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Abstract

Uncertainty in logic programming has been widely investigated in the last decades, leading to

multiple extensions of the classical logic programming paradigm. However, few of these are

designed as extensions of the well-established and powerful Constraint Logic Programming

(CLP) scheme for CLP. In a previous work we have proposed the proximity-based qualified

constraint logic programming (SQCLP) scheme as a quite expressive extension of CLP with

support for qualification values and proximity relations as generalizations of uncertainty values

and similarity relations, respectively. In this paper we provide a transformation technique for

transforming SQCLP programs and goals into semantically equivalent CLP programs and

goals, and a practical Prolog-based implementation of some particularly useful instances of

the SQCLP scheme. We also illustrate, by showing some simple – and working – examples,

how the prototype can be effectively used as a tool for solving problems where qualification

values and proximity relations play a key role. Intended use of SQCLP includes flexible

information retrieval applications.

KEYWORDS: constraint logic programming, program transformation, qualification domains

and values, similarity and proximity relations, flexible information retrieval

1 Introduction

Many extensions of logic programming (LP) to deal with uncertain knowledge and

uncertainty have been proposed in the last decades. These extensions have been

proposed from different and somewhat unrelated perspectives, leading to multiple

approaches in the way of using uncertain knowledge and understanding uncertainty.

A recent work by the present authors (Rodrı́guez-Artalejo and Romero-Dı́az

2010a) has focused on the declarative semantics of a new proposal for an extension

of the Constraint logic programming (CLP) scheme supporting qualification values

and proximity relations. More specifically, this work defines a new generic scheme,

proximity-based qualified constraint logic programming (SQCLP), whose instances

� This work has been partially supported by the Spanish projects STAMP (TIN2008-06622-C03-01),
PROMETIDOS–CM (S2009TIC-1465) and GPD–UCM (UCM–BSCH–GR58/08-910502).
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SQCLP(S,D,C) are parameterized by a proximity relationS, a qualification domain

D and a constraint domain C. The current paper is intended as a continuation of the

above paper (Rodrı́guez-Artalejo and Romero-Dı́az 2010a) with the aim of providing

a semantically correct program transformation technique that allows us to implement

a sound and complete implementation of some useful instances of SQCLP on top

of existing CLP systems like SICStus Prolog (SICS AB 2010) or SWI-Prolog (SWI-

Prolog 2010). In the introductory section of Rodrı́guez-Artalejo and Romero-Dı́az’s

(2010a) paper we have already summarized some related approaches of SQCLP with

a special emphasis on their declarative semantics and their main semantic differences

with SQCLP. In the next paragraphs we present a similar overview, but this time

putting emphasis on the goal resolution procedures and system implementation

techniques, when available.

Within the extensions of LP using annotations in program clauses we can find

the seminal proposal of quantitative logic programming by van Emden (1986) that

inspired later works such as the generalized annotated programs (GAP) framework by

Kifer and Subrahmanian (1992) and our former scheme qualified logic programming

(QLP). In the proposal of van Emden (1986), one can find a primitive goal-solving

procedure based on and/or trees (these are similar to the alpha–beta trees used

in the game theory) used to prune the search space when proving some specific

ground atom for some certainty value in the real interval [0, 1]. In the case of GAP,

the goal-solving procedure uses constrained Selective Linear Definite clause (SLD)

resolution in conjunction with a – costly – computation of the so-called reductants

between variants of program clauses. In contrast, QLP goal-solving uses a more

efficient resolution procedure called SLD(D) resolution, implemented by means of

real domain constraints, used to compute the qualification value of the head atom

based on the attenuation factor of the program clause and the previously computed

qualification values of the body atoms. Admittedly, the gain in efficiency of SLD(D)

w.r.t. GAP’s goal-solving procedure is possible because QLP focuses on a more

specialized class of annotated programs. While in all these three approaches there

are some results of soundness and completeness, the results for the QLP scheme are

the stronger ones (again, thanks to its also more focused scope w.r.t. GAP).

From a different viewpoint, extensions of LP supporting uncertainty can be

roughly classified into two major lines: approaches based on fuzzy logic (Zadeh

1965; Hájek 1998; Gerla 2001) and approaches based on similarity relations.

Historically, Fuzzy LP languages were motivated by expert knowledge representation

applications. Early Fuzzy LP languages implementing the resolution principle

introduced in Lee (1972) include Prolog-Elf (Ishizuka and Kanai 1985), Fril Prolog

(Baldwin et al. 1995) and F-Prolog (Li and Liu 1990). More recent approaches,

such as the Fuzzy LP languages in Vojtáš (2001) and Guadarrama et al. (2004),

and Multi-Adjoint LP (MALP) in the sense of Medina et al. (2001a) use clause

annotations and a fuzzy interpretation of the connectives and aggregation operators

occurring in program clauses and goals. The Fuzzy Prolog system proposed in

Guadarrama et al. (2004) is implemented by means of real constrains on top of a

CLP(R) system, using a syntactic expansion of the source code during the Prolog

compilation. A complete procedural semantics for MALP using reductants has been
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presentedby Medina et al. (2001b). A method for translating a MALP-like program

into standard Prolog has been described in Julián et al. (2009).

The second line of research mentioned in the previous paragraph was motivated

by applications in the field of flexible query answering. Classical LP is extended to

Similarity-based LP (SLP), leading to languages that keep the classical syntax of

LP clauses but use a similarity relation over a set of symbols S to allow ‘flexible’

unification of syntactically different symbols with a certain approximation degree.

Similarity relations over a given set S have been defined in Zadeh (1971) and

Sessa (2002) and the related literature as fuzzy relations represented by mappings

S : S × S → [0, 1], which satisfy reflexivity, symmetry and transitivity axioms

analogous to those required for classical equivalence relations. Resolution with

flexible unification can be used as a sound and complete goal-solving procedure for

SLP languages as shown for example in Arcelli Fontana and Formato (2002) and

Sessa (2002). SLP languages include Likelog (Arcelli Fontana and Formato 1999;

Arcelli Fontana 2002) and more recently SiLog (Loia et al. 2004), which has been

implemented by means of an extended Prolog interpreter and proposed as a useful

tool for web knowledge discovery.

During the past years, the SLP approach has been extended in various ways. The

similarity-based qualified logic programming (SQLP) scheme proposed in Caballero

et al. (2008) extended SLP by allowing program clause annotations in QLP style

and generalizing similarity relations to mappings S : S × S → D taking values

in a qualification domain not necessarily identical to the real interval [0, 1]. As

implementation technique for SQLP, Caballero et al. (2008) proposed a semantically

correct program transformation into QLP, whose goal-solving procedure has been

described above. Other related works on transformation-based implementations of

SLP languages include Sessa (2001) and Medina et al. (2004). More recently, the

SLP approach has been generalized to work with proximity relations in the sense

of Dubois and Prade (1980) represented by mappings S : S × S → [0, 1] that

satisfy reflexivity and symmetry axioms but do not always satisfy transitivity. SLP-

like languages using proximity relations include Bousi∼Prolog (Julián-Iranzo and

Rubio-Manzano 2009a) and the SQCLP scheme (Rodrı́guez-Artalejo and Romero-

Dı́az 2010a). Two prototype implementations of Bousi∼Prolog are available: a

low-level implementation (Julián-Iranzo and Rubio-Manzano 2009b) based on an

adaptation of the classical Warren Abstract Machine (WAM) (called Similarity

WAM) implemented in Java and able to execute a Prolog program in the context

of a similarity relation defined on the first-order alphabet induced by that program;

and a high-level implementation (Julián-Iranzo et al. 2009) done on top of SWI-

Prolog by means of a program transformation from Bousi∼Prolog programs into

the so-called Translated BPL code than can be executed according to the weak SLD

resolution principle by a meta-interpreter.

Let us now refer to approaches related to constraint-solving and CLP. An analogy

of proximity relations in the context of partial constraint satisfaction can be found

in Freuder and Wallace (1992), where several metrics are proposed to measure

the proximity between the solution sets of two different constraint satisfaction

problems. Moreover, some extensions of LP supporting uncertain reasoning use
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constraint-solving as implementation technique, as discussed in the previous para-

graphs. However, we are only aware of three approaches that have been conceived

as extensions of the classical CLP scheme proposed for the first time in Jaffar and

Lassez (1987). These three approaches are as follows: Riezler (1998) that extends

the formulation of CLP by Höhfeld and Smolka (1988) with quantitative LP in

the sense of van Emden (1986) and adapts van Emden’s idea of and/or trees to

obtain a goal resolution procedure; Bistarelli et al. (2001) that proposes a semiring-

based approach to CLP, where constraints are solved in a soft way with levels

of consistency represented by values of the semiring, and is implemented with

clp(FD,S) for a particular class of semirings that enable to use local consistency

algorithms, as described in Georget and Codognet (1998); and the SQCLP scheme

proposed in our previous work (Rodrı́guez-Artalejo and Romero-Dı́az 2010a), which

was designed as a common extension of SQLP and CLP.

As we have already said at the beginning of this Introduction, this paper deals

with transformation-based implementations of the SQCLP scheme. Our main results

include (a) a transformation technique for transforming SQCLP programs into

semantically equivalent CLP programs via two specific program transformations,

named elimS and elimD; and (b) a practical Prolog-based implementation that relies

on the aforementioned program transformations and supports several useful SQCLP

instances. As far as we know, no previous work has dealt with the implementation

of extended LP languages for uncertain reasoning that are able to support clause

annotations, proximity relations and CLP style programming. In particular, our

previous paper (Caballero et al. 2008) only presented a transformation analogous

to elimS for a programming scheme less expressive than SQCLP, which supported

neither non-transitive proximity relations nor CLP programming. Moreover, the

transformation-based implementation reported in Caballero et al. (2008) was not

implemented in a system.

The reader is assumed to be familiar with the semantic foundations of LP (Lloyd

1987; Apt 1990) and CLP (Jaffar and Lassez 1987; Jaffar et al. 1998). The rest

of the paper is structured as follows: Section 2 gives an abridged presentation

of the SQCLP scheme and its declarative semantics, followed by an abstract

discussion of goal-solving intended to serve as a theoretical guideline for practical

implementations. Section 3 briefly discusses two specializations of SQCLP, namely

QCLP and CLP, which are used as the targets of the program transformations

elimS and elimD, respectively. Section 4 presents these two program transformations

along with mathematical results that prove their semantic correctness, relying on the

declarative semantics of the SQCLP, QCLP and CLP schemes. Section 5 presents a

Prolog-based prototype system that relies on the transformations proposed in the

previous section and implements several useful SQCLP instances. Finally, Section 6

summarizes conclusions and points to some lines of planned future research.

2 The scheme SQCLP and its declarative semantics

In this section we first recall the essentials of the SQCLP scheme and its declarative

semantics, which were developed in detail in the previous works (Rodrı́guez-Artalejo
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and Romero-Dı́az 2010a, 2010b). Next we present an abstract discussion of goal-

solving intended to serve as a theoretical guideline for practical implementations of

SQCLP instances.

2.1 Constraint domains

As in the CLP scheme, we will work with constraint domains related to signatures.

We assume a universal programming signature Γ = 〈DC,DP 〉 where DC =
⋃

n∈� DCn

and DP =
⋃

n∈� DPn are countably infinite and mutually disjoint sets of free

function symbols (called data constructors in the sequel) and defined predicate

symbols, respectively, ranked by arities. We will use domain specific signatures

Σ = 〈DC,DP , PP 〉 extending Γ with a disjoint set PP =
⋃

n∈� PPn of primitive

predicate symbols, also ranked by arities. The idea is that primitive predicates

come along with constraint domains, while defined predicates are specified in user

programs. Each PPn may be any countable set of n-ary predicate symbols.

Constraint domains C, sets of constraints Π and their solutions, as well as terms,

atoms and substitutions over a given C, are well known notions underlying the CLP

scheme. In this paper we assume a relational formalization of constraint domains

as mathematical structures C providing a carrier set CC (consisting of ground terms

built from data constructors and a given set BC of C-specific basic values) and

an interpretation of various C-specific primitive predicates. For the examples in

this paper we will use a constraint domain R that allows to work with arithmetic

constraints over the real numbers, and is defined to include the following:

• The set of basic values BR = �. Note that CR includes ground terms built

from real values and data constructors, in addition to real numbers.

• Primitive predicates for encoding the usual arithmetic operations over �. For

instance, the addition operation + over � is encoded by a ternary primitive

predicate op+ such that, for any t1, t2 ∈ CR, op+(t1, t2, t) is true in R iff

t1, t2, t ∈ � and t1 + t2 = t. In particular, op+(t1, t2, t) is false in R if either

t1 or t2 includes data constructors. The primitive predicates encoding other

arithmetic operations such as × and − are defined analogously.

• Primitive predicates for encoding the usual inequality relations over �. For

instance, the ordering � over � is encoded by a binary primitive predicate

cp� such that, for any t1, t2 ∈ CR, cp�(t1, t2) is true in R iff t1, t2 ∈ � and

t1 � t2. In particular, cp�(t1, t2) is false in R if either t1 or t2 includes data

constructors. The primitive predicates encoding the other inequality relations,

namely >, � and >, are defined analogously.

We assume the following classification of atomic C-constraints: defined atomic con-

straints p(tn), where p is a program-defined predicate symbol; primitive constraints

r(tn) where r is a C-specific primitive predicate symbol; and equations t == s.

We use ConC as a notation for the set of all C-constraints and κ as a notation for

an atomic primitive constraint. Constraints are interpreted by means of C-valuations

η ∈ ValC, which are ground substitutions. The set SolC(Π) of solutions of Π ⊆ ConC
includes all the valuations η such that Πη is true when interpreted in C. Π ⊆ ConC
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is called satisfiable if SolC(Π) 	= ∅ and unsatisfiable otherwise. π ∈ ConC is entailed

by Π ⊆ ConC (noted Π |=C π) iff SolC(Π) ⊆ SolC(π).

2.2 Qualification domains

Qualification domains were inspired by van Emden (1986)) and firstly introduced in

Rodrı́guez-Artalejo and Romero-Dı́az (2008) with the aim of providing elements,

called qualification values, which can be attached to computed answers. They are

defined as structures D = 〈D,�, b, t, ◦〉 verifying the following requirements:

(1) 〈D,�, b, t〉 is a lattice with extreme points b (called infimum or bottom element)

and t (called maximum or top element) w.r.t. the partial ordering � (called

qualification ordering). For given elements d, e ∈ D, we write d� e for the greatest

lower bound (glb) of d and e, and d 
 e for the least upper bound (lub) of d and

e. We also write d � e as abbreviation for d � e ∧ d 	= e.

(2) ◦ : D × D → D, called attenuation operation, verifies the following axioms:

(a) ◦ is associative, commutative and monotonic w.r.t. �.

(b) ∀d ∈ D : d ◦ t = d and d ◦ b = b.

(c) ∀d, e ∈ D : d ◦ e � e.

(d) ∀d, e1, e2 ∈ D : d ◦ (e1 � e2) = (d ◦ e1) � (d ◦ e2).

For any S = {e1, e2, . . . , en} ⊆ D, the glb (also called infimum of S) exists and can be

computed as
�
S = e1 � e2 � · · · � en (which reduces to t in the case n = 0). The dual

claim concerning lubs is also true. As an easy consequence of the axioms, one gets

the identity d ◦
�
S =

�
{d ◦ e | e ∈ S}.

Some of the axioms postulated for the attenuation operator – associativity,

commutativity and monotonicity – are also required for t-norms in fuzzy logic,

usually defined as binary operations over the real number interval [0, 1]. More

generally, there are formal relationships between qualification domains and some

other existing proposals of lattice-based structures for uncertain reasoning, such as

the lower bound constraint frames proposed in Gerla (2001), the multi-adjoint lattices

for fuzzy LP languages proposed in Medina et al. (2001a, 2001b) and the semirings

for soft constraint-solving proposed in Georget and Codognet (1998) and Bistarelli

et al. (2001). However, qualification domains are a class of mathematical structures

that differs from all these approaches. Their base lattices do not need to be complete

and the axioms concerning the attenuation operator require additional properties

w.r.t. t-norms. Some differences w.r.t. multi-adjoint algebras and the semirings from

Bistarelli et al. (2001) have been discussed in more detail in Caballero et al. (2008)

and Rodrı́guez-Artalejo and Romero-Dı́az (2010a), respectively.

Many useful qualification domains are such that ∀d, e ∈ D \ {b} : d ◦ e 	= b. In the

sequel, any qualification domain D that verifies this property will be called stable.

More technical details, explanations and examples concerning qualification domains

can be found in Rodrı́guez-Artalejo and Romero-Dı́az 2010b (Rodrı́guez-Artalejo

and Romero-Dı́az 2010b). Examples include three basic qualification domains that

are stable, namely the qualification domain B of classical boolean values, the

qualification domain U of uncertainty values and the qualification domain W of
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weight values. Moreover, Theorem 2.1 of Rodrı́guez-Artalejo and Romero-Dı́az

(2010b) shows that the ordinary cartesian product D1× D2 of two qualification

domains is again a qualification domain, while the strict cartesian product D1⊗D2

of two stable qualification domains is a stable qualification domain.

2.3 Expressing a qualification domain in a constraint domain

The SQCLP scheme depends crucially on the ability to encode qualification domains

into constraint domains, in the sense defined below:

Definition 2.1 (Expressing D in C)

A qualification domain D is expressible in a constraint domain C if there is an

injective mapping ı : D \ {b} → C (thought as an embedding of D \ {b} into C) and

moreover:

(1) There is a C-constraint qVal(X) with free variable X such that SolC(qVal(X)) is

the set of all η ∈ ValC verifying η(X) ∈ ran(ı).

Informal explanation: For each qualification value x ∈ D \ {b} we think of

ı(x) ∈ C as the representation of x in C. Therefore, ran(ı) is the set of those

elements of C which can be used to represent qualification values, and qVal(X)

constraints the value of X to be some of these representations.

(2) There is a C-constraint qBound(X,Y , Z) with free variables X, Y and Z

encoding ‘x � y ◦ z’ in the following sense: any η ∈ ValC such that η(X) = ι(x),

η(Y ) = ι(y) and η(Z) = ι(z) verifies η ∈ SolC(qBound(X,Y , Z)) iff x � y ◦ z.
Informal explanation: qBound(X,Y , Z) constraints the values of X,Y , Z to

be the representations of three qualification values x, y, z ∈ D \ {b} such that

x � y ◦ z.

In addition, if qVal(X) and qBound(X,Y , Z) can be chosen as existential constraints

of the form ∃X1 . . . ∃Xn(B1 ∧ . . . ∧ Bm) – where Bj (1 � j � m) are atomic – we say

that D is existentially expressible in C. �

It can be proved that B, U, W and any qualification domain built from these

with the help of the strict cartesian product ⊗ are existentially expressible in any

constraint domain C that includes the basic values and computational features

of R. The example below illustrates the existential representation of three typical

qualification domains in R:

Example 2.1

(1) U can be existentially expressed in R as follows: DU \ {b} = DU \ {0} = (0, 1] ⊆
� ⊆ CR; therefore ı can be taken as the identity embedding mapping from

(0, 1] into �. Moreover, qVal(X) can be built as the existential R-constraint

cp<(0, X) ∧ cp�(X, 1) and qBound(X,Y , Z) can be built as the existential R-

constraint ∃X ′(op×(Y ,Z,X ′) ∧ cp�(X,X ′)).

(2) W can be existentially expressed inR as follows: DW\{b} = DW\{∞} = [0,∞) ⊆
� ⊆ CR; therefore, ı can be taken as the identity embedding mapping from

[0,∞) into �. Moreover, qVal(X) can be built as the existential R-constraint
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cp�(X, 0) and qBound(X,Y , Z) can be built as the existential R-constraint

∃X ′(op+(Y ,Z,X ′) ∧ cp�(X,X ′)).

(3) U⊗W can be existentially expressed in R as follows: DU⊗W \ {b} = (0, 1] ×
[0,∞) ⊆ � × �; therefore, ı : DU⊗W \ {b} → DR can be defined as ı(x, y) =

pair(x, y), using a binary constructor pair ∈ DC2 to represent the ordered pair

(x, y) as an element of DR. Moreover, taking into account the two previous items

of the example:

• qVal(X) can be built as ∃X1∃X2(X == pair(X1, X2)∧cp<(0, X1)∧cp�(X1, 1)∧
cp�(X2, 0)).

• qBound(X,Y , Z) can be built as ∃X1∃X ′1∃X2∃X ′2∃Y1∃Y2∃Z1∃Z2(X == pair

(X1, X2)∧Y == pair(Y1, Y2)∧Z == pair(Z1, Z2)∧op×(Y1, Z1, X
′
1)∧cp�(X1, X

′
1)

∧ op+(Y2, Z2, X
′
2) ∧ cp�(X2, X

′
2)). �

2.4 Programs and declarative semantics

Instances SQCLP(S,D,C) of the SQCLP scheme are parameterized by the so-called

admissible triples 〈S,D,C〉 consisting of a constraint domain C, a qualification

domain D and a proximity relation S : S × S → D – where D is the carrier set of

D and S is the set of all variables, basic values and signature symbols available in

C – satisfying the following properties:

• ∀x ∈ S :S(x, x) = t (reflexivity).

• ∀x, y ∈ S :S(x, y) =S(y, x) (symmetry).

• S restricted to Var behaves as the identity – i.e. S(X,X) = t for all X ∈ Var
and S(X,Y ) = b for all X,Y ∈ Var such that X 	= Y .

• For any x, y ∈ S , S(x, y) 	= b can happen only if

— x = y are identical.

— x and y are both: basic values, data constructor symbols with the same

arity; or defined predicate symbols with the same arity.

In particular, S(p, p′) 	= b cannot happen if p and p′ are syntactically different

primitive predicate symbols.

A proximity relation S is called similarity iff it satisfies the additional property

∀x, y, z ∈ S :S(x, z) �S(x, y) �S(y, z) (transitivity). A given proximity relation S
can be extended to work over terms, atoms and other syntactic objects in an obvious

way. The definition for the case of terms is as follows:

(1) For any term t, S(t, t) = t.

(2) For X ∈ Var and for any term t different from X, S(X, t) =S(t, X) = b.

(3) For any two data constructor symbols c and c′ with different arities, S(c(tn),

c′(t′m)) = b.

(4) For any two data constructor symbols c and c′ with the same arity, S(c(tn),

c′(t′n)) =S(c, c′) �S(t1, t
′
1) � · · · � S(tn, t

′
n).

For the case of finite substitutions σ and θ whose domain is a subset of a finite set

of variables {X1, . . . , Xm}, S(σ, θ) can be naturally defined as S(X1σ,X1θ) � . . . �
S(Xmσ,Xmθ).
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A SQCLP(S,D,C)-program is a set P of qualified program rules (also called

qualified clauses) C : A
α←− B1	w1, . . . , Bm	wm, where A is a defined atom, α ∈ D \ {b}

is called the attenuation factor of the clause and each Bj	wj (1 � j � m) is an atom

Bj annotated with the so-called threshold value wj ∈ (D \ {b}) � {?}. The intended

meaning of C is as follows: if for all 1 � j � m one has Bj	ej (meaning that Bj holds

with qualification value ej) for some ej �? wj , then A	d (meaning that A holds with

qualification value d) can be inferred for any d ∈ D \ {b} such that d � α ◦
�m

j=1 ej .

By convention, ej �? wj means ej � wj if wj 	= ? and is identically true otherwise.

In practice, threshold values equal to “?” and attenuation values equal to t can be

omitted.

Figure 1 shows a simple SQCLP(Ss, U,R)-program Ps which illustrates the

expressivity of the SQCLP scheme to deal with problems involving flexible infor-

mation retrieval. Predicate search can be used to answer queries asking for books

in the library matching some desired language, genre and reader levels. Predicate

guessRdrLvl takes advantage of attenuation factors to encode heuristic rules to

compute reader levels on the basis of vocabulary level and other book features.

The other predicates compute book features in the natural way, and the proximity

relation Ss allows flexibility in any unification (i.e. solving of equality constraints)

arising during the invocation of the program predicates.

The declarative semantics of a given SQCLP(S,D,C)-program P relies on

qualified constrained atoms (briefly qc-atoms) of the form A	d ⇐ Π, intended to

assert that the validity of atom A with qualification degree d ∈ D is entailed by the

constraint set Π. A qc-atom is called defined, primitive or equational according to the

syntactic form of A; and it is called observable iff d ∈ D \ {b} and Π is satisfiable.

Program interpretations are defined as sets of observable qc-atoms that obey a

natural closure condition. The results proved in Rodrı́guez-Artalejo and Romero-

Dı́az (2010a) show two equivalent ways to characterize declarative semantics: using

a fix-point approach and a proof-theoretical approach. For the purposes of the

present paper it suffices to consider the proof-theoretical approach that relies on a

formal inference system called Proximity-based Qualified Constrained Horn Logic –

in symbols, SQCHL(S,D,C) – intended to infer observable qc-atoms from P and

consisting of the three inference rules displayed in Figure 2. Rule SQEA depends

on a relation ≈d,Π between terms that is defined in the following way: t ≈d,Π s

iff there exist two terms t̂ and ŝ such that Π |=C t == t̂, Π |=C s == ŝ and

b 	= d � S(t̂, ŝ). Recall that the notation Π |=C π makes sense for any C-constraint

π and is a shorthand for SolC(Π) ⊆ SolC(π), as explained in Section 2.1. The relation

≈d,Π allows to deduce equations from Π in a flexible way, i.e. taking the proximity

relation S into account. In the sequel, we will use t ≈d s as a shorthand for t ≈d,∅ s,

which holds iff b 	= d �S(t, s).

We write P �S,D,C ϕ to indicate that ϕ can be deduced from P in SQCHL(S,

D,C), and P �kS,D,C ϕ in the case that the deduction can be performed with exactly

k SQDA inference steps. As usual in formal inference systems, SQCHL(S,D,C)

proofs can be represented as proof trees whose nodes correspond to qc-atoms, each

node being inferred from its children by means of some SQCHL(S,D,C) inference

step.
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% Book representation: book( ID, Title, Author, Lang, Genre, VocLvl, Pages ).

1library([ book(1, ‘Tintin’, ‘Hergé’, french, comic, easy, 65),

2 book(2, ‘Dune’, ‘F.P. Herbert’, english, sciFi, medium, 345),

3 book(3, ‘Kritik der reinen Vernunft’, ‘I. Kant’, german, philosophy, difficult, 1011),

4 book(4, ‘Beim Hauten der Zwiebel’, ‘G. Grass’, german, biography, medium, 432) ])

% Auxiliary predicate for computing list membership:

5member(B, [B| ])

6member(B, [ |T]) ← member(B, T)

% Predicates for getting the explicit attributes of a given book:

7getId(book(ID, Title, Author, Lang, Genre, VocLvl, Pages), ID)

8getTitle(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Title)

9getAuthor(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Author)

10getLanguage(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Lang)

11getGenre(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Genre)

12getVocLvl(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), VocLvl)

13getPages(book( ID, Title, Author, Lang, Genre, VocLvl, Pages), Pages)

% Function for guessing the reader level of a given book:

14guessRdrLvl(B, basic) ← getVocLvl(B, easy), getPages(B, N), N < 50

15guessRdrLvl(B, intermediate)
0.8←− getVocLvl(B, easy), getPages(B, N), N � 50

16guessRdrLvl(B, basic)
0.9←− getGenre(B, children)

17guessRdrLvl(B, proficiency)
0.9←− getVocLvl(B, difficult), getPages(B, N), N � 200

18guessRdrLvl(B, upper)
0.8←− getVocLvl(B, difficult), getPages(B, N), N < 200

19guessRdrLvl(B, intermediate)
0.8←− getVocLvl(B, medium)

20guessRdrLvl(B, upper)
0.7←− getVocLvl(B, medium)

% Function for answering a particular kind of user queries:

21search(Lang, Genre, Level, Id) ← library(L)#1.0, member(B, L)#1.0,

22 getLanguage(B, Lang), getGenre(B, Genre),

23 guessRdrLvl(B, Level), getId(B, Id)#1.0

% Proximity relation Ss:

24Ss(sciFi, fantasy) = Ss(fantasy, sciFi) = 0.9

25Ss(adventure, fantasy) = Ss(fantasy, adventure) = 0.7

26Ss(essay, philosophy) = Ss(philosophy, essay) = 0.8

27Ss(essay, biography) = Ss(biography, essay) = 0.7

Fig. 1. SQCLP(Ss, U,R)-program Ps (library with books in different languages).

The following theorem, proved in Rodrı́guez-Artalejo and Romero-Dı́az (2010b),

characterizes least program models in the scheme SQCLP. This result allows to

use SQCHL(S,D,C) derivability as a logical criterion for proving the semantic

correctness of program transformations, as we will do in Section 4.

Theorem 2.1 (Logical Characterization of Least Program Models in SQCHL)
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SQDA
((t′i == tiθ)	di ⇐ Π)i=1...n (Bjθ	ej ⇐ Π)j=1...m

p′(t′n)	d⇐ Π

if (p(tn)
α←− B1	w1, . . . , Bm	wm) ∈ P, θ subst., S(p′, p) = d0 	= b,

ej �? wj (1 � j � m) and d � �n
i=0 di � α ◦

�m
j=1 ej .

SQEA
(t == s)	d⇐ Π

if t ≈d,Π s. SQPA
κ	d⇐ Π

if Π |=C κ.

Fig. 2. Proximity-based qualified constrained horn logic.

For any SQCLP(S,D,C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P �S,D,C ϕ} �

2.5 Goals and goal-solving

Goals for a given SQCLP(S,D,C)-program P have the form

G : A1	W1, . . . , Am	Wm � W1 �?β1, . . . , Wm �?βm

abbreviated as (Ai	Wi, Wi �? βi)i=1...m. The Ai	Wi are called annotated atoms. If

all atoms Ai, i = 1 . . . m, are equations ti == si, the goal G is called a unification

problem. The pairwise different variables Wi ∈ War are called qualification variables;

they are taken from a set War assumed to be disjoint from the set Var of data

variables used in terms. The conditions Wi �?βi (with βi ∈ (D \ {b})�{?}) are called

threshold conditions and their intended meaning (relying on the notations ‘?’ and

‘�?’) is as already explained when introducing program clauses in Section 2.4. In

the sequel, war(o) will denote the set of all qualification variables occurring in the

syntactic object o. In particular, for a goal G, as displayed above, war(G) denotes

the set {Wi | 1 � i � m}. In the case m = 1, the goal is called atomic. The following

definition relies on SQCHL(S,D,C) derivability to provide a natural declarative

notion of goal solution.

Definition 2.2 (Possible Answers and Goal Solutions)

Assume a given SQCLP(S,D,C)-program P and a goal G for P with the syntax

displayed above. Then:

(1) A possible answer for G is any triple ans = 〈σ, μ,Π〉 such that σ is a C-

substitution, Wμ ∈ D \ {b} for all W ∈ dom(μ), and Π is a satisfiable and finite

set of atomic C-constraints. The qualification value λans =
�m

i=1 Wiμ is called the

qualification level of ans.

(2) A possible answer 〈σ, μ,Π〉 is called a solution for G iff the conditions Wiμ =

di �? βi and P �S,D,C Aiσ	Wiμ ⇐ Π hold for all i = 1 . . . m. Note that

P �S,D,C Aiσ	Wiμ ⇐ Π amounts to tiσ ≈Wiμ,Π siσ in the case that Ai is an

equation ti == si. The set of all solutions for G w.r.t. P is noted SolP(G).

(3) A solution 〈η, ρ,Π〉 for G is called ground iff Π = ∅ and η ∈ ValC is a variable

valuation such that Aiη is a ground atom for all i = 1 . . . m. The set of all ground

solutions for G w.r.t. P is noted GSolP(G) ⊆ SolP(G).
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(4) A ground solution gsol = 〈η, ρ, ∅〉 ∈ GSolP(G) is subsumed by a possible answer

ans = 〈σ, μ,Π〉 iff Wiμ � Wiρ for i = 1 . . . m (which implies λans � λgsol) and there

is some ν ∈ SolC(Π) such that Xη = Xσν holds for each variable X ∈ var(G).

(5) A ground solution gsol = 〈η, ρ, ∅〉 ∈ GSolP(G) is subsumed by a possible answer

ans = 〈σ, μ,Π〉 in the flexible sense iff λans � λgsol and there is some ν ∈ SolC(Π)

such that S(Xη,Xσν) � λgsol holds for each variable X ∈ var(G). �

A possible goal Gs for the library program displayed in Figure 1 is

Gs : search(german, essay, intermediate, ID)#W � W � 0.65

and one solution for Gs is 〈{ID �→ 4}, {W �→ 0.7}, ∅〉. In this simple case, the

constraint set Π within the solution is empty.

The following example will be used to discuss some implementation issues in

Section 5.1.3.

Example 2.2

Assume the admissible triple 〈S,U,R〉 where the proximity relation S is such that

S(a, b) = S(b, a) = 0.9, S(a, c) = S(c, a) = 0.9, and S(b, c) = S(c, b) = 0.4. Let P
be the empty program. Then, the goal G:

(X == Y )	W1, (X == b)	W2, (Y == c)	W3 � W1 � 0.8, W2 � 0.8, W3 � 0.8

is a unification problem. Its valid solutions in the sense of Definition 2.2 include

soli = 〈σi, μi, ∅〉 (i = 1, 2, 3), where:

σ1 = {X �→ a, Y �→ a} μ1 = {W1 �→ 1, W2 �→ 0.9, W3 �→ 0.9}
σ2 = {X �→ b, Y �→ a} μ2 = {W1 �→ 0.9, W2 �→ 1, W3 �→ 0.9}
σ3 = {X �→ a, Y �→ c} μ3 = {W1 �→ 0.9, W2 �→ 0.9, W3 �→ 1}

as well as some less interesting solutions assigning lower qualification values to the

variables Wi (i = 1, 2, 3). In this simple example, all the solutions are ground, but

this is not always the case in general. Note that sol2 is subsumed by sol1 in the

flexible sense because:

• ν = ε ∈ SolC(∅) satisfies S(Xσ2, Xσ1ε) = S(b, a) = 0.9 � 0.9 and also

S(Y σ2, Y σ1ε) =S(a, a) = 1 � 0.9.

• The qualification level of both sol2 and sol1 is 0.9, thus trivially, 0.9 � 0.9.

Moreover, sol3 is also subsumed by sol1 in the flexible sense because:

• ν = ε ∈ SolC(∅) satisfies S(Xσ3, Xσ1ε) = S(a, a) = 1 � 0.9 and also

S(Y σ3, Y σ1ε) =S(c, a) = 0.9 � 0.9.

• The qualification level of both sol3 and sol1 is 0.9, thus trivially, 0.9 � 0.9.

In fact, it is easy to check that any of the three ground solutions sol1, sol2 and sol3
subsumes the other two in the flexible sense. �

In practice, users of SQCLP languages will rely on some available goal-solving

system for computing goal solutions. The following definition provides an abstract

specification of semantically correct goal-solving systems that will serve as a

theoretical guideline for the implementation presented in Section 5.
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Definition 2.3 (Correct Abstract Goal-Solving Systems for SQCLP )

An abstract goal-solving system for SQCLP(S,D,C) is any device CA that takes

a program P and a goal G as input and yields a set CAP(G) of possible answers

〈σ, μ,Π〉 (called computed answers) as output. Moreover:

(1) CA is called sound iff every computed answer is a solution, i.e. CAP(G) ⊆
SolP(G).

(2) CA is called weakly complete iff for every ground solution gsol ∈ GSolP(G)

there is some computed answer ans ∈ CAP(G) such that ans subsumes gsol.

(3) CA is called weakly complete in the flexible sense iff for every ground solution

gsol ∈ GSolP(G) there is some computed answer ans ∈ CAP(G) such that ans

subsumes gsol in the flexible sense.

(4) CA is called correct iff it is both sound and weakly complete.

(5) CA is called correct in the flexible sense iff it is both sound and weakly complete

in the flexible sense. �

Extensions of the well-known SLD-resolution procedure (Lloyd 1987; Apt 1990)

can be used as a basis to obtain correct goal-solving systems for extended LP

languages. In particular, constraint SLD-resolution provides a correct goal-solving

system for instances of the CLP scheme, as proved, for example, in Jaffar et al.

(1998).1 Several extensions of the SLD-resolution, tailored to different LP languages

supporting uncertain reasoning, have already been mentioned in Section 1.

Rather than developing an extension of SLD-resolution tailored to the SQCLP

scheme, our aim in this paper is to investigate goal-solving systems based on

a semantically correct program transformation from SQCLP into CLP. Sections

4 and 5 present the transformation technique and its implementation on top

of a CLP Prolog system, respectively. As we will explain in Section 5.1, weak

completeness as specified in Definition 2.3(2) is very hard to achieve in a practical

implementation, while flexible weak completeness in the sense of Definition 2.3(3)

is a satisfactory notion for extended LP languages that use proximity relations. For

instance, similarity-based SLD-resolution as presented in Sessa (2002) is complete

in a flexible sense. Therefore, the Prolog-based prototype system presented in

Section 5 aims at soundness and weak completeness in the flexible sense, as specified

in Definition 2.3(3). The definition and lemma below can be used as an abstract

guideline for converting a correct goal-solving system CA into another goal-solving

system FCA which is correct in the flexible sense and may be easier to implement

because it yields smaller sets of computed answers.

Definition 2.4 (Flexible Restrictions of An Abstract Goal-Solving System)

Let CA and FCA be two abstract goal-solving systems for SQCLP(S,D,C). We

say that FCA is a flexible restriction of CA iff the two following conditions hold

for any choice of a program P and a goal G : (Ai	Wi, Wi �?βi)i=1...m:

1 In fact, the constraint SLD-resolution is complete in a stronger sense than weak completeness. As
proved in Jaffar et al. (1998), every solution – even if it is not ground – is subsumed in a suitable sense
by a finite set of computed solutions.
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(1) FCAP(G) ⊆ CAP(G). Informally, FCA is restricted to compute some of the

answers computed by CA.

(2) For each ans = 〈σ, μ,Π〉 ∈ CAP(G) there is some âns = 〈σ̂, μ̂,Π〉 ∈ FCAP(G)

such that λâns � λans and S(Xσ,Xσ̂) � λans holds for each variable X ∈ var(G).

Informally, each answer computed by CA is close (w.r.t. S) to some of the

answers computed by FCA. �

Lemma 2.1 (Flexible Correctness of Flexible Restrictions)

Let CA be a correct abstract goal-solving system for SQCLP(S,D,C). Then any

flexible restriction FCA of CA is correct in the flexible sense.

Proof

By assumption, CA is sound and weakly complete. We must prove soundness and

weak completeness in the flexible sense for FCA. Let a SQCLP(S,D,C)-program

P and a goal G : (Ai	Wi, Wi �?βi)i=1...m for P be given.

• Soundness. FCAP(G) ⊆ SolP(G) trivially follows from FCAP(G) ⊆ CAP(G)

(true because FCA refines CA) and CAP(G) ⊆ SolP(G) (true because CA is

sound).

•Weak completeness in the flexible sense. In order to check the conditions stated

in Definition 2.3(3), let gsol = 〈η, ρ, ∅〉 ∈ GSolP(G) be given. Since CA is weakly

complete, there is some ans = 〈σ, μ,Π〉 ∈ CAP(G) that subsumes gsol and hence:

(a) Wiμ � Wiρ for i = 1 . . . m, which implies λans � λgsol .

(b) There is some ν ∈ SolC(Π) such that Xη = Xσν holds for all X ∈ var(G).

Since FCA is a flexible refinement of CA, there is some âns = 〈σ̂, μ̂,Π〉 ∈
FCAP(G) that is close to ans and thus verifies:

(c) λâns � λans.

(d) S(Xσ,Xσ̂) � λans holds for all X ∈ var(G).

Now we can claim:

(e) λâns � λgsol – follows from (c) and (a).

(f) S(Xσν,Xσ̂ν) � λgsol holds for all X ∈ var(G) – follows from (d) and (a).

(g) S(Xη,Xσ̂ν) � λgsol holds for all X ∈ var(G) – follows from (f) and (b).

Since ν ∈ SolC(Π), (e) and (g) guarantee that âns subsumes gsol in the flexible sense.

This finishes the proof. �

Let us finish this section with a remark concerning unification. Both our im-

plementation and SLD-based goal-solving systems for SLP languages – we view

Arcelli Fontana and Formato (2002) and Sessa (2002) as representative proposals

of this kind; others have been cited in Section 1 – must share the ability to solve

unification problems modulo a given proximity relation S : S × S → [0, 1] over

signature symbols that is assumed to be transitive in Sessa (2002) and some other

related works, but not in Bousi∼Prolog (Julián-Iranzo and Rubio-Manzano 2009a,

2009b) and our own approach. The lack of transitivity makes a crucial difference.

The unification algorithms modulo S known for the case that S is a similarity
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relation fail to be complete in the flexible sense if S is a non-transitive proximity

relation. More details on this issue are given in Section 5.1 when discussing the

implementation of unification modulo S in our prototype system for SQCLP

programming.

3 The schemes QCLP and CLP as specializations of SQCLP

As discussed in the concluding section of Rodrı́guez-Artalejo and Romero-Dı́az

(2010a), several specializations of the SQCLP scheme can be obtained by partial

instantiation of its parameters. In particular, QCLP and CLP can be defined as

schemes with instances

QCLP(D,C) =def SQCLP(Sid,D,C)

CLP(C) =def SQCLP(Sid,B,C) = QCLP(B,C)

with Sid, the identity proximity relation, and B, the qualification domain, including

just the two classical boolean values. As explained in the Introduction, QCLP and

CLP are the targets of two program transformations to be developed in Section 4.

In this brief section, we provide an explicit description of the syntax and semantics

of these two schemes, derived from their behavior as specializations of SQCLP.

3.1 Presentation of the QCLP scheme

As already explained, the instances of QCLP can be defined by the equation

QCLP(D,C) = SQCLP(Sid,D,C). Due to the admissibility of the parameter triple

〈Sid,D,C〉, the qualification domain D must be (existentially) expressible in the

constraint domain C. Technically, the QCLP scheme can be seen as a common

extension of the classical CLP scheme for Constraint Logic Programming (Jaffar

and Lassez 1987; Jaffar et al. 1998) and the QLP scheme for Qualified Logic

Programming originally introduced in Rodrı́guez-Artalejo and Romero-Dı́az (2008).

Intuitively, QCLP programming behaves like SQCLP programming, except that

proximity information other than the identity is not available for proving equalities.

Program clauses and observable qc-atoms in QCLP are defined in the same way

as in SQCLP. The library program Ps in Figure 1 becomes a QCLP(U,R)-program

P′s just by replacing Sid for S. Of course, P′s does not support flexible unification

as it was the case with Ps.

As explained in Section 2.4, the proof system consisting of the three inference

rules displayed in Figure 2 characterizes the declarative semantics of a given

SQCLP(S,D,C)-program P. In the particular case S = Sid, the inference rules

specialize to those displayed in Figure 3, yielding a formal proof system called

Qualified Constrained Horn Logic – in symbols, QCHL(D,C) – which characterizes

the declarative semantics of a given QCLP(D,C)-program P. Note that rule SQEA

depends on a relation ≈Π between terms and is defined to behave the same as the

specialization of ≈d,Π to the case S = Sid. It is easily checked that t ≈Π s does

not depend on d and holds iff Π |=C t == s. Both ≈d,Π and ≈Π allow to use the
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QDA
((t′i == tiθ)	di ⇐ Π)i=1...n (Bjθ	ej ⇐ Π)j=1...m

p(t′n)	d⇐ Π

if (p(tn)
α←− B1	w1, . . . , Bm	wm) ∈ P, θ subst.,

ej �? wj (1 � j � m) and d � �n
i=1 di � α ◦

�m
j=1 ej .

QEA
(t == s)	d⇐ Π

if t ≈Π s. QPA
κ	d⇐ Π

if Π |=C κ.

Fig. 3. Qualified constrained horn logic.

constraints within Π when deducing equations. However, c(tn) ≈Π c′(sn) never holds

in the case that c and c′ are not syntactically identical.

SQCHL(S,D,C) proof trees and the notations related to them can be naturally

specialized to QCHL(D,C). In particular, we will use the notation P �D,C ϕ (resp.

P �kD,C ϕ) to indicate that the qc-atom ϕ can be inferred in QCHL(D,C) from the

program P (resp. it can be inferred by using exactly k QDA inference steps). Clearly,

Theorem 2.1 specializes to QCHL yielding the following result that is stated here

for convenience.

Theorem 3.1 (Logical Characterization of Least Program Models in QCHL)

For any QCLP(D,C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P �D,C ϕ} �

Concerning goals and their solutions, their specialization to the particular case

S =Sid leaves the syntax of goals G unaffected and leads to the following definition,

almost identical to Definition 2.2.

Definition 3.1 (Possible Answers and Goal Solutions in QCLP )

Assume a given QCLP(S,D)C-program P and a goal G : (Ai	Wi,Wi �? βi)i=1...m.

Then:

(1) Possible answers ans = 〈σ, μ,Π〉 for G and their qualification levels are defined

as in SQCLP (see Definition 2.2(1)).

(2) A solution for G is any possible answer 〈σ, μ,Π〉 that verifies the conditions in

Definition 2.2(2), except that the requirement P �S,D,C Aiσ	Wiμ ⇐ Π used in

Definition 2.2 for SQCLP becomes now P �D,C Aiσ	Wiμ ⇐ Π for QCLP. The

set of all solutions for G is noted SolP(G).

(3) The subset GSolP(G) ⊆ SolP(G) of all ground solutions is defined exactly as in

Definition 2.2(3).

(4) The subsumption relation between a ground solution 〈η, ρ, ∅〉 ∈ GSolP(G) and an

arbitrary solution 〈σ, μ,Π〉 is defined exactly as in Definition 2.2(4). Subsumption

in the flexible sense cannot be considered in QCLP due to the absence of a

proximity relation. �

Finally, the notion of correct abstract goal-solving system for SQCLP given

in Definition 2.3 specializes to QCLP with only one minor modification: Weak

completeness in the flexible sense cannot be considered here due to the absence of

a proximity relation. Therefore, we state the following definition.
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DA
((t′i == tiθ)⇐ Π)i=1...n (Bjθ ⇐ Π)j=1...m

p(t′n)⇐ Π

if (p(tn)← B1, . . . , Bm) ∈ P and θ subst.

EA
(t == s)⇐ Π

if t ≈Π s. PA
κ⇐ Π

if Π |=C κ.

Fig. 4. Constrained horn logic.

Definition 3.2 (Correct Abstract Goal-Solving Systems for QCLP )

An abstract goal-solving system for QCLP(D,C) is any device CA that takes a

program P and goal G as input and yields a set CAP(G) of possible answers

〈σ, μ,Π〉 (called computed answers) as output. Moreover,

(1) CA is called sound iff every computed answer is a solution, i.e. CAP(G) ⊆
SolP(G).

(2) CA is called weakly complete iff for every ground solution gsol ∈ GSolP(G)

there is some computed answer ans ∈ CAP(G) such that ans subsumes gsol.

(3) CA is called correct iff it is both sound and weakly complete. �

3.2 Presentation of the CLP scheme

As already explained, the instances of CLP can be defined by the equation CLP(C) =

SQCLP(Sid,B,C), or equivalently, CLP(C) = QCLP(B,C). Due to the fixed choice

D = B, the only qualification value d ∈ D \ {b} available for use as attenuation

factor or threshold value is d = t. Therefore, CLP can only include threshold values

equal to ‘?’ and attenuation values equal to the top element t = true of B. As

explained in Section 2, such trivial threshold and attenuation values can be omitted,

and CLP clauses can be written with the simplified syntax A← B1, . . . , Bm.

Since t = true is the only nontrivial qualification value available in CLP, qc-

atoms A	d ⇐ Π are always of the form A	true ⇐ Π and can be written as

A ⇐ Π. Moreover, all the side conditions for the inference rule QDA in Figure 3

become trivial when specialized to the case D = B. Therefore, the specialization of

QCHL(D,C) to the case D = B leads to the formal proof system called Constrained

Horn Logic – in symbols, CHL(C) – consisting of the three inference rules displayed

in Figure 4, which characterize the declarative semantics of a given CLP(C)-program

P.

QCHL(D,C) proof trees and the notations related to them can be naturally

specialized to CHL(C). In particular, we will use the notation P �C ϕ (resp. P �kC ϕ)

to indicate that the qc-atom ϕ can be inferred in CHL(C) from the program P
(resp. it can be inferred by using exactly k DA inference steps). Clearly, Theorem 3.1

specializes to CHL yielding the following result that is stated here for convenience:

Theorem 3.2 (Logical Characterization of Least Program Models in CHL)

For any CLP(C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P �C ϕ} �
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Concerning goals and their solutions, their specialization to the scheme CLP leads

to the following definition.

Definition 3.3 (Goals and their Solutions in CLP )

Assume a given CLP(C)-program P. Then:

(1) Goals for P have the form G : A1, . . . , Am, abbreviated as (Ai)i=1...m, where

Ai (1 � i � m) are atoms.

(2) A possible answer for a goal G is any pair ans = 〈σ,Π〉 such that σ is a

C-substitution and Π is a satisfiable and finite set of atomic C-constraints.

(3) A possible answer 〈σ,Π〉 is called a solution for G iff P �C Aiσ ⇐ Π holds for

all i = 1 . . . m. The set of all solutions for G is noted SolP(G).

(4) A solution 〈η,Π〉 for G is called ground iff Π = ∅ and η ∈ ValC is a variable

valuation such that Aiη is a ground atom for all i = 1 . . . m. The set of all ground

solutions for G is noted GSolP(G). Obviously, GSolP(G) ⊆ SolP(G).

(5) A ground solution 〈η, ∅〉 ∈ GSolP(G) is subsumed by 〈σ,Π〉 iff there is some

ν ∈ SolC(Π) s.t. η =var(G) σν. �

The notion of correct abstract goal-solving system for SQCLP given in Definition

3.2 specializes to CLP with a minor change, namely computed answers are pairs

〈σ,Π〉. Formally, the definition for CLP is as follows:

Definition 3.4 (Correct Abstract Goal-Solving Systems for CLP )

A goal-solving system for CLP(C) is any device CA that takes a program P and a

goal G as input and yields a set CAP(G) of possible answers 〈σ,Π〉 (called computed

answers) as output. Moreover, soundness, weak completeness and weak correctness

of CA are defined exactly as in Definition 3.2. �

We close this section with a technical lemma that will be useful for proving some

results in Section 4.2.

Lemma 3.1

Assume an existential C-constraint π(Xn) = ∃Y1 . . . ∃Yk(B1 ∧ . . . ∧ Bm) with free

variables Xn and a given CLP(C)-program P, including the clause C : p(Xn) ←
B1, . . . , Bm, where p ∈ DPn does not occur at the head of any other clause of P.

Then, for any n-tuple tn of C-terms and any finite and satisfiable Π ⊆ ConC, one

has

(1) P �C (p(tn)⇐ Π) =⇒ Π |=C π(tn), where π(tn) stands for the result of applying

the substitution {Xn �→ tn} to π(Xn).

(2) The opposite implication Π |=C π(tn) =⇒ P �C (p(tn) ⇐ Π) holds if tn is a

ground term tuple. Note that for ground tn the constraint entailment Π |=C π(tn)

simply means that π(tn) is true in C.

Proof

We prove each item separately.

(1) Assume P �C (p(tn)⇐ Π). Note that C is the only clause for p in P and that each

atom Bj in C ’s body is an atomic constraint. Therefore, the CHL(C) proof must
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use a DA step based on an instance Cθ of clause C such that Π |=C ti == Xiθ

holds for all 1 � i � n and Π |= Bjθ holds for all 1 � j � m. These conditions

and the syntactic form of π(Xn) obviously imply Π |=C π(tn).

(2) Assume now Π |=C π(tn) and tn ground. Then π(tn) is true in C, and due to the

syntactic form of π(Xn), there must be some substitution θ such that Xiθ = ti
(syntactic identity) for all 1 � i � n and Bjθ is ground and true in C for all

1 � j � m. Trivially, Π |=C ti == Xiθ holds for all 1 � i � n and Π |=C Bjθ

also holds for all 1 � j � m. Then, it is obvious that P �C (p(tn) ⇐ Π) can be

proved by using a DA step based on the instance Cθ of clause C . �

We remark that the second item of the previous lemma can fail if tn is not

ground. This can be checked by presenting a counterexample based on the con-

straint domain R, using the syntax for R-constraints as explained in Rodrı́guez-

Artalejo and Romero-Dı́az (2010b). Consider the existential R-constraint π(X) =

∃Y (op+(Y , Y ,X)), and a CLP(R)-program P, including the clause C : p(X) ←
op+(Y , Y ,X) and no other occurrence of the defined predicate symbol p. Consider

also Π = {cp�(X, 0.0)} and t = X. Then Π |=R π(X) is obviously true because any

real number x � 0.0 satisfies ∃Y (op+(Y , Y , x)) in R. However, there is no R-term s

such that Π |=R op+(s, s, X), and therefore there is no instance Cθ of clause C that

can be used to prove P �C (p(X)⇐ Π) by applying a DA step.

4 Implementation by program transformation

The purpose of this section is to introduce a program transformation that transforms

SQCLP(S,D,C) programs and goals into semantically equivalent CLP(C) programs

and goals. This transformation is performed as the composition of the following

two specific transformations:

(1) elimS – Eliminates the proximity relation S of arbitrary SQCLP(S,D,C)

programs and goals, producing equivalent QCLP(D,C) programs and goals.

(2) elimD – Eliminates the qualification domain D of arbitrary QCLP(D,C) pro-

grams and goals, producing equivalent CLP(C) programs and goals.

Thus, given a SQCLP(S,D,C)-program P – resp. SQCLP(S,D,C)-goal G – the

composition of the two transformations will produce an equivalent CLP(C)-program

elimD(elimS(P)) – resp. CLP(C)-goal elimD(elimS(G))—.

Example 4.1 (Running Example: SQCLP(Sr, U⊗W,R)-program Pr)

As a running example for this section, consider the SQCLP(Sr, U⊗W,R)-program

Pr as follows:

R1 famous(sha)
(0.9,1)
←−−−

R2 wrote(sha, kle)
(1,1)
←−−

R3 wrote(sha, hamlet)
(1,1)
←−−

R4 good work(G)
(0.75,3)
←−−−− famous(A)#(0.5,100), authored(A, G)

S1 Sr(wrote, authored) = Sr(authored, wrote) = (0.9,0)

S2 Sr(kle, kli) = Sr(kli, kle) = (0.8,2)
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where the constants shakespeare, king lear and king liar have been, respectively,

replaced, for clarity purposes in the subsequent examples, by sha, kle and kli.

In addition, consider the SQCLP(Sr, U⊗W,R)-goal Gr as follows:

good work(X)#W � W �?(0.5,10)

We will illustrate the two transformations by showing, in subsequent examples,

the program clauses of elimS(Pr) and elimD(elimS(Pr)) and the goals elimS(Gr)

and elimD(elimS(Gr)). �

In the following sections, we explain both transformations in detail and show that

they can be used to specify abstract goal-solving systems for SQCLP.

4.1 Transforming SQCLP into QCLP

In this section we assume that the triple 〈S,D,C〉 is admissible. In the sequel, we say

that a defined predicate symbol p ∈ DPn is affected by a SQCLP(S,D,C)-program

P iff S(p, p′) 	= b for some p′ occurring in P. We also say that an atom A is relevant

for P iff some of the following three cases hold: (a) A is an equation t == s; (b) A

is a primitive atom κ; or (c) A is a defined atom p(tn) such that p is affected by P.

As a first step toward the definition of the first program transformation elimS,

we define a set EQS of QCLP(D,C) program clauses that emulate the behavior

of equations in SQCLP(S,D,C). The following definition assumes that the binary

predicate symbol ∼ ∈ DP 2 (used in infix notation) and the nullary predicate symbols

payλ ∈ DP 0 are not affected by P.
Definition 4.1

We define EQS as the following QCLP(D,C)-program:

EQS =def

{
X ∼ Y

t←− (X == Y )	?
}

⋃ {
u ∼ u′

t←− payλ	? | u, u′ ∈ BC and S(u, u′) = λ 	= b
}

⋃ {
c(Xn) ∼ c′(Y n)

t←− payλ	?, ((Xi ∼ Yi)	?)i=1...n | c, c′ ∈ DCn

and S(c, c′) = λ 	= b}⋃
{payλ

λ←− | ∃x, y ∈ S such that S(x, y) = λ 	= b}. �

The following lemma shows relation between the semantics of equations in

SQCHL(S,D,C) and the behavior of the binary predicate symbol ‘∼’ defined

by EQS in QCHL(D,C).

Lemma 4.1

Consider any two arbitrary terms t and s; EQS defined as in Definition 4.1; and a

satisfiable finite set Π of C-constraints. Then, for every d ∈ D \ {b}:

t ≈d,Π s⇐⇒ EQS �D,C (t ∼ s)	d⇐ Π

Proof

We separately prove each implication.
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[=⇒] Assume t ≈d,Π s. Then, there are two terms t̂, ŝ such that:

(1) t ≈Π t̂ (2) s ≈Π ŝ (3) t̂ ≈d ŝ

We use structural induction on the form of the term t̂.

• t̂ = Z , Z ∈ Var. From (3) we have ŝ = Z . Then (1) and (2) become t ≈Π Z

and s ≈Π Z , therefore t ≈Π s. Now EQS �D,C (t ∼ s)	d ⇐ Π can be proved

with a proof tree rooted by a QDA step of the form:

(t == Xθ)	t⇐ Π (s == Y θ)	t⇐ Π (X == Y )θ	t⇐ Π

(t ∼ s)	d⇐ Π

using the clause X ∼ Y
t←− (X == Y )	? ∈ EQS instantiated by the

substitution θ = {X �→ t, Y �→ s}. Therefore, the three premises can be derived

from EQS with QEA steps since t ≈Π t, s ≈Π s and t ≈Π s, respectively.

Checking the side conditions of all inference steps is straightforward.

• t̂ = u, u ∈ BC. From (3) we have ŝ = u′ for some u′ ∈ BC such that

d � λ =S(u, u′). Then (1) and (2) become t ≈Π u and s ≈Π u′, which allow to

build a proof of EQS �D,C (t ∼ s)	d⇐ Π by means of a QDA step using the

clause u ∼ u′
t←− payλ	?.

• t̂ = c, c ∈ DC0. From (3) we have ŝ = c′ for some c′ ∈ DC0 such that

d � λ = S(c, c′). Then (1) and (2) become t ≈Π c and s ≈Π c′, which allow us

to build a proof of EQS �D,C (t ∼ s)	d ⇐ Π by means of a QDA step using

the clause c ∼ c′
t←− payλ	?.

• t̂ = c(tn), c ∈ DCn with n > 0. In this case, and because of (3), we can

assume ŝ = c′(sn) for some c′ ∈ DCn satisfying d � d0 =def S(c, c′) and

d � di =def S(ti, si) for i = 1 . . . n. Then EQS �D,C (t ∼ s)	d⇐ Π with a proof

tree rooted by a QDA step of the form:

(t == c(tn))	t⇐ Π payd0
	d0 ⇐ Π

(s == c′(sn))	t⇐ Π ((ti ∼ si)	di ⇐ Π)i=1...n

(t ∼ s)	d⇐ Π

using the EQS clause C : c(Xn) ∼ c′(Y n)
t←− payd0

	?, ((Xi ∼ Yi)	?)i=1...n

instantiated by the substitution θ = {X1 �→ t1, Y1 �→ s1, . . . , Xn �→ tn, Yn �→
sn}. Note that C has attenuation factor t and threshold values ? at the body.

Therefore, the side conditions of the QDA step boil down to d � di (1 � i � n),

which are true by assumption. It remains to prove that each premise of the

QDA step can be derived from EQS in QCHL(D,C):

• EQS �D,C (t == c(tn))	t ⇐ Π and EQS �D,C (s == c′(sn))	t ⇐ Π are

trivial consequences of t ≈Π c(tn) and s ≈Π c′(sn), respectively. In both the

cases, the QCHL(D,C) proofs consist of one single QEA step.

• EQS �D,C payd0
	d0 ⇐ Π can be proved using the clause payd0

d0←− ∈ EQS
in one single QDA step.

• EQS �D,C (ti ∼ si)	di ⇐ Π for i = 1 . . . n. For each i, we observe that

ti ≈di,Π si holds because of t̂i = ti, ŝi = si, which satisfy ti ≈Π t̂i, si ≈Π ŝi
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and t̂i ≈di ŝi. Since t̂i = ti is a sub-term of t̂ = c(tn), the inductive hypothesis

can be applied.

[⇐=] Let T be a QCHL(D,C)-proof tree witnessing EQS �D,C (t ∼ s)	d ⇐ Π. We

prove t ≈d,Π s reasoning by induction on the number n = ‖T‖ of nodes in T that

represent conclusions of QDA inference steps. Note that all the program clauses

belonging to EQS define either the binary predicate symbol ‘∼’ or the nullary

predicates payλ.

Basis (n = 1).

In this case, we have for the QDA inference step that there can be used three

possible EQS clauses:

(1) The program clause is X ∼ Y
t←− (X == Y )	?. Then the QDA inference step

must be of the form:

(t == t′)	d1 ⇐ Π (s == s′)	d2 ⇐ Π (t′ == s′)	e1 ⇐ Π

(t ∼ s)	d⇐ Π

with d � d1�d2�e1. The proof of the three premises must use the QEA inference

rule. Because of the conditions of this inference rule we have t ≈Π t′, s ≈Π s′

and t′ ≈Π s′. Therefore, t ≈Π s is clear. Then t ≈d,Π s holds by taking t̂ = ŝ = t

because, trivially, t ≈Π t̂, s ≈Π ŝ and t̂ ≈d ŝ.

(2) The program clause is u ∼ u′
t←− payλ	? with u, u′ ∈ BC such that S(u, u′) = λ 	=

b. The QDA inference step must be of the form:

(t == u)	d1 ⇐ Π (s == u′)	d2 ⇐ Π payλ	e1 ⇐ Π

(t ∼ s)	d⇐ Π

with d � d1 � d2 � e1. Due to the forms of the QEA inference rule and the EQS

clause payλ
λ←−, we can assume without loss of generality that d1 = d2 = t and

e1 = λ. Therefore, d � λ. Moreover, the QCHL(D,C) proofs of the first two

premises must use QEA inferences. Consequently, we have t ≈Π u and s ≈Π u′.

These facts and u ≈d u
′ imply t ≈d,Π s.

(3) The program clause is c ∼ c′
t←− payλ	? with c, c′ ∈ DC0 such that S(c, c′) =

λ 	= b. The QDA inference step must be of the form:

(t == c)	d1 ⇐ Π (s == c′)	d2 ⇐ Π payλ	e1 ⇐ Π

(t ∼ s)	d⇐ Π

with d � d1 � d2 � e1. Because of the forms of the QEA inference rule and the

EQS clause payλ
λ←−, we can assume without loss of generality that d1 = d2 = t

and e1 = λ. Therefore, d � λ. Moreover, the QCHL(D,C) proofs of the first two

premises must use QEA inferences. Consequently, we have t ≈Π c and s ≈Π c′.

These facts and c ≈d c
′ imply t ≈d,Π s.

Inductive step (n > 1).

In this case, t and s must be of the form t = c(tn) and s = c′(sn). The EQS clause

used in the QDA inference step at the root must be of the form:

c(Xn) ∼ c′(Y n)
t←− payd0

	?, ((Xi ∼ Yi)	?)i=1...n
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with S(c, c′) = d0 	= b. The inference step at the root will be:

(t == c(tn))	d1 ⇐ Π payd0
	e0 ⇐ Π

(s == c′(sn))	d2 ⇐ Π ((ti ∼ si)	ei ⇐ Π)i=1...n

(t ∼ s)	d⇐ Π

with d � d1 � d2 �
�n

i=0 ei. Because of the forms of the EQS clause payd0

d0←− and

the QEA inference rule, there is no loss of generality in assuming d1 = d2 = t

and e0 = d0, therefore we have d � d0 �
�n

i=1 ei. By the inductive hypothesis,

ti ≈ei,Π si (1 � i � n), i.e. there are constructor terms t̂i, ŝi such that ti ≈Π t̂i,

si ≈Π ŝi and t̂i ≈ei ŝi for i = 1 . . . n. Thus, we can build t̂ = c(t̂1, . . . , t̂n) and

ŝ = c′(ŝ1, . . . , ŝn) having t ≈d,Π s because:

• t ≈Π t̂, i.e. c(tn) ≈Π c(t̂n), by decomposition since ti ≈Π t̂i.

• s ≈Π ŝ, i.e. c′(sn) ≈Π c′(ŝn), again by decomposition since si ≈Π ŝi.

• t̂ ≈d ŝ, since d � d0 �
�n

i=1 ei �S(c, c′) �
�n

i=1S(t̂i, ŝi) =S(t̂, ŝ) . �

We are now ready to define elimS acting over programs and goals.

Definition 4.2

Assume a SQCLP(S,D,C)-program P and a SQCLP(S,D,C)-goal G for P whose

atoms are all relevant for P. Then we define:

(1) For each atom A, let A∼ be t ∼ s if A : t == s; otherwise let A∼ be A.

(2) For each clause C : (p(tn)
α←− B) ∈ P let ĈS be the set of QCLP(D,C) clauses

consisting of:

• The clause Ĉ : (p̂C (tn)
α←− B∼), where p̂C ∈ DPn is not affected by P (chosen

in a different way for each C) and B∼ is obtained from B by replacing each

atom A occurring in B by A∼.

• A clause p′(Xn)
t←− payλ	?, ((Xi ∼ ti)	?)i=1...n, p̂C (tn)	? for each p′ ∈ DPn

such that S(p, p′) = λ 	= b. Here, Xn must be chosen as n pairwise different

variables not occurring in the clause C .

(3) elimS(P) is the QCLP(D,C)-program EQS ∪ P̂S, where P̂S =def

⋃
C∈P ĈS.

(4) elimS(G) is the QCLP(D,C)-goal G∼ obtained from G by replacing each atom

A occurring in G by A∼. �

The following example illustrates the transformation elimS.

Example 4.2 (Running example: QCLP(U⊗W, R)-program elimS(Pr))

Consider the SQCLP(Sr, U⊗W,R)-program Pr and the goal Gr for Pr as presented

in Example 4.1. The transformed QCLP(U⊗W,R)-program elimS(Pr) is as follows:
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R̂1 f̂amousR1
(sha)

(0.9,1)
←−−−

R1.1 famous(X) ← payt, X∼sha, f̂amousR1
(sha)

R̂2 ŵroteR2
(sha, kle)

(1,1)
←−−

R2.1 wrote(X, Y) ← payt, X∼sha, Y∼kle, ŵroteR2
(sha, kle)

R2.2 authored(X, Y) ← pay(0.9,0), X∼sha, Y∼kle, ŵroteR2
(sha, kle)

R̂3 ŵroteR3
(sha, hamlet)

(1,1)
←−−

R3.1 wrote(X, Y) ← payt, X∼sha, Y∼hamlet, ŵroteR3
(sha, hamlet)

R3.2 authored(X, Y) ← pay(0.9,0), X∼sha, Y∼hamlet, ŵroteR3
(sha, hamlet)

R̂4 ĝood workR4
(G)

(0.75,3)
←−−−− famous(A)#(0.5,100), authored(A, G)

R4.1 good work(X) ← payt, X∼G, ĝood workR4
(G)

% Program clauses for ∼: % Program clauses for pay:

X∼Y ← X==Y payt ←

kle∼ kli ← pay(0.8,2) pay(0.9,0)
(0.9,0)
←−−−

[. . .] pay(0.8,2)
(0.8,2)
←−−−

Finally, the goal elimS(Gr) for elimS(Pr) is as follows:

good work(X)#W � W �?(0.5,10) �

The next theorem proves the semantic correctness of the program transformation.

Theorem 4.1

Consider a SQCLP(S,D,C)-program P, an atom A relevant for P, a qualification

value d ∈ D \ {b} and a satisfiable finite set of C-constraints Π. Then, the following

two statements are equivalent:

(1) P �S,D,C A	d⇐ Π

(2) elimS(P) �D,C A∼	d⇐ Π

where A∼ is understood as in Definition 4.2(1).

Proof

We separately prove each implication.

[1. ⇒ 2.] (the transformation is complete). Assume that T is a SQCHL(S,D,C)

proof tree witnessing P �S,D,C A	d ⇐ Π. We want to show the existence of a

QCHL(D,C) proof tree T ′ witnessing elimS(P) �D,C A∼	d ⇐ Π. We reason by

complete induction on ‖T‖. There are three possible cases according to the syntactic

form of the atom A. In each case we argue how to build the desired proof tree T ′.

• A is a primitive atom κ. In this case A∼ is also κ and T contains only one SQPA

inference node. Because of the inference rules SQPA and QPA, both P �S,D,C κ	d⇐
Π and elimS(P) �D,C κ	d ⇐ Π are equivalent to Π |=C κ, therefore T ′ trivially

contains just one QPA inference node.

• A is an equation t == s. In this case A∼ is t ∼ s and T contains just one SQEA

inference node. We know P �S,D,C (t == s)	d⇐ Π is equivalent to t ≈d,Π s because

of the inference rule SQEA. From this equivalence follows EQS �D,C (t ∼ s)	d⇐ Π
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because of Lemma 4.1 and hence elimS(P) �D,C (t ∼ s)	d ⇐ Π by construction of

elimS(P). In this case, T ′ will be a proof tree rooted by a QDA inference step.

• A is a defined atom p′(t′n) with p′ ∈ DPn. In this case A∼ is p′(t′n) and the root

inference of T must be a SQDA inference step of the form:

((t′i == tiθ)	di ⇐ Π)i=1...n (Bjθ	ej ⇐ Π)j=1...m

p′(t′n)	d⇐ Π
(♣)

with C : (p(tn)
α←− B1	w1, . . . , Bm	wm) ∈ P, θ substitution, S(p′, p) = d0 	= b, ej �?

wj (1 � j � m), d � di (0 � i � n) and d � α ◦ ej (1 � j � m)—which means d � α

in the case m = 0. We can assume that the first n premises at (♣) are proved in

SQCLP(S,D,C) w.r.t. P by proof trees T1i (1 � i � n) satisfying ‖T1i‖ < ‖T‖ (1 �
i � n), and the last m premises at (♣) are proved in SQCLP(S,D,C) w.r.t. P by

proof trees T2j (1 � j � m) satisfying ‖T2j‖ < ‖T‖ (1 � j � m).

By Definition 4.2, we know that the transformed program elimS(P) contains two

clauses of the following form:

Ĉ : p̂C (tn)
α←− B1

∼	w1, . . . , Bm
∼	wm

Ĉp′ : p
′(Xn)

t←− payd0
	?, ((Xi ∼ ti)	?)i=1...n, p̂C (tn)	?

where Xi (1 � i � n) are fresh variables not occurring in C and Bj
∼ (1 � j � m)

is the result of replacing ‘∼’ for ‘==’ if Bj is equation; and Bj itself otherwise.

Given that the n variables Xi do not occur in C , we can assume that σ =def θ′ � θ

with θ′ =def {X1 �→ t′1, . . . , Xn �→ t′n} is a well-defined substitution. We claim that

elimS(P) �D,C A∼	d ⇐ Π can be proved with a proof tree T ′ rooted by the QDA

inference step (♠.1), which uses the clause Ĉp′ instantiated by σ and having dn+1 = d.

((t′i == Xiσ)	t⇐ Π)i=1...n

payd0
σ	d0 ⇐ Π

((Xi ∼ ti)σ	di ⇐ Π)i=1...n

p̂C (tn)σ	dn+1 ⇐ Π

p′(t′n)	d⇐ Π
(♠.1)

((t′i == Xiθ
′)	t⇐ Π)i=1...n

payd0
	d0 ⇐ Π

((Xiθ
′ ∼ tiθ)	di ⇐ Π)i=1...n

p̂C (tnθ)	dn+1 ⇐ Π

p′(t′n)	d⇐ Π
(♠.2)

By construction of σ, (♠.1) can be rewritten as (♠.2), and in order to build the rest

of T ′, we show that each premise of (♠.2) admits a proof in QCHL(D,C) w.r.t. the

transformed program elimS(P):

• elimS(P) �D,C (t′i == Xiθ
′)	t ⇐ Π for i = 1 . . . n. Straightforwardly using a

single QEA inference step since Xiθ
′ = t′i and t′i ≈Π t′i is trivially true.

• elimS(P) �D,C payd0
	d0 ⇐ Π. Immediate using the clause (payd0

d0←−) ∈
elimS(P) with a single QDA inference step.

• elimS(P) �D,C (Xiθ
′ ∼ tiθ)	di ⇐ Π for i = 1 . . . n. From the first n premises

of (♣) we know P �S,D,C (t′i == tiθ)	di ⇐ Π with a proof tree T1i satisfying

‖T1i‖ < ‖T‖ for i = 1 . . . n. Therefore, for i = 1 . . . n, elimS(P) �D,C (t′i ∼
tiθ)	di ⇐ Π with some QCHL(D,C) proof tree T ′1i by inductive hypothesis.

Since (Xiθ
′ ∼ tiθ) = (t′i ∼ tiθ) for i = 1 . . . n, we are done.
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• elimS(P) �D,C p̂C (tnθ)	d ⇐ Π. This is proved by a QCHL(D,C) proof tree

with a QDA inference step node at its root of the following form:

((tiθ == tiθ)	di ⇐ Π)i=1...n (Bj
∼θ	ej ⇐ Π)j=1...m

p̂C (tnθ)	d⇐ Π
(♥)

which uses the program clause Ĉ instantiated by the substitution θ. Once

more, we have to check that the premises can be derived in QCHL(D,C) from

the transformed program elimS(P) and that the side conditions of (♥) are

satisfied:

• The first n premises can be trivially proved using QEA inference steps.

• The last m premises can be proved w.r.t. elimS(P) with some QCHL(D,C)

proof trees T ′2j (1 � j � m) by the inductive hypothesis, since we have

premises (Bjθ	ej ⇐ Π)j=1...m at (♣) that can be proved in SQCLP(S,D,C)

w.r.t. P with proof trees T2j of size ‖T2j‖ < ‖T‖ (1 � j � m).

• The side conditions – namely ej �? wj (1 � j � m), d � di (1 � i � n) and

d � α ◦ ej (1 � j � m) – trivially hold because they are also satisfied by

(♣).

Finally, we complete the construction of T ′ by checking that (♠.2) satisfies the

side conditions of the inference rule QDA:

• All threshold values at the body of Ĉp′ are ‘?’, therefore the first group of side

conditions becomes di �? ? (0 � i � n + 1), which are trivially true.

• The second side condition reduces to d � t, which is also trivially true.

• The third, and last, side condition is d � t ◦ di (0 � i � n + 1), or equivalently

d � di (0 � i � n + 1). In fact, d � di (0 � i � n) holds due to the side

conditions in (♣), and d � dn+1 holds because dn+1 = d by construction of

(♠.1) and (♠.2).

[2. ⇒ 1.] (the transformation is sound). Assume that T ′ is a QCHL(D,C) proof

tree witnessing elimS(P) �D,C A∼	d ⇐ Π. We want to show the existence of a

SQCHL(S,D,C) proof tree T witnessingP �S,D,C A	d⇐ Π. We reason by complete

induction of ‖T ′‖. There are three possible cases according to the syntactic form of

the atom A∼. In each case we argue how to build the desired proof tree T .

• A∼ is a primitive atom κ. In this case A is also κ and T ′ contains only one QPA

inference node. Both elimS(P) �D,C κ	d⇐ Π and P �S,D,C κ	d⇐ Π are equivalent

to Π |=C κ because of the inference rules QPA and SQPA, therefore T trivially

contains just one SQPA inference node.

• A∼ is of the form t ∼ s. In this case A is t == s and T ′ is rooted by a QDA

inference step. From elimS(P) �D,C (t ∼ s)	d⇐ Π and by construction of elimS(P)

we have EQS �D,C (t ∼ s)	d ⇐ Π. By Lemma 4.1 we get t ≈d,Π s and, by the

definition of the SQEA inference step, we can build T as a proof tree with only one

SQEA inference node proving P �S,D,C (t == s)	d⇐ Π.

• A∼ is a defined atom p′(tn) with p′ ∈ DPn and p′ 	= ∼. In this case A = A∼ and the

step at the root of T ′ must be a QDA inference step using a clause C ′ ∈ elimS(P)

with head predicate p′ and a substitution θ. Because of Definition 4.2 and the fact
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that p′ is relevant for P, there must be some clause C : (p(tn)
α←− B) ∈ P such that

S(p, p′) = d0 	= b, and C ′ must be of the form:

C ′ : p′(Xn)
t←− payd0

	?, ((Xi ∼ ti)	?)i=1...n, p̂C (tn)	?

where the variables Xn do not occur in C . Thus, the QDA inference step at the root

of T ′ must be of the form:

((t′i == Xiθ)	d1i ⇐ Π)i=1...n

payd0
θ	e10 ⇐ Π

((Xi ∼ ti)θ	e1i ⇐ Π)i=1...n

p̂C (tn)θ	e1(n+1) ⇐ Π

p′(t′n)	d⇐ Π
(♠)

and the proof of the last premise must use the only clause for p̂C introduced in

elimS(P) according to Definition 4.2, i.e.:

Ĉ : p̂C (tn)
α←− B1

∼	w1, . . . , Bm
∼	wm

Therefore, the proof of this premise must be of the form:

((tiθ == tiθ
′)	d2i ⇐ Π)i=1...n (Bj

∼θ
′	e2j ⇐ Π)j=1...m

p̂C (tn)θ	e1(n+1) ⇐ Π
(♥)

for some substitution θ′ not affecting Xn. We can assume that the last m premises

in (♥) are proved in QCHL(D,C) w.r.t. elimS(P) by proof trees T ′j satisfying

‖T ′j‖ < ‖T ′‖ (1 � j � m). Then we use the substitution θ′ and clause C to build a

SQCHL(S,D,C) proof tree T with a SQDA inference step at the root of the form:

((t′i == tiθ
′)	e1i ⇐ Π)i=1...n (Bjθ

′	e2j ⇐ Π)j=1...m

p′(t′n)	d⇐ Π
(♣)

Next we check that the premises of this inference step admit proofs in SQCHL(S,D,
C) and that (♣) satisfies the side conditions of a valid SQDA inference step.

• P �S,D,C (t′i == tiθ
′)	e1i ⇐ Π for i = 1 . . . n.

— From the premises ((Xi ∼ ti)θ	e1i ⇐ Π)i=1...n of (♠) and by construction

of elimS(P) we know EQS �D,C (Xi ∼ ti)θ	e1i ⇐ Π (1 � i � n). Therefore,

by Lemma 4.1 we have Xiθ ≈e1i ,Π tiθ for i = 1 . . . n.

— Consider now the premises ((t′i == Xiθ)	d1i ⇐ Π)i=1...n of (♠). Their

proofs must rely on QEA inference steps, and therefore t′i ≈Π Xiθ holds

for i = 1 . . . n.

— Analogously, from the proofs of the premises ((tiθ == tiθ
′)	d2i ⇐ Π)i=1...n

we have tiθ ≈Π tiθ
′ (or equivalently tiθ

′ ≈Π tiθ) for i = 1 . . . n.

From the previous points we have Xiθ ≈e1i ,Π tiθ, t
′
i ≈Π Xiθ and tiθ

′ ≈Π tiθ,

which by Lemma 2.7(1) of Rodrı́guez-Artalejo and Romero-Dı́az (2010b) imply

t′i ≈e1i ,Π tiθ
′ (1 � i � n). Therefore, the premises ((t′i == tiθ

′)	e1i ⇐ Π)i=1...n

can be proven in SQCHL(S,D,C) using a SQEA inference step.

• P �S,D,C Bjθ
′	e2j ⇐ Π for j = 1 . . . m. We know elimS(P) �D,C Bj

∼θ
′	e2j ⇐ Π

with a proof tree T ′j satisfying ‖T ′j‖ < ‖T ′‖ (1 � j � m) because of (♥).
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Therefore, we have, by inductive hypothesis, P �S,D,C Bjθ
′	e2j ⇐ Π for some

SQCHL(S,D,C) proof tree Tj (1 � j � m).

• S(p, p′) = d0 	= b. As seen above.

• e2j �? wj for j = 1 . . . m. This is a side condition of the QDA step in (♥).

• d � e1i for i = 1 . . . n. Straightforward from the side conditions of (♠), which

include d � t ◦ e1i for (0 � i � n + 1).

• d � α ◦ e2j for j = 1 . . . m. This follows from the side conditions of (♠) and

(♥), since we have d � t ◦ e1i for i = 0 . . . n + 1 (in particular d � e1(n+1)) and

e1(n+1) � α ◦ e2j for j = 1 . . . m. �

Finally, the next theorem extends the previous result to goals.

Theorem 4.2

Let G be a goal for a SQCLP(S,D,C)-program P whose atoms are all relevant for

P. Assume P′ = elimS(P) and G′ = elimS(G). Then, SolP(G) = SolP′(G
′).

Proof

According to the definition of goals in Section 2, and Definition 4.2, G and G′ must

be of the form (Ai	Wi,Wi �?βi)i=1...m and (Ai
∼	Wi,Wi �?βi)i=1...m, respectively. By

Definitions 2.2 and 3.1, both SolP(G) and SolP′(G
′) are sets of triples 〈σ, μ,Π〉 where

σ is a C-substitution, μ : war(G)→ DD \ {b} (note that war(G) = war(G′)) and Π is

a satisfiable finite set of C-constraints. Moreover:

(1) 〈σ, μ,Π〉 ∈ SolP(G) iff Wiμ = di �?βi and P �S,D,C Aiσ	Wiμ⇐ Π (1 � i � m).

(2) 〈σ, μ,Π〉 ∈ SolP′(G
′) iff Wiμ = di �?βi and P′ �D,C Ai

∼σ	Wiμ⇐ Π (1 � i � m).

Because of Theorem 4.1, conditions (1) and (2) are equivalent. �

4.2 Transforming QCLP into CLP

The results presented in this section are dependant on the assumption that the

qualification domain D is existentially expressible in the constraint domain C via

an injective mapping ı : DD \ {b} → CC and two existential C-constraints of the

following form:

qVal(X) = ∃U1 . . . ∃Uk(B1 ∧ . . . ∧ Bm)

qBound(X,Y , Z) = ∃V1 . . . ∃Vl(C1 ∧ . . . ∧ Cq)

The intuition behind qVal(X) and qBound(X,Y , Z) has been explained in Defini-

tion 2.1. Roughly, they are intended to represent qualification values from D and the

behavior of D’s attenuation operator ◦ by means of C-constraints. Moreover, the

assumption that qVal(X) and qBound(X,Y , Z) have the existential form displayed

above allows to build CLP clauses for two predicate symbols qVal ∈ DP 1 and

qBound ∈ DP 3 that will capture the behavior of the two corresponding constraints

in the sense of Lemma 3.1. More precisely, we consider the CLP(C)-program ED
consisting of the following two clauses:

qVal (X)← B1, . . . , Bm

qBound (X,Y , Z)← C1, . . . , Cq
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The next example shows CLP clauses in ED for C = R and three different choices

of a qualification domain D that is existentially expressible in R, namely: U,W and

U⊗W. In each case, the CLP clauses in ED are obtained straightforwardly from the

R constraints qVal(X) and qBound(X,Y , Z) as shown in Example 2.1.

Example 4.3

(1) EU consists of the following two clauses:

qVal (X)← cp<(0, X), cp�(X, 1)

qBound (X,Y , Z)← op×(Y ,Z,X ′), cp�(X,X ′)

(2) EW consists of the following two clauses:

qVal (X)← cp�(X, 0)

qBound (X,Y , Z)← op+(Y ,Z,X ′), cp�(X,X ′)

(3) EU⊗W consists of the following two clauses:

qVal (X)← X == pair(X1, X2), cp<(0, X1), cp�(X1, 1), cp�(X2, 0)

qBound (X,Y , Z)← X == pair(X1, X2), Y == pair(Y1, Y2), Z == pair(Z1, Z2),

op×(Y1, Z1, X
′
1), cp�(X1, X

′
1), op+(Y2, Z2, X

′
2), cp�(X2, X

′
2) �

In general, the CLP clauses in ED along with other techniques explained in the

rest of this section will be used to present semantically correct transformations from

QCLP(D,C) into CLP(C), working both for programs and goals. All our results

will work under the assumption that qVal ∈ DP 1 and qBound ∈ DP 3 are chosen as

fresh predicate symbols not occurring in the QCLP(D,C) programs and goals to be

transformed. The next technical lemma ensures that the predicates qVal and qBound

correctly represent the behavior of the constraints qVal(X) and qBound(X,Y , Z).

Lemma 4.2

For any satisfiable finite set Π of C-constraints one has the following:

(1) For any ground term t ∈ CC:

t ∈ ran(ı) ⇐⇒ qVal(t) true in C ⇐⇒ ED �C qVal (t)⇐ Π

(2) For any ground terms r = ı(x), s = ı(y), t = ı(z) with x, y, z ∈ DD \ {b}:

x � y ◦ z ⇐⇒ qBound(r, s, t) true in C ⇐⇒ ED �C qBound (r, s, t)⇐ Π

The two items above are also valid if ED is replaced by any CLP(C)-program,

including the two clauses in ED and having no additional occurrences of qVal and

qBound at the head of clauses.

Proof

Immediate consequence of Lemma 3.1 and Definition 2.1. �

Now we are ready to define the transformations from QCLP(D,C) into CLP(C).
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Transforming Atoms

TEA (t == s)T= (t == s, ı(t)).

TPA (κ)T= (κ, ı(t)) with κ primitive atom.

TDA (p(tn))
T= (p′(tn,W ), W ) with p ∈ DPn and W a fresh CLP variable.

Transforming qc-Atoms

TQCA
AT = (A′, w)

(A	d⇐ Π)T = (A′ ⇐ Π, {qVal(w), qBound(ı(d), ı(t), w)})

Transforming Program Clauses

TPC
(BTj = (B′j , w

′
j))j=1...m

CT = p′(tn,W ) ← qVal(W ),

(
qVal(w′j), �w′j �? ı(wj)�,
qBound(W, ı(α), w′j), B

′
j

)
j=1...m

where C : p(tn)
α←− B1	w1, . . . , Bm	wm, W is a fresh CLP variable and

�w′j �? ı(wj)� is omitted if wj = ?, otherwise abbreviates qBound(ı(wj), ı(t), w
′
j).

Transforming Goals

TG
(BTj = (B′j , w

′
j))j=1...m

elimD(G) =

(
qVal(Wj), �Wj �? ı(βj)�,
qVal(w′j), qBound(Wj, ı(t), w

′
j), B

′
j

)
j=1...m

where G : (Bj	Wj,Wj �? βj)j=1...m and �Wj �? ı(βj)� as in TPC above.

Fig. 5. Transformation rules.

Definition 4.3

Assume that D is existentially expressible in C, and let qVal(X), qBound(X,Y , Z)

and ED be as explained above. Assume also a QCLP(D,C)-program P and a

QCLP(D,C)-goal G for P without occurrences of the defined predicate symbols

qVal and qBound. Then,

(1) P is transformed into the CLP(C)-program elimD(P) consisting of the two

clauses in ED and the transformed CT of each clause C ∈ P, built as specified in

Figure 5. The transformation rules of this figure translate each n-ary predicate

symbol p ∈ DPn into a different (n + 1)-ary predicate symbol p′ ∈ DPn+1.

(2) G is transformed into the CLP(C)-goal elimD(G) built as specified in Figure 5.

Note that the qualification variables Wn occurring in G become normal CLP

variables in the transformed goal. �

The first three rules in Figure 5 are used for transforming atoms. For convenience,

the transformation of an atom produces a pair where the first value is the transformed

atom and the second one is either a new variable or the representation of t. In the

first two cases, namely TEA and TPA, the transformation es as the identity and

no new variables are introduced. The third case, namely TDA, corresponds to the

transformation of a defined atom. In this case, a new CLP variable W – intended

https://doi.org/10.1017/S1471068412000014 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000014


A Transformation-based implementation for SQCLP 31

to represent the qualification value associated to the atom – is added as its last

argument. The rule TQCA transforms qc-atoms of the form A	d ⇐ Π by means

of the transformation of A using one of the three aforementioned transformation

rules. This transformation returns a pair (A′, w) in which, as shown above, w

can be either a new variable or the representation of t. Since w can be a new

variable W , the constraint qVal(w) is introduced to ensure that it represents a

qualification value. Finally, the constraint qBound(ı(d), ı(t), w) encodes ‘d � t ◦w,’ or

equivalently ‘d � w.’ The rule TPC is employed for transforming program clauses

C : p(tn)
α←− B1	w1, . . . , Bm	wm where each wi is either a qualification value or ?

indicating that proving the atom with any qualification value different from b is

acceptable. The rule introduces a new variable W together with a constraint qVal (W ).

The variable represents the qualification value associated to the computation of

user-defined atoms involving p (renamed as p′ in the transformed program). The

premises (BTj = (B′j , w
′
j))j=1...m transform the atoms in the body of the clause

using in each case either TEA, TPA or TDA. Therefore, each w′j obtained in this

way represents a qualification value encoded as a constraint value. Moreover, the

qualification value encoded by w′j must be greater or equal than the corresponding

qualification value wj that occurs in the program clause. These two requirements are

represented as qVal (w′j), �w′j �? ı(wj)� in the transformed clause. The predicate call

qBound (W, ı(α), w′j) ensures that the value in W must be less than or equal to ‘α◦w′j ’
for every j. For each j = 1 . . . m all the atoms associated to the transformation

of Bj precede the transformed atom B′j . In a Prolog-based implementation, this

helps to prune the search space as soon as possible during computations. The ideas

behind rule TG are similar. A goal G : (Bj	Wj,Wj �? βj)j=1...m is transformed by

introducing atoms in charge of checking that each Wj is a valid qualification value;

each Wj is indeed less than or equal to the representation of βj in CLP; each

value wj – obtained during the transformation of the atoms Bj – corresponds to an

actual qualification value; and finally, each Wj is satisfactory – i.e. less or equal to

its corresponding wj before effectively introducing the transformed atoms B′j . The

following example illustrates the transformation elimD.

Example 4.4 (Running Example: CLP(R)-program elimD(elimS(Pr)))

Consider the QCLP(U⊗W,R)-program elimS(Pr) and the goal elimS(Gr) for the

same program as presented in Example 4.2. The transformed CLP(R)-program

elimD(elimS(Pr)) is as follows:

R̂1 f̂amousR1
(sha, W) ← qVal(W), qBound(W, t, (0.9,1))

R1.1 famous(X, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), f̂amousR1
(sha, W3)

R̂2 ŵroteR2
(sha, kle, W) ← qVal(W), qBound(W, t, (1,1))

R2.1 wrote(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, kle, W3),

qVal(W4), qBound(W, t, W4), ŵroteR2
(sha, kle, W4)
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R2.2 authored(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), pay(0.9,0)(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, kle, W3),

qVal(W4), qBound(W, t, W4), ŵroteR2
(sha, kle, W4)

R̂3 ŵroteR3
(sha, hamlet, W) ← qVal(W), qBound(W, t, (1,1))

R3.1 wrote(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, hamlet, W3),

qVal(W4), qBound(W, t, W4), ŵroteR3
(sha, hamlet, W4)

R3.2 authored(X, Y, W) ← qVal(W), qVal(W1), qBound(W, t, W1), pay(0.9,0)(W1),

qVal(W2), qBound(W, t, W2), ∼(X, sha, W2),

qVal(W3), qBound(W, t, W3), ∼(Y, hamlet, W3),

qVal(W4), qBound(W, t, W4), ŵroteR3
(sha, hamlet, W4)

R̂4 ĝood workR4
(G, W) ← qVal(W),

qVal(W1), qBound((0.5,100), t, W1), qBound(W, (0.75,3), W1), famous(A, W1),

qVal(W2), qBound(W, (0.75,3), W2), authored(A, G, W2)

R4.1 good work(X, W) ← qVal(W), qVal(W1), qBound(W, t, W1), payt(W1),

qVal(W2), qBound(W, t, W2), ∼(X, G, W2),

qVal(W3), qBound(W, t, W3), ĝood workR4
(G, W3)

% Program clauses for ∼:

∼(X, Y, W) ← qVal(W), qVal(t), qBound(W, t, t), X==Y

∼(kle, kli, W) ← qVal(W), qVal(W1), qBound(W, t, W1), pay(0.8,2)(W1)

[. . .]

% Program clauses for pay:

payt(W) ← qVal(W), qBound(W, t, t)

pay(0.9,0)(W) ← qVal(W), qBound(W, t, (0.9,0))

pay(0.8,2)(W) ← qVal(W), qBound(W, t, (0.8,2))

% Program clauses for qVal & qBound:

qVal((X1,X2)) ← X1 > 0, X1 � 1, X2 � 0

qBound((W1,W2), (Y1,Y2), (Z1,Z2)) ← W1 � Y1 × Z1, W2 � Y2 + Z2

Finally, the goal elimD(elimS(Gr)) for elimD(elimS(Pr)) is as follows:

qVal(W), qBound((0.5,10), t, W), qVal(W’), qBound(W, t, W’), good work(X, W’)

Note that, in order to improve the clarity of the program clauses of this example,

the qualification value (1,0) – top value in U⊗W – has been replaced by t. �

The next theorem proves the semantic correctness of the program transformation.

Theorem 4.3

Let A be an atom such that qVal and qBound do not occur in A. Assume d ∈ D \{b}
such that (A	d ⇐ Π)T = (A′ ⇐ Π,Ω). Then the following two statements are

equivalent:

https://doi.org/10.1017/S1471068412000014 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000014


A Transformation-based implementation for SQCLP 33

(1) P �D,C A	d⇐ Π

(2) elimD(P) �C A′ρ⇐ Π for some ρ ∈ SolC(Ω) such that dom(ρ) = var(Ω)

Proof

We separately prove each implication.

[1. ⇒ 2.] (the transformation is complete). We assume that T is a QCHL(D,C)

proof tree witnessing P �D,C A	d ⇐ Π. We want to show the existence of a

CLP(C) proof tree T ′ witnessing elimD(P) �C A′ρ ⇐ Π for some ρ ∈ SolC(Ω) such

that dom(ρ) = var(Ω). We reason by complete induction on ‖T‖. There are three

possible cases, according to the the syntactic form of the atom A. In each case we

argue how to build the desired proof tree T ′.

• A is a primitive atom κ. In this case TQCA and TPA compute A′ = κ and Ω =

{qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Now, from P �D,C κ	d⇐ Π follows Π |=C κ due

to the QPA inference, and therefore taking ρ = ε we can prove elimD(P) �C κε⇐ Π

with a proof tree T ′ containing only one PA node. Moreover, ε ∈ SolC(Ω) is trivially

true because the two constraints belonging to Ω are obviously true in C.

• A is an equation t == s. In this case TQCA and TEA compute A′ = (t == s)

and Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Now, from P �D,C (t == s)	d ⇐ Π

follows t ≈Π s due to the QEA inference, and therefore taking ρ = ε we can prove

elimD(P) �C (t == s)ε ⇐ Π with a proof tree T ′ containing only one EA node.

Moreover, ε ∈ SolC(Ω) is trivially true because the two constraints belonging to Ω

are obviously true in C.

• A is a defined atom p(t′n) with p ∈ DPn. In this case TQCA and TDA compute

A′ = p′(t′n,W ) and Ω = {qVal(W ), qBound(ı(d), ı(t),W )}, where W is a fresh CLP

variable. On the other hand, T must be rooted by a QDA step of the form:

((t′i == tiθ)	di ⇐ Π)i=1...n (Bjθ	ej ⇐ Π)j=1...m

p(t′n)	d⇐ Π
(♣)

using a clause C : (p(tn)
α←− B1	w1, . . . , Bm	wm) ∈ P instantiated by a substitution

θ such that the side conditions ej �? wj (1 � j � m), d � di (1 � i � n) and

d � α ◦ ej (1 � j � m) are fulfilled.

For j = 1 . . . m we can assume BTj = (B′j , w
′
j) and thus (Bjθ	ej ⇐ Π)T = (B′jθ ⇐

Π,Ωj), where Ωj = {qVal(w′j), qBound(ı(ej), ı(t), w
′
j)}. The proof trees Tj of the last

m premises of (♣) will have less than ‖T‖ nodes, and hence the induction hypothesis

can be applied to each (Bjθ	ej ⇐ Π) with 1 � j � m, obtaining CHL(C) proof trees

T ′j proving elimD(P) �C B′jθρj ⇐ Π for some ρj ∈ SolC(Ωj) with dom(ρj) = var(Ωj).

Consider ρ = {W �→ ı(d)} and CT ∈ elimD(P) of the form:

CT : p′(tn,W
′) ← qVal(W ′),

(
qVal(w′j), �w′j �? ı(wj)�,

qBound(W ′, ı(α), w′j), B
′
j

)
j=1...m.

Obviously, ρ ∈ SolC(Ω) and dom(ρ) = var(Ω). To finish the proof we must prove

elimD(P) �C A′ρ⇐ Π. We claim that this can be done with a CHL(C) proof tree T ′
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whose root inference is a DA step of the form:

((t′iρ == tiθ
′)⇐ Π)i=1...n

(Wρ == W ′θ′)⇐ Π

qVal(W ′)θ′ ⇐ Π⎛
⎜⎜⎝
qVal(w′j)θ

′ ⇐ Π

�w′j �? ı(wj)�θ′ ⇐ Π

qBound(W ′, ı(α), w′j)θ
′ ⇐ Π

B′jθ
′ ⇐ Π

⎞
⎟⎟⎠

j=1...m

p′(t′n,W )ρ⇐ Π
(♠)

using CT instantiated by the substitution θ′ = θ � ρ1 � · · · � ρm � {W ′ �→ ı(d)}. We

check that the premises of (♠) can be derived from elimD(P) in CHL(C):

• elimD(P) �C (t′iρ == tiθ
′) ⇐ Π for i = 1 . . . n. By construction of ρ and θ′,

these are equivalent to prove elimD(P) �C (t′i == tiθ) ⇐ Π for i = 1 . . . n and

these hold with CHL(C) proof trees of only one EA node because of t′i ≈Π tiθ,

which is a consequence of the first n premises of (♣).

• elimD(P) �C (Wρ == W ′θ′) ⇐ Π. By construction of ρ and θ′, this is

equivalent to prove elimD(P) �C (ı(d) == ı(d))⇐ Π which results trivial.

• elimD(P) �C qVal(W ′)θ′ ⇐ Π. By construction of θ′, this is equivalent to

prove elimD(P) �C qVal(ı(d)) ⇐ Π. We trivially have that ı(d) ∈ ran(ı). Then,

by Lemma 4.2, this premise holds.

• elimD(P) �C qVal(w′j)θ
′ ⇐ Π for j = 1 . . . m. By construction of θ′ and Lemma

4.2 we must prove, for any fixed j, that qVal(w′jρj) is true in C. As ρj ∈ SolC(Ωj)

we know ρj ∈ SolC(qVal(w′j)), therefore qVal(w′jρj) is trivially true in C.

• elimD(P) �C �w′j �? ı(wj)�θ′ ⇐ Π for j = 1 . . . m. We reason for any fixed j.

If wj = ? this results trivial. Otherwise, it amounts to qBound(ı(wj), ı(t), w
′
jρj)

being true in C, by construction of θ′ and Lemma 4.2. As seen before,

qVal(w′jρj) is true in C, therefore w′jρj = ı(e′j) for some e′j ∈ D \ {b}. From the

side conditions of (♣) we have wj � ej . On the other hand, ρj ∈ SolC(Ωj) and,

in particular, ρj ∈ SolC(qBound(ı(ej), ı(t), w
′
j)). This, together with w′jρj = ı(e′j),

means ej � e′j , which with wj � ej implies wj � e′j , i.e. qBound(ı(wj), ı(t), w
′
jρj)

is true in C.

• elimD(P) �C qBound(W ′, ı(α), w′j)θ
′ ⇐ Π for j = 1 . . . m. We reason for

any fixed j. By construction of θ′ and Lemma 4.2, we must prove that

qBound(ı(d), ı(α), w′jρj) is true in C. As seen before, qVal(w′jρj) is true in C,

therefore w′jρj = ı(e′j) for some e′j ∈ D \ {b}. From the side conditions of (♣)

we have d � α ◦ ej . On the other hand, ρj ∈ SolC(Ωj) and, in particular,

ρj ∈ SolC(qBound(ı(ej), ı(t), w
′
j)). This, together with w′jρj = ı(e′j), means

ej � e′j . Now, d � α◦ej and ej � e′j implies d � α◦e′j , i.e. qBound(ı(d), ı(α), w′jρj)

is true in C.

• elimD(P) �C B′jθ
′ ⇐ Π for j = 1 . . . m. In this case, it is easy to see that

B′jθ
′ = B′jθρj by construction of θ′ and because of the program transformation

rules. On the other hand, proof trees T ′j proving elimD(P) �C B′jθρj ⇐ Π can

be obtained by inductive hypothesis as seen before.
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[2. ⇒ 1.] (the transformation is sound). We assume that T ′ is a a CHL(C) proof

tree witnessing elimD(P) �C A′ρ ⇐ Π for some ρ ∈ SolC(Ω) such that dom(ρ) =

var(Ω). We want to show the existence of a QCHL(D,C) proof tree T witnessing

P �D,C A	d ⇐ Π. We reason by complete induction on ‖T ′‖. There are three

possible cases according to the syntactic form of the atom A′. In each case we argue

how to build the desired proof tree T .

• A′ is a primitive atom κ. In this case because of TQCA and TPA, we can assume

A = κ and Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Note that dom(ρ) = var(Ω) = ∅
implies ρ = ε. Now, from elimD(P) �C κε ⇐ Π follows Π |=C κ due to the PA

inference, and therefore we can prove P �D,C κ	d ⇐ Π with a proof tree T

containing only one QPA node.

• A′ is an equation t == s. In this case because of TQCA and TEA, we can assume

A = (t == s) and Ω = {qVal(ı(t)), qBound(ı(d), ı(t), ı(t))}. Note that dom(ρ) =

var(Ω) = ∅ implies ρ = ε. Now, from elimD(P) �C (t == s)ε ⇐ Π follows t ≈Π s

due to the EA inference, and therefore we can prove P �D,C (t == s)	d⇐ Π with a

proof tree T containing only one QEA node.

• A′ is a defined atom p′(t′n,W ) with p′ ∈ DPn+1. In this case because of TQCA

and TDA, we can assume A = p(t′n) and Ω = {qVal(W ), qBound(ı(d), ı(t),W )}. On

the other hand, T ′ must be rooted by a DA step (♠) using a clause CT ∈ elimD(P)

instantiated by a substitution θ′. We can assume that (♠), CT and the corresponding

clause C ∈ P have the form already displayed in [1. ⇒ 2.].

By construction of CT, we can assume BTj = (B′j , w′j). Let θ = θ′�var(C) and

ρj = θ′�var(w′j) (1 � j � m). Then, because of the premises qVal(w′j)θ
′ ⇐ Π of (♠)

and Lemma 4.2, we can assume e′j ∈ D \ {b} (1 � j � m) such that w′jρj = ı(e′j).

To finish the proof, we must prove P �D,C A	d ⇐ Π. We claim that this can be

done with a QCHL(D,C) proof tree T whose root inference is a QDA step of the

form (♣), as displayed in [1. ⇒ 2.], using clause C instantiated by θ. In the premises

of this inference we choose di = t (1 � i � n) and ej = e′j (1 � j � m). Next we

check that these premises can be derived from P in QCHL(D,C) and that the side

conditions are fulfilled:

• P �D,C (t′i == tiθ)	di ⇐ Π for i = 1 . . . n. This amounts to t′i ≈Π tiθ, which

follows from the first n premises of (♠) given that t′iρ = t′i and tiθ
′ = tiθ.

• P �D,C Bjθ	ej ⇐ Π for j = 1 . . . m. From BTj = (B′j , w
′
j) and due to

rule TQCA, we have ((Bjθ)	ej ⇐ Π)T = (Bjθ ⇐ Π,Ωj) where Ωj =

{qVal(w′j), qBound(ı(ej), ı(t), w
′
j)}. From the premises of (♠) and the fact

that B′jθ
′ = B′jθρj we know that elimD(P) �C B′jθρj ⇐ Π with a CHL(C)

proof tree T ′j such that ‖T ′j‖ < ‖T ′‖. Therefore, P �D,C Bjθ	ej ⇐ Π follows

by inductive hypothesis provided that ρj ∈ SolC(Ωj). In fact, because of the

form of Ωj , ρj ∈ SolC(Ωj) holds iff w′jρj = ı(e′j) for some e′j such that ej � e′j ,

which is the case because of the choice of ej .

• ej �? wj for j = 1 . . . m. Trivial in the case that wj = ?. Otherwise they are

equivalent to wj � e′j , which follow from premises �w′j �? ı(wj)�θ′ ⇐ Π (i.e.

�w′jρj �? ı(wj)�⇐ Π) of (♠) and Lemma 4.2.

• d � di for i = 1 . . . n. Trivially hold due to the choice of di = t.
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• d � α ◦ ej for j = 1 . . . m. Note that ρ ∈ SolC(Ω) implies the existence of

d′ ∈ D \ {b} such that ı(d′) = Wρ and d � d′. On the other hand, ej = e′j
by choice. It suffices to prove d′ � α ◦ e′j for j = 1 . . . m. Premises of (♠) and

Lemma 4.2 imply that qBound(W ′θ′, ı(α), w′jθ
′) is true in C. Moreover, W ′θ′ =

Wρ = ı(d′) because of another premise of (♠) and w′jθ
′ = ı(e′j) as explained

above. Therefore, qBound(W ′θ′, ı(α), w′jθ
′) amounts to qBound(ı(d′), ı(α), ı(e′j)),

which guarantees d′ � α ◦ e′j (1 � j � m). �

The goal transformation correctness is established by the next theorem, which

relies on the previous result.

Theorem 4.4

Let G be a goal for a QCLP(D,C)-program P such that qVal and qBound do not

occur in G. Let P′ = elimD(P) and G′ = elimD(G). Assume a C-substitution σ, a

mapping μ : war(G)→ DD \ {b} and a satisfiable finite set of C-constraints Π. Then

the following two statements are equivalent:

(1) 〈σ, μ,Π〉 ∈ SolP(G).

(2) 〈θ,Π〉 ∈ SolP′(G
′) for some θ that verifies the following requirements:

(a) θ =var(G) σ,

(b) θ =war(G) μı and

(c) Wθ ∈ ran(ı) for each W ∈ var(G′) \ (var(G) ∪ war(G)).

Proof

As explained in Section 3.1 the syntax of goals in QCLP(D,C)-programs is the same

as that of goals for SQCLP(S,D,C)-programs, which is described in Section 2.

Therefore, G, and G′ due to rule TG, must have the following form:

G : (Bj	Wj, Wj �?βj)j=1...m

G′ : (qVal(Wj), �Wj �? ı(βj)�, qVal(w′j), qBound(Wj, ı(t), w
′
j), B

′
j)j=1...m

with BTj = (B′j , w
′
j) (1 � j � m). Note that because of rule TQCA, we have

(Bjσ	Wjμ⇐ Π)T = (B′jσ ⇐ Π,Ωj) with Ωj = {qVal(w′j), qBound(ı(Wjμ), ı(t), w′j)}
for j = 1 . . . m. We now prove each implication.

[1. ⇒ 2.] Let 〈σ, μ,Π〉 ∈ SolP(G). This means, by Definition 3.1, Wjμ �? βj and

P �D,C Bjσ	Wjμ ⇐ Π for j = 1 . . . m. In these conditions, Theorem 4.3 guarantees

P′ �C B′jσρj ⇐ Π (1 � j � m) for some ρj ∈ SolC(Ωj) such that dom(ρj) = var(Ωj).

It is easy to see that var(G′) \ (var(G)∪war(G)) = var(Ω1)� · · · � var(Ωm). Therefore,

it is possible to define a substitution θ verifying θ =var(G) σ, θ =war(G) μı and

θ =dom(ρj ) ρj (1 � j � m). Trivially, θ satisfies conditions 2(a) and (b). It also satisfies

condition 2(c) because for any j and any variable X such that X ∈ var(Ωj), we

have a constraint qVal(X) ∈ Ωj implying, due to Lemma 4.2, Xρj ∈ ran(ı) (because

ρj ∈ SolC(Ωj)).

In order to prove 〈θ,Π〉 ∈ SolP′ (G
′) in the sense of Definition 3.3, we check the

following items:

• By construction, θ is a C-substitution.

• By the theorem’s assumptions, Π is a satisfiable and finite set of C-constraints.
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• P′ �C Aθ ⇐ Π for every atom A in G′. Because of the form of G′, we have to

prove the following for any fixed j:

— P′ �C qVal(Wj)θ ⇐ Π. By construction of θ and Lemma 4.2, this amounts

to qVal(ı(Wjμ)) being true in C, which is trivial consequence of Wjμ ∈
D \ {b}.

— P′ �C �Wj �? ı(βj)�θ ⇐ Π. If βj = ? this becomes trivial. Otherwise,

Wjθ = ı(Wjμ) by construction of θ, and by Lemma 4.2 it suffices to prove

qBound(ı(βj), ı(t), ı(Wjμ)) is true in C. This follows from Wjμ �?βj , that is

ensured by 〈σ, μ,Π〉 ∈ SolP(G).

— P′ �C qVal(w′j)θ ⇐ Π. By construction of θ and Lemma 4.2, this amounts

to qVal(w′jρj) being true in C, that is guaranteed by ρj ∈ SolC(Ωj).

— P′ �C qBound(Wj, ı(t), w
′
j)θ ⇐ Π. By construction of θ and Lemma 4.2,

this amounts to qBound(ı(Wjμ), ı(t), w′jρj) being true in C, that is also

guaranteed by ρj ∈ SolC(Ωj).

— P′ �C B′jθ ⇐ Π. Note that, by construction of θ, B′jθ = B′jσρj . On the

other hand, ρj has been chosen above to verify P′ �C B′jσρj ⇐ Π.

[2. ⇒ 1.] Let 〈θ,Π〉 ∈ SolP′(G
′) and assume that θ verifies 2(a), (b) and (c). In

order to prove 〈σ, μ,Π〉 ∈ SolP(G) in the sense of Definition 3.1, we must prove the

following items:

• By the theorem’s assumptions, σ is a C-substitution, μ : war(G) → DD \ {b}
and Π is a satisfiable finite set of C-constraints.

• Wjμ �? βj . We reason for any fixed j. If βj = ? this results trivial. Otherwise,

we have P′ �C �Wj �? ı(βj)�θ ⇐ Π, which by condition 2.(b) and Lemma 4.2

amounts to qBound(ı(βj), ı(t), ı(Wjμ)) is true C, i.e. Wjμ � βj .

• P �D,C Bjσ	Wjμ ⇐ Π for j = 1 . . . m. We reason for any fixed j. Let ρj
be the restriction of θ to var(Ωj). Then P′ �C B′jσρj ⇐ Π follows from

〈θ,Π〉 ∈ SolP′ (G
′) and B′jθ = B′jσρj . Therefore, P �D,C Bjσ	Wjμ ⇐ Π

follows from Theorem 5.3 provided that ρj ∈ SolC(Ωj). By Lemma 4.2

and the form of Ωj , ρj ∈ SolC(Ωj) holds iff P′ �C qVal(w′jρj) ⇐ Π and

P′ �C qBound(ı(Wjμ), ı(t), w′jρj)⇐ Π, which is true because 〈θ,Π〉 ∈ SolP′(G
′)

and construction of ρj . �

4.3 Solving SQCLP goals

In this section we show that the transformations from the two previous sections can

be used to specify abstract goal-solving systems for SQCLP and arguing about their

correctness. In the sequel, we consider a given SQCLP(S,D,C)-program P and a

goal G for P whose atoms are all relevant for P. We also consider P′= elimS(P),

G′ = elimS(G), P′′ = elimD(P′) and G′′ = elimD(G′). Because of the definition of

both elimS and elimD, we can assume:

G : (Ai	Wi, Wi �?βi)i=1...m

G′ : (Ai
∼	Wi, Wi �?βi)i=1...m

G′′ : (qVal(Wi), �Wi �? ı(βi)�, qVal(w′i), qBound(Wi, ı(t), w
′
i), A

′
i)i=1...m

where ATi = (A′i, w
′
i).
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In the particular case that the G is a unification problem, all atoms Ai, i = 1 . . . m,

are equations ti == si and G′′ such that w′i is a fresh CLP variable W ′
i and A′i has

the form ∼′ (ti, si,W ′
i ), for all i = 1 . . . m. Unification problems will be important for

some examples when discussing our practical implementation in Section 5.

Next, we present an auxiliary result.

Lemma 4.3

Assume P, G, P′, G′, P′′ and G′′ as above. Let 〈σ′,Π〉 ∈ SolP′′(G
′′), ν ∈ SolC(Π)

and θ = σ′ν. Then 〈θ,Π〉 ∈ SolP′′ (G
′′). Moreover, Wθ ∈ ran(ı) for every W ∈

var(G′′) \ var(G).2

Proof

Consider an arbitrary atom A′′ occurring in G′′. Because of 〈σ′,Π〉 ∈ SolP′′(G
′′) we

have P �C A′′σ′ ⇐ Π. On the other hand, because of ν ∈ SolC(Π), we have ∅ |=C Πν

and therefore also Π |=C Πν. This and Definition 3.1(4) of Rodrı́guez-Artalejo and

Romero-Dı́az (2010b) ensure A′′σ′ ⇐ Π �C A′′σ′ν ⇐ Π, i.e. A′′σ′ ⇐ Π �C A′′θ ⇐ Π.

This fact, P′′ �C A′′σ′ ⇐ Π and the Entailment Property for Programs in CLP(C)

imply P′′ �C A′′θ ⇐ Π. Therefore, 〈θ,Π〉 ∈ SolP′′(G
′′).

Consider now any W ∈ var(G′′) \ var(G). By construction of G′′, one of the

atoms occurring in G′′ is qVal(W ). Then, because of 〈σ′Π〉 ∈ SolP′′ (G
′′), we have

P′′ �C qVal(Wσ′) ⇐ Π. Because of Lemma 3.1(1), this implies Π |=C qVal(Wσ′),

i.e. SolC(Π) ⊆ SolC(qVal(Wσ′)). Since ν ∈ SolC(Π), we get ν ∈ SolC(qVal(Wσ′)), i.e.

Wσ′ν ∈ ran(ı). Since Wσ′ν = Wθ, we are done. �

Now, we can explain how to define an abstract goal-solving system for SQCLP

from a given abstract goal-solving system for CLP.

Definition 4.4

Let CA′′ be an abstract goal-solving system for CLP(C) (in the sense of Definition

3.4). Then we define CA as an abstract goal-solving system for SQCLP(S,D,C) (in

the sense of Definition 2.3) that works as follows:

(1) Given a goal G for the SQCLP(S,D,C)-program P, consider P′, G′, P′′ and G′′

as explained at the beginning of this section.

(2) For each 〈σ′,Π〉 ∈ CA′′P′′(G′′) and for any ν ∈ SolC(Π), let 〈σ, μ,Π〉 ∈ CAP(G),

where θ = σ′ν, σ = θ�var(G) and μ = θı−1�war(G). Note that μ is well-defined

thanks to Lemma 4.3.

(3) All the computed answers belonging to CAP(G) are obtained as described in

the previous item. �

The next theorem ensures that CA is correct provided that CA′′ is also correct.

The proof relies on the semantic results of the two previous sections.

Theorem 4.5 (Correct Abstract Goal-Solving Systems for SQCLP )

Let CA be obtained from CA′′ as in the previous definition. Assume that CA′′ is

correct as specified in Definition 3.4(3). Then CA is correct as specified in Definition

2.3(4).

2 Note that war(G) ⊆ var(G′′) \ var(G).
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Proof

We separately prove that CA is sound and weakly complete.

• CA is sound. Assume 〈σ, μ,Π〉 ∈ CAP(G). We must prove that 〈σ, μ,Π〉 ∈ SolP(G).

Because of Definition 4.4, there exist 〈σ′,Π〉 ∈ CA′′P′′(G′′) and ν ∈ SolC(Π) such that

σ = θ�var(G) and μ = θı−1�war(G) with θ = σ′ν. By the soundness of CA′′ we get

〈σ′,Π〉 ∈ SolP′′(G
′′). Moreover, because of Lemma 4.3, we have 〈θ,Π〉 ∈ SolP′′(G

′′)

and Wθ ∈ ran(ı) for every W ∈ var(G′′) \ var(G). Note that

• θ =var(G′) σ. This follows from var(G′) = var(G) and the construction of σ.

• θ =war(G′) μı. This follows from war(G′) = war(G) and θ =war(G) μı that is

obvious from the construction of μ.

• Wθ ∈ ran(ı) for each W ∈ var(G′′) \ (var(G′)∪war(G′)). This is a consequence

of Lemma 4.3, since var(G′′) \ (var(G′) ∪ war(G′)) ⊆ var(G′′) \ var(G′) and

var(G′) = var(G).

From the previous items and Theorem 4.4 we get 〈σ, μ,Π〉 ∈ SolP′(G
′), which trivially

implies 〈σ, μ,Π〉 ∈ SolP(G) because of Theorem 4.2.

• CA is weakly complete. Let 〈η, ρ, ∅〉 ∈ GSolP(G) be a ground solution for G w.r.t.P.

We must prove that it is subsumed by some computed answer 〈σ, μ,Π〉 ∈ CAP(G).

By Theorem 4.2 we have that 〈η, ρ, ∅〉 is also a ground solution for G′ w.r.t. P′. Then

by Theorem 4.4 we get 〈η′, ∅〉 ∈ SolP′′(G
′′) for some η′ such that

• (1) η′ =var(G′) η,

• (2) η′ =war(G′) ρı and hence η′(ı−1) =war(G′) ρ, and

• Wη′ ∈ ran(ı) for each W ∈ var(G′′) \ (var(G′) ∪ war(G′)) (i.e. w′iη
′ ∈ ran(ı) for

each i = 1 . . . m such that w′i is a variable).

By construction of η′, it is clear that 〈η′, ∅〉 is ground. Now, by the weak completeness

of CA′′ there is some computed answer 〈σ′,Π〉 ∈ CA′′P′′(G′′) subsuming 〈η′, ∅〉 in

the sense of Definition 3.3(5), therefore satisfying:

• (3) there is some ν ∈ SolC(Π), such that

• (4) η′ =var(G′′) σ
′ν.

Because of Definition 4.4, one can build a computed answer 〈σ, μ,Π〉 ∈ CAP(G)

as follows:

• (5) σ = σ′ν�var(G)

• (6) μ = σ′νı−1�war(G)

We now check that 〈σ, μ,Π〉 subsumes 〈η, ρ, ∅〉 in the sense of Definition 2.2(4):

• Wiρ � Wiμ and even Wiρ = Wiμ because:

Wiρ =(2) Wiη
′(ı−1) =(4) Wiσ

′ν(ı−1) =(6) Wiμ.

• ν ∈ SolC(Π) by (3) and, moreover, for any X ∈ var(G):

Xη =(1) Xη′ =(4) Xσ′ν =(†) Xσ′νν =(5) Xσν

therefore η =var(G) σν.

Step (†) is justified because ν ∈ ValC implies ν = νν. �
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As an immediate consequence of Theorem 4.5 and Lemma 2.1, we obtain the

following:

Corollary 4.1 (Flexibly Correct Abstract Goal-Solving Systems for SQCLP )

Let CA be obtained from CA′′ as in the Definition 4.4. Assume that CA′′ is correct

as specified in Definition 3.4(3). Then any flexible restrictionFCA of CA is correct

in the flexible sense as specified in Definition 2.3(5). �

5 A practical implementation

This section is devoted to the more practical aspects of the SQCLP programming

scheme. We present a Prolog-based prototype system that relies on the transforma-

tion techniques from Section 4 and supports several useful SQCLP instances. The

presentation is developed in three sections. Section 5.1 discusses in some detail how

to bridge a gap between the abstract goal-solving systems for SQCLP discussed in

Section 4.3 and a practical Prolog-based implementation. Section 5.2 gives a user-

oriented presentation of our prototype implementation, explaining how to write

programs and solve goals. Finally, in Section 5.3 we study the unavoidable overload

caused by the implementation of qualification and proximity relations in our system.

The overload is shown in experimental results on the execution of some SQCLP

programs that make only a trivial use of qualification and proximity.

5.1 SQCLP over a CLP Prolog system

Our aim is to implement a goal-solving system for SQCLP on top of an available

CLP Prolog system, taking the definitions and results from Section 4.3 as a

theoretical guideline. Therefore, given a SQCLP(S,D,C)-program P and a goal

G for P, the following steps should be carried out:

(i) Apply the transformation elimS specified in Definition 4.2, obtaining the

QCLP(D,C) program P′= elimS(P) and the QCLP(D,C) goal G′= elimS(G),

where G and G′ are as displayed at the beginning of Section 4.3, P′ is of the

form EQS ∪ P̂S, EQS is obtained following Definition 4.1 and P̂S is obtained

following Definitions 4.2(3 and 2).

(ii) Apply the transformation elimD specified in Definition 4.3, obtaining the

CLP(C)-program P′′= elimD(P′) and the CLP(C)-goal G′′= elimD(G′), where

G′ and G′′ (obtained from G′ by the goal transformation rules shown in Figure 5)

are as displayed at the beginning of Section 4.3 and P′′ is built according to

Definition 4.3 by adding the two clauses of the program ED to the result of

applying the program transformation rules shown in Figure 5 to the program P′.
In particular, P′′ includes as a subset the set EQ

′

S of CLP(C) clauses obtained

by applying the transformation rules from Figure 5 to the set of QCLP(D,C)

clauses EQS.

(iii) Use the available CLP Prolog system to compute answers for the CLP goal G′′

by executing the CLP program P′′.
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Following these steps literally would lead to a set of computed answers representing

the behavior of the abstract goal-solving system CA from Definition 4.43, whose

correctness has been proved in Theorem 4.5. Therefore, the resulting implementation

would be correct – i.e. both sound and weakly complete – in the sense of Definition

2.3, except for the unavoidable failures in completeness due to Prolog’s computation

strategy and the incompleteness of the constraint solvers provided by practical CLP

Prolog systems.

However, our Prolog-based implementation – presented in Section 5.2 – differs

from the literal application of step (ii) in some aspects concerning an optimized

implementation of the CLP clauses in the sets ED and EQ
′

S. In the rest of this

section we explain the optimizations and discuss their influence on the correctness

(i.e. soundness and weak completeness) of goal-solving. Sections 5.1.1 and 5.1.2

present some straightforward optimizations of the CLP clauses in ED and EQ
′

S,

respectively, while Section 5.1.3 discusses three possible Prolog implementations of

the optimized set EQ
′

S obtained in Section 5.1.2: a näıve one – called (A) – that

causes very inefficient computations and is not supported by our system; and two

optimized ones – called (B) and (C) – with a better computational behavior, which

are supported by our system.

5.1.1 Optimization of the ED clauses

Here we present a straightforward optimization of ED that does not modify the set

of computed answers, thus preserving correctness of goal-solving. As explained at

the beginning of Section 4.2, the set ED contains CLP clauses for two predicates

qVal (unary) and qBound (ternary) that allow to represent qualification values from

D and the behavior of D’s attenuation operator ◦ by means of C-constraints. Recall

Example 4.3, showing the clauses in ED for three significative choices of D, namely

U,W and U⊗W.

Our prototype system for SQCLP programming supports SQCLP instances of

the form SQCLP(S,D,R), where R is the real constraint domain and D is any

qualification domain that can be built from B, U and W by means of the strict

cartesian product operation ⊗. Instead of using a different set ED for each choice

of D supported by the system, our implementation uses a single set of Prolog

clauses for two predicates qVal (binary) and qBound (quaternary) whose additional

argument w.r.t. qVal and qBound is used to encode a representation of D in the

following way: B, U andW are encoded as b, u and w, respectively, while D1 ⊗D2

is encoded as an ordered pair built from the encodings of D1 and D2. The set of

Prolog clauses for qVal and qBound used in our implementation is as follows4:

3 Each answer 〈σ′,Π〉 produced by the CLP system and shown to the user in step (iii) serves as a
compact representation of all answers of the form 〈σ, μ,Π〉 ∈ CAP(G), where θ = σ′ν, σ = θ�var(G),

μ = θı−1�war(G), and ν ∈ SolC(Π) ranges over the solutions of Π.
4 The semantic correctness of these clauses is obvious from the definition of B, U, W and ⊗; see

Rodrı́guez-Artalejo and Romero-Dı́az (2010b) for details.
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E1 qVal(b,1).

E2 qVal(u,X) :- { X > 0, X =< 1 }.

E3 qVal(w,X) :- { X > 0 }.
E4 qVal((D1,D2),(X1,X2)) :- qVal(D1,X1), qVal(D2,X2).

E5 qBound(b,1,1,1).

E6 qBound(u,X,Y,Z) :- { X =< Y * Z }.
E7 qBound(w,X,Y,Z) :- { X >= Y + Z }.
E8 qBound((D1,D2),(X1,X2),(Y1,Y2),(Z1,Z2)) :- qBound(D1,X1,Y1,Z1),

qBound(D2,X2,Y2,Z2).

Therefore, calls such as qVal (X) and qBound (X,Y , Z) to the ED predicates are

implemented as qVal (b,X) and qBound (b,X, Y , Z) if D = B; as qVal (u,X) and

qBound (u,X, Y , Z) if D = U; as qVal (w,X) and qBound (w,X, Y , Z) if D =W; as

qVal ((u, w), X) and qBound ((u, w), X, Y , Z) if D = U⊗W; etc.

In order to simplify the presentation, in the rest of Section 5.1 we will omit the

optimization just discussed, considering ED as a set of CLP clauses for a unary

predicate qVal and a ternary predicate qBound corresponding to some fixed choice

of D.

5.1.2 Optimization of the EQ
′

S clauses

Now we present a simple optimization of CLP clauses in EQ
′

S. Recall that EQ
′

S is

a set of CLP(C) clauses obtained by applying the transformation rules in Figure 5

to the set EQS of QCLP(D,C) clauses built according to Definition 4.1. Therefore,

EQ
′

S consists of CLP clauses of the following forms:

EQ1 ∼′(X, Y, W) ← qVal(W), X==Y

EQ2 ∼′(u, u ′, W) ← qVal(W), qVal(W ′), qBound(W, t, W ′), pay ′λ(W ′)

EQ3 ∼′(c(Xn), c′(Yn), W) ← qVal(W),

qVal(W ′), qBound(W, t, W ′), pay ′λ(W ′),

qVal(W1), qBound(W, t, W1), ∼′(X1, Y1, W1),

. . .

qVal(Wn), qBound(W, t, Wn), ∼′(Xn, Yn, Wn)

EQ4 pay ′λ(W) ← qVal(W), qBound(W, λ, t)

where clauses of the form EQ2 are one for each u, u′ ∈ BC such thatS(u, u′) = λ 	= b;

EQ3 are one for each c, c′ ∈ DCn such that S(c, c′) = λ 	= t (including the case c = c′,

S(c, c′) = t 	= b); and EQ4 are one for each payλ such that there exist x, y ∈ S

satisfying S(x, y) = λ 	= b.

By unfolding the calls to predicates payλ occurring in the bodies of clauses EQ2

and EQ3 w.r.t. the clauses EQ4 defining payλ, all the occurrences of payλ – including

clauses EQ4 themselves – can be removed. Moreover, the calls to the predicates

qVal and qBound occurring in the results of unfolding clauses EQ2 and EQ3 can be

further simplified. Let us illustrate this process with a clause of the form EQ2. The

original clause is:
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∼′(u, u ′, W) ← qVal(W), qVal(W ′), qBound(W, t,W ′), pay ′λ(W ′)

which can be transformed into the equivalent clause:

∼′(u, u ′, W) ← qVal(W), qVal(W ′), qBound(W, t,W ′), qVal(W ′), qBound(W ′, λ, t)

by unfolding the predicate call pay ′λ(W ′) occurring in its body. Next, removing one

of the two repeated predicate calls qVal(W ′) in the new body yields the equivalent

clause:

∼′(u, u ′, W) ← qVal(W), qVal(W ′), qBound(W, t,W ′), qBound(W ′, λ, t)

Observing the last clause we note the following:

• The body is logically equivalent to the following formulation:

qVal(W) ∧ ∃W ′( qVal(W ′) ∧ qBound(W, t,W ′) ∧ qBound(W ′, λ, t) )

• The second conjunt above encodes the statement

∃W ′( W ′ ∈ D \ {b} ∧ W � t ◦W ′ ∧ W ′ � λ ◦ t )

Because of the transitivity of �, this is equivalent to W � λ and can be

encoded as qBound (W, t, λ).

Therefore, the last clause is equivalent to the following optimized form:

∼′(u, u ′, W) ← qVal(W), qBound(W, t, λ).

Performing a similar transformation for clauses EQ3 and removing clauses EQ4

leads to an optimized version of the set EQ
′

S consisting of clauses of the following

forms:

EQ1 ∼′(X, Y, W) ← qVal(W), X==Y

EQ2 ∼′(u, u ′, W) ← qVal(W), qBound(W, t, λ)

EQ3 ∼′(c(Xn), c′(Yn), W) ← qVal(W), qBound(W, t, λ),

qVal(W1), qBound(W, t, W1), ∼′(X1, Y1, W1),

. . .

qVal(Wn), qBound(W, t, Wn), ∼′(Xn, Yn, Wn)

Note that a similar optimization – unfolding of calls to predicates payλ followed by

simplification of calls to predicates qVal and qBound – can be done for all those

clauses in P′′ that include calls to predicates payλ in their bodies. The same is true

for goals. All CLP(C)-goals G′′ occurring in subsequent examples will be displayed

in the optimized form.

Clearly, the optimizations described in this section do not modify the set of

computed answers. Therefore, correctness of goal-solving is preserved.

5.1.3 Prolog Implementation of the optimized EQ
′

S clauses

The optimized version of EQ
′

S displayed near the end of the previous section

just consists of clauses for the predicate ∼′. In the sequel, the notation EQ
′

S will

refer to this optimized version. We will consider in turn three possible Prolog

implementations of the EQ
′

S clauses, called (A), (B) and (C). We will give reasons
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for discarding implementation (A) – not supported by our prototype system – and

we will discuss the properties of implementations (B) and (C) – both supported by

our system – concerning correctness of goal-solving. At some points, our discussion

will refer to Example 2.2.

The Prolog code displayed below is a näıve implementation of EQ
′

S. Its structure

does not directly resemble the clauses in the set EQ′S , but it serves as a first step

toward the more practical implementations (B) and (C) discussed below.

(A) Näıve implementation of ∼′.
S1 ∼′(X,Y,W) :- var(X), var(Y), ∼′v(X,Y,W).
S2 ∼′(X,Y,W) :- var(X), nonvar(Y), ∼′v(X,Y,W).
S3 ∼′(X,Y,W) :- nonvar(X), var(Y), ∼′v(X,Y,W).
S4 ∼′(X,Y,W) :- nonvar(X), nonvar(Y), ∼′c(X,Y,W).
V1 ∼′v(X,Y,W) :- qVal(W), X = Y.

V2 ∼′v(X,Y,W) :- ∼′c(X,Y,W).
C1 ∼′c(u,u’,W) :- qVal(W), qBound(W,t,λ).

C2 ∼′c(c(X1,..,Xn),c’(Y1,..,Yn),W) :- qVal(W), qBound(W,t,λ),

qVal(W1), qBound(W,t,W1), ∼′(X1,Y1,W1),

...

qVal(Wn), qBound(W,t,Wn), ∼′(Xn,Yn,Wn).

where clauses of the form C1 are one for each u, u′ ∈ BC such that S(u, u′) = λ 	= b,

and clauses of the form C2 are one for each c, c′ ∈ DCn such that S(c, c′) = λ 	= b

(including the case c = c′, S(c, c′) = t 	= b).

We claim that both (A) and EQ′S compute same solutions. In order to understand

that, consider the behavior of (A) when an atom of the form ∼′(X,Y,W) is to be

solved. The Prolog metapredicates var and nonvar are first used to distinguish

four possible cases concerning X and Y. If either X or Y, or both, is a variable –

more precisely, it is bound to a variable at execution time – then a first answer is

computed by clause V1 by performing the normal Prolog unification of X and Y,

and clause V2 can invoke clauses C1 and C2 in order to compute additional answers

corresponding to non-syntactical unifiers of (the terms bound to) X and Y modulo

the proximity relation S. If neither X and Y is (bound to) a variable, then clauses C1

and C2 will compute answers corresponding to the unifiers of (the terms bound to) X

and Y modulo S. Each computed answer also includes the appropriate constraints

for the variable W, thus representing a qualification level.

As far as permitted by Prolog’s computation strategy – which solves goal atoms

from left to right and tries to apply program clauses in their textual order – the

answers computed by (A) are the same as those that would be computed by EQ
′

S.

Therefore, the näıve implementation guarantees soundness and weak completeness

of goal-solving – recall Definition 2.3 – except for failures in completeness due to

Prolog’s computation strategy.

As an illustration, let us show the behavior of implementation (A) when solving

the unification problem of Example 2.2.
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Example 5.1

Let 〈S,U,R〉,P and G be as in Example 2.2. Then, G′′ is the following CLP(R)-goal:

qVal (W1), qBound (0.8, 1,W1), ∼′(Y ,X,W1),

qVal (W2), qBound (0.8, 1,W2), ∼′(X, b,W2),

qVal (W3), qBound (0.8, 1,W3), ∼′(Y , c,W3)

In this simple example, the Prolog’s computation strategy causes no loss of

completeness, and the näıve Prolog implementation of ∼′ allows to compute soli
(i = 1, 2, 3) as answers for G′′. �

However, Prolog’s computation strategy leads in general to a very poor computa-

tional behavior when executing the Prolog code (A) for predicate ∼′. As justification

for this claim, we argue as follows:

(1) Solving a given SQCLP(S,D,C)-goal G yields to solving the translated CLP(C)-

goal G′′. As seen in Example 5.1, G′′ may include subgoals such as

(�) qVal (W ), qBound (d, t,W ), ∼′(X,Y ,W )

with d ∈ D \ {b}. Solving such a subgoal in a Prolog system that relies on the

näıve code (A) for the predicate ∼′ may lead to compute infinitely many answers.

For instance, assuming a proximity relation S such that S(c, d) = S(d, c) = λ

with c, d ∈ DC1, the Prolog code (A) will include, among others, the following

clauses:

S1 ∼′(X,Y,W) :- var(X), var(Y), ∼′v(X,Y,W).
V1 ∼′v(X,Y,W) :- qVal(W), X = Y.

V2 ∼′v(X,Y,W) :- ∼′c(X,Y,W).
C2 ∼′c(c(X1),c(Y1),W) :- qVal(W), qBound(W,t,t),

qVal(W1), qBound(W,t,W1), ∼′(X1,Y1,W1).

whose application, in the given textual order, yields to the computation of the

following answers:

• 〈{Y �→ X}, {W �→ t}, ∅〉
• 〈{X �→ c(A), Y �→ c(A)}, {W �→ t}, ∅〉
• 〈{X �→ c(c(A)), Y �→ c(c(A))}, {W �→ t}, ∅〉
• . . .

(2) Due to the infinite sequence of Prolog-computed answers for the goal (�)

shown in the previous item, Prolog never comes to computing other valid

solutions for (�) involving data constructors other than c. More concretely, due

to S(c, d) = S(d, c) = λ, the Prolog code (A) must include clauses of the

following form:

C2.1 ∼′c(c(X1),d(Y1),W) :- qVal(W), qBound(W,t,λ), [...].

C2.2 ∼′c(d(X1),c(Y1),W) :- qVal(W), qBound(W,t,λ), [...].

C2.3 ∼′c(d(X1),d(Y1),W) :- qVal(W), qBound(W,t,t), [...].
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If all these clauses happen to occur after the clause C2 of item (1) in the textual

order, Prolog’s computation strategy will never come to the point of trying to

apply them to compute answers for (�).

Items (1) and (2) above show that the näıve implementation of ∼′ is inclined to go

into infinite computations that may produce infinitely many computed answers of a

certain shape while failing to compute some other answers needed for completeness.

In a bit more complex situations than the one considered in items (1) and (2) above,

this unfortunate behavior can lead to failure (i.e. compute no answer at all) for goals

that do have solutions, as illustrated by the following example:

Example 5.2 (Failure of the Naı̈ve Implementation of ∼′)
Consider the admissible triple 〈S,U,R〉, where S is a proximity relation such that:

S(f, g) = S(g, f) = 0.8 and S(g, h) = S(h, g) = 0.8, where f, g, h ∈ DC1. Assume

also a constant a ∈ DC0. Let P be the empty program and let G be the following

unification problem:

(X == f(Y ))	W1, (X == h(Z))	W2 � W1 � 0.5, W2 � 0.5

Then, using the näıve implementation (A) of ∼′ leads to the following Prolog code

for the CLP(R)-program P′′:

1 qVal(X) :- {X > 0, X =< 1}.
2 qBound(X,Y,Z) :- {X =< Y * Z}.
3 ∼′(X,Y,W) :- var(X), var(Y), ∼′v(X,Y,Z).
4 ∼′(X,Y,W) :- var(X), nonvar(Y), ∼′v(X,Y,Z).
5 ∼′(X,Y,W) :- nonvar(X), var(Y), ∼′v(X,Y,Z).
6 ∼′(X,Y,W) :- nonvar(X), nonvar(Y), ∼′c(X,Y,Z).
7 ∼′v(X,Y,W) :- qVal(W), X = Y.

8 ∼′v(X,Y,W) :- ∼′c(X,Y,W).
9 ∼′c(a,a,W) :- qVal(W), qBound(W,1,1).

10 ∼′c(f(X),f(Y),W) :- qVal(W), qBound(W,1,1), [..].

11 ∼′c(g(X),g(Y),W) :- qVal(W), qBound(W,1,1), [..].

12 ∼′c(h(X),h(Y),W) :- qVal(W), qBound(W,1,1), [..].

13 ∼′c(f(X),g(Y),W) :- qVal(W), qBound(W,1,0.8), [..].

14 ∼′c(g(X),f(Y),W) :- qVal(W), qBound(W,1,0.8), [..].

15 ∼′c(g(X),h(Y),W) :- qVal(W), qBound(W,1,0.8), [..].

16 ∼′c(h(X),g(Y),W) :- qVal(W), qBound(W,1,0.8), [..].

where the ellipsis ‘[..]’ stands for ‘qVal(W1), qBound(W,1,W1), ∼′(X,Y,W1)’. Note that

the definitions for the program transformations do not require any specific order for

the final clauses. On the other hand, G′′ becomes the CLP(R)-goal:

qVal(W1), qBound(0.5,1,W1), ∼′(X,f(Y),W1),

qVal(W2), qBound(0.5,1,W2), ∼′(X,h(Z),W2)

When trying to solve G′′ using the näıve implementation of ∼′, Prolog successively

computes infinitely many answers for the subgoal consisting of the first three atoms,

none of which can be continued to a successful answer of the whole goal. Therefore,
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the overall global computation fails. Since G has valid solutions such as

〈{X �→ g(Y ), Z �→ Y }, {W1 �→ 0.8, W2 �→ 0.8}, ∅〉

and also valid ground solutions such as

〈{X �→ g(a), Y �→ a, Z �→ a}, {W1 �→ 0.8, W2 �→ 0.8}, ∅〉

the incompleteness of Prolog’s computation strategy causes weak completeness of

SQCLP goal-solving to fail in this example. �

The problems just explained have a big impact concerning not only completeness

but also efficiency. Therefore, our Prolog-based system for SQCLP programming

discards the näıve implementation of the EQ
′

S clauses. Instead, the following Prolog

code for predicate ∼′ is used by our system:

(B) Practical implementation of ∼′ intended for arbitrary proximity relations.

S1 ∼′(X,Y,W) :- var(X), var(Y), ∼′v(X,Y,W).
S2 ∼′(X,Y,W) :- var(X), nonvar(Y), ∼′c(X,Y,W).
S3 ∼′(X,Y,W) :- nonvar(X), var(Y), ∼′c(X,Y,W).
S4 ∼′(X,Y,W) :- nonvar(X), nonvar(Y), ∼′c(X,Y,W).

V1 ∼′v(X,Y,W) :- qVal(W), X = Y.

C1 ∼′c(u,u’,W) :- qVal(W), qBound(W,t,λ).

C2 ∼′c(c(X1,..,Xn),c’(Y1,..,Yn),W) :- qVal(W), qBound(W,t,λ),

qVal(W1), qBound(W,t,W1), ∼′(X1,Y1,W1),

...

qVal(Wn), qBound(W,t,Wn), ∼′(Xn,Yn,Wn).

where, again, clauses of the form C1 are one for each u, u′ ∈ BC such that S(u, u′) =

λ 	= b; and C2 are one for each c, c′ ∈ DCn such that S(c, c′) = λ 	= b (including the

case c = c′, S(c, c′) = t 	= b).

The difference between the implementation (B) and the implementation (A) is the

use of the predicate call ∼′c(X,Y,W) instead of ∼′v(X,Y,W) at the bodies of clauses S2

and S3 and the removal of clause V2. These two changes have the effect of avoiding

the enumeration of solutions when an equality between two variables is being solved.

For example, for the goal (�) shown above, the Prolog code (B) just computes the

answer 〈{Y �→ X}, {W �→ t}, ∅〉, while the Prolog code (A) infinitely enumerates

many computed answers, as explained before. In general, answers computed by the

implementation (B) of ∼′ correspond to a more limited enumeration of solutions,

depending on the data constructor symbols present in the goal. The following

example illustrates the behavior of implementaion (B) in a more interesting case:

Example 5.3 (Avoiding Infinite Computations)

Consider the admissible triple 〈S,U,R〉 of Example 5.2, and let P be the empty

program. Recall the goal G′′ from Example 5.2:

qVal(W1), qBound(0.5,1,W1), ∼′(X,f(Y),W1),

qVal(W2), qBound(0.5,1,W2), ∼′(X,h(Z),W2)
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Then, for the subgoal consisting of the first three atoms of G′′ the answers computed

by Prolog when the predicate ∼′ is implemented as in (B) are:

〈{X �→ f(Y )}, {W1 �→ 1}, ∅〉 and 〈{X �→ g(Y )}, {W1 �→ 0.8}, ∅〉.

And for the whole goal G′′, the only computed answer is:

〈{X �→ g(Y ), Z �→ Y }, {W1 �→ 0.8, W2 �→ 0.8}, ∅〉. �

Note, however, that the optimization achieved by the move from (A) to (B) has a

trade-off to pay. Soundness – in the sense of Definition 2.3(1) – is preserved because

the set of computed answers for the implementation (B) is a subset of the computed

answers for the implementation (A). However, weak completeness – in the sense of

Definition 2.3(2) – is not preserved in general, as shown by the following example.

Example 5.4

Let 〈S,U,R〉, P and G be as in Example 2.2. Remember that G′′ is as shown in

Example 5.1. Then, considering the implementation (B) of ∼′ for generic proximity

relations, Prolog only computes the answer sol1 = 〈σ1, μ1, ∅〉 for G′′. No computed

answer subsumes the ground solutions sol2, sol3 of G shown in Example 2.2.

Prolog’s computation strategy is not responsible for the lack of completeness in this

case. �

Nevertheless, we conjecture that the implementation (B) behaves as a flexible

restriction of the goal-solving system given by the implementation (A) in the sense

of Definition 2.4. Then, due to Lemma 2.1, we conjecture correctness in the flexible

sense for (B). In other words, we claim that our Prolog-based system for SQCLP

using implementation (B) of ∼′ is sound and we conjecture that it is also weakly

complete in the flexible sense except for unavoidable failures caused by Prolog’s

computation strategy. This conjecture is confirmed as far as Example 2.2 is concerned

because the computed answer sol1 subsumes the other ground solutions sol2 and

sol3 of G in the flexible sense, as shown in the same example.

A further optimization of implementation (B) is possible if the given proximity

relation S is transitive – i.e. a similarity. In this case, our prototype system

implements ∼′ by means of the following Prolog code:

(C) Practical implementation of ∼′ intended for similarity relations.

S1 ∼′(X,Y,W) :- var(X), var(Y), ∼′v(X,Y,W).
S2 ∼′(X,Y,W) :- var(X), nonvar(Y), ∼′v(X,Y,W).
S3 ∼′(X,Y,W) :- nonvar(X), var(Y), ∼′v(X,Y,W).
S4 ∼′(X,Y,W) :- nonvar(X), nonvar(Y), ∼′c(X,Y,W).

V1 ∼′v(X,Y,W) :- qVal(W), X = Y.

C1 ∼′c(u,u’,W) :- qVal(W), qBound(W,t,λ).

C2 ∼′c(c(X1,..,Xn),c’(Y1,..,Yn),W) :- qVal(W), qBound(W,t,λ),

qVal(W1), qBound(W,t,W1), ∼′(X1,Y1,W1),

...

qVal(Wn), qBound(W,t,Wn), ∼′(Xn,Yn,Wn).
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where the only difference w.r.t. implementation (B) is that (C) uses the predicate

call ∼′v(X,Y,W) instead of ∼′c(X,Y,W) at the bodies of clauses S2 and S3.

A useful way to understand difference between (B) and (C) is to think of both

as different implementations of a unification algorithm modulo a given proximity

relation S. In both cases, a predicate call ∼′(X,Y,W) is intended to compute a

unifier modulo S with qualification degree W for X and Y – more precisely for

the terms bound to X and Y at run-time – and clauses Si (i = 1, 2, 3, 4) distinguish

four possible cases in the same manner. The two implementations differ only in the

actions taken in each of these four cases. The actions executed by implementation

(B) can be intuitively described as follows:

(1) Case 1: both X and Y are variables.

Action: just unify them (achieved by clause V1).

(2) Case 2: X is a variable and Y is bound to a non-variable term.

Actions: Compute alternative solutions by binding X to non-variable terms whose

root symbol is S-close to the root symbol of the term bound to Y (achieved

by clauses C1 and C2). In particular, one of these solutions will correspond to

binding X to the term bound to Y.

(3) Case 3: Y is a variable and X is bound to a non-variable term.

Actions: Compute alternative solutions by binding Y to non-variable terms whose

root symbol is S-close to the root symbol of the term bound to X (achieved

by clauses C1 and C2). In particular, one of these solutions will correspond to

binding Y to the term bound to X.

(4) Case 4: Both X and Y are bound to non-variable terms, both with root and n

children terms.

Action: first check that the root symbols of the terms bound to X and Y are

S-close; then decompose these two terms and recursively proceed to unify the

ith child of the term bound to X and the ith child of the term bound to Y, for

i = 1 . . . n (achieved by clauses C1 and C2).

On the other hand, an intuitive description of implementation (C) is as follows:

(1) Case 1: Both X and Y are variables.

Action: As in case (1) of implementation (B).

(2) Case 2: X is a variable and Y is bound to a non-variable term.

Action: Just bind X to the term bound to Y (achieved by clause V1).

(3) Case 3: Y is a variable and X is bound to a non-variable term.

Action: Just bind Y to the term bound to X (achieved by clause V1).

(4) Case 4: Both X and Y are bound to non-variable terms, both with root and n

children terms.

Action: As in case (4) of implementation (B).

Clearly, the difference between these two implementations is limited to cases (2)

and (3), where (B) enumerates a set of various alternative unifiers, while (C) behaves

in a deterministic way, computing just one of these unifiers. In fact, (C) behaves as a

Prolog implementation of known unification algorithms modulo a given similarity

relation S as those presented in Arcelli Fontana and Formato (2002) and Sessa

https://doi.org/10.1017/S1471068412000014 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000014


50 R. Caballero et al.

(2002) (only for the qualification domain U) and other related papers, which are

complete in the flexible sense for solving unification problems. This is due to the

fact that the substitution {X �→ t} can be taken as a unique unifier computed for

a variable X and term t that subsumes in the weak sense other possible unifiers,

thanks to the transitivity property of S.

Concerning the behavior of our Prolog-based SQCLP system when (C) is used

as the implementation of the ∼′ predicate, we claim soundness for any choice of S
(transitive or not) because all the computed answers can also be computed by (B),

which is sound. In case that S is transitive, weak completeness in the flexible sense

is the best behavior that can be expected, but more research is still needed to clarify

this issue. The example below shows that weak completeness in the flexible sense

generally fails for unification problems (and with more reason for general SQCLP

goals) when S is not transitive. In fact, the same example shows that transitivity

of S is a necessary requirement for the completeness (in the flexible sense) of

unification algorithms modulo S of the kind presented in Sessa (2002) and related

papers.

Example 5.5

Consider for the last time the admissible triple 〈S,U,R〉 of Example 2.2, the empty

program, the goal G shown in Example 5.1 and the CLP goal G′′ obtained as

translation of G and shown in Example 5.1, which is:

qVal (W1), qBound (0.8, 1,W1), ∼′(Y ,X,W1),

qVal (W2), qBound (0.8, 1,W2), ∼′(X, b,W2),

qVal (W3), qBound (0.8, 1,W3), ∼′(Y , c,W3)

Note that G is a unification problem modulo S with the three ground solutions

shown in Example 2.2. The proximity relation S is not transitive because S(b, c) =

0.4 	� 0.9 = S(b, a) � S(a, c). The resolution of G′′ by using the Prolog code (C)

for ∼′ eventually reduces to solving a new goal of the form

qVal (W3), qBound (0.8, 1,W3), ∼′(b, c,W3)

which fails, sinceS(b, c) = 0.4 	� 0.8. In this example, Prolog’s computation strategy

is not responsible for the lack of completeness. �

We have just discussed three possible Prolog implementations of the CLP clauses

in the set EQ
′

S, called (A), (B) and (C). The Prolog-based prototype system for

SQCLP programming presented in the next section only supports implementations

(B) and (C), using two different predicates prox/4 and sim/4, respectively, to

implement the behavior of ∼′ appropriate in each case. By default, the system

assumes implementation (B), and a program directive #optimized unif must be

used in the case that implementation (C) is desired.

5.2 (S)QCLP: A prototype system for SQCLP programming

The prototype implementation object of this section is publicly available, and can

be found at:
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http://gpd.sip.ucm.es/cromdia/qclp

The system currently requires the user to have installed either SICStus Prolog or

SWI-Prolog, and it has been tested to work under Windows, Linux and MacOSX

platforms. The latest version available at the time of writing this paper is 0.6. If a

latter version is available, some things might have changed but in any case the main

aspects of the system should remain the same. Please consult the changelog provided

within the system itself for specific changes between versions.

SQCLP is a very general programming scheme and, as such, it supports different

proximity relations, different qualification domains and different constraint domains

when building specific instances of the scheme for any specific purpose. As it

would result impossible to provide an implementation for every admissible triple (or

instance of the scheme), it becomes mandatory to decide in advance what specific

instances will be available for writing programs in (S)QCLP. In essence,

(1) In its current state, the only available constraint domain is R. Thus, under both

SICStus Prolog and SWI-Prolog, the library clpr will provide all the available

primitives in (S)QCLP programs.

(2) The available qualification domains are: ‘b’ for the domain B; ‘u’ for the domain

U; ‘w’ for the domainW; and any strict cartesian product of those, as e.g. ‘(u,w)’

for the product domain U⊗W.

(3) With respect to proximity relations, the user will have to provide, in addition

to the two symbols and their proximity value, their kind (either predicate or

constructor) and their arity. Both kind and arity must be the same for each pair

of symbols having a proximity value different of b.

Note, however, that when no specific proximity relation S is provided for a given

program, Sid is then assumed. Under this circumstance, an obvious technical

optimization consists in transforming the original program only with elimD, thus

reducing the overload introduced in this case by elimS. The reason behind this

optimization is that for any given SQCLP(Sid,D,C)-program P, it is also true

that P is a QCLP(D,C)-program, therefore elimD(elimS(P)) must semantically

be equivalent to elimD(P). Nevertheless, elimD(P) behaves more efficiently than

elimD(elimS(P)) due to the reduced number of resulting clauses. Thus, in order to

improve the efficiency, the system will avoid the use of elimS when no proximity

relation is provided by the user.

The final available instances in the (S)QCLP system are SQCLP(S, b, clpr),

SQCLP(S, u, clpr), SQCLP(S, w, clpr), SQCLP(S, (u, w), clpr), and their coun-

terparts in the QCLP scheme when S = Sid.

5.2.1 Programming in (S)QCLP

Programming in (S)QCLP is straightforward if the user is accustomed to the Prolog

programming style. However, there are three syntactic differences with pure Prolog:

(1) Clauses implications are replaced by ‘<-d-’ where d ∈ D \ {b}. If d = t, then the

implication can become just ‘<--’. Example ‘<-0.9-’ is a valid implication in
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the domains U and W; and ‘<-(0.9,2)-’ is a valid implication in the domain

U⊗W.

(2) Clauses in (S)QCLP are not finished with a dot (.). They are separated by

layout, therefore all clauses in a (S)QCLP program must start in the same

column. Otherwise, the user will have to explicitly separate them by means of

semicolons (;).

(3) After every body atom (even constraints) the user can provide a threshold

condition using ‘#’. The notation ‘?’ can also be used instead of some particular

qualification value, but in this case the threshold condition ‘#?’ can be omitted.

Comments are as in Prolog:

% This is a line comment.

/* This is a multi-line comment, /* and they nest! */. */

and the basic structure of a (S)QCLP program is the following (line numbers are for

reference):

File: Peano.qclp

1 % Directives...

2 # qdom w

3 % Program clauses...

4 % num( ?Num )

5 num(z) <--

6 num(s(X)) <-1- num(X)

In the previous small program, lines 1, 3 and 4 are line comments, line 2 is a

program directive telling the compiler the specific qualification domain the program

is written for and lines 5 and 6 are program clauses defining the well-known Peano

numbers. As usual, comments can be written anywhere in the program as they will

be completely ignored (remember that a line comment must necessarily end in a new

line character, therefore the very last line of a file cannot contain a line comment),

and directives must be declared before any program clause. There are three program

directives in (S)QCLP:

(1) The first one is “#qdom qdom” where qdom is any system available qualification

domain, i.e. b, u, w, (u,w). . . . See line 2 in the previous program sample as an

example. This directive is mandatory because the user must tell the compiler for

which particular qualification domain the program is written.

(2) The second one is “#prox file’’ where file is the name of a file (with extension

.prox) containing a proximity relation. If the name of the file starts with a

capital letter, or it contains spaces or any special character, file will have to be

quoted with single quotes. For example, assume that with our program file we

have another file called Proximity.prox. Then, we would have to write “#prox

‘Proximity’” to link the program with such proximity relation. This directive is

optional, and if omitted, the system assumes that the program is of an instance

of the QCLP scheme.
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(3) The third one is “#optimized unif”. This directive tells the compiler that the

program is intended to be used with the implementation (C) for the predicate

∼′, as explained in Section 5.1.3.

Proximity relations are defined in files of extension .prox with the following form:

File: Work.prox

1 % Predicates: pprox( S1, S2, Arity, Value ).

2 pprox(wrote, authored, 2, (0.9,0)).

3 % Constructors: cprox( S1, S2, Arity, Value ).

4 cprox(king_lear, king_liar, 0, (0.8,2)).

where the file can contain pprox/4 Prolog facts, for defining proximity between

predicate symbols of any arity; or cprox/4 Prolog facts, for defining proximity

between constructor symbols of any arity. The arguments of both pprox/4 and

cprox/4 are the two symbols, their arity and its proximity value. Note that, although

it is not made explicit the qualification domain this proximity relation is written

for, all values in it must be of the same specific qualification domain, and this

qualification domain must be the same declared in every program using the proximity

relation. Otherwise, the solving of equations may produce unexpected results or even

fail.

Reflexive and symmetric closure is inferred by the system, therefore there is no

need for writing reflexive proximity facts, nor the symmetric variants of proximity

facts already provided. You can notice this in the previous sample file in which

neither reflexive proximity facts nor the symmetric proximity facts to those at lines

2 and 4 are provided. In the case of being explicitly provided, additional (repeated)

solutions might be computed for the same given goal, although soundness and weak

completeness of the system should still be preserved. Transitivity is neither checked

nor inferred, so the user will be responsible for ensuring it if desired.

As the reader would have already guessed, the file Work.prox implements the

proximity relation Sr of Example 4.1 in (S)QCLP. Finally, the program Pr of

Example 4.1 can be represented in (S)QCLP as follows:

File: Work.qclp

1 # qdom (u,w)

2 # prox ’Work’

3 % famous( ?Author )

4 famous(shakespeare) <-(0.9,1)-

5 % wrote( ?Author, ?Book )

6 wrote(shakespeare, king_lear) <-(1,1)-

7 wrote(shakespeare, hamlet) <-(1,1)-

8 % good_work( ?Work )

9 good_work(X) <-(0.75,3)- famous(Y)#(0.5,100), authored(Y,X)

Note that at line 1 the qualification domain U⊗W is declared, and at line 2 the

proximity relation at Work.prox is linked to the program. In addition, observe that

one threshold constraint is imposed for a body atom in the program clause at
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line 9, effectively requiring to prove famous(Y) for a qualification value of at least

(0.5,100) to be able to use this program clause.

Finally, we explain how constraints are written in (S)QCLP. As it has already

been said, only R is available, thus both in SICStus Prolog and SWI-Prolog the

library clpr is responsible for providing the available primitive predicates. Given

that constraints are primitive atoms of the form r(tn) where r ∈ PPn and ti are

terms, primitive atoms share syntax with usual Prolog atoms. At this point, and

having that many of the primitive predicates are syntactical operators (hence not

valid identifiers), the syntax for predicate symbols has been extended to include

operators, therefore predicate symbols like op+ ∈ PP 3, which codifies the operation

+ in a 3-ary predicate, will let us to build constraints of the form +(A,B,C) that

must be understood as in A + B = C or C = A + B. Similarly, predicate symbols

like cp> ∈ PP 2, which codifies the comparison operator > in a binary predicate,

will let us to build constraints of the form >(A,B) that must be understood as in

A > B. Any other primitive predicate, such as maximize ∈ PP 1, will let us to build

constraints like maximize(X). Valid primitive predicate symbols include +, -, *, /,

>, >=, =<, <, maximize, minimize, etc.

Threshold constraints can also be provided for primitive atoms in the body of

clauses with the usual notation. Note, however, that due the semantics of SQCLP,

all primitive atoms can be trivially proved with t if they ever succeeds – so threshold

constraints become, in this case, of no use.

The syntax for constraints explained above follows the standard syntax for atoms.

Nonetheless, the system also allows to write these constraints in a more natural

infix notation. More precisely, +(A,B,C) can also be written in the infix form

A+B=C or C=A+B, and >(X,Y) in the infix form X>Y; and similarly for other op

and cp constraints. When using infix notation, threshold conditions can be set by

(optionally) enclosing the primitive atom between parentheses, therefore becoming

(A+B=C)#t, (C=A+B)#t or (X>Y)#t (or any other valid qualification value or ‘?’). Using

parentheses is recommended to avoid understanding that the threshold condition is

set only for the last term in the constraint, which would make no sense. Note that

even in infix notation, operators cannot be nested, that is, terms A, B, C, X and Y

cannot have operators as main symbols (neither in prefix nor in infix notation), so

the infix notation is just a syntactic sugar of its corresponding prefix notation.

As a final example for constraints, one could write the predicate double/2 in

(S)QCLP, for computing the double of any given number, with just the clause

double(N,D) <-- *(N,2,D), or double(N,D) <-- N*2=D for a clause with a more

natural syntax.

5.2.2 The interpreter for (S)QCLP

The interpreter for (S)QCLP has been implemented on top of both SICStus Prolog

and SWI-Prolog. To load it, one must first load here the desired (and supported)

Prolog system and then load the main file of the interpreter – i.e. qclp.pl – that

will be located in the main (S)QCLP folder among other folders. Once loaded, one
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will see the welcome message and will be ready to compile and load programs, and

to execute goals.

WELCOME TO (S)QCLP 0.6

(S)QCLP is free software and comes with absolutely no warranty.

Support & Updates: http://gpd.sip.ucm.es/cromdia/qclp.

Type ’:help.’ for help.

yes

| ?-

From the interpreter for (S)QCLP one can, in addition to making use of any

standard Prolog goals, use the specific (S)QCLP commands required for both

interacting with the (S)QCLP system, and for compiling/loading SQCLP programs.

All these commands take the form:

:command.

if they do not require arguments, or:

:command(Arg1, ..., Argn).

if they do; where each argument Argi must be a Prolog atom unless stated otherwise.

The most useful commands are:

• :cd(Folder).

Changes the working directory to Folder. Folder can be an absolute or relative

path.

• :compile(Program).

Compiles the (S)QCLP program ‘Program.qclp’ producing the equivalent

Prolog program in the file ‘Program.pl’.

• :load(Program).

Loads the already compiled (S)QCLP program ‘Program.qclp’ (note that the

file ‘Program.pl’ must exist for the program to load correctly).

• :run(Program).

Compiles the (S)QCLP program ‘Program.qclp’ and loads it afterwards. This

command is equivalent to executing: :compile(Program), :load(Program).

For illustration purposes, we will assume that you have the files Work.prox

and Work.qclp (both as seen before) in the folder ∼/examples. Under these

circumstances, after loading the preferred Prolog system and the interpreter for

(S)QCLP, one would only have to change the working directory to that where the

files are located:

| ?- :cd(’\prox/examples’).

and run the program:

| ?- :run(’Work’).
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If no errors are encountered, one should see the output:

| ?- :run(’Work’).

<Work> Compiling...

<Work> QDom: ’u,w’.

<Work> Prox: ’Work’.

<Work> Translating to QCLP...

<Work> Translating to CLP...

<Work> Generating code...

<Work> Done.

<Work> Loaded.

yes

and now everything is ready to execute goals for the program loaded.

5.2.3 Executing SQCLP-goals

Recall that goals have the form A1	W1, . . . , Am	Wm � W1 �? β1, . . . , Wm �? βm
which in actual (S)QCLP syntax becomes:

| ?- A1#W1, ..., Am#Wm :: W1 >= B1, ..., Wm >= Bm.

Note the following:

(1) Goals must end in a dot (.).
(2) The symbol ‘�’ is replaced by ‘::’.
(3) The symbol ‘�?’ is replaced by ‘>=’ (and this is independent of the qualification

domain in use so that it may mean � in W).

(4) Conditions of the form W �? ? must be omitted, therefore A1	W1, A2	W2�W1 �?

?,W2 �? β2 becomes “A1#W1, A2#W2 :: W2 >= B2.”, and A	W � W �? ?

becomes just “A#W.”.

Assuming now that we have loaded the program Work.qclp as explained before,

we can execute the goal good work(king liar)	W � W �? (0.5, 100):

| ?- good_work(king_liar)#W::W>=(0.5,10).

W = (0.6,5.0) ? ;

W = (0.675,4.0) ? ;

no

Note that the system computes two answers, with different qualification values. In

this simple example, the second computed answer provides a better qualification

value. In general, different computed answers for the same goal come with different

qualification values and it is not always the case that one of the answers provides

the optimal qualification value.

5.2.4 Examples

To finish this section, we are now showing some additional goal executions using

the interpreter for (S)QCLP and the programs displayed along the paper.
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Peano. Consider the program Peano.qclp as displayed at the beginning of Sec-

tion 5.2.1. Qualifications in this program are intended as a cost measure for obtaining

a given number in the Peano representation, assuming that each use of the clause

at line 6 requires to pay at least 1. In essence, threshold conditions will impose an

upper bound over the maximum number obtainable in goals containing the atom

num(X). Therefore, if we ask for numbers up to a cost of 3, we get the following

answers:

Goal ?- num(X)#W::W>=3.

Sol1 W = 0.0, X = z ? ;

Sol2 W = 1.0, X = s(z) ? ;

Sol3 W = 2.0, X = s(s(z)) ? ;

Sol4 W = 3.0, X = s(s(s(z))) ? ;

no

Work. Consider now the program Work.qclp and the proximity relation Work.prox,

both as displayed in Section 5.2.1. In this program, qualifications behave as the

conjunction of the certainty degree of the user confidence about some particular

atom, and a measure of the minimum cost to pay for proving such atom. Under these

circumstances, we could ask – just for illustration purposes – for famous authors

with a minimum certainty degree – for them being actually famous – of 0.5, and

with a proof cost of no more than 30 (think of an upper bound for possible searches

in different databases). Such a goal would have, in this very limited example, only

the following solution:

Goal ?- famous(X)#W::W>=(0.5,30).

Sol1 W = (0.9,1.0), X = shakespeare ? ;

no

meaning that we can have a confidence of shakespeare being famous of 0.9, and

that we can prove it with a cost of 1.

Now, in a similar fashion we could try to obtain different works that can be

considered as good works by using the last clause in the example. Limiting the

search to those works that can be considered good with a qualification value better

or equal to (0.5,100) produces the following result:

Goal ?- good_work(X)#W::W>=(0.5,100).

Sol1 W = (0.675,4.0), X = king_lear ? ;

Sol2 W = (0.6,5.0), X = king_liar ? ;

no

A valid ground answer for this goal is gsol = 〈η, ρ, ∅〉, where η = {X �→ king liar}
and ρ = {W �→ (0.675, 4)} (which corresponds to the second computed answer for the

ground goal displayed in Section 5.2.3). Note that the first computed answer shown

above is ans = 〈σ, μ, ∅〉, where σ = {X �→ king lear} and μ = {W �→ (0.675, 4)},
which subsumes gsol in the flexible sense via ν = ε ∈ SolR(∅).

Library. Finally, consider the program Ps and the proximity relation Ss, both as

displayed in Figure 1 of Section 2. As it has been said when this example was

introduced, the predicate guessRdrLvl takes advantage of attenuation factors to
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encode heuristic rules to compute reader levels on the basis of vocabulary level and

other book features. As an illustration of use, consider the following goal:

Goal ?- guessRdrLvl(book(2, ’Dune’, ’F. P. Herbert’, english, sciFi,

medium, 345), Level)#W.

Sol1 W = 0.8, Level = intermediate ? ;

· · ·
Sol6 W = 0.7, Level = upper ?

yes

Here we ask for possible ways of classifying the second book in the library according

to reader levels. We obtain as valid solutions, among others, intermediate with

a certainty factor of 0.8; and upper with a certainty factor of 0.7. These valid

solutions show that the predicate guessRdrLvl tries with different levels for any

certain book based on the heuristic implemented by the qualified clauses.

To conclude, consider now the goal proposed in Section 2 for this program. For

such goal we obtain:

Goal ?- search(german, essay, intermediate, ID)#W::W>=0.65.

Sol1 W = 0.8, ID = 4 ?

yes

which tells us that the forth book in the library is written in German, it can be

considered to be an essay and is targeted for an intermediate-level reader. All this

with a certainty degree of at least 0.8.

5.3 Efficiency

The minimum – and unavoidable – overload introduced by qualifications and

proximity relations in the transformed programs manifests itself in the case of

(S)QCLP programs that use the identity proximity relation and have t as the

attenuation factor of all their clauses. In order to measure this overload, we have

made some experiments using some program samples, taken from the SICStus Prolog

Benchmark that can be found in:

http://www.sics.se/isl/sicstuswww/site/performance.html

and we have compared the time it took to repeatedly execute a significant number

of times each program in both (S)QCLP and SICStus Prolog making use of a slightly

modified (to ensure a correct behavior in both systems) version of the harness also

provided in the same site.

From all the programs available in the aforementioned site, we selected the

following four:

• naivrev: näıve implementation of the predicate that reverses the contents of a

list.

• deriv: program for symbolic derivation.

• qsort: implementation of the well-known sorting algorithm Quicksort.

• query: obtaining the population density of different countries.
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Table 1. Time overload factor w.r.t. Prolog

Program Q(b)a Q(u)b PQ(b)c PQ(u)d SQ(b)e SQ(u)f

naivrev 1.80 10.71 4289.79 4415.11 56.22 65.75

deriv 1.94 10.60 331.45 469.67 29.63 39.32

qsort 1.05 1.11 135.59 136.98 2.51 2.83

query 1.02 1.12 7.17 7.13 3.80 3.88

aQCLP(B,R) version (i.e. the program does not have the # prox directive).
bQCLP(U,R) version (i.e. the program does not have the # prox directive).
cSQCLP(Sid,B,R) version.
dSQCLP(Sid,U,R) version.
eSQCLP(Sid,B,R) version with directive # optimized unif.
fSQCLP(Sid,U,R) version with directive # optimized unif.

No other program could be used because they included impure features such as cuts,

which are not currently supported by our system. In order to adapt these Prolog

programs to our setting, the following modifications were required:

(1) All the program clauses are assumed to have t as attenuation factor. After

including these attenuation factors, we obtain as results QCLP programs. More

specifically, we obtain two QCLP programs for each initial Prolog program, one

using the qualification domain B (because this domain uses trivial constraints),

and another using the qualification domain U (which uses R-constraints).

(2) We define an empty proximity relation, allowing us to obtain two additional

SQCLP-programs.

(3) By means of the program directive “#optimized unif” defined in Section 5.2.1,

each SQCLP program can also be executed in this optimized mode. Therefore,

each original Prolog Program produces six (S)QCLP programs, denoted as Q(b),

Q(u), PQ(b), PQ(u), SQ(b) and SQ(u) in Table 1.

In addition, some minor modifications to the program samples have been intro-

duced for compatibility reasons, i.e. additions using the predicate is/2 were replaced,

both in the Prolog version of the benchmark and in the multiple (S)QCLP versions,

by clpr constraints. In any case, all the program samples used for this benchmarks

in this section can be found in the folder benchmarks/ of the (S)QCLP distribution.

Finally, we proceeded to solve the same goals for every version of the benchmark

programs, in both SICStus Prolog and (S)QCLP. The benchmark results can be

found in Table 1. All the experiments were performed on a computer with a Intel(R)

Core(TM)2 Duo CPU at 2.19 GHz with 3.5 GB RAM.

The results in the table indicate the slowdown factor obtained for each version

of each program. For instance, the first column indicates that the time required for

evaluating the goal corresponding to the sample program naivrev in QCLP(B,R) is

about 1.80 times the required time for the evaluation of the same goal in Prolog.

Next we discuss the results.

• Influence of the qualification domain: In general the difference between the

slowdown factors obtained for the two considered qualification domains is
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not large. However, in the case of QCLP-programs, naivrev and deriv, the

difference increases notably. This is due to different ratios of B-constraints

w.r.t. the program and U-constraints w.r.t. the program. It must be noticed

that the transformed programs are the same in both the cases, but for the

implementation of qval and qbound constraints, which is more complex for

U as one can see in Section 5.1. In the case of naivrev and deriv, this makes

a big difference because the number of computation steps directly required

by the programs is much smaller than in other cases. Thus, the slowdown

factor becomes noticeable for the qualification domain U in computations

that require a large number of steps.

• Influence of the proximity relation: The introduction of a proximity relation –

even the identity – is very significative, since unification in the original Prolog

program is handled by calls to the predicate ∼′ in the SQCLP program. This

is particularly relevant when the computation introduces large constructor

terms, as in the case of naivrev, which deals with Prolog lists. The efficient

Prolog unification is replaced by an explicit term decomposition.

• Influence of the optimized unification: As seen in the table, the use of the

program directive #optimized unif causes a clear increase in the efficiency of

goal-solving for these examples. This is due to the use of the implementation

(C) for the predicate ∼′ instead of the implementation (B) (see Section 5.1).

The speed-up is especially noticeable when large data structures are involved

in the unification as can be seen for the sample programs naivev and deriv.

The reason is that the implementation (C) avoids costly term decompositions

required by the other implementation.

6 Conclusions

In our recent work (Rodrı́guez-Artalejo and Romero-Dı́az 2010a) we extended

the classical CLP scheme to a new programming scheme SQCLP, whose instances

SQCLP(S,D,C) were parameterized by a proximity relation S, a qualification

domain D and a constraint domain C. This new scheme offered extra facilities for

dealing with expert knowledge representation and flexible query answering. In this

paper we have set the basis for a practical use of SQCLP by providing a prototype

implementation on top CLP(R) systems like SICStus Prolog and SWI-Prolog, based

on semantically correct program transformation techniques and supporting several

interesting instances of the scheme.

The transformation techniques presented in Section 4 work over programs and

goals in two steps, formalized as the composition of two transformations: elimS
and elimD. Our mathematical results show that elimS replaces the explicit use of a

proximity relation by using just qualification values and clause annotations, which are

in turn replaced by purely CLP computations, thanks to elimD. The composed effect

of the two transformations ultimately enables to solve goals for SQCLP programs

by applying any capable CLP goal-solving system to their CLP translations.

The prototype implementation presented in Section 5 relies on the transformation

techniques, improved with some optimizations. It has finally allowed us to execute
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all the examples shown in this paper – and in previous ones – and a series of

benchmarks for measuring the overload actually introduced by proximity relations

– or by similarity relations – and by clause annotations and qualifications. While

we are aware that the prototype implementation presented in this paper has to be

considered as a research tool (and as such, we admit that it cannot be used for

industrial applications), we think that it can contribute to the field as a quite solid im-

plementation of an extension of CLP(R) with proximity relations and qualifications.

Some related implementation techniques and systems have been presented in the

Introduction. However, as far as we know, no other implementation in this field

has ever provided simultaneous support for proximity (and similarity) relations,

qualifications via clause annotations and CLP(R)-style programming. Moreover,

the development of our prototype has used both semantically correct methods and

careful optimizations, aiming at a balance between theoretical foundations and a

sound but practical system.

In the future, and taking advantage of the prototype system we have already

developed, we plan to investigate possible applications that can profit from proximity

relations and qualifications, such as in the area of flexible query answering. In

particular, we plan to investigate application related to flexible answering of queries

to XML documents, in the line of Campi et al. (2009) and other related papers.

As a support for practical applications, we also plan to increase the repertoire of

constraint and qualification domains that can be used in the (S)QCLP prototype,

adding the constraint domain FD and the qualification domain Wd defined in

Section 2.2.3 of Rodrı́guez-Artalejo and Romero-Dı́az (2010b). On a more theoretical

line, other possible lines of future work include (a) investigation of unification

modulo a given proximity relation S, not assuming transitivity for S and proving

soundness and completeness properties for the resulting unification algorithm; (b)

building upon (a), extension of the SLD(D) resolution procedure presented in

Rodrı́guez-Artalejo and Romero-Dı́az (2008) to a SQCLP goal-solving procedure

able to work with constraints and a proximity relation, including also soundness

and completeness proofs; and (c) extension of the qualified constraint functional logic

programming (QCFLP) scheme in Caballero et al. (2009) to work with a proximity

relation and higher order functions, as well as the implementation of the resulting

scheme in the CFLP(C)-system Toy (Arenas et al. 2007).
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