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We studied the tank treading motion of an erythrocyte (red blood cell, or RBC) in
linear shear flows by using a boundary-element fluid-dynamics model coupled with a
multiscale structural model of the cell. The purpose was to investigate the correlation
between the reference (stress-free) state of the cytoskeleton and the cell dynamics in
shear flows with relatively high capillary numbers. We discovered that there exist two
distinctive modes of tank treading, mode 1 and mode 2. In mode 1 the membrane
elements originating from the dimple areas keep close to the central plane, whereas
in mode 2 these elements remain near the farthermost locations from the central
plane. Mode 1 is also characterized by significantly higher breathing and swinging
oscillations. During tank treading one mode may become unstable and switch to the
other. Their stability depends on the viscosity ratio and the capillary number. At
a fixed viscosity ratio, when the capillary number is increased the cell experiences
sequentially a region dominated by mode 2, a mode 1/mode 2 bistable region and
a region dominated by mode 1. More profoundly, these regions are highly sensitive
to the reference state of the cytoskeleton. For example, compared with a cell with
a biconcave reference state, a cell with a spheroidal reference state features a much
smaller region dominated by mode 2. This finding may guide experiments to identify
the actual reference state of these cells.

Key words: biological fluid dynamics, capsule/cell dynamics

1. Introduction
With one of the simplest molecular structures among all cells, the red blood

cell (RBC) provides an ideal model system to study the mechanical properties and
the mechanics-versus-function relation of cells. A mature RBC has no nucleus –
it is essentially a droplet of cytosol enclosed within a highly flexible membrane.
The membrane itself features a composite structure, consisting of a lipid bilayer
on the outside of the cell and a protein skeleton underneath (Mohandas & Evans
1994). The skeleton contains approximately 33 000 repeating units called junctional
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complexes (JCs). Each JC has a central piece of actin protofilament surrounded by
(up to) six spectrin dimers, forming a hexagon shape. The skeleton is pinned to (not
embedded in) the lipid bilayer. Moreover, the pinning points made of transmembrane
proteins are mobile so that the skeleton and the bilayer can slide against each other.
Subsequently, these two components of the cell membrane may undergo different
local deformations. This has been confirmed via fluorescent measurements of the
variation of the skeleton density during micropipette aspirations (Discher, Mohandas
& Evans 1994). However, this fact has not been represented in most existing models,
which describe the membrane as a single layer of uniform material.

In the cardiovascular system RBCs often travel in non-uniform flows. In microfluidic
experiments, theoretical models and numerical simulations these non-uniform flows are
usually simplified as steady linear shear flows (see, for example, Fischer, Stohr-Liesen
& Schmid-Schonbein 1978; Barthès-Biesel 1980; Keller & Skalak 1982; Eggleton &
Popel 1998; Abkarian, Faivre & Viallat 2007; Noguchi 2009a,b; Fedosov, Caswell &
Karniadakis 2011; Vlahovska et al. 2011; Yazdani, Kalluri & Bagchi 2011; Fischer
& Korzeniewski 2013). It has been illustrated that depending on the shear rate
the RBC may display one of the following motions: (a) tumbling, in which the
cell somersaults in a rigid-body-like rotation around an axis perpendicular to the
shear plane; (b) rolling (Bitbol 1986), in which the cell rotates like a wheel around
its shortest axis which is perpendicular to the shear plane; (c) frisbee-like motion
(Dupire, Socol & Viallat 2012), which is similar to the rolling motion except that
the axis of rotation is within the shear plane; and (d) tank treading, in which the
cell itself remains almost steady (except for oscillations in its orientation and aspect
ratio), while its membrane circulates around it. Omori et al. (2012a) studied the
reorientation of a capsule in shear flow with different capillary numbers Ca. They
found that a material point on the capsule moves towards the out-of-shear-plane axis
z when Ca= 1.0 and moves towards z= 0 when Ca= 0.3 (see figure 2 in that paper).
More interestingly, they found that the final orientation is independent of the initial
orientation.

Our recent study indicated that there are in fact two sub-modes in the tank
treading motion (Peng & Zhu 2013). These two modes are distinguished mostly by
the trajectories of the membrane elements originating from the dimple areas (hereafter
referred to as the dimple elements) during tank treading. To elaborate, in mode 1
these dimple elements remain close to the central plane, whereas in mode 2 these
elements are away from the central plane. In addition, mode 1 is also characterized
by significant breathing (with changes in aspect ratio) and swinging (with changes
in pitching angle) oscillations. Both are negligibly small in mode 2. In that study,
however, no systematic simulations were conducted to examine the stability of these
tank treading modes and the transition between them. Moreover, all the results were
obtained under the assumption that the skeleton is stress-free at its natural biconcave
state. The validity of this assumption, however, has been questioned in some recent
publications.

Indeed, the prestress inside the protein skeleton at the natural state is considered
to be one of the most intriguing mysteries in RBC mechanics (Hoffman 2001). Since
the stress can be decomposed into isotropic stress (pressure) and shear stress, there
are actually two questions, both of which remain unanswered. With regard to the
isotropic stress, Svoboda et al. (1992) found that the cytoskeleton was prestretched
in the natural biconcave state, whereas Discher, Boal & Boey (1998) found that it
was compressed. The effect of isotropic stress upon the cell mechanics has also been
numerically investigated by Omori et al. (2012b). The question about the shear stress,
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on the other hand, is usually expressed as the search for the shear-stress-free state
of the skeleton (see, for example, Lim, Wortis & Mukhopadhyay 2002). Hereby the
stress-free state is also called the reference state. It refers to a three-dimensional
geometry of the skeleton in which there is no prestress. The overall surface area
of this geometry is the same as that of the cell in its resting state (due to the area
conservation imposed by the large area modulus of the lipid bilayer), whereas the
internal volume is different. The resting shape of the RBC and its stress-free state
can be connected through a deflation process during which the internal volume of the
stress-free state is changed gradually until the actual surface area to volume ratio of
a cell is reached (Peng, Mashayekh & Zhu 2014). To date, most models assume that
the reference state is biconcave so that there is no pretension in the skeleton. This
is convenient in explaining the resting shape of the cell (which coincides with the
minimum bending energy in the lipid bilayer) (see, for example, Mohandas & Evans
1994). It is also consistent with the reported shape memory, which suggests that
the reference state must be anisotropic so that it cannot be a sphere (Fischer 2004).
This reference state, however, creates significant difference in strain energy between
dimple and rim elements so that there is a high-energy barrier between these two
areas. A direct consequence of this energy barrier is that it discourages tank treading
motion since it involves location exchanges between the dimple and rim elements.

Based on this property, Dupire et al. (2012) conducted a sequence of microfluidic
experiments in low-shear-rate flows and documented the transitions from tumbling
and rolling to tank treading motions. The results indicate that the critical shear
rates between tumbling/rolling and tank treading are too low to be explained by the
biconcave reference state. In addition, in these tank treading motions in low-shear-rate
flows, the cell keeps its biconcave shape (Abkarian et al. 2007; Dupire et al. 2012),
whereas in most simulations the cell reaches an elongated shape during tank treading
(see, for example, Dodson & Dimitrakopoulos 2010). To explain these findings, it was
suggested that the reference state may be a spheroid so that the energy barrier between
dimple and rim elements is greatly reduced (Dupire et al. 2012). This hypothesis has
been confirmed numerically through a boundary-element model (Tsubota, Wada & Liu
2013), a multiscale model (Peng et al. 2014) and a front-tracking immersed-boundary
model (Cordasco, Yazdani & Bagchi 2014). Cordasco et al. (2014) studied the phase
diagram of off-shear plane dynamics, including tank treading, tumbling, rolling,
kayaking and hovering, for low-shear-rate flows. It was shown that kayaking motion
occurs when the capillary number is just above the critical value while the viscosity
ratio Λ is below the physiological range. Furthermore, they observed a hovering
motion in which the cell axis first moves towards the shear plane and then aligns at
a constant angle with respect to the shear plane, and the cell exhibits a combination
of tank treading and a rigid-body-like spinning, when the cell is initially aligned
with a large off-shear plane angle. This hovering motion is similar to the frisbee-like
hovering motion observed in the experiment of Dupire et al. (2012). Nevertheless,
due to the small range of shear rate considered in these studies the difference between
the two reference states is subtle. This may lead to ambiguity in the conclusion. To
further test this conclusion, it will be helpful to find additional mechanisms that can
be easily tested through experiments.

The purpose of this study is to numerically study the tank treading motion of RBCs,
especially the stability of the two modes, over a wide range of parameters (capillary
number and viscosity ratio), and identify additional characteristics that can be used as
guidance in the search for the reference state in future experiments. Towards this end,
we will apply a multiscale fluid–cell interaction model developed earlier and reported
in our previous publication (Peng, Asaro & Zhu 2011).
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FIGURE 1. (Colour online) Numerical set-up of an RBC in a linear shear flow. The
membrane-attached bead marks the dimple area.

The rest of the paper will be organized as follows. We first present the physical
problem associated with an RBC in a linear shear flow. This is followed by a brief
description of the numerical method and its validations (the details are included in
our previous publications). Numerical results, including characteristics of the two tank
treading modes, their stability properties and in particular the effect of the reference
state, are included in the results section. These are followed by an intuitive discussion
about the underlying physical mechanisms. Finally, conclusions are drawn.

2. Description of the physical problem
The set-up of our numerical simulations is shown in figure 1. We consider the

dynamics of an RBC within a linear shear flow in the x direction with the velocity
profile U(y) = γ̇ y, where γ̇ is the shear rate. In this scenario, the dynamics of the
cell is determined mostly by the following dimensionless parameters: (a) the capillary
number Ca, defined as Ca≡ η1Rγ̇ /µs, where η1 is the viscosity of the fluid outside
of the cell, R is the effective radius of the cell (i.e. the radius of a sphere with the
same surface area as the cell – it is chosen to be 3.25 µm in this study) and µs is
the shear stiffness of the skeleton; (b) the viscosity ratio Λ, defined as Λ ≡ η2/η1,
where η2 is the viscosity of the internal fluid (i.e. the cytosol). The value of η2 is
chosen to be 0.006 pN s µm−2 (Chien 1987). We note that in our multiscale model
(and also in the real cell), µs is a nonlinear function of the skeleton deformation so
that it varies both spatially and temporally. To avoid any ambiguity, in calculating the
capillary number the value µs is extracted from the undeformed cytoskeleton.

As mentioned in the introduction, depending on the aforementioned dimensionless
parameters (Ca and Λ), the cell may display tumbling, wheel-like rolling, frisbee-like
and tank treading motions. At certain viscosity ratios, tumbling, rolling and
frisbee-like motions occur at relatively low values of the capillary number. These
motions, especially their transitions to the tank treading motion, have been investigated
extensively in recent numerical studies (Yazdani & Bagchi 2011; Tsubota et al. 2013;
Cordasco et al. 2014; Peng et al. 2014). In the current study, we will concentrate
on higher capillary numbers (Ca=O(1)), where the tank treading motion dominates.
During tank treading motion, in addition to shape changes the cell may also undergo
oscillatory rotations around the x, y and z axes, which are depicted as θ(t), φ(t)
(kayaking) and ψ(t) (swinging) respectively. In practice, these angles are defined
based on the orientation of a unit vector l = (lx, ly, lz) along the longest axis of the
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hb (nm) µb (pN µm−1) Kb (pN µm−1) kc (J) νb (pN s µm−1)
2.2 10−3 5× 105 2× 10−19 10−3

TABLE 1. Parameters of the lipid bilayer. Here, hb is the bilayer thickness (different
from reality due to the homogeneous shell assumption), µb is the bilayer shear stiffness
(a very small value to stabilize the numerical algorithm), Kb is the bilayer areal stiffness
(Mohandas & Evans 1994), kc is the bilayer bending stiffness (Mohandas & Evans 1994)
and νb is the bilayer viscosity (Otter & Shkulipa 2007).

hs (nm) νs (pN s µm−1) pf (nm) pu (nm) Lf (nm)
2 0.0125 25.23 0.8 6.39

Lu (nm) 11x∗ (nm) F1/2 (pN) µs (pN µm−1)
39 12.6 12 2.5

TABLE 2. Parameters of the cytoskeleton. Here, hs is the cytoskeleton thickness, νs is the
cytoskeleton viscosity (Tran-Son-Tay, Sutera & Rao 1984), pf is the persistence length of
folded domains in spectrin, pu is the persistence length of unfolded domains (Zhu & Asaro
2008), Lf is the contour length of folded domains (Zhu & Asaro 2008), Lu is the contour
length of unfolded domains (Zhu & Asaro 2008), 11x∗ is the the difference between
the activation length of the unfolding process and that of the refolding process (Zhu &
Asaro 2008), F1/2 is the the force corresponding to the state when half of the domains
are unfolded (Zhu & Asaro 2008) and µs is the initial shear modulus of the cytoskeleton
(Peterson, Strey & Sackmann 1992). A spectrin consists of 19 domains in our model.

deformed cell, so that we have θ = tan−1(lz/ly), φ = tan−1(lz/lx) and ψ = tan−1(ly/lx).
The initial values of these angles, θ0, φ0 and ψ0, represent the initial orientation of
the cell.

The physical properties of the lipid bilayer and the cytoskeleton used in this study
are summarized in tables 1 and 2. In table 2 the shear modulus µs is obtained from
the undeformed cytoskeleton. The friction coefficient between the lipid bilayer and the
skeleton is chosen to be cf = (ρ/ρ0)144 pN s µm−3, where ρ and ρ0 are the current
and initial protein densities of the skeleton respectively (Peng et al. 2011).

Over the past few years, we have developed a fluid–structure interaction model to
simulate the dynamics of RBCs in shear flows. In the structural part, we employ a
multiscale framework to represent the viscoelastic responses of the cell membrane
at different length scales. In the fluid part, we apply a boundary-element method to
simulate the dynamics of the fluids inside and outside of the cell based on the Stokes
flow assumption. A brief review of the primary characteristics of these models is
included in appendix A.

3. Results

In the following simulations, we use ABAQUS (ABAQUS Inc., Providence, RI)
to generate the computational mesh for both the finite-element solver (the level III
model) and the boundary-element solver. On each layer, 1000 elements are applied.
The number of boundary elements on the outer surface is also 1000. For numerical
stability, a time step of 2× 10−5 s is used.
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3.1. Resting shape
When the reference shape of the cytoskeleton is biconcave, it is straightforward to set
the resting geometry of the cell as (Evans & Fung 1972)

y=±0.5R0

√
1− x2 + z2

R2
0

[
C1 +C2

x2 + z2

R2
0
+C3

(
x2 + z2

R2
0

)2
]
, (3.1)

where C1 = 0.21, C2 = 2.03, C3 =−1.12 and R0 = 3.95 µm. The internal volume is
0.65V0, where V0 is the volume of a sphere with the same surface area (i.e. a sphere
whose radius is R= 3.25 µm). The skeleton is prescribed to be stress-free at this state.

The determination of the resting state of a cell with a spheroidal reference shape
requires a deflation process (Peng et al. 2014). During this process, we start from a
spheroid-shaped cell whose internal volume is Vs and surface area is 4πR2. It is easy
to see that the eccentricity of this spheroid can be uniquely extracted from Vs/V0, the
ratio between its internal volume and the volume of a sphere with radius R. Hereafter
this volume ratio is used as the parameter to characterize a spheroidal shape. At this
initial state there is no stress in the skeleton so that this spheroid coincides with the
reference shape. The internal volume of the cell is then gradually reduced from Vs to
0.65V0 while its surface area does not change. Thus obtained, the resting cell shape is
shown to be dependent on the initial stress-free shape and the spontaneous curvature
of the lipid bilayer C0 (which is usually expressed in a dimensionless form as c0 ≡
C0R).

Systematic studies have been conducted using a Monte Carlo approach to document
the resting shapes of the cell at different values of Vs/V0 and c0 (Lim et al. 2002;
Lim, Wortis & Mukhopadhyay 2008). According to these simulations, to create the
biconcave resting shape of RBCs, the reference shapes are most likely within the
range 0.925 < Vs/V0 < 0.976. At each Vs/V0, as c0 increases beyond a threshold
value (c∗0) the resting shape switches from a stomatocyte (bowl shape) to a discocyte
(biconcave shape). However, if the Vs/V0 is too close to 1, no discocyte can be
reached at any value of c0. These tendencies have been quantitatively confirmed in
our previous study using the multiscale model with the aforementioned deflation
method (Peng et al. 2014). Furthermore, our simulations show that to duplicate the
experimentally observed transition from tumbling/rolling motions to tank treading
motion at low capillary numbers, the value of Vs/V0 may be a little higher than the
range proposed by Lim et al. (2002) (a similar conclusion was reached by Cordasco
et al. (2014) using a front-tracking immersed-boundary model).

To study cells with spheroidal reference states we will first concentrate on a case
with Vs/V0 = 0.975 and c0 = 8 (although other values of Vs/V0 and c0 will also
be explored later) and compare it with the case in which the reference shape is
biconcave (in which Vs/V0 = 0.65 and c0 = 0). The resting shape of the cell and
the distributions of skeleton deformations in this case are shown in figure 2. Hereby
the in-plane deformations of the skeleton are quantified through two independent
parameters, α≡ λ1λ2 and β ≡ λ1/λ2, where λ1 and λ2 are principal in-plane stretches
and by definition λ1 > λ2. The parameter α represents area change (α > 1 corresponds
to area expansion and α < 1 to area compression) and β represents shear deformation.
In the case shown in figure 2, it is seen that in the resting state the cytoskeleton
is compressed in the area surrounding the dimple and expanded near the rim.
The maximum area expansion αmax (associated with reduced skeleton density) is
approximately 1.07, occurring on the rim. The maximum shear deformation βmax also
occurs near the rim. Its value is approximately 1.22.
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0.97

1.22

1.00

(b) (c)

(a)

FIGURE 2. (Colour online) (a) The shape, (b) the area deformation of the skeleton and
(c) the shear deformation of the skeleton at the resting configuration. Here, Vs/V0= 0.975
and c0 = 8.

y

x

z

y

x

z

(a)

(b)

FIGURE 3. (Colour online) Snapshots of the cell in tank treading motion in (a) mode 1
and (b) mode 2. Two beads are attached to the membrane to mark the dimple elements.
Here, Ca = 3.51 and Λ = 1.0. Mode 1 is achieved with θ0 = 0◦→ φ0 = 0◦→ ψ0 = 0◦.
Mode 2 is achieved with θ0 = 90◦→ φ0 = 0◦→ψ0 = 0◦.

3.2. Characteristics of the two tank treading modes
As reported in Peng & Zhu (2013), through numerical simulations we have shown that
the tank treading motion actually includes two distinguishable modes. As demonstrated
in figure 3, the most pronounced difference between these two modes is in the
location and motion of the membrane elements originating from the dimple area (i.e.
the area marked by the bead in figure 1). In the first mode (referred to as mode 1),
these dimple elements remain close to the central plane (the x–y plane) so that
they travel the longest distance during tank treading (see figure 3a). In the second
mode (mode 2), the dimple elements move to the farthermost points from the central
plane and their translational motion during tank treading is minimized (figure 3b).
Incidentally, similar features (including the existence of two distinguishable tank
treading modes of erythrocytes in shear flow, the dependence upon initial orientations
and the key characteristics of these modes) have also been observed by Cordasco
et al. (2014) in their simulations using a front-tracking immersed-boundary model.
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FIGURE 4. Time histories of the inclination angle Ψ (a) and Taylor deformation parameter
Dxy (b) of mode 1 (solid lines) and mode 2 (dashed lines). Here, Ca= 3.51 and λ= 1.0.
Mode 1 is achieved with θ0 = 0◦→ φ0 = 0◦→ ψ0 = 0◦. Mode 2 is achieved with θ0 =
90◦→ φ0 = 0◦→ψ0 = 0◦. The reference state is biconcave.

This phenomenon is also similar to findings by Dupont, Salsac & Barthès-Biesel
(2013) in the off-plane motion of a prolate capsule in shear flow.

Another important difference between the two tank treading modes lies in the
magnitudes of the breathing and swinging motions. Hereby the breathing motion
refers to the periodic oscillation in the aspect ratio of the cell geometry (usually
characterized by variations of the Taylor deformation parameter Dxy) and the swinging
motion refers to the oscillatory pitch around the z axis (the ψ(t) motion). Both the
breathing and the swinging motions have twice the frequency of the tank treading
motion. From figure 4 it is seen that mode 1 is characterized by significant breathing
and swinging. In mode 2, on the other hand, both breathing and swinging are usually
negligibly small.

3.3. Stability of the modes and its relation with the reference state
At the initial stage of its tank treading motion, the cell motion is determined mostly
by its original orientation (especially the roll angle θ ). Generally speaking, when the
cell is initially oriented towards the x–z plane (i.e. the value of θ0 is close to 0◦), it
displays mode 1 motion when the shear flow is turned on. On the other hand, when
the initial orientation of the cell is more towards the x–y plane (i.e. the value of θ0 is
close to 90◦), it will start with mode 2 motion. After long-term evolutions, however,
the cell motion may eventually switch to a different mode. Indeed, in our simulations
it has been discovered that both mode 1 and mode 2 can become unstable and switch
to the other mode.

Figure 5 shows a typical scenario when mode 1 becomes unstable and switches to
mode 2. The most pronounced change is that the dimple elements, represented by the
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FIGURE 5. (Colour online) A transition event from mode 1 to mode 2. (a) Trajectories
of the dimple elements in the z direction. (b) The breathing motion characterized by
variations of the Taylor parameter Dxy(t). (c) The swinging motion Ψ (t). (d) The kayaking
motion φ(t). Here, Ca= 2.34, Λ= 1.0 and θ0 = 0◦→ φ0 = 0◦→ ψ0 = 0◦. The reference
state is biconcave.

beads, drift from the central plane to the two sides of the cell. This is clearly seen
in the trajectories zb of the two beads in the z direction (figure 5a – each curve in
that figure corresponds to the trajectory of one bead). Meanwhile, there are dramatic
reductions in the oscillations of both Dxy (breathing) and ψ (swinging) (figure 5b,c).
According to figure 5(d), this transition process is also accompanied by an increase
in the kayaking motion φ(t), which eventually dies out when the cell settles down at
mode 2. To make sure that the observed instability was not caused by accumulated
error due to time integration, we conducted sensitivity tests by varying the time step
1t and found that the stability/instability behaviour was not sensitive to 1t.

Figure 6 demonstrates the opposite process of transition from mode 2 to mode 1.
As shown in the figure, the instability of mode 2 is characterized by the relocation of
the dimple elements to the central plane (as shown by the trajectories zb of the dimple
elements in figure 6a). This is accompanied by large increases in breathing (figure 6b)
and swinging (figure 6c). Large kayaking motion is also observed during this process
(figure 6d).

We conducted systematic simulations to document the stability of the two tank
treading modes on the Λ–Ca plane. Specifically, we focused on the range of Λ from
0.5 to 1.0. At each viscosity ratio, the lower limit of the stable region of mode 1 was
determined (through a bisection approach) as Ca−, and the upper limit of the stable
region of mode 2 was determined as Ca+. Typical stability diagrams including both
the Ca− versus Λ curves and the Ca+ versus Λ curves are plotted in figure 7. In the
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FIGURE 6. (Colour online) A transition event from mode 2 to mode 1. (a) Trajectories
of the dimple elements in the z direction. (b) The breathing motion characterized by
variations of the Taylor parameter Dxy(t). (c) The swinging motion Ψ (t). (d) The kayaking
motion φ(t). Here, Ca= 3.90, Λ= 0.5 and θ0 = 90◦→ φ0 = 0◦→ψ0 = 0◦. The reference
state is biconcave.

region below the Ca− curve (marked as region III in the figure), the only stable mode
is mode 2. Within this region, even if the cell starts with a mode 1 motion at certain
initial conditions, it will eventually transform into mode 2 via the process illustrated
in figure 5. Between the Ca− and Ca+ curves (region II) both mode 1 and mode 2
are stable so that the system displays a bifurcation behaviour. The exact response
depends on the initial condition. In fact this is the behaviour we concentrated on in
our previous work (Peng & Zhu 2013). Above the Ca+ curve (region I) the system
response is dominated by mode 1. This is the region where the transition process
illustrated in figure 6 may occur.

An enormous difference exists between a cell with a biconcave reference state
and one with a spheroidal reference state in terms of the stability properties of the
two tank treading modes. This is clearly demonstrated in the comparison between
figures 7(a) and 7(b) (note that the vertical scales in these two figures are different).
Specifically, for a cell with spheroidal reference state (figure 7b) region III (the
region in which only mode 2 is stable) is greatly diminished, and region II (the
bistable region) almost disappears. The implication is that the spheroidal reference
state discourages the occurrence of mode 2.

It is more illustrative to express this difference in terms of shear rates instead of
capillary numbers. For example, with the physical parameters chosen in this study
(see tables 1 and 2), at Λ = 1.0 for a cell with biconcave reference state (Vs/V0 =
0.65 and c0 = 0) mode 1 is stable when the shear rate is above 425 s−1. If the cell
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FIGURE 7. (Colour online) Stability diagrams in the Λ–Ca plane of (a) an RBC with
biconcave reference state and (b) an RBC with spheroidal reference state (Vs/V0 = 0.975,
c0 = 8).
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FIGURE 8. (Colour online) Stability diagram in the Vs/V0 ∼ Ca plane for an RBC with
spheroidal reference state. Here, Λ= 0.75 and c0 = 8.

has a spheroidal reference state with Vs/V0 = 0.975 and c0 = 8, this value is greatly
reduced to approximately 165 s−1. Similarly, the highest shear rate for mode 2 to be
stable is reduced from approximately 595 s−1 for the cell with biconcave reference
state to approximately 168 s−1 for the cell with spheroidal reference state. Such large
differences will not be difficult to detect in experiments. Our results on multiple tank
treading modes and their stability properties will provide a valuable measure in future
experiments to determine whether the reference state is biconcave or spheroidal.

Another interesting question is whether or not this phenomenon can be applied to
pinpoint the exact reference state. To shed light on this question, we have conducted
additional numerical tests to show the sensitivity of Ca− and Ca+ to the detailed
eccentricity of the spheroidal reference state. Towards this end, in figure 8 we plot
the variations of Ca− and Ca+ over the range 0.90 6 Vs/V0 6 0.995 (c0 is fixed as
8 and Λ is fixed as 0.75). It is seen that both Ca− and Ca+ decrease quickly with
Vs/V0, especially when it approaches 1 (i.e. the reference state approaches a sphere).
Therefore, carefully measured values of these critical capillary numbers may indeed
be used as criteria to determine the exact value of Vs/V0.
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FIGURE 9. Schematic illustration of the membrane contour within the x–y plane during
tank treading motions for (a) mode 1 and (b) mode 2 over half a tank treading period
(the time increases sequentially from t1 to t5). The dimple elements are shown as circles
and the rim elements are shown as bullets.

A remaining concern is that the spontaneous curvature of the lipid bilayer
characterized by the parameter c0, which is still an unknown factor, may also
affect the cell dynamics during tank treading motion. According to the Monte Carlo
simulation by Lim et al. (2002) and our own study (Peng et al. 2014), at each value
of Vs/V0 there exists a critical value of c0 (c∗0), beyond which the resting shape of
the cell switches from a stomatocyte to a discocyte. Although c∗0, which depicts the
lower bound of the possible range of c0, can be determined from simulations, there
is no existing knowledge about the exact value of c0 itself. To address this effect,
we conducted a sensitivity test using the case when Vs/V0 = 0.975, Λ = 0.75 and
8 6 c0 6 12. According to our results, within this range of c0 the variations of both
Ca− and Ca+ are non-significant.

4. Discussion
To physically understand the difference between mode 1 and mode 2, we

concentrate on the contour of the cell membrane within the central plane (the
x–y plane). The membrane elements within this plane travel the longest distances
during tank treading. As illustrated in figure 9(a), in mode 1 these elements have
different origins. Some of them are from the dimple area (depicted as circles),
whereas some are from the rim area (represented by bullets). There are significant
differences between the strain energy densities stored in these elements from different
origins (Dupire et al. 2012). Specifically, the dimple elements contain less energy
than the rim elements. The identities of these elements will be preserved even in a
deformed cell during tank treading (Peng & Zhu 2013). This is epitomized by the
fact that the cytoskeleton associated with dimple elements and that with rim elements
will have different deformations during tank treading. As a consequence, following
the circulation of these elements around the cell there is a periodic variation in the
structural configuration of the cell. The period of this variation is half that of the tank
treading motion itself. For example, in figure 9(a) the cell configurations at t1 and t3
are clearly different, while at t5 (after half a tank treading period) the cell returns to
the initial configuration at t1. This variation contributes to the breathing and swinging
oscillations of the cell. It also explains why the frequencies of these oscillations are
exactly twice that of the tank treading motion. In mode 2, on the other hand, all the
elements on this contour are from the rim area so that the structural configuration
of the cell remains unchanged during tank treading (figure 9b). This explains the
significant reduction in breathing and swinging oscillations. In terms of the motions
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FIGURE 10. Distributions of the strain energy density E (normalized by η1γ̇R) along the
contour within the x–y plane in the membrane as the cell switches from (a) mode 1
(within half of a breathing/swinging period starting at γ̇ t = 67.5) to (b) mode 2 (at
γ̇ t= 1440). This is the same case as defined in figure 5, which lies in region III in the
stability diagrams. The curves in (a) show four evenly distributed snapshots over time (the
variations are caused by the breathing/swinging oscillations in mode 1). In mode 2 the cell
shape and configuration remain almost steady so that there is no variation of the strain
energy density over time. The inset in (a) describes the definition of the angle Θ .
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FIGURE 11. Distributions of the strain energy density E (normalized by η1γ̇R) along the
contour within the x–y plane in the membrane as the cell switches from (a) mode 2 (at
γ̇ t= 125) to (b) mode 1 (within half of a breathing/swinging period starting at γ̇ t= 2000).
This is the same case as defined in figure 6, which lies in region I in the stability
diagrams.

of the rim elements, mode 2 appears to be an ‘extension’ of the wheel-like rolling
mode into the high-capillary-number regime. The only difference is that mode 2
is associated with significant cell deformation, while in the rolling mode the cell
maintains its original biconcave shape.

Furthermore, in mode 1 since the elements within the x–y plane are from different
origins, along the contour there will be larger differences (compared with mode 2)
in terms of the distribution of strain energy (for example, see figures 10 and 11).
This may create higher energy barriers to achieve tank treading. Meanwhile, the
breathing/swinging motions in mode 1 also consume significant energy in this highly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

18
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.187


462 Z. Peng, S. Salehyar and Q. Zhu

dissipative flow regime. As a result, mode 1 can be considered as a high-energy
mode while mode 2 is a low-energy mode. This may be the reason why mode 2 is
favoured when the energy input is low (hereby in flows with relatively low shear
rates) and mode 1 dominates when the energy input is sufficiently high (i.e. in flows
with relatively high shear rates).

The power input from the external fluid has to be balanced by the internal
dissipation rate and the rate of elastic energy storage (Skotheim & Secomb 2007).
As the membrane elements circulate around the cell, their strain energy increases
(i.e. energy extraction) when they go from low-energy regions to high-energy regions,
and decreases (energy release) when they return. Therefore, the system contains
numerous spring–damper oscillators (each membrane element is an oscillator) that
store and release potential energy, and dissipate energy all the time. When the other
conditions are the same, mode 1 provides a higher rate of elastic energy storage
(i.e. it contains ‘stiffer springs’) than mode 2. In addition, due to the additional
breathing motions, mode 1 may also have a higher rate of internal dissipation. When
the power input from the external fluid is increased (with increased shear rate), it
becomes hard for mode 2 to provide enough ‘room’ for energy dissipation and elastic
energy storage (as demonstrated in figure 6, at the same shear rate mode 2 involves
larger cell deformation), so that it may become unstable to disturbances and switch
to mode 1. This is somewhat similar to the transition from tumbling to tank treading.
Since tumbling is close to rigid-body motion, it shows smaller elastic energy and
smaller dissipation than tank treading. When the shear rate is increased, the motion
switches from the lower-elastic-energy tumbling mode to the higher-elastic-energy
tank treading mode. To a certain extent, mode 1 and mode 2 are also analogous to
the ‘orbits’ of electrons of an atom. With high energy input more electrons will be
excited to higher-level orbits.

Compared with a cell with a biconcave reference state, the one with a spheroidal
reference state is characterized by greatly reduced anisotropy on its membrane so that
the differences between dimple and rim elements are also mitigated (Dupire et al.
2012; Cordasco et al. 2014). It therefore takes much less energy to achieve mode 1.
This may provide an explanation for the enlarged region dominated by mode 1 in the
stability diagrams when the reference state is spheroidal rather than biconcave.

5. Conclusions

By using a fluid–cell interaction model based on the coupling of a boundary-element
fluid solver with a multiscale structural model that includes the molecular details, we
numerically investigated the tank treading motions of an RBC in linear shear flows.
The results confirmed that there existed two different tank treading modes. In mode 1
the dimple elements circulate around the cell near the central plane, whereas in
mode 2 these elements go to the farthest points from the plane so that they undergo
minimum circulation motions. Compared with mode 2, mode 1 is also characterized
by much more significant oscillations in its shape (breathing) and pitching angle
(swinging).

Although the occurrence of mode 1 or mode 2 at the initial stage of tank treading
is dependent on the initial orientation of the cell, during evolution the cell motion may
become unstable and eventually switch to the other mode. When other parameters (e.g.
the viscosity ratio) are fixed, there exist two critical capillary numbers, Ca− and Ca+.
At low capillary numbers (Ca < Ca−), only mode 2 is stable no matter what initial
conditions are applied. When Ca is between Ca− and Ca+, both mode 1 and mode 2
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are stable. Finally, when Ca>Ca+, mode 1 becomes the only stable mode. Through
systematic simulations, the stability diagrams in the Λ–Ca plane have been obtained.
Specifically, in that plane we have identified a mode 2-dominated region (region III),
a bistable region (region II) and a mode 1-dominated region (region I).

An important finding in this study is that the stability diagram of the tank
treading modes is highly sensitive to the reference state (the stress-free state) of
the cytoskeleton. For example, compared with a cell with a biconcave reference state,
a cell with a spheroidal reference state displays much smaller regions II and III.
Moreover, as the reference state approaches a sphere, both Ca− and Ca+ decrease
dramatically so that mode 1 dominates the cell dynamics. These results suggest that
the occurrence and stability of the tank treading modes may provide a measure to
experimentally determine the exact reference state of the cytoskeleton of RBCs.

It is necessary to point out that the observed tank treading modes and their stability
may also be obtained through a simplified RBC model in which the membrane is
represented by a single layer. However, there will be differences between predictions
made by a single-layer model and those by our two-layer model due to three major
factors. First, the local area incompressibility of the lipid bilayer is missing in the
single-layer models, although the global area incompressibility is usually considered
in single-layer models. For instance, there are two kinds of micropipette experiments:
one is to measure the shear modulus (Waugh & Evans 1979) and the other is to
measure the local area modulus of the bilayer (Evans, Waugh & Melnik 1976). Only
the two-layer model can reproduce both micropipette experiment results with the
same set of parameters (Peng et al. 2013). Second, the mechanical property of the
cytoskeleton in our model is derived from a multiscale model, including nonlinear
constitutive behaviour with spectrin unfolding considered, which is extensively
validated against experiments, so that it is more accurate. Third, the single-layer
model does not correctly represent the viscoelasticity of the cell since it does not
consider the viscous sliding between the lipid bilayer and the skeleton. This sliding
mechanism may have important effects in dynamical processes. For example, without
considering this effect it is not possible to study the transient process of the build-up
of area deformations in the skeleton during tank treading motion (Peng & Zhu 2013).

Appendix A. A brief review of the numerical model
The mechanical responses of an RBC involve physical mechanisms at different

length scales, ranging from dynamics at the complete-cell level (on the micron scale)
down to local dynamics of the skeleton and tension-induced structural remodelling
such as domain unfolding in proteins (which occur on the nanometre scale). To
numerically duplicate these mechanisms, we developed a multiscale approach
including three models at different length scales. These models are as follows.

(a) A force-elongation model of spectrin (Sp) (level I). Spectrin is the protein that
determines the constitutive behaviour of the cytoskeleton. As a highly flexible
biopolymer, it is usually modelled by using the worm-like-chain (WLC) depiction
(Discher et al. 1998; Li et al. 2005). This depiction, however, does not take into
account the fact that Sp can be overstretched, i.e. it can be stretched beyond
its original contour length due to the existence of multiple domains that unfold
under sufficient loading. Without proper representation of this process it is
impossible to accurately describe the mechanics of the cytoskeleton during large
deformations. Towards this end, we have developed a force-elongation model of
Sp by representing its folding/unfolding reactions as thermally activated processes
(Zhu & Asaro 2008).
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(b) A molecular-based model of the JC (level II). Consisting of a central piece of
actin protofilament connected with (up to) six Sp, the JC is the basic repeating
unit in the cytoskeleton of an erythrocyte. A molecular-based model that
incorporates the state-of-the-art understanding of the exact molecular architecture
of a JC (including, e.g., the exact configuration of actin–spectrin connectivity)
has been developed. With this model we are able to predict the area and shear
moduli of the skeleton, as well as simulate mesoscale mechanics such as the
bistability of a JC (Zhu et al. 2007).

(c) A complete-cell model (level III). A key structural feature of the RBC is the
mobile connectivity between its lipid bilayer and its cytoskeleton. This is caused
by the fact that these two components are connected through pinning points made
of transmembrane proteins, which can drift within the fluid-like lipid bilayer. To
numerically duplicate this characteristic, in the level III model we depict the
cell membrane as two separate layers. The outer layer corresponds to the lipid
bilayer, which has large area stiffness, negligible shear stiffness and finite
bending stiffness. The inner layer, with finite area and shear moduli, represents
the cytoskeleton. The two layers remain in contact, but they are allowed to slide
against each other with viscous friction. The viscous coefficient is evaluated by
considering the distribution of transmembrane proteins (band 3 and glycophorin
C) as well as their mobilities inside the lipid bilayer. Numerically, a finite-element
approach based on the Hughes–Liu shell element is employed to solve the
mechanics of both the outer and the inner layers (Peng, Asaro & Zhu 2010).

In our multiscale framework, these three models are connected through an
information-passing technique, in which the force-elongation relation of Sp predicted
by the level I model is used by the level II model, and the constitutive properties of
the skeleton (the area and shear moduli) predicted by the level II model are used by
the level III model for the inner layer.

An essential mechanical property of the RBC is its viscoelasticity. This property is
important for its capacity to sustain large dynamic loads. The elasticity is attributed
to the elastic behaviours of the lipid bilayer and the cytoskeleton, characterized by
the area stiffness, the shear stiffness and the bending stiffness of each component.
These two structural members also possess viscosity, which is modelled by using the
generalized Voigt–Kelvin stress–strain relation (Evans & Skalak 1980). In addition, the
sliding between the bilayer and the skeleton also contributes to the viscosity of the
system. This effect is modelled as a viscous friction force (see the description of the
level III model). The viscosities of the internal and external fluids are included in the
fluid-dynamics model described below.

The effects of the fluids outside and inside the cell are simulated by coupling the
finite-element model (i.e. the level III model) with a boundary-element approach
for the Stokes flow fields inside and outside of the cell. The finite-element
model–boundary-element model coupling is achieved through a staggered algorithm
with explicit time integration (Peng et al. 2011). Under the Stokes flow assumption,
we employ the boundary integral equation of interface dynamics (Pozrikidis 1992) so
that the velocity field v f satisfies

v f (x0) = 2
1+Λ v̄f (x0)− 1

4πη1(Λ+ 1)

∫∫
Γ fb

G(x, x0) ·1t f (x)dΓ (x)

+ 1−Λ
4π(1+Λ)

∫
−
∫
Γ fb

v f (x) · T (x, x0) · n(x)dΓ (x), (A 1)
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where v̄f is the prescribed undisturbed velocity field of the shear flow in the absence
of the cell, Γ fb is the fluid–solid boundary, the vector 1t f = t f ,1 − t f ,2 is the
discontinuity in the interfacial surface traction, where t f ,1 is the traction in the
outside surface Γ fb,1 of the interface and t f ,2 is the traction in the inside surface
Γ fb,2 of the interface. The surface traction is related to the nodal force through
the principle of virtual work (Walter et al. 2010). Here,

∫−∫ denotes the principal
value integration. The second term on the right-hand side of (A 1) is the single-layer
potential, representing the contribution from the distribution of point forces associated
with the Green’s function for velocity. The third term is the double-layer potential,
representing the contributions from point sources and point force dipoles.

The matrix G contains the free-space Green’s function for velocity Gij. We have

Gij(x, x0)= δij

|x− x0| +
(xi − x0i)(xj − x0j)

|x− x0|3 , (A 2)

where δij is Kronecker’s delta. The matrix T is the Green’s function for stress. Its
components are

T ijk(x, x0)=−6
(xi − x0i)(xj − x0j)(xk − x0k)

|x− x0|5 . (A 3)

The details of our numerical model are presented in our previous publications (Zhu
et al. 2007; Zhu & Asaro 2008; Peng et al. 2010, 2011; Peng & Zhu 2013; Peng
et al. 2014). The multiscale model, together with the fluid–cell interaction algorithm,
has been created step by step. For each step we have conducted extensive tests,
calibrations and validations. For example, to test the capability of the level I model
in simulating the rate-dependent stretching of Sp, we conducted systematic simulations
to obtain the force-elongation curves of Sp at different loading rates. The results are
consistent with measurements from atomic force microscopy (Zhu & Asaro 2008).
At level II, we conducted simulations to record the constitutive properties (area and
shear moduli) of the skeleton as functions of the persistence length of Sp. These were
compared with results from various experiments and simulations (Zhu et al. 2007). At
level III, to validate the finite-element method we used the model to predict shapes
of a vesicle with different volume to surface area ratios. The results match well with
the theoretical predictions by Seifert, Berndl & Lipowsky (1991). We also modelled
cell deformations created by optical tweezers and micropipette aspirations. In both
cases our results are consistent with measurements. Specifically, we demonstrated
that the area deformation of the cytoskeleton predicted by our model was close to
the measurements by Discher et al. (1994) using florescent microscopy (Peng et al.
2010). Finally, the accuracy of the fluid–cell interaction model has also been tested
in numerous scenarios, including cell motion inside a pipe, tumbling motion and tank
treading. In all the tests good agreement with benchmark results in the literature has
been obtained (Peng et al. 2011; Peng & Zhu 2013).
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