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Zero velocity update (ZUPT) is widely discussed for error restriction in land vehicle Inertial
Navigation Systems (INSs) and wearable pedestrian INSs to overcome the problems of
Global Positioning System (GPS) unavailability in urban canyons or indoor scenarios. In
this paper, an online smoothing method for ZUPT-aided INSs is presented. By introducing
the Rauch–Tung–Striebel (RTS) smoothing method into the ZUPT-aided INS, position
errors can be effectively restrained not only at stop points but during the whole trajectory.
By integrating reverse navigation with a ZUPT smoother, the method realises forward and
real-time processing. Compared with existing approaches, it can improve the position accur-
acy in real time without any other sensors, which is well suited for applications on high-accur-
acy navigation in GPS-challenging environments. Accuracy test results with different Inertial
Measurement Units (IMUs) show that the developed method can significantly decrease pos-
ition errors from hundreds or thousands of metres to below ten metres. During the whole tra-
jectory, the online smoothing method ensures the maximum position errors at non-stop points
can reach the same level of accuracy at stop points. A delay test result proves that the delay of
the reverse online smoothing method proposed in this paper is much shorter than existing
online smoothing methods.
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1. INTRODUCTION. Inertial Navigation System (INS) technology is widely
applied for bridging GPS outages (Aloi and Korniyenko, 2007; Grejner-Brzezinska
et al., 2001) or even replacing the Global Positioning System (GPS) in certain environ-
ments, such as urban canyons or indoor scenarios (Collin, 2015; Zhang et al., 2015;
Correa et al., 2016) because of the signal blockages of GPS. Zero velocity update
(ZUPT), as one of the high-accuracy position methods used in INS without any
other assisting sensors, has been widely used in urban canyon land vehicle navigation
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(Grejner-Brzezinska et al., 2001) and indoor pedestrian navigation (Godha and
Lachapelle., 2008; Wang et al., 2015).
By periodically stopping and observing the velocity error using an estimation filter

such as a Kalman filter, the ZUPT technology can correct the user’s velocity, restrict
the position and attitude errors, and further estimate the sensor bias errors. In land
vehicle INS, previous work focuses on proposing various kinds of advanced ZUPT
methods. An improved filter estimation method applied in ZUPT for land-based
survey systems was proposed by Ben et al. (2009). A new hybrid extended particle
filter combined with ZUPT is proposed for integrated navigation system (Yang
et al., 2010). Li et al. (2012) proposed an adaptive ZUPT algorithm to identify the
zero velocity condition and improve the position accuracy of the cart-mounted geolo-
cation system for unexploded ordnance. Ramanandan et al. (2012) proposed a new fre-
quency domain approach, using only IMU data, to detect the zero velocity condition
for land vehicles. In indoor pedestrian navigation, ZUPT is a key method to improve
indoor position accuracy without GPS data by mounting the Inertial Measurement
Unit (IMU) on a foot/shoe (Godha and Lachapelle., 2008; Ojeda and Borenstein,
2007; Zhou et al., 2010). To improve the accuracy of the ZUPT, some researchers
focus on zero velocity detection or walking motion (Wang et al., 2015; Bebek et al.,
2010; Elhoushi et al., 2016). Also, some researchers focus on integration with other
sensors, such as magnetic sensors (Yun et al., 2012; Fourati, 2015), visual sensors
(Tian et al., 2014) and pressure sensors (Zihajehzadeh et al., 2015). However, research
and improvement of the ZUPT method itself is still necessary to improve the position
accuracy or the adaptability in flexible walking motion conditions, such as while
running.
To improve the position accuracy of all points along the travel route, an optimal

smoothing method is employed in the early inertial survey systems (Huddle, 1986).
However, there is a drawback in that all traditional smoothing methods can only be
applied for post-processing applications. Suh (2012) proposes a two-step smoother
method consisting of an attitude smoother and a velocity smoother. In the two-
step smoother, the post-processing works on the previous segment of the path, so
that the delay time is the interval between the two stops. A step-wise smoothing al-
gorithm of ZUPT-aided INSs was proposed by Colomar et al. (2012), and this is
applied to the data in a step-wise way requiring a suggested varying-lag segmenta-
tion rule. Even though the step-wise smoothing algorithm can be used in near real-
time applications, it cannot estimate the position error at the real-time point or the
end point.
The existing smoothing methods cannot be used in real-time processing because all

the smoothing techniques are backward processing methods that always start from the
end of the forward filtering mission. However, real-time processing is necessary for
most navigation applications. Thus, an online smoothing method is proposed in this
paper for ZUPT-aided INS by combining the reverse navigation with the smoothing
algorithm.
The paper is organised as follows. In Section 2, the traditional ZUPT method

based on Kalman filter is briefly reviewed. In Section 3, the reverse navigation algo-
rithm and its error model are introduced. In Section 4, an online smoothing method
for ZUPT based on reverse navigation is elaborated. In Section 5, the test results as
well as an accuracy verification are reported. The last section is conclusion and
discussion.
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2. ZERO VELOCITY UPDATE.
2.1. Principle of Zero Velocity Update. The principle of ZUPT is shown in

Figure 1. With the inertial navigation calculation, a Kalman filter is used to estimate
the navigation errors by observing velocity error when the vehicle stops. The states of
the Kalman filter including the navigation errors (position, velocity and attitude
errors) and the sensor errors (gyro and accelerometer biases) are required. The state
equation is the error function of the navigation algorithm. When the vehicle is
moving, only the filter prediction step is carried out; when the vehicle stops, the
filter updating step is carried out by using the observations of velocity error. The navi-
gation results are exported after compensated by the errors estimated by the filter.

2.2. Strapdown INS Algorithm and Error Model. Most of the land vehicle and
pedestrian INSs adopt micromechanical or optical gyroscope strapdown IMUs. In a
strapdown INS, the IMU is mounted on the vehicle or the body without a static plat-
form. Angular velocity and acceleration are measured by gyroscopes and acceler-
ometers in the body frame (denoted by b). A mathematical platform is established
in the computer to calculate the navigation results (attitude, velocity and position).
The local geographical frame (E-N-U frame) is chosen as the navigation frame
(denote by n), the strapdown INS algorithm can be written as:

_C
n
b ¼ Cn

bΩ
b
nb

_vn ¼ Cn
bf

b � ð2ωn
ie þ ωn

enÞ × vn þ gn

_L ¼ vnN = ðRN þ hÞ; _λ ¼ vnE secL = ðRE þ hÞ; _h ¼ vnU

ð1Þ

where Ωb
nb¼ðωb

nb×Þ, ωb
nb¼ωb

ib�ðCn
bÞT ðωn

ieþωn
enÞ, gn¼½0 0 �g�T ; ωn

ie¼½0 ωie cosL
ωie sinL�T , ωn

en¼½�vnN=ðRNþhÞ vnE=ðREþhÞ vnE tanL=ðREþhÞ�T .
Cn

b is the direction cosine matrix to transform vectors from body frame to navigation
frame; vn represents the vector defined by the velocity directions of east, north and up
in the navigation frame, vn ¼ ½ vnE vnN vnU �T ; L, λ and h are the latitude, longitude
and height, respectively; ωb

ib represents the angular velocity vector with respect to
the inertial space measured by the gyroscope triad in the body frame; f b is the specific
force vector measured by the accelerometer triad; ωie and g are the self-rotation
angular velocity and the gravity acceleration of the earth; RN and RE are the meridian
radius and the transverse radius of curvature, respectively; Ωb

nb is the skew symmetric

Figure 1. Principle of zero velocity update.
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matrix constituted by the element of ωb
nb ¼ ωb

nbx ωb
nby ωb

nbz

h iT
(symbolised by

ðωb
nb×Þ ¼

0 �ωb
nbz ωb

nby

ωb
nbz 0 �ωb

nbx
�ωb

nby ωb
nbx 0

2
64

3
75 in this paper).

According to the algorithm, the error model of the strapdown INS in Equation (1)
can be written as (Titterton and Weston, 1997):

_ψ ¼ �ψ × ωn
in þ δωn

in � Cn
bδω

b
ib

δ _vn ¼ f n × ψ � ð2ωn
ie þ ωn

enÞ × δvn � ð2ωn
ie þ ωn

enÞ × vn � δgn þ Cn
bδf

b

δ _L ¼ δvnN=ðRN þ hÞ � δh � vnN=ðRN þ hÞ2

δ _λ ¼ δvnE secL=ðRE þ hÞ þ δL � vnE tanL secL=ðRE þ hÞ � δh � vnE secL=ðRE þ hÞ2

δ _h ¼ δvnU
ð2Þ

where

ωn
in ¼ ωn

ie þ ωn
en; δω

n
in ¼ δωn

ie þ δωn
en; δω

n
ie ¼ ½ 0 �δL � ωie sinL δL � ωie cosL �T ;

δωn
en ¼

�δvnN=ðRN þ hÞ þ δh � vnN=ðRN þ hÞ2
δvnE=ðRE þ hÞ � δh � vnE=ðRE þ hÞ2

δvnE tanL=ðRE þ hÞ þ δL � vnEsec2L=ðRE þ hÞ � δh � vnE tanL=ðRE þ hÞ2

2
64

3
75:

ψ is the attitude error vector in the mathematical platform, ψ ¼ δα δβ δγ½ �T . δα,
δβ and δγ are the three attitude error elements, which can be replaced by the roll, pitch
and yaw Euler errors for small angle misalignments; δv is the velocity error vector,
δv ¼ δvE δvN δvU½ �T . The elements δvE, δvN and δvU denote the velocity errors
in the east, north and up direction respectively; δL, δλ and δh stand for the latitude,
longitude and height error respectively; δgn is the gravity anomaly vector; δωb

ib and
δf b are the error vectors of gyroscope and accelerometer triad respectively.

2.3. Kalman Filter. In this paper, the attitude errors, velocity errors, position
errors, the gyroscope biases (ɛx, ɛy and ɛz) and the accelerometer biases (∇x, ∇y and
∇z) are chosen as the state of the Kalman filter:

x ¼ δα δβ δγ½ δve δvn δvu δL δλ δh

εx εy εz ∇x ∇y ∇z�T
ð3Þ

Assuming that the gyroscope and accelerometer measurement errors are constant
biases and ignoring the gravity anomaly, the error model can be expressed in a discrete
form as:

xk ¼ Φk�1;kxk�1 þ wk ð4Þ
where xk is the state vector at time k;Φk�1;k is the state transition matrix from time k−1
to k; wk is the system noise.
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When the vehicle or the body stops, the velocity of the system should be zero in
theory. Thus, the observation velocity is expressed as vnobv¼ ½0 0 0�T. The measure-
ment equation can be derived as:

zk ¼ ðvn � vnobvÞ ¼ Hkxk þ vk ð5Þ
where zk is the aiding measurement, Hk ¼ 03×3 I3×3 03×9½ � is the measurement
matrix and vk is the measurement noise.
In the Kalman filter, the system and measurement noise are considered as a Gaussian

distribution:

wk ∼ Nð0;QkÞ; vk ∼ Nð0;RkÞ ð6Þ
The Kalman filter calculation steps are:
Prediction:

x̂k=k�1 ¼ Φk�1;kx̂k�1 ð7Þ
Pk=k�1 ¼ Φk�1;kPk�1Φ

T
k�1;k þQk ð8Þ

Updating:

Kk ¼ Pk=k�1HT
k ½HkPk=k�1HT

k þ Rk��1 ð9Þ
x̂k ¼ x̂k=k�1 þ Kk½zk �Hkx̂k=k�1� ð10Þ

Pk ¼ Pk=k�1 � KkHkPk=k�1 ð11Þ
where x̂k=k�1 and Pk=k�1 are the predicted state and the covariance at time k with the
given information at time k−1; x̂k�1 and Pk�1 are the estimated state and covariance at
time k−1; x̂k and Pk are the estimated state and covariance at time k.

3. REVERSE NAVIGATION ALGORITHM
3.1. Discrete Strapdown INS Algorithm. In practice, in order to perform the re-

cursion calculation in a computer, the strapdown INS algorithm in Equation (1)
should be discretised:

Cn
bk ¼ Cn

bk�1ðI þ TsΩ
b
nbkÞ

vnk ¼ vnk�1 þ Ts½Cn
bk�1f

b
k � ð2ωn

iek�1 þ ωn
enk�1Þ × vnk�1 þ gn�

Lk ¼ Lk�1 þ TsvnNk�1=ðRN þ hk�1Þ
λk ¼ λk�1 þ TsvnEk�1 secLk�1=ðRE þ hk�1Þ
hk ¼ hk�1 þ TsvnUk�1

ð12Þ

where

Ωb
nbk ¼ ðωb

nbk×Þ;
ωb
nbk ¼ ωb

ibk � ðCn
bk�1ÞTðωn

iek þ ωn
enÞ;

ωn
iek ¼ ½ 0 ωie cosLk ωie sinL k�T ;

ωn
enk ¼

�vnNk=ðRN þ hkÞ
vnEk=ðRE þ hkÞ
vnEk tanLk=ðRE þ hkÞ

2
4

3
5;

k is each discretised time point of the navigation process (k = 1, 2, 3, · · ·).
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3.2. Reverse Strapdown INS Algorithm. Assuming that the INS navigates from
position A to position B from time t0 to t, Equation (12) can be transformed to
Equation (13) to navigate from position B back to position A reversely (Yan et al.,
2008).

Cn
bk�1 ¼ Cn

bkðI þ TsΩ
b
nbkÞ�1 ≈ Cn

bkðI � TsΩ
b
nbkÞ ≈ Cn

bkðI þ Ts ~Ω
b
nbk�1Þ

vnk�1 ¼ vnk � Ts½Cn
bk�1f

b
k � ð2ωn

iek�1 þ ωn
enk�1Þ × vnk�1 þ gn�

≈ vnk � Ts½Cn
bk�1f

b
k�1 � ð2ωn

iek þ ωn
enkÞ × vnk þ gn�

Lk�1 ¼ Lk � TsvnNk�1=ðRN þ hk�1Þ ≈ Lk � TsvnNk=ðRN þ hkÞ
λk�1 ¼ λk � TsvnEk�1 secLk�1=ðRE þ hk�1Þ ≈ λk � TsvnEk secLk=ðRE þ hkÞ
hk�1 ¼ hk � TsvnUk�1 ≈ hk � TsvnUk

ð13Þ

where ~Ω
b
nbk�1 ¼ ð~Ωb

nbk�1×Þ; ~Ω
b
nbk�1 ¼ �½ωb

ibk�1 � ðCn
bkÞT ðωn

iek þ ωn
enkÞ�;

If the reverse velocity is defined as vnrk ¼ �vnk, the reverse strapdown INS algorithm
can be written as:

Cn
bk�1 ¼ Cn

bkðI þ Ts ~Ω
b
nbrk�1Þ

vnrk�1 ¼ vnrk þ Ts½Cn
bk�1f

b
k�1 � ð�2ωn

iek þ ωn
enrkÞ × vnrk þ gn�

Lk�1 ¼ Lk þ TsvnNrk=ðRN þ hkÞ
λk�1 ¼ λk þ TsvnErk secLk=ðRE þ hkÞ
hk�1 ¼ hk þ TsvnUrk

ð14Þ

where ~Ω
b
nbrk�1 ¼ ð~Ωb

nbrk�1×Þ; ~Ω
b
nbrk�1 ¼ �ωb

ibk�1 � ðCn
bkÞT ð�ωn

iek þ ωn
enrkÞ;

ωn
enrk ¼

�vnNrk=ðRN þ hkÞ
vnErk=ðRE þ hkÞ
vnErk tanLk=ðRE þ hkÞ

2
4

3
5:

It should be pointed out that, the attitude and position results in the reverse algo-
rithm are the same as those in the forward algorithm, but the velocity result in the
reverse algorithm is opposite. Comparing Equation (12) with Equation (14), it can
be seen that the reverse algorithm is much the same as the forward algorithm except
the sign of gyroscope measurement and self-rotation angular velocity of the earth
are opposite. To sum up, the error model of the reverse INS algorithm has a similar
form to the model of the forward algorithm except the sign of the gyroscope measure-
ment, the gyroscope bias and the earth rotation angular velocity are opposite.

4. ONLINE SMOOTHING BASED ON REVERSE NAVIGATION
4.1. Principle of Online Smoothing. The principle of the online smoothing based

on reverse navigation proposed in this paper is shown in Figure 2. In the forward navi-
gation processing, the Kalman filter for ZUPT is used as usual and the IMU data are
stored in the memory. At each time of the navigation process, the reverse navigation
algorithm can be performed using the previous IMU data. The initial values of the
reverse navigation algorithm are the forward navigation result at this moment. In
the reverse navigation algorithm, a reverse Kalman filter for ZUPT is used, which is

347AN ONLINE SMOOTHING METHOD BASED ON REVERSE NAVIGATIONNO. 2

https://doi.org/10.1017/S0373463316000667 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463316000667


much the same as the forward one except that the sign of the gyroscope measurement,
the gyroscope bias and the earth rotation angular velocity in the state function are op-
posite. In the reverse navigation algorithm, the fixed-point smoothing method can be
used to estimate the navigation errors at the real-time point, while the Rauch-Tung-
Striebel (RTS) smoothing can be used to estimate the navigation error of all points
in the trajectory including the real-time point. Because the reverse navigation and
the smoothing are both reversed processing algorithm, the smoothing in the reverse
navigation algorithm turns into forward processing, which can realise online process-
ing in theory and thereby estimate the real-time point or the end point.
The process of the online smoothing proposed in this paper is shown in Figure 3.

Each line expresses one smoothing calculation process. Taking land vehicle INS for
example, the vehicle stops for 10–15 minutes as initial alignment time before naviga-
tion. Then, the vehicle also stops for 30–60 seconds for ZUPT after travelling every
8–10 minutes. In the forward navigation algorithm, the Kalman filter performs the up-
dating equation of the Kalman filter (Equations (7) and (8)) by observing the velocity
error when the vehicle stops and only carries out the prediction equation of the
Kalman filter (Equations (9)–(11)) when the vehicle is travelling. At the same time,
the online smoothing proposed in this paper can be performed during the navigation.
At each point (normally at the stop point), the reverse navigation (Equation (14)) can
be processed using the past IMU data. In the reverse navigation algorithm, when the
vehicle is traveling, only the filter prediction step (Equations (7) and (8)) is carried out;
when the vehicle stops, the filter updating (Equations (9)–(11)) is carried out by observ-
ing the velocity error; when the reverse navigation algorithm is calculated back to the
start point, the filter updating is carried out by observing the velocity error and the pos-
ition error. Then, reversed processing smoothing algorithms such as the RTS smooth-
ing (Equations (18)–(21)) can be carried out in the forward process. Because the
position information of the start point is used in the online smoothing algorithm,
the position precision can be better than the traditional offline smoothing algorithm.

4.2. Kalman Smoothing Algorithm. In the online smoothing method proposed in
this paper, various Kalman smoothing algorithms can be used. In practice, a suitable
smoothing algorithm can be chosen according to the requirement.

4.2.1. Fixed-point smoothing. The fixed-point smoothing is used to estimate the
states in a fixed time by all observable information after that time. The calculation
steps of fixed-point smoothing are as below.

Figure 2. Integrated architecture of online smoothing for ZUPT based on reverse navigation.
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From the initial time, the updated states x̂k and covariance Pk are calculated by the
Kalman filter. When the filtering time k is equal to or later than the smoothing time j,
the state vector at the smoothing time can be estimated by the iterative equation after
the Kalman filter:

x̂ j=k ¼ x̂ j=k�1 þ Ka
kðzk �Hkx̂k=k�1Þ ð15Þ

Ka
k ¼ Pa

k=k�1H
T
k ðHkPk=k�1HT

k þ RkÞ�1 ð16Þ

The iterative equation of covariance matrix Pa
kþ1=k in the fixed-point smoother can

be presented as:

Pa
kþ1=k ¼ Pa

k=k�1 Φkþ1;k�Φkþ1;kKkHT
k

� �T ð17Þ

Because the fixed-point smoothing does not need to store the filtering information,
it has a low requirement of the computer’s speed and storage space, which applies to
the online smoothing, but only one point can be estimated in each smoothing
operation.

4.2.2. RTS smoothing. The RTS smoothing is also called fixed-interval smooth-
ing, which can estimate the states in the whole trajectory using discontinuous observ-
able information (Gong et al., 2013; Liu et al., 2010). The calculation steps of the RTS
smoother are as below.
While the Kalman filter is working, the predicted states x̂k=k�1 and covariance

Pk=k�1, the updated states x̂k and covariance Pk are all stored in memory for smooth-
ing later. We assume that there are M times in the whole trajectory, and each time can
be denoted as j (0 < j <M). After the calculation of the Kalman filter, the RTS smooth-
er begins at timeM. With j =M,M− 1, · · · , 1, the iterative equation of the state vector
in the RTS smoother can be written as:

x̂ j�1=M ¼ x̂ j�1 þ A j�1 x̂ j=M � x̂ j=j�1
� � ð18Þ

A j�1 ¼ P j�1Φ
T
j;j�1P

�1
j=j�1 ð19Þ

Figure 3. Process of online smoothing for ZUPT.
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The iterative equation of the covariance matrix in the RTS smoother can be pre-
sented as:

P j�1=M ¼ P j�1 þ A j�1 P j=M�P j=j�1
� �

AT
j�1 ð20Þ

where the updated states and covariance at time M of the Kalman filter is the initial
value of the RTS smoother.

x̂M=M¼x̂M PM=M ¼ PM ð21Þ
In this paper, the RTS smoothing is chosen to perform a high-accuracy estimation of

the navigation errors. It should be pointed out that because the RTS smoothing has to
store the filtering information during the navigation, it has a relatively high require-
ment of the computer’s processing speed and storage space. To improve the software
for making the online smoothing algorithm applicable to common hardware, the cal-
culation frequency of the smoothing process can be reduced from 100 Hz to 1 Hz or
even lower. In this way, only the averaged data for each second needs to be stored,
and the storage space and the processing speed required of the computer can be reduced
to 1% or lower.

5. FIELD TESTS
5.1. Test Arrangement. Field navigation tests were carried out in Changsha to

verify the effectiveness of the online smoothing method for ZUPT-aided INS. Two
IMUs with the same level of accuracy were used in the tests. Both IMUs consisted
of three Ring Laser Gyros with an accuracy of 0·003°/h and three quartz acceler-
ometers with an accuracy of 10 µg. An indexing mechanism with an accuracy of 5″
was used for estimating the inertial sensor biases during the alignment. The sampling
frequency was 100 Hz. A Differential GPS (DGPS) with an accuracy of 3 cm was used
to provide the reference position information for comparison. The test car, the DGPS
base station and the installation of the IMU on the indexing mechanism and on the
vehicle are shown in Figure 4.
To verify the method used in different IMUs, paths and stop intervals, six navigation

tests (listed in Table 1) were designed.
5.2. Accuracy Test Results. In the first two tests, IMU1 was used to navigate for

2 h and 1 h 50 min respectively. During the alignment, the azimuth axis of the IMU
was turned 90° by the indexing mechanism to estimate and compensate the biases of
the inertial sensors. During the navigation, the test car stopped for 30 s every 10 min
for ZUPT. The navigation results of Test 1 and Test 2 are shown in Figures 5 and 6.
In each figure, the navigation trajectory is shown in Figure (a), the errors of inertial
navigation without ZUPT are shown in Figure (b), the errors with traditional ZUPT
mentioned in Section 2 are shown in Figure (c) and the errors with online smoothing
ZUPT proposed in this paper are shown in Figure (d), respectively. We can see from
the figures that the max position error of inertial navigation without ZUPT is about
500 m over 2 h. The position error at stop points can be compensated to 5·5 m by
ZUPT-aiding, but when the car was running, the position error accumulated to 15 m
in 10 min. With the online smoothing ZUPT-aiding, the maximum position error
during the whole trajectory was restrained to below 5 m in both tests. It has to be
pointed out that the unconventional points such as the 20 m error in Figure 6(c)
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and Figure 6(d) are caused by a break in the DGPS signal when the car traversed
through bridges and other obstructions. That is also the reason why the position
error at Stop point 5 in Test 2 cannot be obtained.
In Test 3 and Test 4 the method is verified using a different IMU (IMU2). Each test

lasted for 1 h 20 min, and the test car also stopped for 30 s every 10 min for ZUPT. In
Test 3, the biases of the inertial sensors were also estimated and compensated by the
indexing mechanism, and the path was also random as in Test 1 and Test 2. The navi-
gation result is similar to the first two tests as shown in Figure 7. The maximum pos-
ition error at the stop points was decreased to 4·6 m by ZUPT-aiding, and during the
whole trajectory was restrained to 4·3 m by the online smoothing ZUPT-aiding. It
further illustrates the efficiency of the online smoothing method on high-accuracy
IMU.
The position errors in Test 4 are larger than those in the previous three tests, espe-

cially at the third stop point, which is twice as large as the max error in the previous
tests. This is because during the alignment and the navigation before the third stop

Figure 4. Field test facilities.

Table 1. Introduction of the navigation tests.

Test number IMU Navigation time Trajectory Alignment Stop interval

Test1 IMU1 2 h Random Two-direction 10 min
Test2 IMU1 1h50 min Random Two-direction 10 min
Test3 IMU2 1h20 min Random Two-direction 10 min
Test4 IMU2 1h20 min Straight and return One-direction 10 min
Test5 IMU2 2 h Random One-direction 15 min
Test6 IMU2 2 h Random One-direction 15 min
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Figure 5. Results of Test 1.

Figure 6. Results of Test 2.
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point, the orientation of the IMU had not changed. Under this condition, the horizon-
tal attitude angle errors are coupled with the accelerometer bias as well as the azimuth
error and the gyro bias, and therefore some states of the Kalman filter cannot be con-
vergent. After the vehicle turned 180°, the errors were decoupled and all states of the
Kalman filter were convergent so that all the errors were estimated at the next stop
point by observing the velocity error. Thus the position error was restrained after
the fifth stop point. We can infer from the result that turning of the vehicle is necessary
for a ZUPT-aiding INS to improve the observability and ensure the Kalman filter is
convergent. According to the test result, the issue of low observability in straight tra-
jectory can be solved by adding a single-axis indexing mechanism. The errors can be
decoupled by only one 90° rotation around the azimuth axis during alignment with no
need of rotation during navigation. In addition, it can be seen by comparing Figure 8(c)
with Figure 8(d) that the online smoothing algorithm can clearly improve the accuracy
of ZUPT under bad observability conditions as well.
The test conditions in Test 5 and Test 6 were the same as in Test 3, except the stop

interval was extended to 15 min. Test results are shown in Figure 9 and Figure 10. The
maximum position error at stop points was compensated to 8·7 m by ZUPT-aiding,
and during the whole trajectory it was restrained from 70 m to 14·4 m by the online
smoothing ZUPT-aiding in both tests. This proves that the online smoothing ZUPT
method can maintain a high accuracy estimation even if the observation interval is
extended to 15 min.
Statistical results of the six tests are shown in Table 2. When the stop interval is 10

min, the max position error at the stop points is 5·5 m by ZUPT-aiding, and it is 4·9 m

Figure 7. Results of Test 3.
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Figure 8. Results of Test 4.

Figure 9. Results of Test 5.
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during the whole trajectory by online smoothing ZUPT-aiding except the unusual
points in Test 4. When the stop interval extends to 15 min, the max position error at
the stop points was 8·7 m by ZUPT-aiding, and it was 14·4 m during the whole trajec-
tory by the online smoothing ZUPT-aiding. This proves that by using the proposed
online smoothing ZUPT method, the position error in the whole trajectory can be

Figure 10. Results of Test 6.

Table 2. Statistical Results of the Six Tests.

Position error Test1 Test2 Test3 Test4 Test5 Test6

Stop point 1 1·0 m 2·6 m 1·3 m 1·7 m 6·6 m 3·2 m
Stop point 2 0·2 m 2·5 m 0·7 m 1·6 m 0·7 m 4·8 m
Stop point 3 0·8 m 2·4 m 1·8 m 10·3 m 3·8 m 7·1 m
Stop point 4 3·8 m 2·3 m 2·7 m 5·0 m 3·9 m 1·2 m
Stop point 5 2·8 m — 2·5 m 2·7 m 0·9 m 5·8 m
Stop point 6 4·0 m 3·4 m 4·6 m 2·0 m 3·5 m 8·7 m
Stop point 7 3·8 m 3·0 m 3·0 m 1·2 m 5·0 m 1·6 m
Stop point 8 4·0 m 2·0 m 2·2 m 2·1 m 2·0 m 6·0 m
Stop point 9 5·5 m 2·6 m — — — —

Stop point 10 5·2 m 5·0 m — — — —

Stop point 11 4·2 m 3·1 m — — — —

Stop point 12 3·7 m — — — — —

Max error at stop points 5·5 m 5·0 m 4·6 m 10·3 m 6·6 m 8·7 m
Max error during the whole trajectory 4·9 m 4·2 m 4·3 m 7·9 m 6·6 m 14·4 m
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restrained to the same level of those at the stop points. The test results reach quite a
high level accuracy in a state-of-art technical condition, which verifies the advance-
ment of online smoothing ZUPT method proposed in this paper.

5.3. Delay Test Results. A delay test with a calculation frequency of 1 Hz was
designed for calculating the position accuracy and the delay time of the reverse
online smoothing method proposed in this paper. A commonly used computer with
a 4 GHz quad-core processor and a 120 GB solid-state drive is adopted in the test.
The 100 Hz gyro and accelerometer data of Test 1 is read for each 10 ms to simulate
the online condition and the delay time is recorded by computer. The test results of
existing step-wise online smoothing method and the reverse online smoothing
method proposed in this paper are shown in Figure 11. It can be seen from
Figure 11(a), that the accuracy of the two smoothing methods are similar and the ac-
curacy with 1 Hz smoothing is no worse than the accuracy of Test 1 in Figure 5. It can
be seen from Figure 11(b), limited by the principle, that the step-wise online smoothing
method can process a step of smoothing only when the observation is obtained. The
largest delay time is about 10 min because the vehicle stops every 10 min. The theor-
etical delay of the proposed reverse online smoothing method is 1 s because the
smoothing calculation frequency is 1 Hz. In practice, this is limited by the computer’s
calculation speed, and the delay time increases with navigation time because the data
size accumulates. However, the delay is no more than 3 s after 1 h navigation and no
more than 20 s after 2 h navigation using a common computer, which is much
shorter than that with the traditional online smoothing method.

6. CONCLUSION AND DISCUSSION. Smoothing methods in ZUPT-aided
navigation can effectively restrain position errors not only at stop points but also
during the whole trajectory in independent navigation systems. To realise real-time
high-accuracy estimation, an online smoothing method for ZUPT-aided INS based
on reverse navigation is proposed in this paper. Six tests with two different IMUs
are designed to verify the effectiveness of the proposed method. The online smoothing
methodwas performed in different trajectories with different stop intervals. Test results
prove that the online smoothing methodwith ZUPTcan improve the position accuracy

Figure 11. Results of delay test results.
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during the whole trajectory, including at real time points and the end point, to the level
nearly equivalent to the accuracy at the stop points, and the results can be even better
when the stop interval is reduced to 10 min or shorter. In the delay test result, the delay
is no more than 3 s and 20 s after 1 h and 2 h navigation using a common computer,
respectively. This is much shorter than the traditional online smoothing method.
The results reach a quite a high level of accuracy in a state-of-art technical condition,
which verifies the advancement of the online smoothing ZUPT method proposed in
this paper.
The proposed online smoothing method has shown a great potential in land vehicle

navigation for the rapidly rising Vehicle Networking and self-driving technology,
which can provide high accuracy position and attitude of vehicles in real time in an
urban-canyon environment. The method researched in this paper is also helpful to
improve the adaptability of ZUPT-aided pedestrian INSs in flexible walking motion
conditions, such as while running. In the future, the proposed online smoothing
method will be verified in a Micro-Electromechanical Systems (MEMS) pedestrian
navigation system.
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