MARINE RESERVOIR AGE CORRECTION FOR THE ANDAMAN BASIN

Harsh Raj^{1,2*} • Ravi Bhushan¹ • M Muruganantham¹ • Romi Nambiar^{1,3} • Ankur J Dabhi¹

¹Physical Research Laboratory, Ahmedabad, India

²Indian Institute of Technology, Gandhinagar, India

³Department of Chemistry, Gujarat University, Ahmedabad, India

ABSTRACT. Marine reservoir age is an important component for correction in radiocarbon (¹⁴C) dating of marine and coastal samples. ¹⁴C concentration in pre-bomb marine samples of known age are used to derive marine reservoir age of a region. Annually banded coral from Landfall island in the northern Andaman has been analyzed for its ¹⁴C concentration during the pre-bomb period 1948–1951. ¹⁴C age and reservoir effect (ΔR) are reported for these pre-bomb coral samples from the northern Andaman region. The mean ¹⁴C age of 331 ± 61 yr BP was obtained for the period 1948–1951 with an average reservoir age correction of -138 ± 61 yr. This reservoir age correction is lowest reported from the northern Andaman. The ΔR value of the northern Andaman and the Bay of Bengal appears lower than that of southern Andaman. The ΔR values obtained using mollusk shells and coral from the northern part of the Andaman archipelago, could result due to freshwater flux and reduced upwelling in the region.

KEYWORDS: Andaman basin, coral, marine reservoir age, radiocarbon.

INTRODUCTION

Radiocarbon $({}^{14}C)$ is primarily produced in the atmosphere by interaction between cosmic rays and atmospheric nitrogen. ¹⁴C in the atmosphere reacts with oxygen to form carbon dioxide and then enters the biosphere and hydrosphere. It reaches the ocean mainly through air-sea CO₂ exchange process (Alves et al. 2018; Bhushan et al. 2000; Dutta and Bhushan 2012). ¹⁴C concentration of dissolved inorganic carbon in surface seawater depends on ¹⁴C concentration of the atmosphere and oceanic subsurface waters. Since ocean subsurface waters remain isolated from the atmosphere for hundreds of years before shoaling up, its ¹⁴C concentration is generally lower than atmospheric ¹⁴C concentration. Combination of air-sea CO₂ exchange, and upwelling reduces the ¹⁴C activity of the surface ocean reservoir as compared to that of the atmosphere, leading to reservoir effect (Stuiver and Polach 1977; Alves et al. 2018). This causes an offset between ¹⁴C age of marine samples and corresponding atmospheric age, and this offset is called the reservoir age (R) (Stuiver and Braziunas 1993). The varying intensity of air-sea CO₂ exchange, upwelling and horizontal or lateral advection, results in different reservoir ages of surface ocean across the globe. Variation of regional R from the global average R value is called reservoir effect correction (ΔR). Using marine calibration curve, the ¹⁴C age corresponding to calendar year of sample growth or collection provides the global average R value for that time. Mathematically, subtracting this global average R value from measured 14 C age of marine sample yields ΔR (Stuiver and Braziunas 1993; Reimer and Reimer 2017; Alves et al. 2018). ΔR values are applied to ¹⁴C age of marine samples before calibration to correct for local reservoir effect. As reservoir age varies due to ocean circulation, upwelling and freshwater flux, apart from reservoir age correction it also helps in understanding the oceanography of the region. In the northern Indian Ocean, ΔR values observed for the Bay of Bengal region are lower compared to those for the Arabian Sea (Dutta et al. 2001). Intense upwelling in the Arabian Sea during monsoon leads to higher ΔR values (Southon et al. 2002), whereas relatively lower ΔR values in the Bay of Bengal (Dutta et al. 2001) is due to highly stratified surface water which impedes vertical mixing (Thadathil et al. 2007; Sijinkumar

^{*}Corresponding author. Email: harshraj@prl.res.in.

1340 H Raj et al.

et al. 2016). Andaman basin situated on the eastern side of the Bay of Bengal receives large amount of freshwater from rivers.

Several scientific investigations in the Andaman region used ¹⁴C ages focusing on diverse subjects like past monsoonal variability (Rashid et al. 2007; Achyutan et al. 2014; Ali et al. 2015; Ota et al. 2017; Kumar et al. 2018; Bhushan et al. 2019b), past salinity changes (Sijinkumar et al. 2016), deformational history of Andaman Islands (Rajendran et al. 2008; Kunz et al. 2010; Awasthi et al. 2013), past volcanic activity (Awasthi et al. 2010), past sea-level changes (Scheffers et al. 2012), past tsunami deposits (Jankaew et al. 2008) and archeological history (Cooper 1993) of the region. However, there are limited reservoir age estimates available from the region (Dutta et al. 2001; Southon et al. 2002). In order to constrain the reservoir effect and understand the oceanography of the region, more prebomb ¹⁴C values from this region are required. Corals are good marine archive recording the past ¹⁴C changes in DIC of seawater (Druffel and Linick 1978; Hideshima et al. 2001; Grumet et al. 2002; Dang et al. 2004; Druffel et al. 2008). In this study, annually banded *Porites* coral core drilled from the Landfall Island from the northern Andaman has been analyzed for its ¹⁴C composition. The pre-bomb ¹⁴C value between 1948 and 1951 obtained from the coral has been used to estimate the reservoir age correction of the Andaman basin.

MATERIALS AND METHODS

In March 2018, a 126-cm-long coral core was collected from a live *Porites* sp. colony from Landfall Island (13°39'N, 93°02'E) situated in the northern Andaman using an underwater coral driller. The coral core was cut into 8-mm-thick slices. X-radiograph of the coral slice shows annual density banding (Figure 1). The coral core slices were treated with 10% H₂O₂ solution and then cleaned with Milli-Q in ultrasonic bath to remove organics from coral skeleton. After cleaning, the slices were dried at 60°C. The clean and dried slices were drilled for stable isotope and ¹⁴C analysis using micro-driller. Chronology of the annual bands were assigned using stable isotopic composition of the skeleton. The $\delta^{18}O$ and $\delta^{13}C$ values of drilled coral sample show good seasonality, which is also observed in another Porites coral core from Andaman region (Rixen et al. 2011). The distance between consecutive maxima of δ^{18} O was considered as one year. Top most band was assigned year of sample collection i.e. 2018, and the last analysed band corresponds to year 1948. About 10 mg of drilled coral carbonate powder samples along with new oxalic acid standard (NIST Oxalic Acid, SRM 4990C, HOxII), inter-comparison sample VIRI-R (Scott et al. 2010) and in-house coral standard (PRL-C) were converted to graphite using automated graphitization equipment (AGE3) (Wacker et al. 2010, 2013). Oxalic acid standard (HOxII) is the primary standard used for normalizing sample ¹⁴C content, whereas VIRI-R was used as a check standard. The graphitized samples and standards were pressed into targets and measured at PRL Accelerator Mass Spectrometer facility (PRL-AURIS; Bhushan et al. 2019a, 2019b). Each target was measured for 10 cycles of 10,000 ¹⁴C counts, with total of at least 100,000 14 C counts. VIRI-R standard yielded 14 C value of 74.6 ± 1.0 pMC, which is close to the consensus value of 73.338 ± 0.037 pMC, affirming the accuracy of the measurement. To determine the reservoir age of the region where the coral was growing, ¹⁴C concentration of six samples corresponding to period between 1948 and 1951 were analyzed.

1341

Marine Reservoir Age Correction

Figure 1 X-radiograph of Landfall coral showing annual density banding along with its $\delta^{18}O$ composition. White box is the marked area of samples between 1948 and 1951.

Year (AD)	Δ ¹⁴ C (‰)	Δ^{14} C (Suess corrected) (‰)	¹⁴ C age (yr BP)	Model ¹⁴ C age (yr BP)	$\Delta \mathbf{R}$ (yr)
1948	-38 ± 8	-29 ± 9	313 ± 67	469 ± 23	-156 ± 71
1948	-32 ± 8	-23 ± 9	263 ± 66	469 ± 23	-206 ± 70
1949	-39 ± 8	-30 ± 9	321 ± 67	469 ± 23	-148 ± 71
1950	-54 ± 8	-45 ± 9	446 ± 68	469 ± 23	-23 ± 72
1951	-41 ± 8	-32 ± 9	335 ± 67	469 ± 23	-134 ± 71
1951	-38 ± 8	-29 ± 9	310 ± 67	469 ± 23	-159 ± 71
Average	-40	-31	331		-138
Std dev	7	7	61		61

Table 1 Results of ¹⁴C analysis of Landfall coral skeleton between 1948–1951.

RESULTS AND DISCUSSION

Results of ¹⁴C measurement are summarized in Table 1, where Δ^{14} C (‰) and ¹⁴C age (yr BP) were calculated using measured ¹⁴C/¹²C and ¹³C/¹²C ratios. The results have been reported following conventions of Stuiver and Polach (1977). Calculated Δ^{14} C are corrected for fractionation and age between year of measurement and growth of coral band. As samples belong to 20th century, Suess correction of $-9 \pm 3\%$ is applied only to Δ^{14} C values of corals (Southon et al. 2002). Model ¹⁴C age is derived from Marine13 calibration curve, which uses IntCall3 curve and ocean–atmosphere box diffusion model to obtain global marine surface ocean curve for 0 to 10.5 cal kBP (Reimer et al. 2013). The model ¹⁴C age used here for period 1948–1951 is 469 ± 23 yr BP. Δ R values are calculated by subtracting model ¹⁴C age from conventional ¹⁴C age of the coral samples. Dutta et al. (2001) and Southon et al. (2002) did not use Suess corrected Δ^{14} C values, but the Δ R values. Although, Southon et al. (2002) reported Suess corrected Δ^{14} C values, but the Δ R values were calculated without Suess correction. Thus, to maintain uniformity and ease for comparison, Δ R values were calculated without Suess correction.

Errors quoted for Δ^{14} C, 14 C age and Δ R are one sigma. The Δ^{14} C value for Landfall coral sample ranges from -32 % to -54% with mean value of $-40 \pm 7\%$ (mean \pm SD, n = 6) between 1948 and 1951. The Suess-corrected Δ^{14} C value averages around $-31 \pm 7\%$. Between 1948 and 1951, ΔR value recorded by the Landfall coral ranges between -23 to -206 yr. The χ^2 test was carried out to test the variability in our coral ΔR values. It is observed that $\chi^2/(n-1)$ is less than 1, suggesting that the measurement errors explain the coral ΔR variability and no additional uncertainty is required when calculating the average ΔR (Mangerud et al. 2006). The observed changes in ¹⁴C values of coral could result from local oceanographic conditions. Reservoir correction, calculated using Marine13-derived model age, for Chilika lake in the northern Bay of Bengal (Dutta et al. 2001) equals to -61 ± 61 yr. As it is the only reservoir correction value available from the region, it is assumed to be representative of the northern Bay of Bengal. This value is lower than observed ΔR value of -23 ± 76 yr in the year 1950 for the Landfall coral, suggesting lateral mixing of surface waters from the northern Bay of Bengal may not result in such change in ΔR value. This suggests that the observed variation in coral ¹⁴C values could have resulted from either vertical mixing or lateral transport from the southern Andaman region. The mean ΔR value of Landfall coral is calculated to be -138 ± 61 yr. In absence of any other ΔR value reported from the northern Andaman, the obtained mean value of -138 ± 61 yr can be applied on ¹⁴C dates for the northern Andaman region for reservoir correction. Previously, Dutta et al. (2001) and Southon et al. (2002) had reported ¹⁴C values of bivalve (*Asaphis deflavata*) and gastropod (*Thais* sp.) shell from the Andaman region. Bivalve shell from the Stewart Sound in the northern Andaman gave Δ^{14} C value of $-55 \pm 4\%$ (Dutta et al. 2001), and gastropod shell from the Nicobar Island showed Δ^{14} C value of $-53.6 \pm 7.7\%$ (Southon et al. 2002). The Δ^{14} C values from Landfall coral are higher when compared to the Stewart Sound and Nicobar Island samples.

The ΔR values calculated from the reported $\Delta^{14}C$ of calcareous shells from the Stewart Sound and Nicobar Island is 12 and 30 yr, respectively (Table 2). Both these values are higher than ΔR value of the Landfall coral. It is interesting to note that even the highest ΔR value recorded by Landfall coral is lower than that of Andaman mollusk shells. The model ages used for reservoir age calculation for each sample are different as the year of growth or collection for these samples varies from 1913 to 1951. The model age ranges from 448 to 469 yr BP. The observed differences in ΔR value of samples are result of either species specific ¹⁴C activity or oceanic processes like upwelling and circulation or both.

Feeding habits and habitats of mollusks can have effects on their ¹⁴C records. Species-dependent ¹⁴C activity can result in variable ΔR values for the same region (Dye 1994; Forman and Polyak 1997; Hogg et al. 1997; Petchey et al. 2012). Bivalves can be suspension feeders or deposit feeders. Some bivalves engage in deposit feeding depending on their local conditions (Petchey et al. 2004). Thus, bivalves feeding on detritus of old limestone can result in high ¹⁴C ages. Petchey et al. (2004) analyzed marine shells from the Coral Sea and the Solomon Sea region, and they found mollusk (*Asaphis violascens*) collected from an area dominated by calcareous bedrock yielded high ΔR values. Unlike bivalves, *Thais* sp. is a carnivorous predator. The ¹⁴C content of these gastropod may not represent seawater DIC ¹⁴C content, as their ¹⁴C content depends on the carbon reservoir of their prey (Hua 2015). Lindauer et al. (2017) had also observed influence of food resource and habitat on the ΔR of bivalve and gastropod from Gulf of Oman region. Therefore, enriched values in mollusk (*Asaphis deflavata, Thais* sp.) from Andaman could be due to species specific ¹⁴C activity. Apart from species difference, the sample location can also be one of the reasons behind observed differences in ΔR value from Andaman region.

The Landfall Island is in the northern part of Andaman archipelago, which receives large flux of fresh riverine water. Salinity in the Andaman basin increases southwards (Babu and Sastry 1976) and reservoir age correction also shows increasing value with locations further south in the Andaman basin away from freshwater region. During winters, southern Andaman sea is influenced by flows from the Malacca strait originating from the South China Sea (Raju et al. 1981). The average ΔR value reported for the South China Sea is -3 ± 50 yr (Dang et al. 2004). During summer monsoon, Southwest Monsoon Current flows eastward south of Sri Lanka to bring saltier Arabian Sea waters into the Bay of Bengal (Schott et al. 2009). Southon et al. (2002) reported ΔR values of 127 yr for the Sri Lankan region. During the same period (summer), southern Andaman (around 10-degree channel) receives strong influx of surface currents from the Bay of Bengal side (Kiran 2017), which could bring ΔR enriched waters to the southern Andaman. These surface currents in summer and winter season could lead to the observed high ΔR values in the southern Andaman. Whereas, the northern Andaman region receives freshwater flux from rivers leading to stratification of surface waters, which inhibits vertical mixing and contributes to the lower reservoir age of the region. By comparing previously reported ΔR values with Landfall coral value, it is

	Sample (b = bivalve, c = coral, g = gastropod)	Site	Lat., long.	Year of collection/ growth	Δ ¹⁴ C (‰)	¹⁴ C age (yr BP)	Model ¹⁴ C age (yr BP)	ΔR (¹⁴ C yr)
This study	Porites sp. (c)	Landfall Island	13°39′N, 93°02′E	1948–1951	-40 ± 7	331 ± 61	469 ± 23	-138 ± 61
Dutta et al. (2001)	Asaphis deflavata (b)	Stewart Sound	13°01′N, 92°58′E	1935	-55 ± 4	469 ± 40	457 ± 23	12 ± 46
Southon et al. (2002)	Thais sp. (g)	Nicobar Islands	9°N, 94°E	1913	-53.6 ± 7.7	478 ± 65	448 ± 23	30 ± 69

Table 2 Reservoir age correction (ΔR) values of pre-bomb marine samples from Andaman Basin.

Figure 2 Map of northeastern Indian Ocean with reservoir age correction values from Landfall Island (this study), Chilika lake, Stewart sound (Dutta et al. 2001) and Nicobar Island (Southon et al. 2002). (Inset: study location marked by rectangle in northern Indian Ocean.)

observed that there exists significantly large variation in ΔR values from the Andaman Sea derived from coral and mollusk shells (Dutta et al. 2001; Southon et al. 2002) (Figure 2). Reservoir age correction values from the northern Andaman Sea and the Bay of Bengal are lower as compared to the southern Andaman Sea. These variations in reservoir age corrections need to be accounted while correcting ¹⁴C dates of marine samples for reservoir age of the region.

CONCLUSION

A Porites coral core from Landfall Island in the northern Andaman basin was analyzed for its ¹⁴C concentrations. The Δ^{14} C values of coral for the period 1948–1951 varies between -32 to -54‰. The mean ΔR value obtained for this period from the Landfall coral is -138 ± 61 yr, which is lowest reported for the northern Indian Ocean. The ΔR values reported from the Andaman basin shows large variations, wherein southern Andaman ΔR value is higher than that of the northern Andaman and Bay of Bengal. As the northern Andaman basin receives more freshwater flux as compared to the southern Andaman, such differences in reservoir age could be observed. However, difference in ΔR values due to species dependent ¹⁴C variability cannot be ruled out. More pre-bomb samples need to be analyzed to better estimate reservoir age and its variation with time in the Andaman basin.

ACKNOWLEDGMENT

We are extremely thankful to the Ministry of Earth Sciences (MoES) for funding the GEOTRACES project under which this work was carried out. We are extremely grateful to Director, PRL for his support. We thank the Ministry of Environment and Forest (MoEF) for granting permission for sampling of corals. We are grateful to PRL workshop and in particular to Rajesh Kaila for his help and support in the field and laboratory. We are thankful to Prof. PM Mohan of Pondicherry University, Port Blair, for his guidance and local logistic support during fieldwork.

REFERENCES

- Achyuthan H, Nagasundaram M, Gourlan AT, Eastoe C, Ahmad SM, Padmakumari VM. 2014. Mid-Holocene Indian Summer Monsoon variability off the Andaman Islands, Bay of Bengal. Quaternary International 349: 232–244.
- Ali S, Hathorne EC, Frank M, Gebregiorgis D, Stattegger K, Stumpf R, Kutterolf S, Johnson JE, Giosan L. 2015. South Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the Andaman Sea. Geochemistry, Geophysics, Geosystems 16(2):505–521.
- Alves EQ, Macario K, Ascough P, Bronk Ramsey C. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms, and prospects. Reviews of Geophysics 56(1):278–305.
- Awasthi N, Ray JS, Laskar AH, Kumar A, Sudhakar M, Bhutani R, Sheth HC, Yadava MG. 2010. Major ash eruptions of Barren Island volcano (Andaman Sea) during the past 72 kyr: clues from a sediment core record. Bulletin of Volcanology 72(9):1131–1136.
- Awasthi N, Ray JS, Laskar AH, Yadava MG. 2013. Chronology of major terrace forming events in the Andaman Islands during the last 40 kyr. Journal of the Geological Society of India 82(1): 59–66.
- Babu VR, Sastry JS. 1976. Hydrography of the Andaman Sea during late winter. Indian Journal of Marine Sciences 5:179–189.
- Bhushan R, Somayajulu BLK, Chakraborty S, Krishnaswami S. 2000. Radiocarbon in the Arabian Sea water column: Temporal variations in bomb ¹⁴C inventory since the GEOSECS and CO2 air-sea exchange rates. Journal of Geophysical Research: Oceans 105(C6): 14273–14282.
- Bhushan R, Yadava MG, Shah MS, Raj H. 2019a. Performance of a new 1MV AMS facility (AURiS) at PRL, Ahmedabad, India. Nuclear Instruments and Methods in Physics Research B 439:76–79.
- Bhushan R, Yadava MG, Shah MS, Banerji US, Raj H, Shah C, Dabhi AJ. 2019b. First results from the PRL accelerator mass spectrometer. Current Science (Bangalore) 116(3):361–363.

- Cooper Z. 1993. The origins of the Andaman Islanders: local myth and archaeological evidence. Antiquity 67(255):394–399.
- Dang PX, Mitsuguchi T, Kitagawa H, Shibata Y, Kobayashi T. 2004. Marine reservoir correction in the south of Vietnam estimated from an annually banded coral. Radiocarbon 46(2): 657–660.
- Druffel EM, Linick TW. 1978. Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5(11):913–916.
- Druffel ER, Robinson LF, Griffin S, Halley RB, Southon JR, Adkins JF. 2008. Low reservoir ages for the surface ocean from mid-Holocene Florida corals. Paleoceanography 23(2).
- Dutta K, Bhushan R, Somayajulu B. 2001. △R correction values for the northern Indian Ocean. Radiocarbon 43(2A):483–488.
- Dutta K, Bhushan R. 2012. Radiocarbon in the Northern Indian Ocean two decades after GEOSECS. Global Biogeochemical Cycles 26(2).
- Dye T. 1994. Apparent ages of marine shells: implications for archaeological dating in Hawai'i. Radiocarbon 36(1):51–57.
- Forman SL, Polyak L. 1997. Radiocarbon content of pre-bomb marine mollusks and variations in the ¹⁴C reservoir age for coastal areas of the Barents and Kara Seas, Russia. Geophysical Research Letters 24(8):885–888.
- Grumet NS, Guilderson TP, Dunbar RB. 2002. Prebomb radiocarbon variability inferred from a Kenyan coral record. Radiocarbon 44(2):581–590.
- Hideshima S, Matsumoto E, Abe O, Kitagawa H. 2001. Northwest Pacific marine reservoir correction estimated from annually banded coral from Ishigaki Island, southern Japan. Radiocarbon 43(2A):473–476.
- Hogg AG, Higham TF, Dahm J. 1997. ¹⁴C dating of modern marine and estuarine shellfish. Radiocarbon 40(2):975–984.
- Hua Q. 2015. Radiocarbon dating of marine carbonates. In: Rink WJ, Thompson J, editors. Encyclopedia of scientific dating methods. The Netherlands: Springer Earth Sciences Series. p. 676–679.
- Jankaew K, Atwater BF, Sawai Y, Choowong M, Charoentitirat T, Martin ME, Prendergast A.

2008. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455(7217): 1228–1231.

- Kiran SR. 2017. General circulation and principal wave modes in Andaman Sea from observations. Indian Journal of Science and Technology 10(24): 1–11.
- Kumar PK, Band ST, Ramesh R, Awasthi N. 2018. Monsoon variability and upper ocean stratification during the last ~66 ka over the Andaman Sea: inferences from the δ18O records of planktonic foraminifera. Quaternary International 479:12–18.
- Kunz A, Frechen M, Ramesh R, Urban B. 2010. Revealing the coastal event-history of the Andaman Islands (Bay of Bengal) during the Holocene using radiocarbon and OSL dating. International Journal of Earth Sciences 99(8): 1741–1761.
- Lindauer S, Santos, GM, Steinhof A, Yousif E, Phillips C, Jasim SA, Uerpmann HP, Hinderer, M. 2017. The local marine reservoir effect at Kalba (UAE) between the Neolithic and Bronze Age: an indicator of sea level and climate changes. Quaternary Geochronology 42:105–116.
- Mangerud J, Bondevik S, Gulliksen S, Hufthammer AK, Høisæter T. 2006. Marine ¹⁴C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quaternary Science Reviews 25(23–24):3228–3245.
- Ota Y, Kawahata H, Murayama M, Inoue M, Yokoyama Y, Miyairi Y, Aung T, Hossain HZ, Suzuki A, Kitamura A, Moe KT. 2017. Effects of intensification of the Indian Summer Monsoon on northern Andaman Sea sediments during the past 700 years. Journal of Quaternary Science 32(4):528–539.
- Petchey F, Phelan M, White JP. 2004. New ΔR values for the southwest Pacific Ocean. Radiocarbon 46(2):1005-1014.
- Petchey F, Ulm S, David B, McNiven IJ, Asmussen B, Tomkins H, Richards T, Rowe C, Leavesley M, Mandui H, Stanisic J. 2012. ¹⁴C marine reservoir variability in herbivores and depositfeeding gastropods from an open coastline, Papua New Guinea. Radiocarbon 54(3-4): 967–978.
- Rajendran K, Rajendran CP, Earnest A, Prasad GR, Dutta K, Ray DK, Anu R. 2008. Age estimates of coastal terraces in the Andaman and Nicobar Islands and their tectonic implications. Tectonophysics 455(1–4):53–60.
- Raju DV, Gouveia AD, Murty CS. 1981. Some physical characteristics of Andaman Sea waters during winter. Indian Journal of Marine Sciences 10:211–218.
- Rashid H, Flower BP, Poore RZ, Quinn TM. 2007. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quaternary Science Reviews 26(19–21):2586–2597.

- Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck C, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J. 2013. IntCall3 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887.
- Reimer RW, Reimer PJ. 2017. An online application for ΔR calculation. Radiocarbon 59(5):1623–1627.
- Rixen T, Ramachandran P, Lehnhoff L, Dasbach D, Gaye B, Urban B, Ramachandran R, Ittekkot V. 2011. Impact of monsoon-driven surface ocean processes on a coral off Port Blair on the Andaman Islands and their link to North Atlantic climate variations. Global and Planetary Change 75(1–2):1–13.
- Scheffers A, Brill D, Kelletat D, Brückner H, Scheffers S, Fox K. 2012. Holocene sea levels along the Andaman Sea coast of Thailand. The Holocene 22(10):1169–1180.
- Schott FA, Xie SP, McCreary Jr, JP. 2009. Indian Ocean circulation and climate variability. Reviews of Geophysics 47(1).
- Scott EM, Cook GT, Naysmith P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52(3):859–865.
- Sijinkumar AV, Clemens S, Nath BN, Prell W, Benshila R, Lengaigne M. 2016. 8¹⁸O and salinity variability from the Last Glacial Maximum to Recent in the Bay of Bengal and Andaman Sea. Quaternary Science Reviews 135:79–91.
- Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WW. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167–180.
- Stuiver M, Polach HA. 1977. Discussion reporting of ¹⁴C data. Radiocarbon 19(3):355–363.
- Stuiver M, Braziunas TF. 1993. Modeling atmospheric ¹⁴C influences and ¹⁴C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–189.
- Thadathil P, Muraleedharan PM, Rao RR, Somayajulu YK, Reddy GV, Revichandran C. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research: Oceans 112(C2).
- Wacker L, Němec M, Bourquin J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931–934.
- Wacker L, Fülöp RH, Hajdas I, Molnár M, Rethemeyer J. 2013. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research B 294:214–217.