converges exponentially fast

in the C1-topology to H s
p,q . The rate of convergence depends only on χs , χc and χ̂c. In

particular, it is independent of the choices of the points p and q .
The family {π s

p,q}p∈M,q∈W ss
1 (p)

is a family of C2-maps depending continuously in the
C2-topology on the choice of points p and q . For each n ∈ N, consider the family { f −n

◦

π s
pn ,qn
◦ f n
}p∈M,q∈W ss

1 (p)
and observe that, since f is C2, this is a family of C2-maps

depending continuously in the C2-topology on the choice of the points p and q .
Since the rate of convergence does not depend on the choice of the points p and q, we

conclude that the sequence of families ({ f −n
◦ π s

pn ,qn
◦ f n
}p∈M,q∈W ss

1 (p)
)n∈N converges
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uniformly in the C1-topology to the family {H s
p,q}p∈M,q∈W ss

1 (p)
. Thus, the family

{H s
p,q}p∈M,q∈W ss

1 (p)
is a family of C1-maps depending continuously in the C1-topology

on the choice of p and q . �

2.3. Berger–Carrasco’s example. Recall that for each N ≥ 0 and m = (x, y, z, w) ∈
T4 we defined in §1 the diffeomorphism

fN (m)= (sN (x, y)+ Px ◦ AN (z, w), A2N (z, w)).

Observe that

D fN (m)=
(

DsN (x, y) Px ◦ AN

0 A2N

)
.

It is useful to introduce �(x, y)= N cos x + 2, so that

DsN (x, y)=

(
�(x, y), −1

1, 0

)
.

For a point m = (x, y, z, w) ∈ T4, we will write �(m)=�(x, y) and DsN (m)=
DsN (x, y). Observe that

1
2N
≤ ‖DsN‖ ≤ 2N and ‖D2sN‖ ≤ N . (8)

Let A ∈ SL(2, Z) be the linear Anosov matrix considered in the definition of the
map fN . Denote by 0< λ < 1< µ= λ−1 the eigenvalues of A. Let es and eu be unit
eigenvectors of A for λ and µ, respectively.

Consider the involution I (x, y, z, w)= (y, x, z, w) for (x, y, z, w) ∈ T2. An
important feature of the map fN is given by the following lemma.

LEMMA 2.20. [5, Lemma 1] The map f −1
N is conjugated to the map

(x, y, z, w) 7→ (sN (x, y)+ Px ◦ A−N (z, w), A−2N (z, w)),

by the involution I .

This lemma allows us to prove certain properties for fN and f −1
N only by considering

the map fN , since the involution tells us that fN and f −1
N behave in the same way up to

exchange of the x and y coordinates. This will be used several times throughout the paper.
Recall that Ec

= R2
× {0} and that the system fN is dynamically coherent.

PROPOSITION 2.21. Fix ε > 0 small, so that for N large enough there is a C2-
neighborhood UN of fN such that if g ∈ UN , then g is dynamically coherent, its center
leaves are C2-submanifolds, g is leaf conjugated to fN and for every m ∈ T4 the C2-
distance between W c

g (m) and W c
f (m) is smaller than ε.

Proof. Take N large enough such that

λ2N < (2N )−4.

This inequality implies that fN is 2-normally hyperbolic. Since its center foliation is
smooth, by [18, Theorem 7.4], fN is plaque expansive. By Theorem 2.5, for every g

https://doi.org/10.1017/etds.2018.65 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.65


1022 D. Obata

sufficiently C2-close to fN , g is dynamically coherent, leaf conjugated to fN and its center
leaves are C2-submanifolds. Since the center foliation of fN is uniformly compact, from
Remark 2.6, if UN is small enough then for every g ∈ UN and m ∈ T4 the center leaves
W c

g (m) and W c
f (m) are ε-close in the C2-topology. �

Define π1(x, y, z, w)= (x, y) ∈ T2 and π2(x, y, z, w)= (z, w) ∈ T2. For
convenience, a vector (u, v) ∈ R2 will be often identified with (u, v, 0, 0) ∈ R4, so
that D fN (m) · (u, v)= D fN (m) · (u, v, 0, 0). For a vector v ∈ TmT4 we will write
v1 = Dπ1(m) · v.

3. The size of the invariant manifolds and cone estimates
In this section we obtain the main estimates to prove the ergodicity of fN . Assuming
Proposition 1.4 and fixing a small δ > 0, we prove the following.

PROPOSITION 3.1. For N large enough, for each ergodic component of the volume, for
fN , there exists a set with measure larger than 1− 7δ/1+ 7δ, such that the following
holds.

For any x in that set, there exist a stable curve and an unstable curve inside W c(x),
with length bounded from below by N−7. Moreover, the stable curve is transverse, inside
W c(x), to the horizontal direction and the unstable curve is transverse to the vertical
direction.

See Lemma 3.5 and Proposition 3.11 for precise statements.

Remark 3.2. From now on the norm ‖ · ‖ will be the norm induced by the usual metric of
T2 or T4. We will omit the dependence of N by writing f = fN .

We fix two scales θ1 = N−2/5 and θ2 = N−3/5.

3.1. Points with good contraction and expansion. Since f is non-uniformly hyperbolic,
by Theorem 2.17, there are at most countably many ergodic components. Therefore, Leb=∑

i∈N ciνi , where ci ≥ 0, and for every i ∈ N the probability measure νi is f -invariant and
ergodic. As a consequence of Birkhoff’s theorem, for each measure νi there exists a set
3i with full νi -measure such that, for every m ∈3i ,

1
n

n−1∑
j=0

δ f j (m) −−−−→n→+∞
νi and

1
n

n−1∑
j=0

δ f − j (m) −−−−→n→+∞
νi , in the weak∗-topology. (9)

Here δp is the Dirac mass on the point p. If νi 6= ν j then 3i ∩3 j = ∅. Define

3=
⋃
i∈N

3i . (10)

Recall that R is the set of regular points given by Oseledets theorem. By Remark 2.10,
the center direction is decomposed by the Oseledets splitting for almost every point, that is,
for m ∈R there is a decomposition Ec

m = E−m ⊕ E+m , where E−m is the Oseledets direction
related to the negative center exponent and E+m is the direction related to the positive
exponent.
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For each i ∈ N define the sets

Z−i = {m ∈R ∩3i : ∀n ≥ 0 we have ‖D f n(m)|E−m ‖< (N
−4/5)n},

Z+i = {m ∈R ∩3i : ∀n ≥ 0 we have ‖D f −n(m)|E+m ‖< (N
−4/5)n},

Zi = f (Z−i ) ∩ f −1(Z+i ).

Define also
Z =

⋃
i∈N

Zi . (11)

Remark 3.3. For each i ∈ N, by the definition of Zi , f −1(Zi )⊂ Z−i . Observe that

1≤ ‖D f ( f −1(m))|E−
f−1(m)
‖ · ‖D f −1(m)|E−m ‖ ≤ N−4/5

‖D f −1(m)|E−m ‖.

We conclude that ‖D f −1(m)|E−m ‖ ≥ N 4/5. Similarly ‖D f (m)|E+m ‖ ≥ N 4/5.

We will need the following version of the Pliss lemma.

LEMMA 3.4. [13, Lemma 3.1] For any ε > 0, α1 < α2 and any sequence (ai ) ∈

(α1,+∞)
N satisfying

lim sup
n→+∞

a0 + · · · + an−1

n
≤ α2,

there exists a sequence of integers 0≤ n1 ≤ n2 ≤ · · · such that:
(1) for any k ≥ 1 and n > nk , one has ank + · · · + an−1/(n − nk)≤ α2 + ε; and
(2) the upper density lim sup k/nk is larger than ε/α2 + ε − α1.

Using this lemma we prove the following.

LEMMA 3.5. Fix δ > 0 small and assume that N is large enough such that Proposition 1.4
holds for f = fN . Then, it is verified that νi (Zi )≥ 1− 7δ/1+ 7δ and Leb(Z)≥
1− 7δ/1+ 7δ.

Proof. Since N is large enough, by Proposition 1.4, for every m ∈R ∩3i , and since
E−(m) is one-dimensional, we obtain

lim
n→+∞

1
n

log ‖D f n(m)|E−m ‖ = lim
n→+∞

1
n

n−1∑
j=0

log ‖D f ( f j (m))|E−
f j (m)
‖ ≤ −(1− δ) log N .

Take ε = 1/6 log N , α1 =−logN − log 2, α2 =−(1− δ) log N and consider the
sequence (log ‖D f ( f j (m))|E−

f j (m)
‖) j∈N. Applying the Pliss lemma (Lemma 3.4) for those

quantities we obtain a sequence of integers (nk)k∈N such that, for every k ∈ N and n > nk ,

1
n − nk

n−1∑
j=nk

log ‖D f ( f j (m))|E−
f j (m)
‖ ≤ −(1− δ) log N +

1
6

log N

= log N−5/6+δ < log N−4/5.

From this we conclude that

‖D f n( f nk (m))|E−
f nk (m)
‖< (N−4/5)n for all n ≥ 0.
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Thus, for every k ∈ N we have f nk (m) ∈ Z−i . Since m ∈3i , by Birkhoff’s theorem and
the second point in the Pliss lemma,

νi (Z−i ) ≥ lim sup
k→+∞

k
nk

≥
ε

−(1− δ) log N + ε + log N + log 2

=
1

(1+ 6δ)+ (6 log 2/ log N )
≥

1
1+ 7δ

.

Similarly, νi (Z+i )≥ 1/1+ 7δ. This implies that

νi (T4
− Z∗i )≤

7δ
1+ 7δ

for ∗ = −,+.

By choosing δ > 0 small enough, the measure of these sets can be taken close to 1.
From the definition of Zi we conclude that

νi (Zi )= 1− νi (T4
− Zi )≥ 1−

14δ
1+ 7δ

=
1− 7δ
1+ 7δ

.

Since Z =
⋃

i∈N Zi and the previous estimate is valid for every i ∈ N, then

Leb(Z)≥
1− 7δ
1+ 7δ

. �

Let T = [1+ 7δ/28δ] and take δ > 0 small enough such that T > 20. Define

X =
T−1⋂

k=−T+1

f k(Z). (12)

LEMMA 3.6. For N large enough, if νi is an ergodic component of the Lebesgue measure
then

νi (X) > 0.

Proof. Recall that νi (Zi )≥ 1− 7δ/1+ 7δ; for N large enough, this implies that

νi (T4
− Zi )≤

14δ
1+ 7δ

.

Therefore

νi (X)= 1− νi (X c)≥ 1−
T−1∑

j=−T+1

νi ( f k(T4
− H))

≥ 1−
(

2
[
(1+ 7δ)

28δ

]
− 2

)
·

14δ
1+ 7δ

> 0.
�
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3.2. Cone estimates. Let V ⊂ R2 be a one-dimensional vector subspace inside R2 and
let V⊥ be the one-dimensional subspace perpendicular to V . For any vector w ∈ R2 we
can write w = wV + wV⊥ , the decomposition of w in V and V⊥ coordinates. For θ > 0
define

Cθ (V )= {w ∈ R2
: θ‖wV ‖ ≥ ‖wV⊥‖},

the cone inside R2 around V of size θ . For simplicity, if V = R · (1, 0) then we just
write C hor

θ = Cθ (V ) and C ver
θ = Cθ (V⊥), and we will call them the horizontal and vertical

cones, respectively. Throughout this paper, for a direction V , we will write

Cθ (V, m)= Cθ (V )× {0} ⊂ TmT4
= R2

× R2.

Recall that θ1 = N−2/5.

LEMMA 3.7. For N large enough, for every m ∈ Z we have that E+m ⊂ C hor
θ−1

1
(m), with θ1 =

N−2/5. Furthermore, Cθ1/2(E
+
m , m)⊂ C hor

4/θ1
(m). The same is valid for the E−m direction

and the vertical cone.

Proof. From Remark 3.3, we know that ‖D f (m)|E+m ‖ ≥ N 4/5, for m ∈ Z . Take a vector
of the form (u, 1), with |u| ≤ N−2/5; then for N large enough

‖D f (m) · (u, 1)‖ = ‖(u�(m)− 1, u)‖ ≤ |u||�(m)| + 1+ |u|

≤ |u|(N + 2)+ 1+ |u| ≤ N−2/5
· N 1+(1/200)

+ 1

≤ N 3/5+(1/200)
+ 1≤ N 3/5+(1/100) < N 4/5.

Hence, if m ∈ Z then E+m ⊂ C hor
θ−1

1
(m).

We want to determine θ > 0 such that the cone C hor
θ (m) contains the cone

Cθ1/2(E
+
m , m). For this purpose we will consider a cone Cθ1/2(V, m), where the direction

V belongs to the boundary of the cone C hor
θ−1

1
(m).

Suppose that V is generated by the unit vector (x, x/θ1), with x > 0. Observe that V⊥

is generated by (−x/θ1, x). One of the boundaries of the cone C hor
θ (m) we are looking for

is generated by the vector θ1/2(−x/θ1, x)+ (x, x/θ1).
The size of the cone θ is given by

θ =
2 · [x(θ2

1 + 2)]
2xθ1

=
θ2

1 + 2
θ1

<
4
θ1
.

Since the horizontal cones are symmetric with respect to the horizontal direction, we
conclude that

Cθ1/2(E
+
m , m)⊂ C hor

θ (m)( C hor
4/θ1

(m).

By the symmetry of f , given by Lemma 2.20, the same holds for the stable direction
but using vertical cones. �

We define some critical regions. For that, define I1 = I1(N )= (−2N−3/10, 2N−3/10),
I2 = I2(N )= I1/2, and write C1 = {π/2+ I1} ∪ {3π/2+ I1} and C2 = {π/2+ I2} ∪

{3π/2+ I2}. Consider the regions

Crit1 = {C1 × S1
× T2
} ∪ {S1

× C1 × T2
},

Crit2 = {C2 × S1
× T2
} ∪ {S1

× C2 × T2
}.
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Write G∗ = (Crit∗)c, for ∗ = 1, 2 and observe that G1 ⊂ G2. Observe also that each
G∗ has four connected components, {G∗, j }

4
j=1. Each G∗, j is a square and we can choose

the index j such that G1, j ⊂ G2, j .

Remark 3.8. The distance between the boundaries of these two sets is

d(∂G1, j , ∂G2, j )= N−3/10 > N−7 for 1≤ j ≤ 4.

Recall that θ2 = N−3/5.

LEMMA 3.9. If N is large enough then the following hold.
(1) Z ⊂ G1 ⊂ G2.

(2) If m ∈ G2 then D f (m) · (C hor
4/θ1

(m))⊂ C hor
θ2
( f (m)).

(3) If γ is a C1-curve inside a center leaf, with length l(γ )≥ N−3/10, such that γ ⊂ G2

and is tangent to C hor
θ2

then l( f (γ )) > 4π .
Similar statements hold for the vertical cone and f −1.

Proof.
(1) If m /∈ G1 then, for N large enough, |cos x |< 4N−3/10 and, in particular,

‖D f (m)|Ec
m‖ ≤ N |cos x | + 4< 4N 7/10−1/200

+ 4< N 7/10−1/100 < N 4/5.

Using the symmetry given by Lemma 2.20 and since for m /∈ G1 we have |cos y|<
4N−3/10, a similar calculation gives

‖D f −1(m)|Ec
m‖< N 4/5.

Thus Z ⊂ G1 ⊂ G2.

(2) For any m ∈ G2, (u, v) ∈ C hor
4/θ1

(m) we have

θ2(|�(m)||u| − |v|)≥ θ2|u|
( 1

2 · N
7/10
− 2− 4N 3/5)

= |u|
( 1

2 N 1/10
− 2N−3/5

− 4
)
> |u|.

(3) For any m ∈ G2 observe that

|cos x | ≥
N−3/10

2
. (13)

For (u, v) ∈ C hor
θ2
(m) a unit vector, we must have

‖D f (m) · (u, v)‖ ≥ |�(m)||u| − |v| ≥ |u|(|�(m)| − θ2)

≥
‖(u, v)‖
1+ θ2

(|�(m)| − θ2) ≥
1
2
(N |cos x | − 2− θ2)

≥
N 7/10

4
− 1−

θ2

2
> N 1/2.

Thus we have
l( f (γ ))≥ N 1/2

· N−3/10
= N 2/10 > 4π. �

Remark 3.10. Observe that the condition γ ⊂ G2 in the previous lemma can be replaced
by Px (π1(γ ))⊂ Px (π1(G2)). The same holds for backward iterates changing Px by Py

and horizontal to vertical cones.
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3.3. A lower bound on the size of the invariant manifolds. Let (Sn)
+∞

n=0 be a sequence
of surfaces, such that each surface has a metric that induces a distance dn(·, ·) and
let (ψn)n∈N be a sequence of diffeomorphisms ψn : Sn−1→ Sn . A curve γ ⊂ S0 is a
stable manifold for the sequence (ψn)n∈N if any two points x and y on γ verify that
dn(ψn ◦ · · · ◦ ψ1(x), ψn ◦ · · · ◦ ψ1(y)) converges to zero exponentially fast. We say that
γ has size bounded from below by r > 0, if l0(γ )≥ r , where l0(·) is the length of γ inside
S0.

The next proposition gives us the existence of stable and unstable curves tangent to the
center direction, with good estimates of their sizes and their tangent directions. The proof
of this proposition follows the exact same steps as [13, Theorem 5], but with the changes
necessary to get the estimates we need.

Theorem 5 in [13] proves the existence of stable manifolds with uniform size and
‘geometry’ in the following scenario. Let g : S→ S be a C2-diffeomorphism of a compact
surface and let σ, σ̃ , ρ, ρ̃ ∈ (0, 1) be constants such that

σ̃ ρ̃

σρ
> σ. (14)

For any point x ∈ S having a direction E ⊂ Tx S such that, for all n ≥ 0,

σ̃ n
≤ ‖Dgn(x)|E‖ ≤ σ n and ρ̃n

≤
‖Dgn(x)|E‖2

|det Dgn(x)|
≤ ρn

there exist stable manifolds for such points. Inequality (14) is important in the
construction. That is why we need good control on the Lyapunov exponent along the
center, given by Proposition 1.4.

PROPOSITION 3.11. For N large enough, for each m ∈ Z, there are two C1-curves W ∗(m)
contained in W c(m), tangent to E∗m and with length bounded from below by r0 = N−7,
for ∗ = −,+. Those curves are C1-stable and unstable manifolds for f , respectively.
Moreover, TpW+r0

(m)⊂ C hor
4/θ1

(p) and Tq W−r0
(m)⊂ C ver

4/θ1
(q), for every p ∈W+r0

(m) and
q ∈W−r0

(m).

Proof. We use some of the notation of the proof of [13, Theorem 5]. If m ∈ Z , by the
definition of Z , m ∈ Zi for some i ∈ N. Since Zi = f (Z−i ) ∩ f −1(Z+i ) we have that
f −1(m) ∈ Z−i , and for this point the following holds:

(2N )−n
≤ ‖D f n( f −1(m))|E−

f−1(m)
‖< (N−4/5)n for all n ≥ 0.

Since |det D f (p)|Ec
p | = |det DsN (p)| = 1 for every p ∈ T4, the following also holds:

(2N )−2n
≤

‖D f n( f −1(m))|E−
f−1(m)
‖

2

|det D f n( f −1(m))|Ec
f−1(m)
|
< (N−2·(4/5))n for all n ≥ 0.

For each n ∈ N consider ψn : Vn→ T f n(m)T2 to be the lifted dynamics by the
exponential map of the diffeomorphism f |W c( f n−1(m)) along the orbit of m, that goes from
a neighborhood Vn of 0 in T f n−1(m)T2 to a neighborhood of 0 in T f n(m)T2. Since the center
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leaves are C2, we have that f |W c( f n−1(m)) is a C2-diffeomorphism; this implies that ψn is
a C2-diffeomorphism into its image.

Take σ = N−4/5, σ̃ = (2N )−1, ρ = σ 2 and ρ̃ = σ̃ 2. Consider

λ1 = 2N−4/5
= 2σ and λ2 =

1
2 · (2N )2

=
ρ̃

2
,

and take

C0 = 3>
∑
k≥0

(
σ

λ1

)k

= 2=
∑
k≥0

(
λ2

ρ̃

)k

.

Let En = E−f n−1(m) and Fn = E⊥n and use the basis En ⊕ Fn . We define

mn = ‖D f n( f −1(m))|E−
f−1(m))

‖ and Mn =
|det D f n

|Ec ( f −1(m))|
mn

=
1

mn
.

Using this notation we can also define

An =
∑
k≥0

λ−k
1 mn+k/mn,

Bn =

n∑
k=0

λk−n
2

Mk/Mn

mk/mn
.

The proof of [13, Theorem 5] gives

An ≤ C0

(
λ1

σ̃

)n

and Bn ≤ C0

(
ρ

λ2

)n

. (15)

Define the change of coordinates in T f n−1(m)T2 given by1n = Diag(An, An Bn), where
the map 1n is defined using the coordinates En ⊕ Fn . Observe that An and Bn are greater
than or equal to 1; in particular, ‖1n‖ = An Bn and ‖1−1

n ‖ = A−1
n < 1.

Write hn =1n+1 ◦ ψn ◦1
−1
n and Hn =1n+1 ◦ Dψn(0) ◦1−1

n . We have

Hn =

(
a d
0 c

)
and H−1

n =


1
a
−

d
ca

0
1
c

 .
From the proof of [13, Theorem 5], we obtain

(‖D f |Ec‖ · ‖D f −1
|Ec‖

2)−1
≤|a|<λ1 (16)

|a|λ−1
2 ≤|c| ≤λ1λ

−1
2 ‖D f |Ec‖ · ‖D f −1

|Ec‖ + λ1‖D f −1
|Ec‖

2

(17)

|d| ≤‖D f |Ec‖ · ‖D f −1
|Ec‖|a|. (18)

Using inequalities (17) and (18), we have∣∣∣∣dc
∣∣∣∣≤ ‖D f |Ec‖ · ‖D f −1

|Ec‖|a|

|a|λ−1
2

<
(2N )2

2 · (2N )2
=

1
2
.
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Let us set ξ = σ̃ λ2/λ
2
1ρ and observe that, for N large enough, ξ > 4. For η ≤ 1/2 we

will consider C̃(η,n) = Cη(En) for the cone of size η around the direction En . If (u, v) ∈
C̃(η,n+1), using (16) and the estimate on |d/c|, we have

‖H−1
n · (u, v)‖ ≥

∣∣∣∣ua
∣∣∣∣− ∣∣∣∣dvca

∣∣∣∣ ≥

∣∣∣∣ua
∣∣∣∣(1−

∣∣∣∣dηc
∣∣∣∣)

≥
‖(u, v)‖
(1+ η)λ1

(
1−

η

2

)
≥
‖(u, v)‖
(3/2)λ1

·
1
2
·

3
2
=
‖(u, v)‖

2λ1
>
‖(u, v)‖
ξλ1

.

We conclude that the vectors of the cone C̃(η,n+1) are expanded by 1/2λ1 by H−1
n .

Observe that if a linear map is η/6-close to H−1
n then the vectors inside C̃η,n+1 are

expanded by at least (4λ1)
−1 > (ξλ1)

−1. It is easy to see that L(C̃(η,n+1))⊂ C̃(η,n) for
any linear map L which is η/6-close to H−1

n .
Recall that ‖D f |cE‖ ≤ 2N and ‖D2 f −1

|W c‖ ≤ N . Since ‖1−1
n+1‖< 1, we obtain

‖Dh−1
n (0)− Dh−1

n (y)‖ ≤ ‖1n‖ · ‖1
−1
n+1‖ · ‖D

2 f −1
|W c‖ · ‖1−1

n+1‖ · ‖y‖ ≤ N An Bn‖y‖.

Using (15), we have that Dh−1
n (y) is η/4|a|-close to H−1

n in a ball of radius

r̃n+1 =
η

6N An Bn
>

η

6NC2
0

(
σ̃ λ2

λ1ρ

)n

>
η

54N
· (4λ1)

n .

Since Dh−1
n expands the vectors inside the cone C̃η,n+1 by at least (4λ1)

−1 > (ξλ)−1,
we can take

r̃0 =
η

54N
·

1
4λ1
=

η

216Nλ1
.

The proof of [13, Theorem 5] gives us a C1-curve inside T f −1(m)T2 tangent to the cone
C̃η,0, of size r̃0, which is a stable manifold for the sequence (hn)n∈N.

To obtain a stable manifold for the sequence (ψn)n∈N we need to apply10 to this curve.
Recall that 10 = Diag(A0, A0); in particular, it preserves the size and direction of a cone.
Thus, we obtain that 10(C̃(η,0))= Cη(E−f −1(m)).

To obtain a stable manifold for f , instead of the sequence (ψn)n∈N, we must project
this curve by the exponential map; this projection will be denoted by W−( f −1(m)). Since
T2 is the flat torus, the derivative of the exponential map is the identity. We conclude that
the stable manifold for f at the point f −1(m) is tangent to Cη(E−f −1(m)).

Now we estimate the size of the cones in the proposition at the point m. So far, the only
restriction we have is η ≤ 1/2. Since ‖D f −1

|Ec‖ and ‖D f |Ec‖ are bounded from above
by 2N ,

D f ( f −1(m)) · Cη(E−f −1(m), f −1(m))⊂ C4N 2η(E
−
m , m).

Using the estimates from Lemma 3.7, we want 4N 2η ≤ θ1/2= (2N 2/5)−1; therefore,
the additional restriction we impose now is η < (8N 2+2/5)−1. Since N is large, we can
take η = N−3, for instance. By Lemma 3.7, we have E−m ⊂ C ver

θ−1
1

and C4N 2η(E
−
m )⊂ C ver

4/θ1
.

This proves the estimate on the cones of the proposition.
With this restriction, now we estimate the size of the stable manifold at the point m. For

η = N−3 and since λ1 = 2N−4/5, we obtain for N large enough,

r̃0 =
η

216Nλ1
=

1
532 · N 4−4/5 >

1
N 5 .
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From this, one can conclude that the stable manifold at the point f −1(m) has size
bounded below by N−5. This implies that at the point m the stable manifold has size
bounded by (2N )−1

· N−5 > N−7
= r0, which concludes the proof for W−r0

(m). The proof
for the unstable manifold is analogous. �

Remark 3.12. From item 1 of Lemma 3.9 and Remark 3.8, if m ∈ Z then W ∗r0
(m)⊂ G2,

for ∗ = −,+.

4. Ergodicity of the system fN

In this section, assuming Proposition 1.4, we prove the following.

THEOREM 4.1. For N large enough fN is ergodic.

The proof is by contradiction. Suppose that f = fN is not ergodic, so then there are
at least two different ergodic components, ν1 and ν2. Let ϕ : T4

→ R be a continuous
function such that ∫

ϕ dν1 6=

∫
ϕ dν2.

Consider the forward and backward Birkhoff’s average

ϕ+(m)= lim
n→+∞

1
n

n−1∑
j=0

ϕ ◦ f j (m) and ϕ−(m)= lim
n→+∞

1
n

n−1∑
j=0

ϕ ◦ f − j (m).

Recall that we defined at the beginning of §3 the set3i as the set of points such that, for
any mi ∈3i , ϕ+(mi )= ϕ

−(mi )=
∫
ϕ dνi holds, for i = 1, 2 and any continuous function

ϕ : T4
→ R.

First we remark that for almost every m ∈ T4 the stable part of the Oseledets
decomposition, defined in (4), is given by E s

m = E ss
m ⊕ E−m . By Theorem 2.11 there is

a C1 stable Pesin manifold, W s(m), such that Tm W s(m)= E ss
m ⊕ E−m , and this applies

analogously for the unstable direction. Recall that the stable Pesin manifold has a
topological characterization given by

W s(m)=
{

y ∈ T4
: lim sup

n→+∞

1
n

log d( f n(m), f n(y)) < 0
}
.

The set Z was defined in (11). For m ∈ Z consider

Ŵ s(m)=
⋃

y∈W−r0 (m)

W ss(y),

where W−r0
(m) is the stable manifold constructed in Proposition 3.11 and r0 = N−7.

Remark 4.2. By the topological characterization of the stable Pesin manifold we conclude
that Ŵ s(m)⊂W s(m). Observe that the strong stable manifold subfoliates the Pesin stable
manifold; in particular, Ŵ s(m) is open inside the Pesin manifold. We conclude that Ŵ s(m)
is a C1-submanifold and for every m ∈ Z the stable Pesin manifold contains a disk of size
r0. This applies analogously for the unstable manifold.
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Since ϕ is continuous, for every z ∈W s(m) and w ∈W u(m), with m ∈3, we obtain
ϕ+(m)= ϕ+(z) and ϕ−(w)= ϕ−(m), where3 was defined in (10) and has full Lebesgue
measure.

CLAIM 1. There exists an invariant set B of full Lebesgue measure such that, for every
m ∈ B and for Lebesgue almost every point z ∈W u(m), it is verified that ϕ−(z)= ϕ+(z).

Proof. Let 3 be as before. By Theorem 2.15, the unstable partition is absolutely
continuous and, in particular, a Fubini-like formula holds. Since the set 3 has full
Lebesgue measure, this implies that there exists a set of full Lebesgue measure B0 ⊂3

such that, for any m ∈ B0, the set W u(m) ∩3 has full Lebesgue measure inside W u(m).
Consider

B =
⋂
j∈Z

f j (B0).

This set is f -invariant, has full Lebesgue measure and verifies the conclusion of the
claim. �

Recall that we defined X =
⋂T−1

k=−T+1 f k(Z) and θ2 = N−3/5. Recall also that we
defined in §3.2 the sets G1 and G2.

LEMMA 4.3. For N large enough and n ≥ 15, for every m ∈ X there are two curves
γ−−n(m)⊂ f −n(W−r0

(m)) and γ+n (m)⊂ f n(W+r0
(m)) with length greater than 4π . The

tangent vectors of each of those curves are contained in the cones C ver
θ2

and C hor
θ2

,
respectively.

Proof. If m ∈ X then

{ f −T+1(m), . . . , f T−1(m)} ⊂ Z ⊂ G1 ⊂ G2 where T = [1+ 7δ/28δ]> 20.

Define W+k (m)= f k(W+r0
(m)) and observe that, for every z ∈W+k (m), if z ∈ G2 and

Tz W+k (m)⊂ C hor
θ2

then T f (z)W+k+1(m)⊂ C hor
θ2

.
By Proposition 3.11, T W+0 (m)⊂ C hor

4/θ1
. Since m ∈ Z ⊂ G1, by Remark 3.8 we

conclude that W+0 (m)⊂ G2. Item (2) of Lemma 3.9 implies that T W+1 (m)⊂ C hor
θ2

.
If p ∈ G2 and (u, v) ∈ C hor

θ2
(p) is a unit vector, then ‖D f (p) · (u, v)‖> N 1/2. For a

C1-curve γ containing m with length N−7, such that γ ⊂ G2 and T γ ⊂ C hor
θ2

, let k ∈ N
be the largest number such that f j (γ )⊂ G2, for every j = 1, . . . , k. Since the vectors
inside C hor

θ2
are expanded by at least N 1/2 and the cone C hor

θ2
is preserved by the derivative

of the points in G2, we conclude that k ≤ 14.
Let k+0 ∈ N be the smallest number such that W+

k+0
(m) ∩ ∂G2 6= ∅. Recall that if p ∈ G2

and (u, v) ∈ C hor
4/θ1

is a unit vector then, by (13), ‖D f (p) · (u, v)‖> 1. Since r0 = N−7,
we obtain that the curve W+1 (m)⊂ C hor

θ2
has length at least N−7 and is tangent to C hor

θ2
, by

the previous paragraph k+0 ≤ 15.

If m ∈ X , then the connected component of W+
k+0
(m) ∩ G2 containing f k+0 (m), which

we will denote by Ŵ+
k+0
(m), intersects the boundary of G2 and T Ŵ+

k+0
(m)⊂ C hor

θ2
.
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FIGURE 1. The curve γ+
k+0

.

Since k+0 < T , we know that f k+0 (m) ∈ Z ⊂ G1 ⊂ G2. We conclude that Ŵ+
k+0
(m) also

intersects the boundary of G1.
Let γ+

k+0
be a connected component of Ŵ+

k+0
(m) ∩ (G2 − G1), such that γ+

k+0
∩ ∂G1 6= ∅

and γ+
k+0
∩ ∂G2 6= ∅; see Figure 1. The curve γ+

k+0
is a C1-curve that verifies the hypothesis

of item (3) from Lemma 3.9. Thus, l( f (γ+
k+0
)) > 4π , T f (γ+

k+0
)⊂ C hor

θ2
and by definition

f (γ+
k+0
)⊂W+

k+0 +1
(m). Define γk+0 +1(m)= f (γ+

k+0
).

Let

G̃ =
{
(x, y, z, w) ∈ T4

: N−3/10
≤

∣∣∣∣x − π2
∣∣∣∣≤ 2N−3/10

or N−3/10
≤

∣∣∣∣x − 3π
2

∣∣∣∣≤ 2N−3/10
}
.

It is easy to see that G̃ has four connected components, each having two boundaries. Since
the critical region only depends on the coordinate x , for any point p ∈ G̃, the derivative
D f (p) expands any vector inside C hor

θ2
by at least N 1/2.

We build γ+n ⊂ f (γ+n−1) inductively for n > k+0 + 1. Let us build it for n = k+0 + 2.
Observe that Px (π1(γ

+

k+0 +1
))= S1. Consider then γ̃+

k+0 +1
to be a connected component of

γ+
k+0 +1

(m) ∩ G̃ that intersects the two boundaries of a connected component of G̃. Define

γ+
k+0 +2

(m)= f (γ̃+
k+0 +1

), and observe that l(γ+
k+0 +2

(m)) > 4π and T f (γk+0 +2(m))⊂ C hor
θ2

.

In this way we can build inductively the curves γ+n (m) that satisfy the conclusions of the
lemma. In a similar way we construct the curves γ−−n(m). Since k+0 ≤ 15 and k−0 ≤ 15,
then this certainly holds for n > 15. �
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For each R > 0, n ≥ 15 and m ∈ X , define

W s
R,−n(m)=

⋃
q∈γ−−n(m)

W ss
R (q), (19)

where the curve γ−−n(m) is the curve given by Lemma 4.3. Define in a similar way the set
W u

R,n(m). For the same reason as we explained in Remark 4.2, we obtain that W s
R,−n(m)

and W u
R,n(m) are C1-submanifolds.

LEMMA 4.4. Fix θ3 > 0 such that θ3 > θ2 and that satisfies C hor
θ3
∩ C ver

θ3
= {0}. There

exists 0< R < 1 such that if n ≥ 15, m ∈ X and m− ∈W s
R,−n(m), then

T (W s
2,−n(m) ∩W c(m−))⊂ C ver

θ3
.

A similar result holds for W u
R,n(m).

Proof. For any p ∈ T4, it holds that π2(W ss(p))=W ss
A (π2(p)), where W ss

A (π2(p)) is the
stable manifold of the point π2(p) for the linear Anosov system. Thus, given any point
q ∈W ss

1 (p), for every b ∈W c(p) there is only one point in W ss(b) ∩W c(q). We define
the stable holonomy map

H s
p,q :W

c(p)−→W c(q)

b 7→ W ss(b) ∩W c(q).

Locally this map is given by the holonomy map defined in §2. This is a C1-diffeomorphism
and we can naturally write DH s

p,q(p) : R2
→ R2.

From Theorem 2.18 this family of maps varies continuously in the C1-topology with
the points (p, q). Since DH s

p,p = Id, by the compactness of T4, there exists R ∈ (0, 1)
such that, for any q ∈W ss

R (p), we have DH s
p,q(p) · (C

ver
θ2
)⊂ C ver

θ3
.

Observe that W s
2,−n(m) is contained inside a center-stable leaf, which is subfoliated

by strong stable leaves. For this subfoliation, restricted to a center-stable leaf, the center
manifolds are transversals. Thus, for m− ∈W s

R,−n(m), the W s
2,−n(m) ∩W c(m−) is given

by H s
m,m−(γ

−

−n(m)). By our choice of R and since T γ−−n(m)⊂ C ver
θ2

the conclusion of the
lemma follows. �

LEMMA 4.5. There is a set of full measure D ⊂ T4 such that for every p ∈ D the orbit of
W c(p) is dense among the center leaves.

Proof. For the linear Anosov A2N , there is a set DA of full measure with the property
that every point in DA has dense orbit. This follows from the ergodicity of A2N for the
Lebesgue measure.

Since the Lebesgue measure of T4 is the product measure of the Lebesgue measure of
each T2, take D = π−1

2 (DA). For any p ∈ T4 it holds that

π2( f (W c(p))= A2N (π2(p)).

For any q ∈ T2, π−1
2 (q) is a center leaf. Thus the dynamics among the center leaves is

conjugated to A2N by π2. Therefore, for any p ∈ D, since π2(p) ∈ DA we conclude that
the orbit of W c(p) is dense among the center leaves. �
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Take m1 ∈ X ∩ D ∩ B ∩31 and m2 ∈ X ∩ D ∩ B ∩32. From the definition of31 and
32, for these two points

ϕ−(m1)=

∫
ϕ dν1 and ϕ+(m2)=

∫
ϕ dν2.

Fix a center leaf W c(q). Since m1, m2 ∈ D, there are two sequences nk→+∞ and
l j →+∞, such that

f nk (W c(m1))→W c(q) and f −l j (W c(m2))→W c(q).

By Lemma 4.3, there are curves γ+nk
(m1) and γ−

−l j
(m2) with length greater than 4π

and contained in the cones C hor
θ2

and C ver
θ2

, respectively. Take R given by Lemma 4.4 and
consider the sets

Lu
k (m1)=

⋃
z∈γ+nk (m1)

W uu
R (z)⊂W u( f nk (m1)),

and Ls
j (m2)=

⋃
z∈γ−
−l j
(m2)

W ss
R (z)⊂W s( f −l j (m2)).

For k and j large enough, f nk (W c(m1)) and f −l j (W c(m2)) are very close to the leaf
W c(q). Thus, by the control on the angles that we obtained in Lemma 4.4, there is a
transversal intersection between Lu

k (m1) and Ls
j (m2). In particular, W u( f nk (m1)) and

W s( f −l j (m2)) intersects transversely. Before we continue with the proof we make the
following remark.

Remark 4.6. This transverse intersection between stable and unstable manifolds is the
key property required to obtain ergodicity. We will see that the rest of the proof is
a standard application of the Hopf argument in the non-uniformly hyperbolic scenario.
Three properties imply this transverse intersection:
(1) for any point inside a certain set with full measure for any ergodic component,

there exists a stable curve inside the center manifold, with large size and controlled
geometry. There also exists a set with similar properties for the unstable curves. The
control is given by Lemma 4.3. Indeed, we can take the sets

X s
=

⋃
n≥15

f −n(X) and Xu
=

⋃
n≥15

f n(X);

(2) the control of the holonomies, which will give a control on the tangent space of
Pesin’s manifolds considered in (19). This is given by Lemma 4.4; and

(3) the density of the orbit of almost every center leaf, which is given by Lemma 4.5.

Now we continue with the proof. Fix ε > 0 small and l ∈ N large enough such that the
Pesin block Rε,l has positive ν2 measure. By Theorem 2.11, there is a number ε1 > 0 such
that every point q ∈Rε,l has a disk contained in W s(q) of size ε1, which we will denote
by W s

loc(q). Furthermore, those disks vary C1-continuously with the point q ∈Rε.l .
Let p be a point of transversal intersection between Lu

k (m1) and Ls
j (m2). Take M > 0

large enough such that f M−l j (m2) ∈Rε,l and d( f M−l j (m2), f M (p))� ε1; such M
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FIGURE 2. The transverse intersection and the holonomy.

exists since m2 is a typical point for ν2 and the set Rε,l has positive ν2-measure. We
may assume that f M−l j (m2) is a density point of Rε,l ∩32. Fix a disk T transverse to
W s

loc( f M−l j (m2)) such that Rε,l ∩32 ∩ T has positive measure inside T .
Consider a disk Du

⊂ f M (Lu
k (m1)) centered in f M (p) and observe that this disk is

transverse to W s
loc( f M−l j (m2)). By the absolute continuity of the Pesin manifolds, we

conclude that the set A = {W s
loc(z) ∩ Du

: z ∈Rε,l ∩32 ∩ T } has positive measure inside
W u( f M+nk (m1)).

By the invariance of B, we know that f M+nk (m1) ∈ B and for almost every point q ∈
W u( f M+nk (m1)), it holds that ϕ+(q)= ϕ−(q). Fix ẑ ∈ A such that ϕ+(ẑ)= ϕ−(ẑ) and
let z ∈Rε,l ∩32 ∩ T be the point with ẑ ∈W s

loc(z).
Since z ∈32 and ẑ ∈W s(z), we know that ϕ+(m2)= ϕ

+(z)= ϕ+(ẑ). On the other
hand, ẑ ∈W u( f M+nk (m1)) implies that ϕ−(ẑ)= ϕ−(m1). Thus,∫

ϕ dν1 = ϕ
−(m1)= ϕ

−(ẑ)= ϕ+(ẑ)= ϕ+(z)= ϕ+(m2)=

∫
ϕ dν2.

This is a contradiction since we assumed that
∫
ϕ dν1 6=

∫
ϕ dν2. We conclude that there

is only one ergodic component and, in particular, the Lebesgue measure is ergodic. Thus
we have proved that for N large enough, fN = f is ergodic.

5. Stable ergodicity of the system fN

In this section we show how to adapt the proof of the ergodicity of fN to obtain C2-stable
ergodicity. Recall that for a vector v ∈ TmT4, we defined v1 = Dπ1(m) · v. For a direction
E ⊂ TmT4 we will write (E)1 = Dπ1(m) · E . For this section we fix 0< δ� 1 small and
we assume that N is large and UN is small enough such that Proposition 1.4 holds. Using
Proposition 2.21 and the estimates in (8), one easily obtains the following lemma.
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LEMMA 5.1. For each β > 0, if N is large and UN is small enough, for g ∈ UN the
following hold:
(1) g is partially hyperbolic, with a decomposition T M = E ss

g ⊕ Ec
g ⊕ Euu

g ;
(2) g is dynamically coherent and leaf conjugated to f by a homeomorphism hg : T4

→

T4;
(3) dC2(W c

g (m), W c
f (m))≤ β;

(4) ‖Dg(m)|Ec
g,m‖ ∈ (e

−β
‖D f (m)|Ec

f,m
‖, eβ‖D f (m)|Ec

f,m
‖);

(5) |det Dg(m)|Ec
g,m | ∈ (e

−β , eβ);
(6) ‖D2g(m)|W c

g (m)‖ ≤ 2N;
(7) max{‖Dg(m)|Ec

g,m‖, ‖Dg−1(m)|Ec
g,m‖} ≤ 2N;

(8) min{m(Dg(m)|Ec
g,m ), m(Dg−1(m)|Ec

g,m )} ≥ (2N )−1;
(9) ‖Dg(m) · vc

‖ ∈ (e−β‖Dg(m) · vc
1‖, eβ‖Dg(m) · vc

1‖), where vc
∈ Ec

g,m and vc
1 =

Dπ1(m) · vc; and
(10) for points p ∈ T4 and q ∈W c

g (p), let expc
q : Tq W c

g (p)→W c
g (p) be the exponential

map of the center leaf; for any C1-curve γ ⊂ B(0, 1
2 )⊂ Tq W c

g (p), we have that
lq(γ ) ∈ (e−βl(expc

q(γ )), eβl(expc
q(γ ))), where lq(γ ) is the length of the curve with

respect to the inner product 〈· , ·〉q on Tq W c
g (p), the usual metric of T4 at the point q.

From now on we fix 0< β� 1. By Proposition 1.4, every diffeomorphism g ∈ UN

is non-uniformly hyperbolic. Using Theorem 2.17, we obtain the ergodic decomposition
Leb =

∑
i∈N ciνg,i . We define similarly as in §3 the sets {3g,i }i∈N. Let Rg be the set of

regular points for g. For a regular point p ∈Rg , let E−g,p and E+g,p be the directions of the
Oseledets splitting. It holds that Ec

g,p = E−g,p ⊕ E+g,p.
We define the sets

Z−g,i = {m ∈Rg ∩3g,i : ∀n ≥ 0 we have that ‖Dgn(m)|E−g,m‖< (N
−4/5)n},

Z+g,i = {m ∈Rg ∩3g,i : ∀n ≥ 0 we have that ‖Dg−n(m)|E+g,m‖< (N
−4/5)n},

Zg,i = g(Z−g,i ) ∩ g−1(Z+g,i ),

Zg =
⋃
i∈N

Zg,i .

LEMMA 5.2. For every g ∈ UN , it holds that νg,i (Zg,i )≥ 1− 7δ/1+ 7δ and Leb(Zg)≥

1− 7δ/1+ 7δ.

The proof is analogous to the proof of Lemma 3.5. Let T = [1+ 7δ/28δ] and define

Xg =

T−1⋂
k=−T+1

gk(Zg). (20)

The proof of the next lemma is the same as the proof of Lemma 3.6.

LEMMA 5.3. For N large and UN small enough, if νg,i is an ergodic component of the
Lebesgue measure then

νg,i (Xg) > 0.

Now we make a few estimates on the cones. Recall that θ1 = N−2/5.
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LEMMA 5.4. If N is large and UN is small enough then for each g ∈ UN , for every m ∈ Zg ,
it is verified that (E+g,m)1 ⊂ C hor

θ−1
1
(m). Furthermore, Cθ1/2((E

+
g,m)1, m)⊂ C hor

4/θ1
(m). The

same holds for the E−g,m and the vertical cone.

Proof. For m ∈ Zg , it holds that ‖Dg(m)|E+g,m‖ ≥ N 4/5. Take a vector of the form (u, 1),

identifying (u, 1)= (u, 1, 0, 0), with |u| ≤ N−2/5. For N large enough and from the
calculations made in the proof of Lemma 3.7, which for this part does not use that m ∈ Zg ,
we obtain

‖Dg(m) · (u, 1)‖ ≤ eβ‖D f (m) · (u, 1)‖ ≤ eβN 3/5+(1/100) < N 3/5+(1/50).

Suppose that such (u, 1) generates (E+g,m)1, then

‖Dg(m)|E+g,m‖ ≤ eβ
‖Dg(m) · (u, 1)‖
‖(u, 1)‖

≤ N 3/5+1/25 < N 4/5,

which is a contradiction since m ∈ Zg . The proof of the second part of the lemma is exactly
the same as in Lemma 3.7. �

Recall that we defined in §3.2 the sets Crit1, Crit2, G1 and G2. Also recall that
θ2 = N−3/5. We obtain the following lemma, by continuity and Lemma 3.9.

LEMMA 5.5. For N large, UN small enough and g ∈ UN , the following hold.
(1) Zg ⊂ G1 ⊂ G2.

(2) If m ∈ G2 then (Dg(m) · C hor
4/θ1

(m))1 ⊂ C hor
θ2
(g(m)).

(3) If γ ⊂ G2 is a C1-curve inside a center leaf such that the curve π1(γ ) is tangent to
C hor
θ2

and has length l(π1(γ ))≥ N−3/10 then l(g(γ )) > 4π .
Similar statements hold for the vertical cone and g−1.

Proof.
(1) For m /∈ G1, by item (4) of Lemma 5.1, it holds that

‖Dg(m)|Ec
g,m‖ ≤ eβ‖D f (m)|Ec

f,m
‖< eβN 7/10−1/100 < N 4/5.

(2) The proof of item (2) of Lemma 3.9 actually gives that, for m ∈ G2,

D f (m) · (C hor
4/θ1

(m))⊂ C hor
θ2/K ( f (m)),

where K = 1/2N 1/10
− 2N−3/5

− 4. In particular, the inclusion of item (2) of Lemma 3.9
is uniformly strict. Thus, if UN is small enough the conclusion follows.
(3) From the estimates made in the proof of item (3) of Lemma 3.9 and by items (4) and
(9) of Lemma 5.1, it follows that

l(g(γ ))≥ l(g(π1(γ ))) > e−βN 1/2−3/10 > 4π. �

Now we estimate the size of the stable and unstable manifolds analogous to
Proposition 3.11.
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PROPOSITION 5.6. Let N be large and UN be small enough. For g ∈ UN and m ∈ Zg ,
there are two C1-curves, W ∗g (m), contained in W c

g (m), tangent to E∗g,m and with length
bounded from below by r0 = N−7, for ∗ = −,+. Those curves are C1-stable and unstable
manifolds for g, respectively. Moreover, (TpW+g,r0

(m))1 ⊂ C hor
4/θ1

(p) and (Tq W−g,r0
(m))1 ⊂

C ver
4/θ1

(q), for every p ∈W+g,r0
(m) and q ∈W−g,r0

(m).

Proof. The main difference in the proof is that we have to project by Dπ1 the tangent
directions of the curves constructed. By Lemma 5.1 we will have good control of what
happens after this projection, obtaining the desired estimates.

Using item (5) of Lemma 5.1, for m ∈ Zg ,

(2N )−n
≤ ‖Dgn(g−1(m))|E−

g,g−1(m)
‖< (N−4/5)n,

and

(2N )−2ne−nβ
≤

‖Dgn(g−1(m))|E−
g,g−1(m)

‖
2

|det Dg(g−1(m))|Ec
g,g−1(m)

|
< (eβN−2·(4/5))n .

In the same way as in the proof of Proposition 3.11, consider the lifted dynamics
ψn : Vn→ Tgn(m)W c

g (g
n(m)) of the diffeomorphism g|W c

g (gn−1(m)), that goes from

a neighborhood Vn of 0 in Tgn−1(m)W
c
g (g

n−1(m)) onto a neighborhood of 0 in
Tgn(m)W c

g (g
n(m)). Since the center leaves are C2, we have that g|W c

g (gn−1(m) is a C2-

diffeomorphism, which implies that ψn is a C2-diffeomorphism into its image.
Take σ = N−4/5, λ1 = 2σ , σ̃ = (2N )−1, ρ = eβσ 2, ρ̃ = e−β σ̃ 2, λ2 = ρ̃/2 and C0 = 3.

Let ξ = σ̃ λ2/λ
2
1ρ and observe that, for N large enough,

ξ =
σ̃ λ2

λ2
1ρ
= 2−6e−2βN 1/5 > 4.

Following the same construction as in Proposition 3.11, one obtains the maps 1n , hn and
Hn . Recall that

Hn =

(
a d
0 c

)
and H−1

n =


1
a
−

d
ca

0
1
c

 .
It also holds that

(‖Dg|Ec
g‖ · ‖Dg−1

|Ec
g‖

2)−1
≤|a|<λ1, (21)

|a|λ−1
2 ≤|c| ≤λ1λ

−1
2 ‖Dg|Ec

g‖ · ‖Dg−1
|Ec

g‖ + λ1‖Dg−1
|Ec

g‖
2,

(22)

|d| ≤‖Dg|Ec
g‖ · ‖Dg−1

|Ec
g‖|a|. (23)

By item (4) of Lemma 5.1 and using the previous inequalities,∣∣∣∣dc
∣∣∣∣≤ ‖Dg|Ec

g‖ · ‖Dg−1
|Ec

g‖|a|

|a|λ−1
2

<
e2β(2N )2

2eβ · (2N )2
=

eβ

2
.
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For η ≤ 1
2 define the cone C̃(η,n) = Cη(En), with cone size η around the direction En

inside Tgn−1(m)W
c
g (g

n−1(m)). Using the estimate on |d/c|, following the same steps as in
the proof of Proposition 3.11, we obtain that any linear map η/6-close to H−1

n contracts
the cone C̃(η,n+1) and expands any vector inside C̃(η,n+1) by at least 1/4λ1.

By item (6) of Lemma 5.1, for any point q ∈ T4, it holds that ‖D2g(q)|W c
g (q)‖ ≤ 2N .

Thus, (Dhn(y))−1 is η/6-close to H−1
n in the ball of radius

r̃n+1 =
η

12N‖1n‖
>

η

108N
(4λ1)

n .

Using a similar argument to that of the proof of Proposition 3.11, we can take

r̃0 =
η

432Nλ1
.

Also by similar reasoning as in the proof of Proposition 3.11, taking η = N−3 we
obtain a stable manifold for the sequence (ψn)n∈N with size bounded from below by r̃0 >

N−4+2/5, for N large enough. The projection of this stable manifold by the exponential
map gives the stable manifold W−g (g

−1(m)) for g at the point g−1(m). By item 10 of
Lemma 5.1, this stable manifold has size bounded from below by e−β · N−4+2/5 > N−5.
Thus, W−g (m)= g(W−g (g

−1(m))) has size bounded from below by r0 = N−7.
The stable manifold for the sequence (ψn) is tangent to the cone C̃(η,0) and at the origin

is tangent to the direction E−g,m . By items (3), (7) and (8) of Lemma 5.1, for any q ∈ T4,

(Dg(q) · (C̃2η,0)1)1 ⊂ Ce2β8N 2η((E
−
g,m)1, m), (24)

where (C̃2η,0)1 is identified with (C̃2η,0)1 × {0}.
The stable manifold W−g (g

−1(m)) at the point q is tangent to D expc
m((expc

m)
−1

(q)) · C̃(η,0). If β > 0 is small enough, then D expc
m(p) is close to the identity, for any

p ∈ B(0, 1
2 ). Thus, (Tq W−g (g

−1(m)))1 ⊂ (C̃2η,0)1. By (24), we obtain

(Tq W−g,r0
(m))1 ⊂ Ce2β8N 2η((E

−
g,m)1, q).

By Lemma 5.4 and our choice of η, we conclude that

(Tq W−g,r0
(m))1 ⊂ C ver

4/θ1
(q). �

So far we have obtained the results analogous to §3. Now we will obtain the results
analogous to the results used in §4 to obtain the ergodicity of f . The following is analogous
to Lemma 4.3.

LEMMA 5.7. For N large, UN small and n > 15, if νg,i is an ergodic component of the
Lebesgue measure, then for every m ∈ Xg there are two curves γ−g,−n(m)⊂ g−n(W−g,r0

(m))
and γ+g,n(m)⊂ gn(W+g,r0

(m)) with length greater than 4π , such that (T γ−g,−n(m))1 ⊂ C ver
θ2

and (T γ+g,n(m))1 ⊂ C hor
θ2

.

Proof. The difference from the fibered case is the need to consider the projection π1. For
m ∈ Xg , it holds that W+g,r0

(m)⊂ G2. Define W+k,g(m)= gk(W+g,r0
(m)). By Lemma 5.6,

(T W+g,r0
(m))1 ⊂ C hor

4/θ1
and by Lemma 5.5, (T W+1,g(m))1 ⊂ C hor

θ2
.
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Construct in a similar way as in the proof of Lemma 4.3 the number k+0 ∈ N
and the curve γ+

k+0 ,g
. Since this curve must intersect ∂G1 and ∂G2, it has length

l(π1(γ
+

k+0 ,g
))≥ N−3/10 and π1(γ

+

k+0 ,g
) is tangent to C hor

θ2
. By Lemma 5.5, l(g(γ+

k+0 ,g
)) > 4π

and π1(g(γ+k+0 ,g
)) is tangent to C hor

θ2
. The rest of the proof is the same as the proof of

Lemma 4.3. �

For R > 0, let
W s

g,R,−n(m)=
⋃

q∈γ−g,−n(m)

W ss
g,R(q),

where the curve γ−g,−n(m) is the curve given by the previous lemma. Define similarly
W u

g,R,n(m). For the same reason as we explained in Remark 4.2, we obtain that
W s

g,R,−n(m) and W u
g,R,n(m) are C1-submanifolds. The next lemma is similar to

Lemma 4.4.

LEMMA 5.8. Fix θ3 > 0 such that θ3 > θ2 and it satisfies C hor
θ3
∩ C ver

θ3
= {0}. For g ∈ UN ,

there exists 0< R < 1 such that if n ≥ 15, m ∈ Xg and m− ∈W s
g,R,−n(m)⊂W s

g,2,−n(m),
then

(T (W s
g,2,−n(m) ∩W c

g (m
−)))1 ⊂ C ver

θ3
.

A similar result holds for W u
g,R,n(m).

The main difference for the non-fibered case is given in the following proposition.

PROPOSITION 5.9. For N large and UN small enough, if g ∈ UN then for Lebesgue almost
every point m ∈ T4 its central leaf W c

g (m) has dense orbit among the center leaves.

Proof. For UN small enough, for every g ∈ UN there is a homeomorphism hg : T4
→ T4,

which takes center leaves of fN to center leaves of g, such that for every m ∈ T4 it is
verified that

g ◦ hg(W c
f (m))= hg ◦ f (W c

f (m)).

Consider the quotients M f = T4/∼c
f and Mg = T4/∼c

g , where p ∼c
∗ q if and only if

q ∈W c
∗ (p) for ∗ = f, g. We denote π f : T4

→ M f and πg : T4
→ Mg as the respective

projections. Observe that M f = T2 and that the induced dynamics f̃ : M f → M f of f
is given by A2N . Endow Mg with the distance dg given by the Hausdorff distance on the
center leaves, that is,

dg(L , W )= dHaus(π
−1
g (L), π−1

g (W )).

By the leaf conjugacy equation, the induced dynamics g̃ : Mg→ Mg of g is conjugated
to the linear Anosov A2N on T2 by the homeomorphism induced by hg , which we will
denote by h̃g . Denote by W s

A2N (·) the stable manifold of A2N on T2 and let

W s
g̃ (L)= {W ∈ Mg : lim

n→+∞
dg(g̃n(L), g̃n(W ))= 0},

be the stable set of L .
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CLAIM 2. For every m ∈ T4, for every q ∈W c
g (m), it is verified that

πg(W ss
g (q))=W s

g̃ (πg(m))= h̃g(W s
A2N (π f (h−1

g (m)))),

and πg is a bijection from W ss
g (q) to W s

g̃ (πg(m)).

Proof. The leaf conjugacy equation implies that W s
g̃ (πg(m))= h̃g(W s

A2N (π f (h−1
g (m))))

and, in particular, W s
g̃ (πg(m)) is a continuous curve homeomorphic to a line.

It is immediately clear that πg(W ss
g (q))⊂W s

g̃ (πg(m)). We also have that W ss
g (q) ∩

W c
g (q)= {q}. Indeed, since the angle between Ec

g and E ss
g is uniformly bounded away

from zero and the center foliation is uniformly compact, the map πg|W ss
g,loc(z)

is injective, for

every z ∈ T4 and for some small uniform size of stable leaf which we write W ss
loc(z). If there

were two points {p, q} ⊂W ss
g (q) ∩W c

g (q) then for, n large enough, {gn(p), gn(q)} ⊂
W ss

g,loc(g
n(q)) ∩W c

g (g
n(q)), which contradicts the fact that πg|W ss

g,loc(q)
is injective. It

remains to show the surjectivity.
We work inside W cs(m), which is foliated by strong stable manifolds. Take P ∈

W s
g̃ (πg(m)) and consider its central leaf F = π−1

g (P). This is a transversal section of
the C1 foliation by strong stable manifolds inside the manifold W cs

g (m). Consider the set
Lm,F = {z ∈W c

g (m) :W
ss
g (z) ∩ F 6= ∅}.

Fix a small ε > 0. Since the angle between E ss
g and Ec is uniformly bounded away

from zero and the center foliation is uniformly compact, for any point p ∈ T4, the set

Vs
g(p) :=

⋃
q∈W c

g (p)

W ss
g,ε(q),

contains a neighborhood of W c
g (p) inside W cs

g (p) of uniform size, independent of p.
Since P ∈W s

g̃ (πg(m)), take n large enough such that π−1
g (g̃n(P)) ∩ Vs

g(g
n(m)) 6= ∅.

Thus, there exists some qn ∈W c
g (g

n(m)) such that W ss
g,ε(qn) ∩ π

−1
g (g̃n(P)) 6= ∅. We

conclude that W ss
g (g

−n(qn)) ∩ F 6= ∅, in particular, Lm,F 6= ∅.
If p̂ ∈ Lm,F let γ p̂,F be a simple C1 curve contained in W ss

g ( p̂) connecting p̂ and F .
There is a foliated chart containing γ p̂,F . Since F is transversal to the foliation, we have
that there is an open neighborhood of p̂ inside W c

g (m) such that the strong stable manifold
of every point in this neighborhood intersects F , and thus Lm,F is open.

Since W c
g (m) and F are compact, the distance, inside W cs

g (m), between them is smaller
than a constant R̃ > 0. Observe that the tangent spaces of stable manifolds are contained
inside a cone, transverse to the central direction in W cs

g (m). Thus, for p̂ ∈ Lm,F , the length
of the piece of W ss

g ( p̂) starting in p̂ and ending in F is bounded by a constant C > 0.
Let (pn)n∈N ⊂ Lm,F be a sequence such that pn→ p ∈W c

g (m). Consider W ss
g,2C (p),

the strong stable manifold of size 2C . Since compact parts of the strong stable manifold
vary continuously with the point, W ss

g,2C (pn) converges in the C2-topology to W ss
g,2C (p).

Take the sequence of points (qn)n∈N defined as qn ∈W ss
g,2C (pn) ∩ F . Thus, qn→ q ∈

W ss
g,2C (p) and, since F is closed, q ∈ F . Therefore, q ∈W ss

g,2C (p) ∩ F and Lm,F is closed.
Since W c

g (m) is connected, it follows that Lm,F =W c
g (m). �

For the linear Anosov A2N the stable foliation is minimal. Let m be a generic point of
an ergodic component νg,i of the Lebesgue measure for g. Suppose also that m is a density
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point for the set3g,i defined at the beginning of this section. By absolute continuity of the
strong stable foliation almost every point inside W ss

g (q) is in the ergodic component of m,
for q ∈3g,i . Using the minimality of the stable foliation of the linear Anosov and by the
leaf conjugacy W s

g̃ (πg(m)) is dense in Mg .

Take U a small open set in Mg . Since the center foliation is uniformly compact, Û =
π−1

g (U ) is a saturated open set such that any two center leaves in Û are C2-close to each
other. By the previous claim W ss

g (m) ∩ Û 6= ∅.
Let B(m, ε) be a small ball around m such that Leb(B(m, ε) ∩3g,i ) has almost full

measure inside B(m, ε). By absolute continuity

Leb(W ss
g (B(m, δ) ∩3g,i ) ∩ Û ∩3g,i ) > 0.

In particular, νg,i (3g,i ∩ Û ) > 0. Since m is a generic point for νg,i , its future orbit visits
Û infinitely many times. This is true for any open set U inside Mg , which concludes the
proof of the proposition. �

Now let N be large and UN be small enough such that Lemmas 5.7, 5.8 and
Proposition 5.9 hold. For g ∈ UN , if g is not ergodic, we can follow the exact same steps
as in the proof of ergodicity of f and find a contradiction. We conclude that every g ∈ UN

is ergodic.

6. The Bernoulli property
In this section we explain how to adapt the proof of ergodicity to obtain the Bernoulli
property. Let f = fN for N large enough. By Theorem 2.17, since the Lebesgue measure
is ergodic for f , there exists k ∈ N and probability measures ν1, . . . , νk , which are f k-
invariant, such that

Leb=
1
k

k∑
j=1

νi ,

where each ( f k, νi ) is Bernoulli. Suppose k > 1. The measures {νi }
k
i=1 form the ergodic

decomposition of the Lebesgue measure for f k . As we stated in Remark 4.6, three
properties imply the existence of transverse intersections between Pesin’s manifolds of
points in different ergodic components.

Observe that f −k(X s)⊂ X s , where we defined the set X s in item (1) of Remark 4.6.
Similarly f k(Xu)⊂ Xu . Thus, item (1) of Remark 4.6 is valid for f k .

Once we have the curves obtained in item (1) of Remark 4.6 and since a stable manifold
for f is a stable manifold for f k , using the control on the holonomies given by Lemma 4.4
we obtain item (2) of Remark 4.6.

To obtain item (3) of Remark 4.6 we need the following lemma.

LEMMA 6.1. There is a set of full measure D ⊂ T4 such that for every p ∈ D the f k-orbit
of W c(p) is dense among the center leaves.

Proof. The linear Anosov A2N is totally ergodic, that is, for any j ∈ N, A2N j is ergodic.
In particular, A2Nk is ergodic. The proof is analogous to the proof of Lemma 4.5. �
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Following the same steps of the proof of ergodicity for f , which is just the Hopf
argument in the non-uniformly hyperbolic scenario, we conclude that f k is ergodic. This
is a contradiction, since the ergodic decomposition of the Lebesgue measure is given by
the measures {νi }

k
i=1 and k > 1. Thus k = 1. In particular, f is Bernoulli.

For g ∈ UN to prove that g is Bernoulli one follows the same steps as in the proof that
f is Bernoulli. Observe that the stable and unstable foliations of A2N j are minimal, for
any j ∈ N. With this observation one easily proves a lemma analogous to Lemma 5.9.

7. Proof of Proposition 1.4
To prove Proposition 1.4, we follow and adapt the proof of Theorem 1.2 given by Berger
and Carrasco in [5] with the necessary changes. For a C1-curve γ and a measurable set
A ⊂ γ , write Leb(A) the measure of A with respect to the Lebesgue measure in γ induced
by the metric of T4. Also denote f = fN . In this section we will refer to the strong
unstable manifold as the ’unstable manifold’.

7.1. The estimate for fN . The goal of this section is to prove the estimate given by
Proposition 1.4 for f .

Recall that we denoted eu
= (eu

1 , eu
2) ∈ R

2 as a unit eigenvector of A for the eigenvalue
1< µ= λ−1, where λ ∈ (0, 1) is the eigenvalue for the contractive direction of A. Recall
also that we defined the linear map Px : R2

→ R2 given by Px (a, b)= (a, 0).

LEMMA 7.1. [5, Proposition 1] There is a differentiable function α : T4
→ R2 such that

the unstable direction of f is generated by the vector field (α(m), eu), where

D f (m) · (α(m), eu)= µ2N (α( f (m)), eu) and ‖α(m)− λN Px (eu)‖ ≤ λ2N .

Definition 7.2. A u-curve is a C1-curve γ : [0, 2π ] → M such that dγ /dt(t)=
(α(γ (t)), eu)/λN

‖Px (eu)‖, for every t ∈ [0, 2π ].

Observe that, for a u-curve γ ,

d f k
◦ γ

dt
(t)=

µ2Nk(α( f k(γ (t))), eu)

λN‖Px (eu)‖
for all t ∈ [0, 2π ] and for all k ≥ 0. (25)

The u-curves will play a fundamental role in the proof. The key property of a u-curve is
that ‖α(γ (t)) · (λN

‖Px (eu)‖)−1
− (1, 0)‖ ≤ λ2N . This will allow us to control the amount

of time that a u-curve spends in a critical region, which is a region on T4 that only depends
on the x coordinate.

Since we are interested in Lyapunov exponents along the center direction we will
introduce certain types of vector fields along u-curves that will be useful in this task. After
that we will be ready to give a criterion to obtain large positive Lyapunov exponents along
the center direction for almost every point in T4.

Definition 7.3. An adapted field (γ, X) over a u-curve γ is a unitary vector field X such
that:
(1) X is tangent to the center direction; and
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(2) X is (CX , 1/2)-Hölder along γ , that is

‖Xm − Xm′‖ ≤ CX dγ (m, m′)1/2 for all m, m′ ∈ γ,

where CX < 20N 2λN and dγ is the distance measured along γ .

Berger and Carrasco proved that, for N large enough and for every (γ, X) adapted field,

‖Xm − Xm′‖ ≤ λ
N/3 for all m, m′ ∈ γ.

Fix an adapted field X and denote by X k
= ( f k)∗X/‖( f k)∗X‖, where

(( f k)∗X)m = D f k( f −k(m)) · X f −k (m).

LEMMA 7.4. [5, Lemma 2] For N large enough, for every adapted field (γ, X), for every
k ≥ 0 and every 1≤ j ≤ [µ2Nk

], the pair (γ k
j , X k

|γ k
j
) is an adapted field.

Denote by dγ the Lebesgue measure induced on γ and by |γ | the length of γ . Define

I γ,Xn :=
1
|γ |

∫
γ

log ‖D f n
· X‖ dγ.

Now we prove the following criterion to obtain positive Lyapunov exponents along the
center direction.

PROPOSITION 7.5. Suppose that there exists C > 0 such that for every u-curve γ there is
an adapted vector field X which satisfies, for n large enough,

I γ,Xn

n
> C.

Then Lebesgue almost every point in T4 has a Lyapunov exponent along the central
direction which is larger than (1− 2λ2N )C.

Proof. We will prove that, for every ρ > 0, for almost every point there is a Lyapunov
exponent greater than (1− 2λ2N

− ρ)C in the center direction. Suppose not. Then
there is a set with positive measure B such that every point in this set does not have
a Lyapunov exponent greater than (1− 2λ2N

− ρ)C . Since the unstable foliation is
absolutely continuous there is an unstable manifold Lu that intersects B in a subset with
positive Lebesgue measure inside Lu . Let q ∈ Lu be a Lebesgue density point of Lu

∩ B.
Let rk = 2πλ2Nk and let γrk : [−rk, rk] → M be a piece of u-curve such that γrk (0)= q.
Since q is a density point then

Leb(γrk ∩ B)
Leb(γrk )

→ 1.

Take β < ρ and let k be large enough such that Leb(γrk ∩ Bc) < βC/ log 2NLeb(γrk ).
Observe that f k

◦ γrk is a u-curve, and let Xrk be the vector field over γrk , such that
( f k
◦ γrk , ( f k)∗Xrk ) satisfies the hypothesis of the lemma. Let

χ(m)= lim sup
n→∞

log ‖D f n(m) · Xrk‖

n
.
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Thus, for every m ∈ B, χ(m) < (1− 2λ2N
− ρ)C . From (25) and Lemma 7.1, for N large

enough, we obtain
1∥∥d( f k ◦ γrk )/dt

∥∥ ≥ 1− 2λ2N

µ2Nk .

In particular,∫
γrk

χ dγrk =

∫
f k◦γrk

χ ◦ f −k 1∥∥d( f k ◦ γrk )/dt
∥∥d( f k

◦ γrk )

≥
1− 2λ2N

µ2Nk

∫
f k◦γrk

χ ◦ f −kd( f k
◦ γrk )

= λ2Nk(1− 2λ2N ) lim sup
n→+∞

∫
f k◦γrk

log ‖D f n(m) · ( f k)∗Xrk‖

n
d( f k

◦ γrk )

≥ λ2Nk(1− 2λ2N )| f k
◦ γrk |C > (1− 2λ2N )C |γrk |.

On the other hand,∫
γrk

χ dγrk =

∫
γrk∩B

χ dγrk +

∫
γrk∩Bc

χ dγrk

≤ (1− 2λ2N
− ρ)C |γrk | + log 2N · C · β(log 2N )−1

|γrk |

= (1− 2λ2N
− ρ + β)C |γrk |< (1− 2λ2N )C |γrk |

which is a contradiction. Since it holds for every ρ > 0, one concludes the proof of the
proposition. �

We can represent the curve f k
◦ γ as the concatenation f k

◦ γ = γ k
1 ∗ · · · ∗ γ

k
[µ2Nk ]

∗

γ k
[µ2Nk ]+1, where γ k

i is a u-curve for every 1≤ i ≤ [µ2Nk
], γ k
[µ2Nk ]+1 is a piece of a u-

curve, [·] denotes the integer part of a number and ∗ denotes the concatenation between
the curves. Berger and Carrasco proved the following formula, see [5, §3].

LEMMA 7.6. For every adapted field (γ, X) and n ∈ N, for each k = 0, . . . , n − 1 there
exists a number βk ∈ [−2λ2N , 2λ2N

] such that

I γ,Xn =
1
|γ |

∫
γ

log ‖D f n
· X‖ dγ

=

n−1∑
k=0

1+ βk

µ2Nk |γ |

( [µ2Nk
]∑

j=1

∫
γ k

j

log ‖D f · X k
‖ dγ k

j +

∫
γ k
[µ2Nk ]+1

log ‖D f · X k
‖ dγ[µ2Nk ]+1

)
,

where βk ∈ [−2λ2N , 2λ2N
].

This formula will allow us to study the growth of I γ,Xn by studying the pieces∫
γ k

j
log ‖D f · X k

‖ dγ k
j . In order to analyze these pieces we will define the notion of

‘good’ and ‘bad’ pieces. The estimate on the growth of I γ,Xn will come from an induction
on n and a combinatorial argument, to estimate the number of ‘good’ and ‘bad’ pieces
that appears in this formula. Fix δ̃ > 0 small, the number N will be chosen afterwards
depending on δ̃. Let

E(γ, X)= I γ,X1 =
1
|γ |

∫
γ

log ‖D f (m) · Xm‖ dγ.
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Recall that for m = (x, y, z, w) ∈ T4, we defined �(m)= N cos(x)+ 2. Define vm =

(1, �(m)) and um = (�(m),−1). They form an orthogonal basis of the center direction.
Let X be a unit vector field tangent to the center direction, and thus using this basis we
have

Xm =
cos(θX (m))√
1+�(m)2

vm +
sin(θX (m))√
1+�(m)2

um,

where θX (m) is the angle that Xm makes with vm . Using the basis (vm, um) the derivative
can be written as

D f (m) · Xm =

(
sin(θX (m)) ·

√
1+�(m)2,

cos(θX (m))+ sin(θX (m)) ·�(m)√
1+ (�(m))2

)
,

so then

‖D f (m) · Xm‖ ≥ |sin(θX (m))| ·
√

1+�(m)2 ≥ |sin(θX (m))| · |�(m)|.

If N is large enough and if |x − π/2|> 2 · N−δ̃ and |x − 3π/2| ≥ 2 · N−δ̃ then
|cos(x)| ≥ N−δ̃ .

Define the critical strip as

Crit= {(x, y, z, w) ∈ T4
: |x − π/2|< 2 · N−δ̃ or |x − 3π/2|< 2 · N−δ̃},

and thus the length of the projection of the critical strip on the first coordinate is l(Crit) <
8 · N−δ̃ , which converges to zero as N goes to infinity.

LEMMA 7.7. For N large enough, if m /∈ Crit then |�(m)| ≥ N 1−2δ̃ and ‖D f (m) · Xm‖ ≥

N 1−2δ̃
· |sin(θX (m))|.

The proof is straightforward with the fact that if m /∈ Crit then |cos(x)| ≥ N−δ̃ .

Definition 7.8. Consider the cone 1δ̃ = {(u, v) ∈ R
2
: N δ̃
|u| ≥ |v|}. If an adapted vector

field (γ, X) is tangent to this cone we say that it is a δ̃-good adapted vector field. Otherwise
we say that it is δ̃-bad.

LEMMA 7.9. For N sufficiently large and for every δ̃-good adapted vector field (γ, X),

|sin(θX (m))|> N−4δ̃ for all m /∈ Crit.

Furthermore, for a δ̃-good adapted field (γ, X), if m /∈ Crit then ‖D f (m) · Xm‖ ≥ N 1−6δ̃ .

Proof. Recall that vm = (1, �(m)) and suppose that �(m) > 0. Let bm = (1, N δ̃) and
consider the triangle formed by the points 0, bm and vm ; see Figure 3. Denote by ](u, v)
the angle between two vectors u, v ∈ R2. By the law of sines

sin(](vm, bm))

‖vm − bm‖
=

sin(](vm − bm, bm))

‖vm‖
. (26)

For a good adapted field (γ, X), it holds that | sin(θX (m))| ≥ |sin(](vm, bm))|. Recall
that m /∈ Crit, so that by Lemma 7.7 we have N 1−2δ̃

≤ |�(m)| ≤ N . Observe that

sin(](vm − bm, bm))=
1
‖bm‖

. (27)
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FIGURE 3. The triangle formed by 0, bm and vm .

By (26) and (27), for N large enough we obtain

|sin(θX (m))| ≥
|�(m)| − N δ̃√

1+ N 2δ̃ ·
√

1+�(m)2
≥ N−4δ̃.

It follows from this inequality and Lemma 7.7, that for a δ̃-good adapted field (γ, X),
if m /∈ Crit then ‖D f (m) · Xm‖ ≥ N 1−6δ̃ . If �(m) < 0 we can obtain the same estimate
taking bm = (1,−N δ̃). �

PROPOSITION 7.10. For N sufficiently large if (γ, X) is a δ̃-good adapted vector field
then E(γ, X)≥ (1− 7δ̃) log N.

Proof. Recall that for a u-curve dγ /dt(t)= (α(γ (t)), eu)/λN
‖Px (eu)‖ and ‖α(γ (t)) ·

(λN
‖Px (eu)‖)−1

− (1, 0)‖ ≤ λ2N . In particular, using that l(Crit)≤ 8N−δ̃ , for N large
enough the measure of γ ∩ Crit is smaller than 10N−δ̃|γ |.

The previous lemma give us an estimate for points outside the critical strip. For points
inside the critical strips we use that ‖D f |Ec‖ ≥ (2N )−1. Thus for N large enough we get

|γ |E(γ, X)=
∫
γ ∩ Crit

log ‖D f (m) · Xm‖ dγ +
∫
γ ∩ Critc

log ‖D f (m) · Xm‖ dγ

≥

(
1−

10

N δ̃

)
· (1− 6δ̃) log N |γ | −

(
10

N δ̃

)
· log 2N |γ | ≥ (1− 7δ̃) log N |γ |.

�

Recall that f k
◦ γ = γ k

1 ∗ · · · ∗ γ
k
[µ2Nk ]

∗ γ k
[µ2Nk ]+1 and define

Gk = Gk(γ, X)=
{

1≤ j ≤ [µ2Nk
] :

(
γ k

j ,
f k
∗ X
‖ f k
∗ X‖

)
is δ̃-good.

}
, (28)

Bk = Bk(γ, X)=
{

1≤ j ≤ [µ2Nk
] :

(
γ k

j ,
f k
∗ X
‖ f k
∗ X‖

)
is δ̃-bad.

}
. (29)
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LEMMA 7.11. For N sufficiently large, if (γ, X) is a δ̃-good adapted field and f −1(γ 1
j ) ∩

Crit= ∅, then (γ 1
j , f∗X/‖ f∗X‖) is also δ̃-good.

Proof. Let m /∈ Crit and v ∈ (−N δ̃, N δ̃). It is verified that

D f (m) · (1, v)= (�(m)− v, 1).

By Lemma 7.9
|�(m)− v| ≥ |�(m)| − |v| ≥ N 1−2δ̃

− N δ̃,

which is arbitrarily large as N grows. This implies that the vector (�(m)− v, 1) is inside
the cone 1δ̃ , because it will be very close to the x-axis. �

The next lemma is the same as [5, Lemma 6].

LEMMA 7.12. For N sufficiently large, for every δ̃-bad adapted vector field, there is a
strip SX of length π such that if f −1(γ 1

j )⊂ SX then (γ 1
j , f∗X/‖ f∗X‖) is δ̃-good.

Let ηN = (5/πN δ̃). The following proposition is analogous to [5, Proposition 4].

PROPOSITION 7.13. For N large enough, for every δ̃-bad adapted field,

#G1 ≥
1
3µ

2N and #B1 ≤
2
3µ

2N .

For every δ̃-good adapted field,

#G1 ≥ (1− ηN )µ
2N and #B1 ≤ (ηN )µ

2N .

Proof. Using Lemma 7.12 there is a strip SX of length π such that if f −1(γ 1
j )⊂ SX , then

this represents almost half of the pieces γ 1
j , and for N large enough we conclude the first

part of the proposition. The second part of the proposition follows from a similar argument,
using Lemma 7.11 and the fact that l(Crit)≤ 8N−δ̃ . �

Now in general, for any k ∈ N,

#Gk+1 ≥ (1− ηN )µ
2N #Gk +

1
3µ

2N #Bk,

#Bk+1 ≤ ηNµ
2N #Gk +

2
3µ

2N #Bk .

LEMMA 7.14. For any K ≥ 1, if N is large enough then for any k ≥ 0 and any δ̃-good
adapted vector field (γ, X), it is verified that #Gk ≥ K · #Bk .

Proof. Since (γ, X) is δ̃-good then B0 = 0 and #G0 = 1> K · #B0. By our previous
remark if N is large enough then it is also valid for k = 1. Let us suppose that it is valid
for k and prove it for k + 1:

#Bk+1

#Gk+1
≤

ηNµ
2N #Gk + (2/3)µ2N #Bk

(1− ηN )µ2N #Gk + (1/3)µ2N #Bk
≤
ηNµ

2N #Gk + (2/3)µ2N K−1#Gk

(1− ηN )µ2N #Gk

=
ηN + (2/3)K−1

1− ηN
<

3
4K

,

where the last inequality holds for N large. Thus #Gk+1 > (4K/3)#Bk+1 > K #Bk+1. �
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Now we can get the estimate on the Lyapunov exponent that we wanted.

LEMMA 7.15. For N large enough and for every δ̃-good adapted vector field (γ, X) and
for every large enough n ≥ 1 we have

I γ,Xn

n
≥ (1− 10δ̃) log N .

Proof. Fix K > 0 large enough such that K−1 < δ̃. Let (γ, X) be a δ̃-good adapted
vector field. By the previous lemma #Gk > 1/1+ K−1µ2Nk . Using the formula given
by Lemma 7.6, the estimate obtained for a δ̃-good adapted vector field in Proposition 7.10
and for every δ̃-bad adapted vector field using that ‖D f |Ec‖ ≥ (2N )−1, we conclude that

I γ,Xn

n
≥

1
n

n−1∑
k=0

(1− 2λ2N )

µ2Nk (#Gk · (1− 7δ̃) log N − (#Bk + 1) log 2N )

≥
1
n

n−1∑
k=0

(1− 2λ2N )

(
1

1+ K−1 · (1− 7δ̃) log N

−K−1 log 2− K−1 log N −
log 2N
µ2Nk

)
≥ (1− 10δ̃) log N ,

for N large enough. �

With this lemma we can prove the estimate of Proposition 1.4 for fN .

COROLLARY 7.16. For δ > 0, if N is large enough then almost every point has a Lyapunov
exponent on the center direction greater than (1− δ) log N for fN .

Proof. Take δ̃ = δ/30 and let N be large enough such that the previous lemma holds.
Thus we can take C = (1− 10δ̃) log N = (1− δ/3) log N , where C is the constant from
Proposition 7.5. Assume that N is large enough such that (1− 2λ2N )(1− δ/3) > (1− δ).
The result follows from Proposition 7.5. �

7.2. Robustness of the estimate. In this section we prove Proposition 1.4. For a C1-
curve γ we will denote by Lebγ the Lebesgue measure induced by the Riemannian
metric in the curve. Recall that for each N ∈ N we denote by UN ⊂ Diff2

Leb(T
4) a C2-

neighborhood of fN .

LEMMA 7.17. For ε1 > 0 small, if N is large and UN is small enough then for every g ∈U
and for all unit vectors vs

∈ E ss
g , vc

∈ Ec
g and vu

∈ Euu
g , the following hold:

(1) e−ε1λ2N
≤ ‖Dg(vs)‖ ≤ eε1λ2N ;

(2) e−ε1µ2N
≤ ‖Dg(vu)‖ ≤ eε1µ2N ;

(3) 1/2N ≤ ‖Dg(vc)‖ ≤ 2N ;
(4) ‖D2g−1

‖ ≤ 2N and ‖D2g‖ ≤ 2N; and
(5) Ec

g is 1/2-Hölder.
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Proof. The only statement that does not follow directly from C2-continuity for N large
enough is (5). Observe that

eε1λ2N < (2N )−1e−ε1/2λN .

Hence, by Theorem 2.7 it follows that Ec
g is 1

2 -Hölder. �

Definition 7.18. A u-curve for g is a C1-curve γ = (γx , γy, γz, γw) : [0, 2π ] → M
tangent to Eu

g and such that |dγx/dt(t)| = 1, for all t ∈ [0, 2π ]. For every k ≥ 0 there
exists an integer Nk = Nk(γ ) ∈ [[(e−ε1µ2N )k], [(e−ε1µ2N )k]] such that the curve gk

◦ γ

can be written as
gk
◦ γ = γ k

1 ∗ · · · ∗ γNk ∗ γ
k
Nk+1

where γ k
j for j = 1, . . . , Nk , are u-curves and γ k

Nk+1 is a segment of u-curve.

Observe that this definition of a u-curve is different from the one given in Definition 7.2.
The advantage of Definition 7.2 is that during the calculations we do not have to deal with
bounded distortion estimates. Since for the general case it is natural to observe bounded
distortion estimates, see Lemma 7.20, we just normalize the curve on the x-direction in
the previous definition.

LEMMA 7.19. [5, Corollary 5] For ε2 > 0 small, if N is large and UN is small enough
then for every g ∈ UN and any unit vector vu

∈ Euu
g,m , it holds that

|Px (Dπ1 · v
u)| ∈ [(λN (‖Px (eu)− 3λN

‖), (λN (‖Px (eu)+ 3λN
‖)].

In particular, any two u-curves (γ, γ ′) satisfy

e−ε2l(γ )≤ l(γ ′)≤ eε2l(γ ).

Define similarly as in Definition 7.3 an adapted field (γ, X). Also define the unstable
Jacobian of gk as

J uu
gk (m)= |det Dgk(m)|Euu

g | for all m ∈ T4.

By item (2) of Lemma 7.17, for g ∈ UN and for every m ∈ T4,

e−ε1λ2N
≤ J uu

g−1(m)≤ eε1λ2N .

The proof of the next lemma is classical and can be found in [5, Lemma 8].

LEMMA 7.20. Bounded distortion For ε3 > 0 small, if N is large and UN is small enough,
for every g ∈ UN and any u-curve γ for g, for every k ≥ 0, it holds that

for all m, m′ ∈ γ, e−ε3 ≤

J uu
g−k (m)

J uu
g−k (m′)

≤ eε3 .

This lemma implies that for g ∈ UN and for any u-curve γ for g, if A ⊂ γ is any
measurable set, for every k ≥ 0, it holds that

e−ε3
Leb(A)
Leb(γ )

≥
Leb(g−k(A))
Leb(g−k(γ ))

≤ eε3
Leb(A)
Leb(γ )

.
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Let (γ, X) be an adapted field, and define

I γ,Xn =
1
|γ |

∫
γ

log ‖Dgn
· X‖ dγ.

For the fibered case, Proposition 7.5 gives us precise estimates for the Lyapunov exponent
along the center direction. In the general case we have the following proposition.

PROPOSITION 7.21. Suppose that there exists C > 0 with the following property: for every
u-curve γ there exists an adapted vector field (γ, X) for g and for all n > 0 large enough,

I γ,Xn

n
> C.

Then the map g has a positive exponent in the center direction greater than e−2ε3C for
Leb-almost every point.

Proof. The new ingredient in the proof is the bounded distortion estimates. Suppose not,
then there exists a measurable set B with positive measure such that every point in B has
exponents in the center direction strictly smaller than e−2ε3C . By the absolute continuity
of the unstable foliation, there is an unstable manifold γ that intersects B on a set of
positive measure, for the Lebesgue measure of γ . Let b ∈ γ ∩ B be a density point and
take γk = g−k

◦ βk , where βk is a u-curve with βk(0)= gk(b). We have that l(γk)→ 0
and by bounded distortion, Lemma 7.20

Leb(γk ∩ B)
Leb(γk)

−→ 1.

Take k large enough such that

Leb(γk ∩ Bc)

Leb(γk)
<

e−2ε3(eε3 − 1)C
2 log 2N

.

Using bounded distortion again, for any mk
∈ gk(γk),

J uu
g−k (m

k)≥
Leb(γk)

Leb(gk(γk))
e−ε3 .

Define χk(m)= lim supn→+∞ 1/n log ‖Dgn(gk(m)).Xgk (m)‖ for all m ∈ γk , where X
is the vector field such that (βk, X) verifies the hypothesis of the lemma:∫

γk

χk dγk =

∫
gk (γk )

χk ◦ g−k J uu
g−k d(gk(γk))

≥ e−ε3
Leb(γk)

Leb(gk(γk))

∫
gk (γk )

χk ◦ g−kd(gk(γk))≥ e−ε3CLeb(γk).

On the other hand,∫
γk

χk dγk =

∫
γk∩B

χk dγk +

∫
γk∩Bc

χk dγk

≤ e−2ε3CLeb(γk)+
log 2Ne−2ε3(eε3 − 1)CLeb(γk)

2 log 2N
< e−ε3CLeb(γk)

which is a contradiction. �
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Denote by

E(γ, X)=
1
|γ |

∫
γ

log ‖Dg(m) · Xm‖ dγ (m),

where (γ, X) is an adapted field. For X a vector field on γ define

X̃(m)=
π1(X (m))
‖π1(X (m))‖

.

Definition 7.22. An adapted field (γ, X) is δ̃-good if for every m ∈ γ , X̃(m) ∈1δ̃ .

If UN is small enough then the center leaves are very close to the horizontal tori. Using
very similar reasoning to the proof of Proposition 7.10 we obtain the following.

PROPOSITION 7.23. For N large and UN small enough, for all g ∈ UN and (γ, X) an
δ̃-good adapted field for g, it is verified that E(γ, X)≥ (1− 8δ̃) log N .

Recall that for k ≥ 0 and a u-curve γ the number Nk = Nk(γ ) was the maximum
number of u-curves that subdivide gk

◦ γ . For an adapted field (γ, X) define Y k
=

gk
∗X/‖gk

∗X‖. The following lemma is the analogous to Lemma 7.4.

LEMMA 7.24. [5, Lemma 9] For N large and UN small enough, let g ∈ UN and (γ, X)
be an adapted field for g. For k ≥ 0, every possible pair (γ k

j , Y k
|γ k

j
), with 1≤ j ≤ Nk(γ )

is an adapted field.

Similar to Lemma 7.6, Berger and Carrasco proved the following formula, see [5, §6].

LEMMA 7.25. For every adapted field (γ, X) and any n ∈ N,

I γ,Xn =

n−1∑
k=0

(
Rk +

Nk∑
j=0

1
|γ |

∫
γ k

j

log ‖Dg(m) · Y k
m‖J uu

g−k dγ k
j

)
,

where Rk = 1/|γ |
∫
γ k

Nk+1
log ‖Dg(m) · Y k

m‖J uu
g−k dγ k

Nk+1.

We remark that this formula and the formula obtained in Lemma 7.6 are obtained in the
same way, just by using the change of variables formula multiple times. The difference in
this case is that we keep the unstable Jacobian in the formula. As a consequence of this
formula we obtain

I γ,Xn ≥

n−1∑
k=0

(
Rk +

Nk∑
j=0

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k)

)
. (30)

Observe that

|Rk | ≤
(e−ε1λ)2Nk log 2N

λN (1− 2λN )‖Px (eu)‖

k→+∞
−−−−→ 0.

Hence
1
n

n−1∑
k=0

|Rk | −→ 0.

For (γ, X) an adapted field we define similarly as in the previous section the sets
Gk = Gk(γ, X) and Bk = Bk(γ, X). The key lemma is the next one. It is the analog
of Lemma 7.14.
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LEMMA 7.26. For K ≥ 1, for N large and UN small enough, for every g ∈ UN and every
(γ, X) a δ̃-good adapted field, it holds that∑

j∈Gk

min
γ k

j

J uu
g−k ≥ K

∑
j∈Bk

max
γ k

j

J uu
g−k .

The proof uses the next lemma, which is the analog of Lemmas 7.11 and 7.12.

LEMMA 7.27. For N large and U small enough, for every g ∈ UN , and for every adapted
field (γ, X) the following hold.
(1) If (γ, X) is a δ̃-good adapted field and if j is such that g−1γ 1

j does not intersect the

strip Crit, then the field (γ 1
j , g∗X/‖g∗X‖) is δ̃-good.

(2) If (γ, X) is δ̃-bad, there exists a strip S of length π such that for every j satisfying
g−1γ 1

j ⊂ S, the field (γ j
1 , g∗X/‖g∗X‖) is δ̃-good.

The proof of this lemma is similar to the proof of [5, Lemma 12] and uses the estimate
obtained in Lemma 7.9.

Proof of Lemma 7.26. We follow exactly the Berger–Carrasco proof of [5, Lemma 10]
with the constants we chose and taking ηN = 5/πN δ . The proof is by induction; it is valid
for k = 0 and suppose it is true for k. Using Lemmas 7.19 and 7.27, and following exactly
the same proof of Berger and Carrasco, we obtain∑

j∈Gk+1

min
γ k

j

J uu
g−k−1 ≥ e−(ε2+ε3)(1− ηN )

∑
j∈Gk

min
γ k

j

J uu
g−k .

It is also obtained that∑
j∈Bk+1

max
γ k

j

J uu
g−k−1 ≤

(
eε2+2ε3ηN +

2.2
3 · K

eε3

)
·

( ∑
j∈Gk

min
γ k

j

J uu
g−k

)
+ λN/2eε3 .

Thus∑
j∈Bk+1

maxγ k
j

J uu
g−k−1∑

j∈Gk+1
minγ k

j
J uu

g−k−1

≤
eε2+2ε3ηN + (2.2/3 · K )eε3

e−(ε2+ε3)(1− ηN )
+

λN/2

e−(ε2+2ε3)(1− ηN )
<

1
K
,

since we fixed ε2 and ε3 very small, for N large enough we obtain the last inequality. �

From now on we fix K > (δ̃)−1 and assume that N is large and UN is small enough
such that Lemma 7.26 holds.

LEMMA 7.28. For N large and UN small enough, for every g ∈ UN , every adapted field
(γ, X) and k ≥ 0, it holds that

e−(ε2+ε3) ≤

∑
j∈Gk

min
γ k

j

J uu
g−k +

∑
j∈Bk

max
γ k

j

J uu
g−k ≤ e2(ε2+ε3).
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Proof. Of course the lemma is true for k = 0. Following the same steps as the proof of
[5, Lemma 11], one obtains

1 =
1
|γ |

∫
γ

dγ =
1
|γ |

Nk+1∑
j=1

∫
γ k

j

J uu
g−k dγ k

j

≥

∑
j∈Gk

|γ k
j |

|γ |
min
γ k

j

J uu
g−k + e−ε3

∑
j∈Bk

|γ k
j |

|γ |
max
γ k

j

J uu
g−k −

∫
γ k

Nk+1

max
γ k

Nk+1

J uu
g−k dγ k

Nk+1

⇒ 1≥ e−(ε2+ε3)

(( ∑
j∈Gk

min
γ k

j

J uu
g−k

)
+

( ∑
j∈Bk

max
γ k

j

J uu
g−k

)
−

(e−ε1 · µ)−2Nk

λN (1− 2λN )‖Px (eu)‖

)
.

For N large enough

1+
e−(ε2+ε3)(e−ε1 · µ)−2Nk

λN (1− 2λN )‖Px (eu)‖
< eε2+ε3 .

Hence ( ∑
j∈Gk

min
γ k

j

J uu
g−k

)
+

( ∑
j∈Bk

max
γ k

j

J uu
g−k

)
≤ e2(ε2+ε3).

Similarly one obtains the other inequality. �

We remark that this lemma for the fibered case is immediate, since in this case
#Gk + #Bk = [µ

2Nk
] and by the way we parametrize u-curves for the fibered case,

J uu
f −k = µ

−2Nk . Since the calculations for the fibered case are more direct, the application
of this lemma is hidden inside the proof of Lemma 7.15. For the general case we use this
lemma to obtain inequality (31) below. This is done in the following way. By Lemmas 7.26
and 7.28,

e−2(ε2+ε3) ≤ (1+ K−1)
∑
j∈Gk

min
γ k

j

J uu
g−k ,

which implies that
e−2(ε2+ε3)

1+ K−1 ≤
∑
j∈Gk

min
γ k

j

J uu
g−k . (31)

PROPOSITION 7.29. For N large and UN small enough, for every g ∈ UN , any δ̃-good
adapted field (γ, X) and every k ≥ 0, it holds that

Nk∑
j=0

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k)≥ (1− 12δ̃) log N .

Proof. We have

Nk∑
j=0

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k)=
∑
j∈Gk

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k)+
∑
j∈Bk

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k).
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By Lemma 7.26, Lemma 7.28 and Proposition 7.23 we obtain

Nk∑
j=0

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k) ≥ (1− 8δ̃) log N
∑
j∈Gk

min
γ k

j

J uu
g−k − log 2N

∑
j∈Bk

min
γ k

j

J uu
g−k

≥

(
(1− 8δ̃)−

log 2N
K

) ∑
j∈Gk

min
γ k

j

J uu
g−k

≥
e−2(ε2+ε3)(1− 10δ̃) log N

1+ K−1 > (1− 12δ̃) log N . �

Proof of Proposition 1.4. Take δ̃ = δ/15. By Proposition 7.29, for N large and UN small
enough, for g ∈ UN and any δ̃-good adapted field (γ, X), for g, it holds that

Nk∑
j=0

(
min
γ k

j

J uu
g−k

)
E(γ k

j , Y k)≥ (1− 12δ̃) log N .

Using inequality (30), for n large enough

I γ,Xn

n
≥ (1− 14δ̃) log N .

Since we could have chosen ε3 > 0 small enough such that e−ε3(1− 14δ̃)≥ (1− 15δ̃) by
Proposition 7.21, almost every point has a Lyapunov exponent for g in the center direction
larger than

(1− 15δ̃) log N = (1− δ) log N .

All we have shown is also valid for g−1, if UN is small enough, and thus almost every point
has a negative Lyapunov exponent in the center direction smaller than−(1− δ) log N . �
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