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We study systematically the cavitation-induced wall shear stress on rigid boundaries as
a function of liquid viscosity p and stand-off distance y using axisymmetric volume of
fluid (VoF) simulations. Here, ¥ = d/R4y is defined with the initial distance of bubble
centre from the wall d and the bubble equivalent radius at its maximum expansion Ry,g;.
The simulations predict accurately the overall bubble dynamics and the time-dependent
liquid film thickness between the bubble and the wall prior to the collapse. The spatial and
temporal wall shear stress is discussed in detail as a function of y and the inverse Reynolds
number 1/Re. The amplitude of the wall shear stress is investigated over a large parameter
space of viscosity and stand-off distance. The inward stress is caused by the shrinking
bubble and its maximum value 7, follows t,,,Re’->> = —70y + 110 (kPa) for 0.5 < y <
1.4. The expanding bubble and jet spreading on the boundary produce an outward-directed
stress. The maximum outward stress is generated shortly after impact of the jet during
the early spreading. We find two scaling laws for the maximum outward stress t,, with

Tinp ™~ uo'zh;?'3 Ujlef for 0.5 <y < 1.1 and 7, ~ M*O'zshj;tlj Ujle't5 for y > 1.1, where
Ujer is the jet impact velocity and hje; is the distance between lower bubble interface and

wall prior to impact.
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1. Introduction

A bubble collapsing near a rigid boundary develops a fast and directed flow towards
the wall. In addition to the normal stress arising from the stagnation pressure, very
high wall tangential stresses are created at some distance from the impact region. These
cavitation-induced wall shear stresses are, for example, used for surface cleaning (Ohl et al.
2006a; Reuter et al. 2017) and in biological application (Ohl ez al. 2006b; Rau et al. 2006).
So far, the direct measurement of the wall shear stresses remains a challenging problem
owing to the required high resolution in space and time as a result of the extraordinary fast
bubble dynamics. Only a couple of papers report experimental measurements of the wall
shear stress, one where a hot-film anemometer was used by Dijkink & Ohl (2008) and a
second where an electrochemical method was developed by Reuter & Mettin (2018). Both
approaches are limited as they measure at a single point and are affected by their inherent
low bandwidth. Interestingly, both techniques report peak values of the wall shear stress
of a few kilopascals.

Recent simulations with a sufficiently fine grid reveal the complex boundary flow and
wall shear stress distribution from a single cavitation bubble with a wall distance y =
d/Rpnax = 1.0 (Zeng et al. 2018a), where d is the distance of bubble nucleation and R,
the maximum bubble radius. While the overall shape and features of the measurements
are similar to the simulations, the peak values in the simulations are 1 to 2 orders of
magnitude higher. Although there is no concluding understanding to the cause of such
a big discrepancy, it may be the result of the limited bandwidth, spatial resolution and
the intrusiveness of the sensor to the flow. The clear advantage of the simulations is the
capability to map the spatio-temporal stress pattern acting on the boundary. We find that
prior to the impact and spreading of the jet, the inward stress from the shrinking bubble
results in peak stress values of a few kPa. In contrast, the stress created by the spreading
jet may reach up to 100 kPa and is the result of the fast jet accelerating liquid in the thin
gap formed between the lower bubble wall and the boundary.

Over the last decades, the shape and jet velocity of bubbles have been studied in detail,
particularly as a function of the stand-off distance (Philipp & Lauterborn 1998; Supponen
et al. 2016). In contrast, the flow bounded by the lower bubble surface and the rigid
boundary has received much less attention. Reuter & Kaiser (2019) demonstrated that
even for very small stand-off distances, a thin yet finite liquid film separates the bubble
from the rigid boundary. They measured systematically the liquid film thickness A(¢) for a
range of stand-off distances y by combining shadowmetry with a total internal reflection
method and provided an empirical correlation & ~ y*8® for y between 0.47 and 1.07
for the minimum thickness. On the simulation side, Lechner et al. (2020) successfully
compared these measurements with numerically obtained gap thickness with a VoF
method based solver of the flow. From the empirical relation, it is evident that the liquid
film thickness decreases with y and also the speed of the jet at impact decreases (Philipp
& Lauterborn 1998; Supponen et al. 2016). Thus one may expect an optimum stand-off
distance where both competing factors provide a maximum or optimum shear stress for
applications, i.e. following the argument in surface cleaning experiments of Reuter &
Mettin (2016).

In addition to the stand-off distance, the shear viscosity of the liquid affects the wall
shear stress through two routes. First, just by definition for a Newtonian fluid, the wall
shear stress is defined as the product of the wall shear rate and the dynamic viscosity
w. The viscosity also affects the overall flow field and, in particular, the boundary layer
thickness (Schlichting & Gersten 2016), the jet shape and its speed non-trivially and as a
function of y (Popinet & Zaleski 2002).
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Simulation has been broadly used to resolve the rapid and microscopic scales dynamics
from jetting bubbles near rigid boundaries since the pioneering work of Plesset &
Chapman (1971). Many studies use the efficient boundary element method (BEM) (Blake
& Gibson 1987) to solve the complex bubble deformation with various implements. To
name a few, Lee, Klaseboer & Khoo (2007) and Wang (2014) applied artificial energy loss
models to achieve multiple rebounding of the bubble; Zhang & Liu (2015) improved the
BEM with topology optimization and applied the technique to study the flow fields and
bubble splitting during bubble collapsing near a rigid boundary (Zhang, Li & Cui 2015;
Li et al. 2016); Chahine et al. (2016) coupled the BEM with fluid—structure interaction to
model the particle motion arising from a jetting bubble near a solid boundary. Limited to
the potential flow model, liquid viscosity is not modelled in BEM. In contrast, numerical
methods based on solving the Euler equations are able to capture sharp interface and
shock-wave with high-order schemes (Johnsen & Colonius 2009; Lauer et al. 2012; Beig,
Aboulhasanzadeh & Johnsen 2018; Trummler et al. 2020). Recently, the VoF method
based on solving the compressible Navier—Stokes (NS) equations is attracting increased
attention owing to its compatible implementations of the compressibility, viscosity, surface
tension, complex bubble deformation and even complex boundaries (Han et al. 2015; Koch
et al. 2016; Denner, Evrard & van Wachem 2020; Zeng, Gonzalez-Avila & Ohl 2020).

To gain more knowledge, we expand our previous numerical simulations to a parameter
study by varying the liquid viscosity and the stand-off distance to identify, for example,
modalities of highest wall shear stress. To do so, we first validate our model against relevant
experiments by comparing them to the simulated bubble shape and the time-dependent
film thickness. Then a detailed description on the influence of liquid viscosity and
stand-off distance will be given. We discuss separately the maximum wall stresses from
the inward and outward flow as a function of the inverse Reynolds number, 1/Re, and the
stand-off distance y. The results are summarized through scaling laws for the maximum
wall shear stress.

2. Methodology

In this paper, we use the well-validated VoF solver (Zeng et al. 2018a.b, 2020;
Gonzalez-Avila et al. 2020) to conduct a study of the wall shear stress generated from
expanding and collapsing cavitation bubbles as a function of viscosity and initial distance
to a solid boundary. The problem consists of two phases (gas and liquid), where both are
compressible and immiscible Newtonian fluids. As heat and mass transfer between two
phases are negligible (Koukouvinis ef al. 2018; Zeng et al. 2020), the governing equations
for the flow are the equations of continuity and momentum:

ap
L4V (pu) =0, 2.1
at

dpu

TLE AV (pu) = —Vp+V -5 +fy. 2.2)

where p, u, t and p are the density, velocity, time and pressure, respectively. The role of
viscosity is included as the viscous stress tensor s = u[Vu + Vul — %(V - u)I], with the
dynamic viscosity x and an identity tensor I. Here, f; is the surface tension term modelled
with the so-called continuous surface force (CSF) method (Brackbill, Kothe & Zemach
1992).
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The cavitation bubble content is numerically treated as a non-condensable gas, which
follows a polytropic equation of state (EOS):

Lo Pn 2.3)
e Pk

where p, = 101325 Pa and p, = 1.2 kg m™> are the reference pressure and density of
the gas, k = 1.4 is the specific heat ratio or adiabatic exponent of the gas phase and the
surrounding liquid is modelled as a Tait-compressible liquid:

LB\

where po = 101325 Pa and py = 1000 kg m—> are the reference density and reference
pressure, respectively. Here, I = 7.15 is the Tait exponent and B = 3046 bar is the Tait
pressure. To capture the bubble interface, a transport equation for the volume fraction of
the liquid phase « is solved (Miller et al. 2013; Koch et al. 2016; Zeng et al. 2018b):

8—a+V c(au) + V- (x(l —a)U;) =a(1 — ) (ﬁ — ﬂ) % +aV.u, (2.5
at pe p1) Dt

where ¥ = Dp/Dp is the compressibility computed based on the EOS. The subscripts /
and g represent the liquid and the gas phases, respectively, and U, is the relative velocity
between two phases and acts as an artificial compressible term ensuring a sharp interface
(Rusche 2003).

Simulations were performed using OpenFOAM (Weller et al. 1998), where the
compressible Navier—Stokes (NS) equations are discretized and solved with the VoF
method to obtain the velocity and pressure field and the time-dependent bubble interface.
The EOS was used to compute the compressibility and density of each phase based on the
pressure. When solving the equations, the time step is adaptively updated by specifying
the Courant number as 0.1 to ensure the stability of the solution. Details of the numerical
method are documented in Zeng et al. (2018a,b, 2020).

The bubbles studied here have a maximum equivalent radius Ry, &~ 400 um similar
to those in Reuter & Kaiser (2019). To simplify the simulation and limit the effects
from distant boundaries, we choose an axisymmetric domain of 10 mm x 10 mm. The
mesh is refined successively so that it has a finer spacing of Ax = 1.5 um closer to the
bubble but coarsens quickly further away. This non-uniform mesh allows us to conduct
high-resolution simulations with moderate computational resources. The initial bubble is
nucleated as a high-pressure gas sphere with its centre located at a distance of d from the
wall, therefore at a non-dimensional stand-off distance y = d/R,4x. The rigid wall below
the bubble is modelled as a no-slip boundary. The near-boundary mesh is gradually refined
even further down to a spacing of Ax = 50 nm to make sure that the boundary layer flow
for the expected high values of the strain rates is resolved adequately. Outer boundaries
are considered far fields. Vanishing gradient of velocities are applied at outer boundaries
to allow in and out flux. For pressure field, the vertical and radial outer boundaries are set
as the ambient pressure P, = 101325 Pa and a non-reflecting boundary, respectively. The
gas bubble is initialized with a radius R(r = 0) = 25 um and a high pressure Py. The high
pressure Py is adjusted to meet the experimental period of growth and collapse of each
bubble in § 3 but is kept constant as Py = 2700 bar for the remaining sections.
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82.0 us 500 um
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Figure 1. Comparison of the computed bubble dynamics and experimental results from Reuter & Kaiser
(2019). Red contours represent the computed bubble interface. Dashed lines indicate the positions of
the solid boundaries. (a) Experiment —y = 1.05, Ryq &~ 420 pum; simulation —y = 1.05, Ry = 410 pum,
Py = 2900 bar. (b) Experiment —y = 0.56, Ryqx ~ 390 pum; simulation —y = 0.57, R4 = 380 um, Py =
2300 bar.

3. Fluid flow near the wall

The model is first tested against bubbles collapsing for y < 1.1 near a rigid boundary.
Reuter & Kaiser (2019) not only measured the bubble shape but also the thickness of
the liquid film separating the bubble from the rigid boundary. Two of their high-speed
recordings are shown in figure 1 for y = 1.05 and y = 0.56. The red contours are the
bubble interface superimposed on the experimental recording that are taken from the
simulations at the same time instance. In figure 1(a) for y = 1.05, the bubble expands
to a nearly spherical shape then shrinks into an elongated bubble with the larger axis
oriented normal to the boundary. In the second comparison, figure 1(b) checks the
simulation against a bubble nucleated closer to the solid boundary with y = 0.56. During
the expansion, the bubble flattens considerably its lower surface and takes the shape of
nearly a hemispherical bubble that changes into a cone-shaped outline before collapsing
as a toroidal bubble.

While the agreement with the overall shape of the bubble is a good indicator for
the quality of the simulation, the liquid flow very close to the boundary is crucial for
obtaining good estimates of the wall shear stress. We therefore compare the thickness of
the thin liquid film that separates the bubble from the rigid boundary. Figure 2(a) plots
the minimum time-dependent thickness, /(¢), of the thin film for four pairs of very similar
stand-off distances. The lines decorated with dots are the experimental data from Reuter
& Kaiser (2019) while solid lines are from simulations. During the early expansion, /(#)
drops rapidly for all cases. The decrease slows down in the late expansion. In the later
dynamics, h() approaches a constant value during collapse for y < 1, but it increases at
the late collapse for y = 1.2. These two distinct dynamics result in two different functions
of the film thickness at jet impact (see below and figure 2b). Please note that in the
measurement of Reuter & Kaiser (2019), a flat mirror-like bubble interface is assumed
while this is only approximately true. Therefore the measurement overestimates /(¢) when
the lower bubble interface is curved, which for small stand-off distances is the case only
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Figure 2. Liquid film dynamics. (a) The evolution of the gap thickness for different y values, lines represent
the simulation data while lines with dots are the measurement from Reuter & Kaiser (2019); the experimental
and simulation data end at the time of jet impact. In the experiment, R, = 411, 419 and 406 um, for y = 0.56,
0.76 and 0.99, respectively; in the simulation, R, = 409, 417, 405 and 397um for y = 0.56, 0.76, 0.99 and
1.2, respectively. (b) The gap thickness at jet impact onto the bubble’s lower interface, solid line is the fit
provided by Reuter & Kaiser (2019) (y = 0.47-1.07) and the slope of the green dashed line is 1.

during the early stage of the bubble expansion. For larger stand-off distances, the film is
considerably curved (see figure 1a).

Next we have a look at the film thickness at the moment the jet contacts the bubble’s
lower interface, hj,;. This is the time just prior to the jet impact when high normal
and shortly afterward tangential stresses are experienced by the boundary. Figure 2(b)
compares the measured film thickness hj,, normalized by the maximum bubble radius
Ryqx with the simulations (dots). The solid line up to y = 1.1 are the empirical correlation
found by Reuter & Kaiser (2019), which is & = 29.2y#86 4 4.74 (;um) for bubbles with
0.47 < y < 1.07. This fit is based on 91 experiments with bubble sizes in the interval
385 um < R4 < 435 um with a mean size of 410 um. The simulations are spot on with
this empirical fit. Continuing the simulations to larger y values, we find an approximately
linear increase of the height as indicated with the dashed line in figure 2(b).

4. Viscous bubble dynamics

Previously, a detailed study of the bubble dynamics and the resulting distribution of the
wall shear stress was done for a few selected cases in water at a distance of y =~ 1 (Zeng
et al. 2018a). The choice of y value was motivated for a comparison with an experiment.
In the present work, we expand the study to reveal the effect of liquid viscosity pu (from
1073 Pa - s to 0.1 Pa - s) and stand-off distance y (from y = 0.5 to 1.6). The choice of the
parameter space is to cover the important transitions (see below sections) while practical
for bubble nucleation. For all simulations present below, the initial pressure within the
bubble is fixed to 2700 bar, i.e. the initial energy is the same for all simulations. Owing to
viscous dissipation, the resulting maximum equivalent radius R, increases slightly from
370 pum to 400 um with decreasing viscosity.

Now we look at how the liquid viscosity influences the bubble dynamics. Here we define
the Reynolds number Re = pUgRpax/ 1, Where Uy = +/Poo/p is a referenced velocity
from the ambient pressure P, and R, the maximum bubble radius of each simulation.
The dimensionless numbers chosen here are related to the shrinkage instead of the growth
of the bubble, similar to Jayaprakash, Hsiao & Chahine (2012).
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Figure 3. Comparison of bubble’s equivalent radius for different viscosities: (a) y = 0.7; (b) y = 1.1. The

bubble dynamics for ;1 = 1073 Pa - s is drawn in both plots for comparison. The R,y is 394 um, 388 pum,
385 pum in panel (a), and 396 pum, 390 um, 386 um in panel (b) for viscosity 0.001, 0.02, 0.04 Pa-s,
respectively.
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Figure 4. Comparison of the computed bubble shapes for y = 0.7 between & = 1073 Pa - s (black shapes) and
= 0.02 Pa - s (red lines). Times are in ps. The lower borderline of each frame represents the solid boundary.
The maximum bubble radius R, reduces from 394 pm to 388 pm with increasing viscosity.

In figure 3, we show the comparison of the bubble’s equivalent radius for three different
viscosities for two selected stand-off distances y = 0.7 and y = 1.1. It is seen at both
y values that the bubble dynamics is slowed down and R, reduces with increasing
viscosity, which is the result of the increasing viscous drag and dissipation (Brennen 2014).
Although the evolution of the bubble radius changes only mildly with an increase of liquid
viscosity, i.e. from = 1073 Pa-s to u = 0.02 Pa - s, we find a significant difference in
the bubble shape, as shown in figures 4 and 5.

Figure 4 plots the bubble shapes from expansion to collapse for the same
stand-off distance y = 0.7 but two different viscosities (u = 1073 Pa- s, black shape;
@ = 0.02 Pa - s, red contour). Bubbles in both liquids acquire an hemispherical shape and
collapse into a conical and toroidal shape sequentially, but a clear difference is visible
during this dynamics. First of all, the motion of the top interface moving towards the wall
is slowed in the more viscous liquid owing to higher viscous drag, which leads to a lower

932 Al14-7


https://doi.org/10.1017/jfm.2021.997

https://doi.org/10.1017/jfm.2021.997 Published online by Cambridge University Press

Q. Zeng, H. An and C.-D. Ohl

0 300 pum 42 60

76 78 80 82 83

L 4

84 85 86 87 87.5

O O v | e

Figure 5. Comparison of the computed bubble shapes for y = 1.1 between ; = 1073 Pa - s (black shapes) and
= 0.02 Pa - s (red lines). Times are in ps. The lower borderline of each frame represents the solid boundary.
The maximum bubble radius R,y reduces from 396 pm to 390 um with increasing viscosity.

jet impact velocity. The dynamics in the near-wall region is greatly affected by the liquid
viscosity too, which is attributed to the thicker boundary layer formed in the more viscous
liquid. It is seen that the liquid film thickness Aj¢, increases from 8 um to 20 ;um when the
liquid viscosity changes from y = 1073 Pa - s to u = 0.02 Pa - s. Additionally, the bubble
edge becomes smoother and is lifted further from the wall vertically but closer to the axis
horizontally.

A second comparison of the bubble shapes is plotted in figure 5 for a higher stand-off
distance y = 1.1. Here, we also observe a slower bubble motion and an increase of the
liquid film thickness hje, from 53 pum to 75 um when the liquid viscosity changes from
= 1073 Pa - s to a 20 times more viscous liquid ;& = 0.02 Pa - s. Interestingly, owing to
the stronger viscous drag, the bubble becomes spherical instead of elongated in the more
viscous liquid during the early collapse (42 < ¢t < 80 us). Yet at a later time but before
the jet formation (+ = 80 ws), the bubble interface at the axis collapses slower than the
nearby interface and the top interface acquires a particular curvature. This arises from a
combined effect of viscous drag and the flow induced by the shrinking bubble. Such a
curvature may result into a higher jet velocity although occurring in a more viscous liquid,
see figure 6(b).

Figure 6 depicts the influence of viscosity on four important features of the bubble
dynamics for the two selected stand-off distances y = 0.7 and y = 1.1. In figure 6(a), the
film thickness is found to increase with viscosity for both y values and becomes constant
in the high 1/Re regime for y = 1.1. Figure 6(b) reveals that the jet velocity, in general,
decreases with viscosity and increases with y. Interestingly, we found one special case
(y = 1.1 the second marker) where the jet velocity could increase in a more viscous liquid,
whose mechanism is related to the particular curved top interface motioned above. The
structures of the jet are plotted in figure 6(c,d) with the inset depicting the geometry.
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Figure 6. Influence of 1/Re number on four important features of the bubble dynamics for two selected
stand-off distances y = 0.7, 1.1. (@) Film thickness, (b) jet velocity, (¢) width of the jet and (d) volume of
the jet, where V,,, is the bubble volume at maximum expansion. The inset in panel (c¢) sketches the definition
of jet width and volume, similar to Jayaprakash ef al. (2012).
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Figure 7. The distribution of normalized gap thickness /je; /Ryuax and jet velocity Uje;/Up on (1/Re, ).

The normalized jet width Rje//R;nqy for both y values fluctuates around 0.3. Yet in a low
viscous liquid, a smaller y has a wider jet width, and this trend and the magnitude agree
with the findings reported by Jayaprakash et al. (2012). The normalized jet volume shown
in figure 6(d) decreases with 1/Re. The reason is that in the more viscous liquid, the jet
formation slows down so the bubble has collapsed into a smaller size when the impact
occurs. The local minimum at low 1/Re for y = 1.1 (the second and third markers) is the
result of the particular shape of the bubble shown in figure 5.

In figure 7, we summarize the values of hj,; in (a) and Uj, in (b), which are the main
factors on the formation of the wall shear stress and used for further analysis in § 6 below.
At low y, hj,, increases with 1/Re while is almost constant at high y. Overall, the jet
velocity Uj,, decreases with viscosity and increases with y, so hj, and Uj, are both
a complex function of these two parameters. The results for a low-viscosity liquid are
consistent with experiments (Philipp & Lauterborn 1998) and simulations (Lechner et al.
2020).

The result here also alerted us to the use of an inviscid model for y < 1 in the
low 1/Re regime. Although the viscous damping plays a minor role in the low 1/Re
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regime, the formation of a thin film separating the bubble and the wall strongly relies
on the appearance of liquid viscosity through forming a boundary layer. This is particular
obvious in the nonlinear change of the film thickness as a function of y for y < 1.0 (see
figure 2b). Yet owing to the absence of viscosity, inviscid models inherently fail to acquire
stable solutions on resolving the thin film dynamics for y < 1.0. In practice, numerical
procedures may be introduced to assure a finite separation distance (Gonzalez-Avila et al.
2011) or to enforce a contact between the bubble and the solid boundary (Wang et al.
2015). Although the stability issue is overcome, these treatments prevent a modelling of
the spreading flow dynamics at the solid wall. Once y > 1.0, the film thickness increases
linearly demonstrating the viscosity is unimportant for the film formation and an inviscid
model is appropriate.

5. Spatio-temporal wall shear stress

We now discuss the spatio-temporal wall shear stress formation arising from an expanding
and contracting bubble with the influence of the stand-off distance and liquid viscosity.
The stress 7 on the no-slip wall is defined and approximated as

du,
T=Md—y

u(y)
y:O y

; (5.1

y=e€

where u, is the velocity of the wall-parallel flow, y is the vertical distance from the
boundary and e the height at which the rate of shear is constant (Schlichting & Gersten
2016). Here we use € = 0.1 pum, which is sufficient to stay within the linearly increasing
velocity regime of the boundary layer (Zeng et al. 2018a; Gonzalez-Avila et al. 2020).

Figures 8(a) and 10(a)—12(a) depict examples of spatio-temporal maps of 7 (¢, r) of four
bubbles for two selected y values and two viscosities. To cover the large range of the wall
shear stress, its magnitude is plotted as a logarithm to the base 10. The colour of 7 indicates
the direction of the wall shear stress; a stress directed away from the axis of symmetry,
r = 0, is presented in red colour and a stress towards » = 0 with a blue colour. The white
colour reveals the stagnation regions that are annular rings. The colour bar is kept the same
for all four cases for comparison. The overlaid solid line in the spatio-temporal map of each
figure shows the evolution of the equivalent bubble radius until first collapse. To further
illustrate the connection between the stress and the bubble dynamics, we additionally plot
the bubble shape and stress distribution for four different times below the spatio-temporal
map in each figure.

Let us first look at the result of the bubble in water for y = 0.7 in figure 8. The expanding
bubble creates an outward stress over the full domain and ends just shortly before reaching
the maximum volume. During this stage, the stress has a maximum value of approximately
1 kPa occurring at a distance » ~ 0.2 mm. Inward stress appears at large distance r > R x
at approximately t = 31 s and travels towards the bubble. Yet the direction of the shear
stress remains outward for some regions below the bubble R(#). These two regions of
opposite shear stress are separated by a stagnation ring that shrinks with time. As the
bubble collapses, this ring travels slowly inwards. Here the ring remains even after jet
impact (t = 86 us) owing to a thin liquid film formed between the flattened bubble and
the rigid boundary, which makes the liquid inside the film trapped and is hardly pushed
by the inward flow. Before the jet impacts, the outward stresses decrease while the inward
ones increase with time. Right after the jet impact, a fast jump of the outward stress is
evidenced that is caused by the fast-spreading flow (see panels (a) and (d) t = 85.5 us).

932 A14-10


https://doi.org/10.1017/jfm.2021.997

https://doi.org/10.1017/jfm.2021.997 Published online by Cambridge University Press

Wall shear stress from jetting cavitation bubbles

a
@ s 5.6 4
5
0.4
L4 3
0.3
-
g -3 2
&
0.2
~ . 72
1
0.1 L
Lo 0
0 20 40 60 80 100 1020 (D) log,, (-7
®) Sy (©)
] e -
;; f’,//z///; ] J; f‘:.,///f/’
fe s / e
z s

1

R

\
1

}“I

100

—_
L

7 (kPa)

L A

0O 01 02 03 04 0 01 02 03 04 O 0.1 02 03 04 O 0.1 02 03 04
7 (mm) 7 (mm) 7 (mm) 7 (mm)

Figure 8. Spatio-temporal wall shear stress and representative flow details for bubbles of y = 0.7 and p =
1073 Pa - s. (@) Wall shear stress distribution. Red and blue colours represent the outward and inward stress,
respectively. Black solid line indicates the bubble equivalent radius versus time. (b)—(e) The bubble shape
and flow details for different times: (b) expansion; (c¢) during the jet formation; (d) upon jet impact; (e) jet
spreading. Bubbles are shown in black. The flow velocity is coded in blue while its direction is indicated by
the arrows. The bottom of the flow frame is the solid boundary, where the wall shear stress along the radial
direction r is plotted below. In the plot, dotted line indicates T = 0.

This high stress originates close to the stagnation point, » = 0, and travels outwards with
the spreading flow.

Shock-waves developed at various stages, such as the initial expansion, jet impact and
the bubble collapse, also accelerate the flow and suddenly increase the wall shear stress.
Peaks of the stress appear alongside the shock-waves travelling at the speed of sound ¢ =

1500 m s~!. This is evidenced in figure 9. Figure 9(a) shows the spatio-temporal shear
stress during the early expansion 0 < ¢t < 0.5 us. Shortly after the bubble nucleation (r =
0), high outward stresses appear and decay rapidly for all distances r as the expanding
shock-wave passes. Positions of those peaks follow the trajectory of the shock-wave on the
solid boundary thus propagate at a velocity of ¢ = 1500 m s~!. Figure 9(b) also shows the
zoomed region of figure 8 for the collapse at 91.3 < ¢ < 91.8 us. Here, the shock-wave
generated by the collapse of the bubble at r = 91.4 us starts at a distance r ~ 0.21 mm,
thus it accelerates the flow outwards for r > 0.21 mm and inwards for r < 0.21 mm. As a
result, maxima of the outward stresses are seen for r > 0.21 mm and of inward stresses for
r < 0.21 mm. Note that the wall shear stresses induced by the shock-wave are short-lived,
i.e. the flow recovers within 7 ~ 50 ns.
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Figure 9. Zoom-in details of figure 8 during (@) the early expansion 0 < # < 0.5 us and (b) collapse 91.3 <
t < 91.8 us. Arrows indicate the peaks of stress owing to shock-waves. Note that the colour bars have a linear
scale of the wall shear stress.
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Figure 10. Spatio-temporal wall shear stress and representative flow details for bubbles of y = 0.7 and p =
0.02 Pa - s. (a) Wall shear stress distribution. (b)—(e) Flow details for different times: (b) expansion; (c¢) during
the jet formation; (d) upon jet impact; (e) jet spreading.

A similar wall shear stress pattern to figure 8 is seen in figure 10 for a bubble in liquid
with higher viscosity u = 0.02 Pa - s. The stagnation ring separating inward and outward
stresses is also seen owing to the same mechanism as figure 8 and remains until the jet
impact. Yet the ring moves closer to the axis » = 0 compared with that in figure 8, which
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Figure 11. Spatio-temporal wall shear stress and representative flow details for bubbles of y = 1.1 and u =

1073 Pa - s. (a) Wall shear stress distribution. (b)—(e) Flow details for different times: (b) expansion; (¢) during
the jet formation; (d) upon jet impact; (e) jet spreading.

is the result of a thicker liquid gap. Although the flow is slowed down by higher liquid
viscosity, the magnitude of the stress increases significantly for the whole time-space
domain.

Figure 11 present the result of a bubble in water but with a higher stand-off distance
y = 1.1. Here, the liquid gap is much larger that allows an inward flow to develop. As a
result, the stagnation ring shrinks quicker during the bubble shrinkage and reaches the axis
r=0att =70 us. Compared with figure 8, here, the outward stress during expansion and
inward stress have lower magnitudes. The reason is that before jet impact, the bubble acts
as a source generating a radial outflow during expansion and an inflow during contraction,
and the source has a weaker effect as it moves further from the solid wall. After jet impact,
the stress in the whole shown domain becomes outward within 1 us (see panel (d)t =
86 us), while it takes approximately 5 us for the outward stress to develop at large r in
figure 8.

With the same high stand-off distance y = 1.1, the bubble generates a similar
spatio-temporal map of wall shear stress but with higher stress magnitudes in a more
viscous liquid, as shown in figure 12.

For liquids with low viscosities (figures 8 and 11), a region of local inward shear
(indicated with arrows) is observed just ahead of the maximum stress, which is the
result of a reversed flow generated by a high adverse pressure gradient arising from the
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Figure 12. Spatio-temporal wall shear stress and representative flow details for bubbles of y = 1.1 and u =
0.02 Pa - s. (a) Wall shear stress distribution. (b)—(e) Flow details for different times: (b) expansion; (¢) during
the jet formation; (d) upon jet impact; (e) jet spreading.

fast-spreading jet (Zeng et al. 2018a). However, this boundary layer separation is strongly
reduced and even vanishes (figures 10 and 12) at a higher viscosity.

As seen from figures 8—12, increasing the liquid viscosity significantly increases the
magnitude of both outward and inward stresses. We can further have a look at the
maximum shear stress during the bubble shrinkage and jet spreading for comparison.
For the cases presented, the maximum inward stresses are 2.8 kPa and 1.3 kPa in water
(figures 8 and 11) while they grow to 9.9 kPa, and 5.1 kPa in a 20 times more viscous
liquid (figures 10 and 12). The maximum outward stresses also increase from 110 kPa and
109 kPa to 249 kPa and 365 kPa, respectively. Although in (5.1), t is defined proportional
to the liquid viscosity u, here, the increment of stress is nonlinear with w, as the liquid
viscosity also significantly influences the bubble dynamics and therefore the boundary
flow, as shown in § 4.

6. Maximum stress distribution
We now study in figure 13 the maximum inward and outward shear stresses (T, and Ty,
respectively) over a parameter space consisting of y and the inverse Reynolds number
1/Re.

More specifically, t,,, arises from the suction flow of the shrinking bubble, while
Tmp 1 the result of the radially spreading jet. The energy input, i.e. the initial size and
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Figure 13. The maximum stress distribution on a parameter map of (1/Re, y), (a) inward and (b) outward.
The spacing in the contour lines are 1 kPa in panel (a) and 25 kPa in panel (b). The open circles named from
a to d mark the four cases in figures 8 to 12, respectively.

pressure of the bubble nucleus, is held constant at R( = 0) =25 um and p(r < R(t =
0)) = 2700 bar. The effect of the viscosity on the maximum bubble radius R, is rather
mild, thus the range of 0.00025 < 1/Re < 0.027 covers approximately the viscosity range
103Pa-s<pu<0.1Pa-s.

6.1. Inward shear stress

Let us first look at 7, in figure 13(a). In general, the inward stress, T,,,, increases with
1/Re while decreases with y monotonically. Here, t,,,, increases faster with 1/Re at low y
values as compared with higher y values. To understand this dependency of t,,, we now
apply the typical boundary layer analysis (Schlichting & Gersten 2016) to the flow profile
of the expanding and collapsing bubble. At any time of the flow, we can estimate the wall
shear stress as T ~ U /6 with the outer radial velocity Uy, of the boundary layer and
the boundary layer thickness §. Within the boundary layer, the inertia forces balance the
friction in the boundary layer, thus in an axisymmetric flow, we can relate

pudu/dr ~ ud’u/oy*. (6.1)

The wall-perpendicular velocity gradient du/dy is of order U/, thus relation (6.1)
becomes

PUs0dUs0/3r ~ 1Uso /87, 6.2)
and the thickness of the boundary layer scales as
1 0.5
s~(E—0) . 6.3)
p AU /0r

Then the wall shear stress can be estimated as

T~ (p) % Uno(8Uno /1) (6.4)

For the inward flow, Uy, decreases with r outside the bubble, therefore the expression
Uso(0Uso/ 9r)0- increases with Uxs. Consequently, for each bubble, the maximum inward
stress T, occurs at the maximum velocity U, 0f the inward flow.
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Figure 14. Graph of 7,,,Re*>> versus y. The dashed line represents —70y + 110 (kPa). The doted line is
—70y + 100 (kPa). The symbols indicate liquid with various viscosity.

To estimate the scaling of the maximum inward wall shear stress with y and 1/Re, it
seems that a knowledge of the maximum of the expression Uso ymn(0Uso,mn/9r) would
be necessary. Unfortunately, this expression is difficult to obtain or even estimate. Let us
explain why. The magnitude of the inward stress increases during the shrinkage of the
bubble. Although the rate of the change of 7 is not strongly dependent on y, the instant of
time when the increase of the inwards stress ends is determined by y. For large stand-off
distance, we find that once the jet impacts on the boundary, the flow direction of the liquid
near the boundary is abruptly changed from inward to outward, see figures 11(d) and 12(d).
As aresult, for large y values, the maximum inward shear stress occurs just at the time of
jet impact. For a bubble closer to the boundary (small y ), the liquid underneath the bubble
is trapped. The jet impact results in an upwards splash into the bubble and thus prevents the
jet from abruptly stopping the inward flow. Hence, the boundary layer for large r > R(r)
continues accelerating inwards until the bubble has further collapsed and the vortex ring,
which is a result of the upwards lifted jet, spreads out, see figures 8(d,e) and 10(d.e). As
a result, the inward shear stress can increase to larger values as it is affected only later by
the spreading jet.

Therefore, the maximum velocity U mn, of the inward flow is increasing with
decreasing y. Let us include the effect of the viscosity by suggesting that T, ~
F(u®3, ) ~ f((1/Re)%3, y). We find that we can collapse the T, values onto a line
once we plot 7,,,Re®3 versus y rather than 7,,,Re%, see figure 14. The expected scaling
Tun ~ (1/Re)? reduces to T,,, ~ (1/Re)*3> mainly owing to the viscous dissipation of
the flow for 0.001 Pa-s < u < 0.1 Pa-s. The line fitted to the range 0.5 <y < 1.4
is TRe%3 = —70y + 110(kPa) for 0.01 Pa-s < pu < 0.1 Pa-s, while it reduces to
TunRe%3> = —70y + 100(kPa) for o = 1073 Pa - s mainly owing to a faster bubble motion
that reduces the growth time of the shrinking flow in water.

6.2. Outward shear stress

The distribution of t,,, reveals a more complex parameter space of (1/Re,y), see
figure 13(b). At low 1/Re, 7y, first increases then decreases with y; while at high
1/Re, 1, always decreases with y. The two local maxima are located at (1/Re ~ 0.006,

932 Al4-16


https://doi.org/10.1017/jfm.2021.997

https://doi.org/10.1017/jfm.2021.997 Published online by Cambridge University Press

Wall shear stress from jetting cavitation bubbles

y ~ 1.0) and (1/Re ~ 0.026, y ~ 0.5), and the contour levels reveal that the gradient of
the wall shear stress is stronger near the peak at low 1/Re.

Now we focus on the location where the maximum outward shear occurs and connect
its value with the bubble dynamics. Let us take T, occurring at time f = t,, and a
distance r = ryp. Now at r = ry,,, the maximum radial velocity along the y direction is
considered as the outer velocity of the boundary layer U jnp. Next we will use Uso mp
as an intermediate variable to connect T,,, with Uje, hje; and the liquid viscosity . For a
further step, we can rewrite (6.3) for the boundary layer thickness as

0.5
I 1 0.5 —0.577-0.5 ;0.5
" (10 ano/,mpar> reor eomprm (6:5)

where [, = Ucso,mp/0Uoso,mp/dr is a characteristic length for the spreading flow growing
from zero to the outer velocity, which is a non-trivial function that is dependent on the
bubble shape.

While tempting, the analytic similarity solution T ~ r~11/4 for the steady Glauert jet
(Glauert 1956) is not applicable to estimate the maximum wall shear stress of the present
transient and finite-sized jets. Yet it predicts, even for a steady jet, a rapid decrease of the
wall shear stress with distance r. If we neglect the bubble deformation after jet impact,
a reasonable estimate of the location where the maximum outward stress occurs is at the
edge of the impinging jet r = Rj,, (see figures 8—12d). This radius Rj,; & Ryqy increases
linearly with maximum radius of the bubble (see figure 6(c), where Rje;/Ryax =~ 0.3).
Assuming conservation of mass for the incompressible impinging jet, we have pUjetRjze[ =
PUco,mp2Rjethjer at 1 = Rjer, thus Uco mp/Ujer ~ Rinax/hjer. However, this expression is
incomplete as the bubble deformation is involved and viscosity contributes through energy
dissipation in the unsteady boundary layer. Therefore we use two exponents « and 8 that
account for the geometric and viscous effects with

Uoo,mp N (Rmax)aReﬂ' (6.6)
Ujet jet

Next we determine the values of « and 8 based on our computed results. Figure 15 plots
the various combinations of Re and Ueo sup/Ujer as a function of Ryx/hjer in a log—log
plot. Note that the opacity of the plotted data indicates the y value from low to high with
light to dark. Figure 15 shows that the values of @ and 8 are not constant but vary with y.
The shape reveals, as expected, two regimes with different scaling, namely for small and
large y. By fitting lines to the data in figure 15 , we obtain (¢, 8) = (0.2,0.2) fory < 1.1
and (a, B) = (1.0, 0.5) for y > 1.1. Combining (6.5) and (6.6) into Ty ;up ~ Uso,mp/Smp»
we obtain

Tymp ~ Mo.zhj;?.3l]jttsl’;0.s’ 6.7)

fory < 1.1, and

~ ,,—025,—-1.5771.5;-0.5
M hjet Ujet lm ’

(6.8)

Ts,mp
for y > 1.1, where 7y, denotes the maximum outward stress from the above scaling law.
The above laws can be written in a dimensionless form:

—0.27-0.3771.57-0.5
hjet Ujet lm ’

(6.9)
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fory < 1.1, and

0.257—1.5771.57—-0.5
hjet Ujet lm ’

Te,mp ~ Re (6.10)
fory > 1.1, where fs,mp = fs,mp/Poo’ hjet = hjeZ/Rmax, Ujet = Ujet/UO and Ly = Iy /Rmax-

To examine the scaling, we need information of the gap thickness l_zje, and the jet velocity
I_Jje, while considering 1, has a small effect. The results are reported in § 4 figure 7. Next
we insert in the relations (6.9) and (6.10) the f_zje, and Ujet from the simulations shown in
figure 7a,b to obtain t; ;. How does this value compare with 7,,,? Figure 16(a) combines
both 7, from relations (6.7) and (6.8) in one plot; note that the plotted variable rs*jmp is
the result of 7y ,,, normalized by its maximum value.

The landscape of r;fmp( 1/Re, y) shares similar features as 7,,,(1/Re, y) in figure 13(b)
with both local maximum values occurring at almost the same locations. For comparison,

we plot ‘L’;:mp against the normalized 7, ‘L’,;;p, in figure 16(b) and we find, overall, a
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linear relationship. Yet there are deviations that are caused by the richness of the flow field
and resulting bubble shapes briefly before the bubble collapse. For example, we observe a
splitting of the main bubble resulting in daughter toroidal bubbles close to the boundary
for y > 1.0 (see small red arrow in figure 11e). It is expected that these flows alter notably
the wall shear stress by affecting the characteristic length /,, in (6.7) and (6.8). These
complex shapes are relevant and seen in experiments, e.g. by Brujan et al. (2002), Zhang
et al. (2015). Overall, the scaling of relations (6.9) and (6.10) capture the dependence of
the maximum stress as a function of viscosity, u, gap thickness, hje;, and jet velocity, Uje;.

7. Conclusion

In summary, we have conducted a parameter study of the wall shear stress induced by
jetting cavitation bubbles with a focus on the effect of liquid viscosity and bubble stand-off
distance. The gap formed between the bubble’s lower interface and wall influences the
formation of both the inward and the outward stress patterns, which leads to complex
spatio-temporal distributions varying with p and y. We provide scaling laws for the
maximum inward and outward stresses. The maximum inward stress induced by the
shrinking bubble can be predicted with 7,,,Re®3 = —70y + 110 (kPa) for 0.5 < y < 1.4.
The scaling of the maximum outward stress varies with y. For 0.5 <y < 1.1, 7,y ~

Mo'zhj;?BUi]j, while it changes to Ty, ~ ;L_O‘ZShl.—etl‘SUi'ef for 1.1 <y < 1.6. These
results indicate that the stress decreases rapidly with the gap thickness especially when
y > 1.1. Surface cleaning from the first inertial cavitation bubble collapse may be
optimum for y < 1.1 and has been suggested by Reuter & Mettin (2016).

The stress from the second expansion and subsequent bubble oscillation has peak
values of a few kPa, which are considerably smaller than those during the first oscillation
cycle. The reason is that a large fraction of the potential bubble energy is lost during
the first collapse (Vogel, Lauterborn & Timm 1989; Zeng et al. 2018a). Yet the present
analysis does not account for bubbles translating along the boundary and oscillate for many
oscillations. These more realistic studies demand for a more complete model with energy
loss arising from collapse as a function of y and p as well as accounting for the then
3-dimensional problem. Interestingly, the present simulations predict a stronger wall shear
stress for inward flow with increasing viscosity; while for outward flow, local maximum
wall shear stress is seen as viscosity increases. As this finding is robust for all stand-off
distances, we suggest to explore liquids with approximately 20 times higher viscosity
than water. We expect that these may provide an enhanced cleaning as compared to
low-viscosity solvents such as aqueous detergent solutions or hydrofluoroethers commonly
used as cleaning solutions.
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