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Abstract

We study the last exit time that a spectrally negative Lévy process is below zero until it
reaches a positive level b, denoted by gτ+

b
. We generalize the results of the infinite-

horizon last exit time explored by Chiu and Yin (2005) by incorporating a random
horizon τ+

b , which represents the first passage time above b. We derive an explicit
expression for the joint Laplace transform of gτ+

b
and τ+

b by utilizing a hybrid obser-
vation scheme approach proposed by Li, Willmot, and Wong (2018). We further study
the optimal prediction of gτ+

b
in the L1 sense, and find that the optimal stopping time

is the first passage time above a level y∗
b, with an explicit characterization of the stop-

ping boundary y∗
b. As examples, Brownian motion with drift and the Cramér–Lundberg

model with exponential jumps are considered.
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1. Introduction

Last exit times have received increasing attention in theoretical and applied probability. For
example, [14] studied the joint distribution of the last exit time of a standard Markov process
from a transient set and its location at that time, and [22] studied the last passage times of
linear diffusions and proposed the h-transform method. Recently, this work was extended in
[13] to a general setting and an application in credit risk management considered. In line with
the recent trend of studies on quantitative risk management, it is natural to study the last exit
time for a stochastic process X below level zero, i.e.

g = sup{s ≥ 0: Xs ≤ 0}, (1.1)

where X can be interpreted as a firm value process and the distributional study of g can provide
valuable information on the duration of financial distress (i.e. the period with negative firm
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2 X. YANG ET AL.

value). We follow the convention that sup ∅ = 0. The distribution of g for a spectrally negative
Lévy process (SNLP) was first solved in [10].

A more general form is given by gt = sup{0 ≤ s ≤ t : Xs ≤ 0}, which denotes the last time
below zero until time t. When X is a Brownian motion, it is known from [11] that gt follows
the arcsine distribution. Apart from Brownian motions, there are few explicit results on the
distribution of gt for more general processes, and the main challenge is the lack of mathe-
matical tractability in this finite-horizon setting. A notable breakthrough in [2] is to replace
the finite horizon t by a random horizon eq, independent and exponentially distributed, and
consider geq = sup{0 ≤ s ≤ eq : Xs ≤ 0}. The Laplace transform of geq was solved in [2] for
SNLPs. Later, [8, 20] studied the occupation times until geq for SNLPs. It is worth noting that
this technique of horizon randomization is commonly adopted in the finance literature; see the
seminal work [9] on the application to option pricing.

The last exit times are not stopping times, meaning that the past history of the process is
insufficient to determine whether or not last exit times have been realized. As such, for the
purpose of decision making, another line of study is to optimally predict last exit times by
stopping times. The optimal prediction of the last zero of Brownian motion with drift was
studied in [12], while [15] generalizes the prediction of last passage times to a transient diffu-
sion. Under the framework of SNLPs, [3] studied the optimal prediction of g, defined in (1.1),
in L1-distance. It was extended by [5] to the much more challenging Lp-distance. Also, the
prediction of geq was recently considered in [4] in L1-distance.

One shortcoming of the last exit time g is that it is an infinite-horizon measure in the sense
that its distributional study and applications are based on the assumption that the model for
the underlying process X is unchanged and valid forever. This is a rather strong assumption
from the model risk perspective. In this sense, gt and geq weaken the assumption as the model
validation is only required to hold up to a finite or random horizon.

Our motivation for this paper is along the same lines but with the major difference that we
intend to reduce the model validation assumption at the state level (instead of the time level
as for gt and geq ). More specifically, we consider the last exit time that X is below zero until
it reaches a level b> 0, i.e. gτ+

b
= sup{0 ≤ s ≤ τ+

b : Xs ≤ 0}, where τ+
b = inf{t> 0: Xt > b}, in

which we follow the convention that inf ∅ = ∞. Within the realm of corporate risk manage-
ment, this extension is a logical progression since a firm’s capital structure and profitability
are prone to shift as the firm expands. In this context, the parameter b can be interpreted as a
critical threshold of the firm’s value. Once this threshold is surpassed, the company may pro-
ceed to hire additional employees, distribute dividends to shareholders, and venture into new
business areas, rendering the previous model obsolete.

The contribution of this paper is twofold. In the first part, we derive the joint Laplace trans-
form of gτ+

b
and τ+

b for SNLPs. It should be noted that the method employed in [2, 10] to study
g and geq cannot be directly applied to analyze gτ+

b
. To overcome this challenge, we adopt a

hybrid observation scheme approach proposed in [19]. The merit of this approach is to unify
the cases with bounded or unbounded variation sample paths. Furthermore, by letting b → ∞,
we can recover the distribution of g as obtained in [10], but with the added benefit of offering
an alternative proof that is significantly simpler.

In the second part, we study the optimal prediction problem for gτ+
b

in L1-distance, that
is, infτ∈T Ex[|gτ+

b
− τ |], where T is the set of all stopping times of the process X. We find

that the optimal stopping time is the first time that the process X hits a fixed level, denoted by
y∗

b ∈ [0, b]. The optimal stopping boundary y∗
b is explicitly derived and it is closely related to the
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Spectrally negative Lévy processes 3

value of b and the cumulative distribution function of X∞ := inft≥0 Xt. At the end, examples
of Brownian motion with drift and the Cramér–Lundberg model with exponential jumps are
considered to demonstrate the optimal boundary.

Our motivation to examine the optimal prediction problem for gτ+
b

also comes from a theo-
retical point of view. It is seen in [3] that the optimal prediction of g boils down to an optimal
stopping problem with an infinite time horizon, and hence the solution is a fixed boundary.
However, surprisingly, in [4] it is shown that the optimal prediction of geq is equivalent to a
finite-horizon optimal stopping problem, and the optimal solution depends on a non-negative
curve which is killed at the moment the mean of the exponential time is reached. Hence, unlike
the Canadisation of American-type options (see [9]), optimal prediction problems with expo-
nential time horizon do not necessarily result in infinite-horizon optimal stopping problems.
With this in mind, we see that predicting gτ+

b
, i.e. the first exit time type of random hori-

zon, effectively maintains the problem’s infinite-horizon setting, resulting in a fixed boundary
solution.

The rest of the paper is organized as follows. Section 2 provides some preliminary results
concerning SNLPs. Section 3 derives an explicit expression for the joint distribution of gτ+

b

and τ+
b . Section 4 formulates the optimal prediction problem and provides the solution, while

the proofs are deferred to Section 5.

2. Preliminaries

In this section we provide some preliminaries on spectrally negative Lévy processes, includ-
ing scale functions and some fluctuation identities. More information on Lévy processes can
be found in [6, 17, 23] for interested readers.

Let X be a spectrally negative Lévy process defined on the filtered probability space
(�,F , F, P), where F= {Ft, t ≥ 0} is the filtration generated by X which is naturally enlarged
(see [7, Definition 1.3.38]), and we exclude the case where X has monotone paths. We assume
that X is given on the canonical space �, which consists of all functions ω : [0,∞) 	→R that
are right-continuous and have left limits, and that Xt(ω) =ωt. We then introduce the shift
operator θt, acting on the elements of �, defined by Xs ◦ θt(ω) = Xs(θt(ω)) = Xt+s(ω), for any
s, t ≥ 0.

Throughout this paper, for all x ∈R, denote by Px the law of X when started at the point
x ∈R, and the associated expectation by Ex. For simplicity, we write P= P0 and E=E0.

The distribution of X is characterized by its Lévy triplet (μ, σ, �), where μ ∈R, σ ≥ 0, and
� is the Lévy measure concentrated on (−∞, 0) with the property

∫
(−∞,0) (1 ∧ y2)�(dy)<

∞. The Laplace exponent of X is defined by ψ(θ ) = log (E[eθX1 ]). It is a strictly convex and
infinitely differentiable function on R+ with ψ(0) = 0 and ψ(∞) = ∞. We know from the
Lévy–Khintchine formula that ψ is of the form

ψ(θ ) = −μθ + 1

2
σ 2θ2 +

∫
(−∞,0)

(
eθy − 1 − θy1{y>−1}

)
�(dy)

for all θ ≥ 0. For any q ≥ 0, the right inverse of ψ is defined as 	q = sup{θ ≥ 0: ψ(θ ) = q}.
It is known that the behaviour of X at infinity is determined by the sign of ψ ′(0+). Indeed,
if ψ ′(0+)> 0 we have that X drifts to infinity, that is, limt→∞ Xt = ∞ almost surely; in
this case, 	q = 0 if and only if q = 0. If ψ ′(0+)< 0, the process X drifts to minus infinity,
that is, limt→∞ Xt = −∞ almost surely, and the process oscillates, i.e. lim supt→∞ Xt = ∞ =
− lim inft→∞ Xt whenever ψ ′(0+) = 0.
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The sample paths of X are of bounded variation if and only if σ = 0 and∫
(−1,0)

( − y)�(dy)<∞.

For this particular case, we write ψ(θ ) = δθ − ∫
(−∞,0) (1 − eθy)�(dy), where δ = −μ−∫

(−1,0) y�(dy). Note that monotone processes are excluded from the definition of spectrally
negative Lévy processes, so we assume that δ > 0 when X is of bounded variation.

We now introduce scale functions, which play an essential role in the derivation of fluctu-
ation identities for spectrally negative Lévy processes. For q ≥ 0, the q-scale function is such
that W(q) = 0 for x< 0, and is uniquely characterised on [0,∞) as the only right-continuous
function with Laplace transform∫ ∞

0
e−θxW(q)(x) dx = 1

ψq(θ )
for θ >	q, (2.1)

where ψq(θ ) =ψ(θ ) − q. We have that W(q) is strictly increasing and continuous on (0,∞).
For ease of notation we assume that � has no atoms when X is of bounded variation, which
guarantees that W ∈ C1(0,∞). When q = 0, we write W = W(0). The value of W(q) at zero
depends on the path variation of X. To be more precise,

W(q)(0) =
{

1/δ, σ = 0 and
∫

(−1,0) ( − y)� (dy)<∞;
0, otherwise.

(2.2)

Furthermore, it is established that

lim
x→∞ e−	qxW(q)(x) =	′

q, (2.3)

where	′
q = ∂	q/∂q. Moreover, from [17, (8.22)], it is known that there exists a non-increasing

function g such that, for any a> x,

log (W(x)) = log (W(a)) −
∫ a

x
g(t) dt. (2.4)

Another class of scale function is defined by

Z(q)(x, θ ) = eθx
(

1 −ψq(θ )
∫ x

0
e−θyW(q)(y) dy

)
, x ∈R. (2.5)

We note that Z(q)(x, θ ) = eθx for all x ≤ 0, and Z(q)(b, 	q) = e	qb for all b ∈R and q ≥ 0. When
θ = 0, Z(q)(x, θ ) reduces to Z(q)(x) as defined in [17]. By using (2.1), we can rewrite (2.5) as

Z(q)(x, θ ) =ψq(θ )
∫ ∞

0
e−θyW(q)(x + y) dy, x ≥ 0, θ >	q. (2.6)

We then introduce some results on the first passage time. For any a ≥ 0, the Laplace
transform of τ+

a is given by

E
[
e−qτ+

a 1{τ+
a <∞}

]= e−	qa. (2.7)
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Denote by τ−
0 the first time X drops below the level zero, that is, τ−

0 = inf{t> 0: Xt < 0}. The
Laplace transform of τ+

a on the event that X crosses above the level a before dropping below
the level zero is given by

Ex
[
e−qτ+

a 1{τ+
a <τ

−
0 }
]= W(q)(x)

W(q)(a)
(2.8)

for all q ≥ 0 and x ≤ a. Moreover, whenever ψ ′(0+) ≥ 0, the probability of never entering the
set (−∞, 0] is given by Px(τ−

0 = ∞) =ψ ′(0+)W(x) for any x ≥ 0. Hence, by writing Xt =
inf0≤s≤t Xs for t ≥ 0, we deduce that the cumulative distribution function of −X∞ when X
drifts to infinity is given by

F(x) := P( − X∞ ≤ x) = Px(τ−
0 = ∞) =ψ ′(0+)W(x) (2.9)

for any x ∈R. For any a ∈R and q ≥ 0, the q-potential measure of X killed upon entering the
set [a,∞) is absolutely continuous with respect to the Lebesgue measure, leading to∫ ∞

0
e−qt

Px
(
Xt ∈ dy, t< τ+

a

)
dt = [

e−	q(a−x)W(q)(a − y) − W(q)(x − y)
]

dy (2.10)

for all x, y ≤ a.

3. Joint distribution of gτ+
b

and τ+
b

In this section we derive the joint distribution of the first passage time τ+
b and the last

passage time gτ+
b

= sup{0 ≤ s ≤ τ+
b : Xs ≤ 0}, where b> 0 is a fixed positive level. The results

generalize [10] by letting b go to infinity. It is worth noting that the approach used in [2, 10] are
not directly applicable in our case. As such, we adopt the hybrid observation scheme approach
proposed in [19] to study the joint distribution of τ+

b and gτ+
b

. The merit of this approach is
that the two cases of the underlying process with bounded or unbounded variation paths can
be treated in a unified way, and the proof is significantly simplified.

We then introduce the hybrid observation scheme. Briefly speaking, we observe the underly-
ing process discretely (with independent exponential time increments) when it is non-negative,
and then switch to continuous observation when it becomes negative. It will be switched back
to discrete observation once it recovers the level 0. Formally, we first define the following
sequence of time nodes {ξn}n∈N. Let ξ0 = 0, and

ξn − ξn−1 =
{

eλn if Xξn−1 ≥ 0,
τ+

0 ◦ θξn−1 + eλn if Xξn−1 < 0,

where {eλn}n∈N is a sequence of independent and identically distributed (i.i.d.) exponential ran-
dom variables with mean 1/λ > 0, and we recall that θ is the Markov shift operator and satisfies
Xt ◦ θs = Xs+t.

Under this hybrid observation scheme, we define the first time the process is observed below
level 0 by Tλ,−0 = inf{ξn : Xξn < 0, n ∈N}. Note that Tλ,−0 is identical to the first time below
level 0 under the so-called Poissonian observation scheme; see, e.g., [1, 18]. We recall the
following two formulas from the literature ([1, (15)] and [18, (3.5)]). For q, θ ≥ 0 and x ≤ b,
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FIGURE 1. Illustration of the hybrid observation scheme, gλ
τ+

b
, and gτ+

b
.

Ex
[

exp
{−qTλ,−0 + θXTλ,−0

}
1{Tλ,−0 <τ+

b }
]= λ

λ−ψq(θ )

(
Z(q)(x, θ )

− Z(q)(b, θ )
Z(q)(x, 	λ+q)

Z(q)(b, 	λ+q)

)
, (3.1)

Ex
[
e−qτ+

b 1{τ+
b <Tλ,−0 }

]= Z(q)(x, 	λ+q)

Z(q)(b, 	λ+q)
. (3.2)

The last zero of X (under the hybrid observation scheme) before crossing above level b
(under the continuous observation scheme) is defined by

gλ
τ+

b
:= sup{ξn + τ+

0 ◦ θξn : Xξn < 0, ξn < τ
+
b , n ∈N}.

Since the hybrid observation scheme reduces to continuous observation when the intensity λ
goes to infinity, we have, for any x ∈R, limλ↑∞ gλ

τ+
b

= gτ+
b
Px-almost surely. See Figure 1 for

an illustration of the hybrid observation scheme as well as the two last passage times gλ
τ+

b
and

gτ+
b

.

The following theorem presents the joint distribution of gτ+
b

and τ+
b − gτ+

b
.

Theorem 3.1. For p, q ≥ 0, x< b, and b> 0,

Ex
[

exp
{−pgτ+

b
− q(τ+

b − gτ+
b

)
}
1{τ+

b <∞}
]= e−	p(b−x) W(p)(b)

W(q)(b)
+ W(q)(x)

W(q)(b)
− W(p)(x)

W(q)(b)
. (3.3)

Proof.We first derive f (x) := Ex
[

exp
{−pgλ

τ+
b

− q(τ+
b − gλ

τ+
b

)
}
1{τ+

b <∞}
]
, x< b. For x< 0,

it follows from the spatial homogeneity and (2.7) that

f (x) =Ex
[
e−pτ+

0 1{τ+
0 <∞}

]
f (0) = e	pxf (0). (3.4)
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Note that, conditional on the values {eλn}n∈N, the times {ξn}n∈N and Tλ,−0 are stopping times of

X. Hence, by conditioning on {eλn}n∈N, further conditioning on Tλ,−0 , and applying the strong
Markov property of X, we obtain that, for any 0 ≤ x< b,

f (x) =
∫ 0

−∞
Ex
[
e−pTλ,−0 1{X

Tλ,−0
∈du, Tλ,−0 <τ+

b }
]
f (u) +Ex

[
e−qτ+

b 1{τ+
b <Tλ,−0 }

]
=
∫ 0

−∞
Ex
[
e−pTλ,−0 1{X

Tλ,−0
∈du, Tλ,−0 <τ+

b }
]
e	puf (0) +Ex

[
e−qτ+

b 1{τ+
b <Tλ,−0 }

]
=Ex

[
exp

{−pTλ,−0 +	pXTλ,−0

}
1{Tλ,−0 <τ+

b }
]
f (0) +Ex

[
e−qτ+

b 1{τ+
b <Tλ,−0 }

]
, (3.5)

where we used (3.4) in the second identity. By letting x = 0 in (3.5), we can solve f (0) and
obtain

f (0) =
E
[
e−qτ+

b 1{τ+
b <Tλ,−0 }

]
1 −E

[
exp

{−pTλ,−0 +	pXTλ,−0

}
1{Tλ,−0 <τ+

b }
] = Z(q)(0, 	λ+q)/Z(q)(b, 	λ+q)

e	pbZ(p)(0, 	λ+p)/Z(p)(b, 	λ+p)

= e−	pb Z(p)(b, 	λ+p)

Z(q)(b, 	λ+q)
, (3.6)

where we used (3.1) and (3.2) in the second identity, and Z(q)(0, θ ) = 1 in the last identity.
Substituting (3.6) into (3.4), for x< 0,

f (x) = e−	p(b−x) Z(p)(b, 	λ+p)

Z(q)(b, 	λ+q)
. (3.7)

Then, substituting (3.6) into (3.5), and using (3.1) and (3.2) again, for 0 ≤ x< b we have

f (x) = e−	p(b−x) Z(p)(b, 	λ+p)

Z(q)(b, 	λ+q)
+ Z(q)(x, 	λ+q)

Z(q)(b, 	λ+q)
− Z(p)(x, 	λ+p)

Z(q)(b, 	λ+q)
. (3.8)

We furthermore unify (3.7) and (3.8) into one expression for x< b:

f (x) = e−	p(b−x) Z(p)(b, 	λ+p)

Z(q)(b, 	λ+q)
+
(

Z(q)(x, 	λ+q)

Z(q)(b, 	λ+q)
− Z(p)(x, 	λ+p)

Z(q)(b, 	λ+q)

)
1{0≤x<b}. (3.9)

By (2.6) and the fact that Z(q)(0, ·) = 1, we have

lim
λ→∞

	λ+q

	λ+p
= lim
λ→∞

	λ+q[Z(q)(0, 	λ+q)]/λ

	λ+p[Z(p)(0, 	λ+p)]/λ
= lim
λ→∞

	λ+q
∫∞

0 e−	λ+qyW(q)(y) dy

	λ+p
∫∞

0 e−	λ+pyW(p)(y) dy

= lim
y→0+

W(q)(y)

W(p)(y)
= 1,
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where the third equality is by the initial value theorem and the last limit can be found in [1,
p. 1373]. This, together with (2.6), yields

lim
λ→∞

Z(p)(x, 	λ+p)

Z(q)(b, 	λ+q)
= lim
λ→∞

ψp(	λ+p)

ψq(	λ+q)

∫∞
0 e−	λ+puW(p)(x + u) du∫∞
0 e−	λ+quW(q)(b + u) du

= lim
λ→∞

∫∞
0 e−	λ+puW(p)(x + u) du∫∞
0 e−	λ+quW(q)(b + u) du

= lim
λ→∞

	λ+q

	λ+p

	λ+p
∫∞

0 e−	λ+puW(p)(x + u) du

	λ+q
∫∞

0 e−	λ+quW(q)(b + u) du
= W(p)(x)

W(q)(b)
. (3.10)

By taking the limit λ ↑ ∞ in (3.9) and using (3.10), we can conclude that

Ex
[

exp
{−pgτ+

b
− q(τ+

b − gτ+
b

)
}]

= lim
λ→∞ Ex

[
exp

{−pgλ
τ+

b
− q(τ+

b − gλ
τ+

b
)
}]

= lim
λ→∞

(
e−	p(b−x) Z(p)(b, 	λ+p)

Z(q)(b, 	λ+q)
+
(

Z(q)(x, 	λ+q)

Z(q)(b, 	λ+q)
− Z(p)(x, 	λ+p)

Z(q)(b, 	λ+q)

)
1{0≤x<b}

)
= e−	p(b−x) W(p)(b)

W(q)(b)
+ W(q)(x)

W(q)(b)
− W(p)(x)

W(q)(b)
,

where in the last equality we used that W(q) and W(p) vanish on (−∞, 0). �
Remark 3.1. It is worth noting that an alternative approach to proving Theorem 3.1 is to
modify the roadmap proposed in [17, exercise in 8.10].

By letting b → ∞ in (3.3), using (2.3) and the fact that limb↑∞ W(b) = 1/ψ ′(0+) when X
drifts to infinity (see [16, Lemma 3.3]), we obtain the Laplace transform of the last zero g,
which recovers [10, Theorem 3.1] and [2, Theorem 1].

Corollary 3.1. Suppose that ψ ′(0+)> 0. For p ≥ 0,

Ex[e−pg] =ψ ′(0+)
(
	′

pe	px + W(x) − W(p)(x)
)
.

Example 3.1. Suppose that X is a Brownian motion with drift, i.e. Xt =μt + σBt, where
μ ∈R, σ > 0, and {Bt}t≥0 is a standard Brownian motion. It follows that ψ(θ ) =μθ +
1
2σ

2θ2. The two roots of ψ(θ ) − q = 0 are given by 	q = (
√
μ2 + 2qσ 2 −μ)/σ 2 and −ρq =

−(
√
μ2 + 2qσ 2 +μ)/σ 2. The q-scale function is given by

W(q)(x) = exp(	qx) − exp(−ρqx)√
μ2 + 2qσ 2

. (3.11)

It follows from Theorem 3.1 that

Ex
[

exp
{−pgτ+

b
− q(τ+

b − gτ+
b

)
}]

= exp(	qx) − exp(−ρqx)

exp(	qb) − exp(−ρqb)

−
√
μ2 + 2qσ 2√
μ2 + 2pσ 2

(
exp(	px − (2b

√
μ2 + 2pσ 2/σ 2)) − exp(−ρpx)

)
exp(	qb) − exp(−ρqb)

.
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Example 3.2. Suppose that X follows the Cramér–Lundberg model with exponential jumps,
i.e. Xt =μt −∑Nt

i=1 Ci, where μ ∈R, {Nt}t≥0 is a Poisson process with intensity η > 0, and
{Ci}i∈N are i.i.d. exponential random variables with parameter α > 0, which are independent
of Nt. It is known thatψ(θ ) =μθ − η+ (αη/(θ + α)). The two roots ofψ(θ ) − q = 0 are given
by

	q = 1

2μ
(
√

(q + η− αμ)2 + 4μαq + (q + η− αμ)),

−ρq = − 1

2μ
(
√

(q + η− αμ)2 + 4μαq − (q + η− αμ)).

The q-scale function is given by

W(q)(x) =	′
q exp(	qx) − ρ′

q exp(−ρqx), (3.12)

where

	′
q = 1

2μ

(
q + η+ αμ√

(q + η− αμ)2 + 4μαq
+ 1

)
, ρ′

q = 1

2μ

(
q + η+ αμ√

(q + η− αμ)2 + 4cαq
− 1

)
.

It follows from Theorem 3.1 that

Ex
[

exp
{−pgτ+

b
− q(τ+

b − gτ+
b

)
}]

= 	′
q exp(	qx) − ρ′

q exp(−ρqx)

	′
q exp(	qb) − ρ′

q exp(−ρqb)

− ρ′
p

(
exp(	px − (b/μ)

√
(p + η− αμ)2 + 4μαp) − exp(−ρpx)

)
	′

q exp(	qb) − ρ′
q exp(−ρqb)

.

4. Optimal prediction of gτ+
b

In this section, we consider the optimal prediction problem for gτ+
b

, that is, for fixed b> 0
and x ∈R,

inf
τ∈T

Ex
[∣∣gτ+

b
− τ

∣∣], (4.1)

where T is the set of all stopping times. To avoid triviality (i.e. the mean of gτ+
b

being infinite),
we assume that X drifts to infinity. Indeed, if X does not drift to infinity, we obtain from
Theorem 3.1 that Ex

[
gτ+

b

]= ∞. Thus, for any stopping time τ with finite mean,

E
[∣∣gτ+

b
− τ

∣∣]≥E
[
gτ+

b

]−E[τ ] = ∞.

Hence, in the context of a minimization problem with stopping times that have a finite mean,
any stopping time can provide a solution.

The following theorem presents the solution to the optimal prediction problem (4.1). Its
proof is postponed to Section 5. Recall from (2.9) that F(x) =ψ ′(0+)W(x) is the cumula-
tive distribution function of −X∞, and it is continuous and strictly increasing in x ∈ (0,∞).
From (2.2), we know that F(0) = 0 if X is of unbounded variation, and F(0) =ψ ′(0+)/δ ∈
(0, 1) when X is of bounded variation.

Theorem 4.1. Suppose that X is a spectrally negative Lévy process that drifts to infinity. We
define

y∗
b = inf

{
y ∈ [0, b] :

∫
[0,y]

F(y − z) F(dz) ≥ F(b)

2

}
,
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where we follow the convention that inf ∅ = b. Then the stopping time τy∗
b
= inf{t ≥ 0: Xt ≥ y∗

b}
is optimal for (4.1) for any x ∈R. More specifically:

(i) If F(0) ≥
√

1
2 , y∗

b = 0 for all b> 0.

(ii) If 1
2 ≤ F(0)<

√
1
2 then, for b ≤ F−1(2F(0)2), y∗

b = 0. For b> F−1(2F(0)2), the value

y∗
b ∈ (0, b) is the unique solution to∫

[0,y]
F(y − z) F(dz) − F(b)

2
= 0.

(iii) If F(0)< 1
2 , let b0 > 0 be the unique solution to∫

[0,b]
F(b − z) F(dz) − F(b)

2
= 0.

For b ≤ b0, y∗
b = b. For b> b0, y∗

b ∈ (0, b) is the unique solution to∫
[0,y]

F(y − z) F(dz) − F(b)

2
= 0.

Remark 4.1. Since F is the cumulative distribution function of −X∞, the function y 	→∫
[0,y] F(y − z) F(dz) is actually the cumulative distribution function of −X∞ − Y∞, where Y∞

is an independent copy of X∞. Therefore, Theorem 4.1 indicates that the optimal stopping
boundary y∗

b corresponds to the minimum in between b and the F(b)/2-quantile of the random
variable −X∞ − Y∞.

In [3], the optimally predicting problem for the last zero g = sup{t ≥ 0: Xt ≤ 0}, i.e.

inf
τ∈T

Ex[|g − τ |], (4.2)

is solved when X is a spectrally negative Lévy process. Upon assuming that the Lévy measure
� satisfies

∫
(−∞,−1) y2 �(dy)<∞, which ensures the existence of the first moment of g, the

stopping time τa∗ = inf{t ≥ 0: Xt ≥ a∗} is optimal for (4.2), where

a∗ = inf

{
y ≥ 0:

∫
[0,y]

F(y − z) F(dz) ≥ 1

2

}
.

Since limb→∞ F(b) = 1, we obtain the following corollary which verifies the convergence of
the optimal stopping boundary.

Corollary 4.1. limb→∞ y∗
b = a∗.

Example 4.1. Suppose that X is a Brownian motion with positive drift, i.e. Xt =μt + σBt,
where μ> 0, σ > 0, and {Bt}t≥0 is a standard Brownian motion. It is known from (3.11)
and F(x) =ψ ′(0+)W(x) =μW(x) that F(x) = 1 − exp(−2μx/σ 2), x ≥ 0. That is, −X∞ ∼
Exp(2μ/σ 2), which implies that

∫
[0,y] F(y − z) F(dz) corresponds to the cumulative distribu-

tion function of a Gamma(2, 2μ/σ 2) random variable given by∫
[0,y]

F(y − z) F(dz) = 1 − 2μy

σ 2
exp

(
−2μy

σ 2

)
− exp

(
−2μy

σ 2

)
, y ≥ 0.
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FIGURE 2. Optimal stopping boundary y∗
b for the drifted Brownian motion model with μ= 1 = σ .

Hence, it follows from Theorem 4.1 that the optimal stopping boundary is

y∗
b = inf

{
y ∈ [0, b] : 1 − 2μy

σ 2
exp

(
−2μy

σ 2

)
− exp

(
−2μy

σ 2

)
≥ 1 − exp(−2μb/σ 2)

2

}
.

Figure 2 plots the mapping b 	→ y∗
b with μ= 1 = σ . Note that X is of unbounded variation with

F(0) = 0. Consistent with Theorem 4.1(iii) and Corollary 4.1, it can be seen that y∗
b increases

linearly for b< b0, and y∗
b converges to the value a∗ ≈ 0.8391 when b → ∞.

Example 4.2. Suppose that X follows a Cramér–Lundberg model with exponential jumps,
i.e. Xt =μt −∑Nt

i=1 Ci, where μ> 0, {Nt}{t≥0} is a Poisson process with intensity η > 0, and
{Ci}i∈N are i.i.d. exponential random variables with parameter α > 0, which are independent
of Nt. In this case, X is a spectrally negative Lévy process drifting to infinity by assuming
ψ ′(0+) =μ− (η/α)> 0. It follows from (3.12) and F(x) =ψ ′(0+)W(x) = (μ− (η/α))W(x)
that

F(x) = 1 − η

αμ
exp

(
−
(
α − η

μ

)
x

)
, x ≥ 0.

In particular, F(0) = 1 − (η/αμ)> 0. Hence∫
[0,y]

F(y − z) F(dz) = 1 + η

αμ

(
η

αμ
− 2

)
exp

(
−
(
α − η

μ

)
y

)
−
(
η

αμ

)2(
α− η

μ

)
y exp

(
−
(
α − η

μ

)
y

)
, y ≥ 0.

The optimal boundary follows from Theorem 4.1:

y∗
b = inf

{
y ∈ [0, b] :

∫
[0,y]

F(y − z) F(dz) ≥ 1 − (η/αμ) exp(−(α− (η/μ))b)

2

}
.

Figure 3 depicts the mapping b 	→ y∗
b under the Cramér–Lundberg model for the three cases

in Theorem 4.1. Note that in this case X is of bounded variation with F(0) = 1 − (η/αμ)> 0.
The parameters in Figure 3(a) are set to μ= 1, η= 1

2 , α= 2, which implies F(0) = 3
4 . From

Theorem 4.1(i), y∗
b = 0 for any b> 0. In Figure 3(b), we set μ= 1, η= 1, α = 3, which implies
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FIGURE 3. Optimal stopping boundary y∗
b for the Cramér–Lundberg model with exponential jumps.

F(0) = 2
3 ∈ [ 1

2 ,

√
1
2

)
. From Theorem 4.1(ii), y∗

b = 0 for b< F−1(2F(0)2), and then increases
with b. It converges to a∗ ≈ 0.0656 as b → ∞ according to Corollary 4.1. In Figure 3(c), we
set μ= 1, η= 2, α= 3, which implies F(0) = 1

3 . From Theorem 4.1(iii) and Corollary 4.1, we
see that y∗

b = b for b< b0, and y∗
b converges to the value a∗ ≈ 0.9711 when b → ∞.

5. Proof of Theorem 4.1

Since the random time gτ+
b

is only F-measurable, we first use the following lemma to estab-
lish an equivalence between the optimal prediction problem (4.1) and an optimal stopping
problem.

Lemma 5.1. For any τ ∈ T , Ex
[∣∣gτ+

b
− τ

∣∣]=Ex
[
gτ+

b

]+Ex
[ ∫ τ

0 Gb(s, Xs) ds
]
, where

Gb(s, x):= 2
[
1{τ+

b ≤s} + 1{τ+
b >s}W(x)/W(b)

]− 1. Then the optimal prediction problem
(4.1) is equivalent to the optimal stopping problem

Vb(x) = inf
τ∈T

Ex

[ ∫ τ

0
Gb(s, Xs) ds

]
. (5.1)

https://doi.org/10.1017/jpr.2024.104 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.104


Spectrally negative Lévy processes 13

Proof. For any stopping time τ ∈ T and x ∈R, |gτ+
b

− τ | = ∫ τ
0 (21{g

τ
+
b

≤s} − 1) ds + gτ+
b

.

From Fubini’s theorem and the tower property of conditional expectations, it follows that

Ex
[∣∣gτ+

b
− τ

∣∣]=Ex

[ ∫ τ

0
(21{g

τ
+
b

≤s} − 1) ds

]
+Ex

[
gτ+

b

]
=Ex

[ ∫ ∞

0
1{s<τ }

(
2Ex

[
1{g

τ
+
b

≤s} |Fs
]− 1

)
ds

]
+Ex

[
gτ+

b

]
=Ex

[ ∫ τ

0
(2Px

(
gτ+

b
≤ s |Fs

)− 1) ds

]
+Ex

[
gτ+

b

]
. (5.2)

Note that in the event of
{
τ+

b ≤ s
}

we have gτ+
b

≤ τ+
b ≤ s and thus

Px
(
gτ+

b
≤ s |Fs

)= 1{τ+
b ≤s} + Px

(
gτ+

b
≤ s, τ+

b > s |Fs
)
. (5.3)

Further, the event
{
gτ+

b
≤ s, τ+

b > s
}

is equal to {Xu ≥ 0 for all u ∈ [s, τ+
b ], τ+

b > s} (up to a
P-null set). Hence, for all s ≥ 0,

Px
(
gτ+

b
≤ s, τ+

b > s |Fs
)= Px(Xu ≥ 0 for all u ∈ [s, τ+

b ], τ+
b > s |Fs)

= 1{τ+
b >s}Px

(
inf

0≤u≤τ+
b −s

Xu+s ≥ 0 |Fs

)
= 1{τ+

b >s}PXs

(
Xτ+

b
≥ 0

)
= 1{τ+

b >s}PXs

(
τ+

b < τ−
0

)= 1{τ+
b >s}

W(Xs)

W(b)
,

where we recall that Xt = inf0≤s≤t Xs, and the last equality follows from the Markov property
of X and (2.8). Substituting into (5.3) yields

Px
(
gτ+

b
≤ s |Fs

)= 1{τ+
b ≤s} + 1{τ+

b >s}
W(Xs)

W(b)
.

Further, substituting this expression into (5.2) yields, for any x ∈R,

inf
τ∈T

Ex
[∣∣gτ+

b
− τ

∣∣]=Ex
[
gτ+

b

]+ inf
τ∈T

Ex

[ ∫ τ

0

(
2

[
1{τ+

b ≤s} + 1{τ+
b >s}

W(Xs)

W(b)

]
− 1

)
ds

]
,

completing the assertion of the proof. �

We then focus on the optimal stopping problem (5.1). The next lemma provides some basic
properties of the value function Vb.

Lemma 5.2.

(i) Vb(x) is non-decreasing in x.

(ii) Vb(x) ∈ (−∞, 0] for all x ∈R. In particular, Vb(x) = 0 for all x ≥ b.

(iii) For any x ∈R and b> 0, we can write

Vb(x) = inf
τ∈T

Ex

[ ∫ τ∧τ+
b

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
. (5.4)
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(iv) Fix b> 0. Let D = {x ∈R : Vb(x) = 0} and τD = inf{t ≥ 0: Xt ∈ D}. Then D is a closed
set and τD is an optimal stopping time for (5.1).

Proof. (i). For x ∈R and b> 0, by the spatial homogeneity of X,

Vb(x) = inf
τ∈T

E

[ ∫ τ

0

(
2

[
1{τ+

b−x≤s} + 1{τ+
b−x>s}

W(Xs + x)

W(b)

]
− 1

)
ds

]
.

Fix s ≥ 0. We define the auxiliary function

Fs(x, b) = 1{τ+
b−x≤s} + 1{τ+

b−x>s}
W(Xs + x)

W(b)
.

We then show that, for fixed b> 0, the mapping x 	→ Fs(x, b) is non-decreasing. Take x1 ≤ x2,
then τ+

b−x2
≤ τ+

b−x1
. First, if ω ∈ {s< τ+

b−x2

}
, then we have ω ∈ {s< τ+

b−x1

}
and

Fs(x1, b)(ω) = W(Xs + x1)

W(b)
≤ W(Xs + x2)

W(b)
= Fs(x2, b)(ω),

where we used that W is increasing. Second, if ω ∈ {τ+
b−x2

≤ s< τ+
b−x1

}
, we have Xs(ω) ≤

b − x1 and then

Fs(x1, b)(ω) = W(Xs + x1)

W(b)
≤ 1 = Fs(x2, b)(ω).

Lastly, if ω ∈ {τ+
b−x2

< τ+
b−x1

≤ s
}
, we have Fs(x1, b)(ω) = 1 = Fs(x2, b)(ω). Therefore, by

integrating 2Fs(x, b) − 1 with respect to ds × P, and taking the infimum upon all stopping
times, we deduce that x 	→ Vb(x) is non-decreasing.

(ii) and (iii). By taking τ ≡ 0 in the definition of Vb (see (5.1)), we deduce that Vb(x) ≤ 0
for all x ∈R. Moreover, for x ≥ b, it is obvious that infτ∈T Ex

[∣∣gτ+
b

− τ
∣∣]= infτ∈T Ex[τ ] = 0,

where the infimum is attained by τ ≡ 0. It follows from Lemma 5.1 that the stopping time
τ ≡ 0 is also optimal for (5.1), and then Vb(x) = 0 when x ≥ b.

Next, we proceed to show that (5.4) holds. By (5.1),

Vb(x) = inf
τ∈T

Ex

[ ∫ τ

0

(
2

[
1{τ+

b ≤s} + 1{τ+
b >s}

W(Xs)

W(b)

]
− 1

)
ds

]
= inf
τ∈T

Ex

[ ∫ τ

0

(
1{τ+

b ≤s} + 1{τ+
b >s}

[
2

W(Xs)

W(b)
− 1

])
ds

]
≥ inf
τ∈T

Ex

[ ∫ τ∧τ+
b

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
.

On the other hand, from the definition of Vb(x) in (5.1), for an arbitrary stopping time τ and
any x ∈R,

Vb(x) ≤Ex

[ ∫ τ∧τ+
b

0

(
2

[
1{τ+

b ≤s} + 1{τ+
b >s}

W(Xs)

W(b)

]
− 1

)
ds

]
=Ex

[ ∫ τ∧τ+
b

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
.

Thus, we deduce that, for any x ∈R,

Vb(x) ≤ inf
τ∈T

Ex

[ ∫ τ∧τ+
b

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
.
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The claim then follows.
It remains to show that Vb(x)>−∞ for all x ∈R. For all s< τ+

b , because W is increasing
and non-negative,

−1 ≤ 2
W(Xs)

W(b)
− 1 ≤ 1.

Thus, by differentiating (2.7) and setting q = 0, we deduce that, for all x ∈R and b> 0,

Ex

[
supt≥0

∣∣∣∣ ∫ t∧τ+
b

0

(
2

W(Xs)

W(b)
− 1

)
ds

∣∣∣∣]≤Ex[τ+
b ] = b − x

ψ ′(0+)
<∞,

where we used that ψ(	q) = q so that 	′
q = 1/ψ ′(	q). Therefore, Vb(x)>−∞ for all x ∈R.

(iv). First, we show that x 	→ Vb(x) is upper semicontinuous. Note that it suffices to take the
infimum in the definition of Vb over stopping times with finite mean. Indeed, for any stopping
time τ with E[τ ] = ∞, since E[τ+

b ]<∞, we have that

Ex

[ ∫ τ

0

(
1{τ+

b ≤s} + 1{τ+
b >s}

[
2

W(Xs)

W(b)
− 1

])
ds

]
≥ −E

[
τ ∧ τ+

b

]+E
[
τ − (

τ ∧ τ+
b

)]= ∞.

Due to the fact that the infimum of an upper semicontinuous function is upper semicontin-
uous, it suffices to show that, for each τ ∈ T with finite mean, the mapping

x 	→E

[ ∫ τ

0
(2Fs(x, b) − 1) ds

]
(5.5)

is upper semicontinuous. Since x 	→ Fs(x, b) is non-decreasing as shown in part (i), the upper
semicontinuity follows if the mapping given in (5.5) is right-continuous. We then show the
right continuity of (5.5). Note that the stochastic process {τ+

t : t ≥ 0} is a subordinator (see,
e.g., [17, Corollary 3.14]) and thus stochastically continuous. Indeed, the stochastic continuity
of {τ+

t , t ≥ 0} implies that, for any h> 0, y> 0, and ε > 0, limh↓0 P
(∣∣τ+

y−h − τ+
y

∣∣> ε)= 0. In

other words, τ+
y−h converges in probability to τ+

y when h ↓ 0. Moreover, since the mapping

h 	→ τ+
y−h is decreasing, we deduce that the convergence holds almost surely. Thus, we obtain,

by the right continuity of W,

lim
h↓0

Fs(x + h, b) = lim
h↓0

[
1{τ+

b−x−h≤s} + 1{τ+
b−x−h>s}

W(Xs + x + h)

W(b)

]
=
[

1{τ+
b−x≤s} + 1{τ+

b−x>s}
W(Xs + x)

W(b)

]
= Fs(x, b)

almost surely. Hence, from the dominated convergence theorem we deduce that, for any
stopping time τ with finite mean,

lim
h↓0

E

[ ∫ τ

0
(2Fs(x + h, b) − 1) ds

]
=E

[ ∫ τ

0
(2Fs(x, b) − 1) ds

]
.

Therefore, the mapping x 	→E
[ ∫ τ

0 (2Fs(x, b) − 1) ds
]

is right-continuous and thus upper
semicontinuous as claimed. Hence, we have that D is a closed set.

Next, we proceed to show that τD is optimal for Vb. For a ∈R, y> 0, and x ≤ y, we define
the stochastic process {La,y,x

t , t ≥ 0} as follows:

La,y,x
t = a +

∫ t

0
1{y∨(Xs+x)<b}

(
2

W(Xs + x)

W(b)
− 1

)
ds,
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where Xt = sup0≤r≤t Xr. For any t ≥ 0, we simply write Lt = L0,0,0
t . It can be seen that the

family of probability measures Pa,y,x = Law((La,y,x, y ∨ (X + x), X + x) | P) is Markovian (see
[21, Section III.6]). Then we have that, for any a ∈R, y> 0, and x ≤ y,

Ṽ(a, y, x) := inf
τ∈T

Ea,y,x[Lτ ] = inf
τ∈T

E
[
La,y,x
τ

]
= a + inf

τ∈T
E

[ ∫ τ

0
1{y∨(Xs+x)<b}

(
2

W(Xs + x)

W(b)
− 1

)
ds

]
= a + inf

τ∈T
E

[ ∫ τ

0
1{y<b}1{Xs+x<b}

(
2

W(Xs + x)

W(b)
− 1

)
ds

]
= a + 1{y<b} inf

τ∈T
Ex

[ ∫ τ

0
1{Xs<b}

(
2

W(Xs)

W(b)
− 1

)
ds

]
= a + 1{y<b}Vb(x).

Since Vb(x) is non-positive and upper semicontinuous, it follows that Ṽ is upper semicontin-
uous. From the general theory of optimal stopping (see, e.g., [21, Corollary 2.9]), we deduce
that an optimal stopping time for Ṽ , and hence also optimal for Vb, is given by

inf{t ≥ 0: Ṽ(Lt, Xt, Xt) = Lt} = inf{t ≥ 0: Lt + 1{Xt<b}Vb(Xt) = Lt} = τD ∧ τ+
b = τD,

where in the last equality we used that Vb(x) = 0 for all x ≥ b, so then [b,∞) ⊂ D. The proof
is now complete. �

Since Vb is a non-decreasing function and D is a closed set we deduce that D = [y∗
b,∞) for

some value y∗
b to be determined. Moreover, since W vanishes on (−∞, 0), we deduce from

(5.4) that, for any x< 0,

Vb(x) ≤Ex

[ ∫ τ+
0

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
= −Ex[τ+

0 ]< 0.

This implies that y∗
b ≥ 0, and then y∗

b ∈ [0, b]. Hence, we deduce that τD ≤ τ+
b and, from (5.4),

Vb(x) = inf
y∈[0,b]

Vb,y(x) = Vb,y∗
b
(x) (5.6)

for all x ∈R and b> 0, where

Vb,y(x) := Ex

[ ∫ τ+
y

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
.

The following lemma ensures that the convolution of W with W (and W ′) is sufficiently
smooth. These facts will be helpful in the upcoming lemmas.

Lemma 5.3. Let f : R 	→R
+ be any non-negative function such that

∫ y
0 f (z) dz<∞ for any

y ≥ 0. Further assume that W ∈ C1(0,∞) and f ∈ C(0,∞). Then, the convolution function
J(y) := ∫ y

0 W(y − z)f (z) dz, y ≥ 0, belongs to C1(0,∞) and

d

dy
J(y) = W(0)f (y) +

∫ y

0
W ′(y − z)f (z) dz.
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Proof. For any u ≥ 0 and y> 0 we define the auxiliary function

T(u, y) :=
∫ y

0
W ′(y − z + u)f (z) dz.

We first prove that T is continuous in each argument. That is, for fixed u ≥ 0, the mapping y 	→
T(u, y) is continuous on (0,∞) and, for fixed y> 0, the mapping u 	→ T(u, y) is continuous on
[0,∞). For arbitrarily fixed y> 0 and u ≥ 0, let δ > 0 and ε > 0 be such that δ < y and u< ε.
Then, for any z ∈ (0, δ],

W ′(y − z + u)f (z) ≤ f (z) supv∈[y−δ+u,y+u]W
′(v)

≤ f (z) supv∈[y−δ,y+ε]W ′(v) = C1f (z),

where C1 := supu∈[y−δ,y+ε] W ′(u). It follows from the continuity of W ′ on [y − δ, y + ε] that
0<C1 <∞. On the other hand, for any z ∈ (δ, y] we see that

W ′(y − z + u)f (z) ≤ W ′(y − z + u) supv∈[δ,y]f (v) = C2W ′(y − z + u),

where C2 := supv∈[δ,y] f (v) and we used that W ′(x)> 0 for all x> 0. Since f is a non-negative
and continuous function in (0,∞), 0<C2 <∞. Hence, since W ′ and f are non-negative we
obtain that, for any z ∈ (0, y),

0 ≤ W ′(y − z + u)f (z) ≤ C1f (z) + C2W ′(y − z + u).

Moreover,∫ y

0
[C1f (z) + C2W ′(y − z + u)] dz = C1

∫ y

0
f (z) dz + C2[W(y + u) − W(u)]<∞.

Therefore, since W ′ is continuous on (0,∞), we deduce from the extended dominated
convergence theorem that T is continuous in each argument.

Next, for any y> 0, we prove

lim
h↓0

1

h
[J(y + h) − J(y)] = W(0)f (y) +

∫ y

0
W ′(y − z)f (z) dz.

For any h> 0 and y> 0, it follows that

1

h
[J(y + h) − J(y)]

= 1

h

( ∫ y+h

0
W(y + h − z)f (z) dz −

∫ y

0
W(y − z)f (z) dz

)
= 1

h

( ∫ y

0
[W(y + h − z) − W(y − z)]f (z) dz +

∫ y+h

y
W(y + h − z)f (z) dz

)
. (5.7)

For the first term on the right-hand side we see from Fubini’s theorem that

1

h

∫ y

0
[W(y + h − z) − W(y − z)]f (z) dz = 1

h

∫ y

0

∫ h

0
W ′(y − z + u)f (z) du dz

= 1

h

∫ h

0
T(u, y) du.
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Therefore, by the fundamental theorem of calculus we see that, for any y> 0,

lim
h↓0

1

h

∫ y

0
[W(y + h − z) − W(y − z)]f (z) dz = T(0, y) =

∫ y

0
W ′(y − z)f (z) dz.

For the second term on the right-hand side of (5.7), since W is strictly increasing on [0,∞),
we have

1

h

∫ y+h

y
W(y + h − z)f (z) dz ≤ 1

h
W(h)

∫ y+h

y
f (z) dz,

1

h

∫ y+h

y
W(y + h − z)f (z) dz ≥ W(0)

1

h

∫ y+h

y
f (z) dz.

Thus, we can deduce from the fact that f and W are continuous on (0,∞) and the fundamental
theorem of calculus that

lim
h↓0

1

h

∫ y+h

y
W(y + h − z)f (z) dz = W(0)f (y).

Therefore, we conclude that, for any y> 0,

lim
h↓0

1

h
[J(y + h) − J(y)] = W(0)f (y) +

∫ y

0
W ′(y − z)f (z) dz.

Using similar arguments we can show that, for any y> 0,

lim
h↓0

1

h
[J(y) − J(y − h)] = f (y)W(0) +

∫ y

0
W ′(y − z)f (z) dz.

Finally, the continuity of (d/dy)J(y) on (0,∞) follows by the continuity of f and T(0, y). �

The next lemma provides an analytical expression for the function Vb,y in terms of the scale
function W. We recall that F(x) =ψ ′(0+)W(x) is the cumulative distribution function of −X∞.

Lemma 5.4. For any b> 0, y ≥ 0, and x ≤ y,

Vb,y(x) = Hb(y) − Hb(x), (5.8)

where Hb(y) = (2/W(b))
∫ y

0 W(z)W(y − z) dz − (y/ψ ′(0+)). Moreover, Vb(x) = Vb,y∗
b
(x), where

y∗
b is given by

y∗
b = inf

{
y ∈ [0, b] :

∫
[0,y]

F(y − z) F(dz) ≥ F(b)

2

}
. (5.9)

Proof. Fix y ≥ 0. For any x ≤ y, it follows from (2.10) that

Vb,y(x) =Ex

[ ∫ τ+
y

0

(
2

W(Xs)

W(b)
− 1

)
ds

]
=
∫ y

−∞
2

W(z)

W(b)

∫ ∞

0
Px(Xs ∈ dz, s< τ+

y ) ds −Ex[τ+
y ]

= 2

W(b)

∫ y

−∞
W(z)[W(y − z) − W(x − z)] dz − y − x

ψ ′(0+)
= Hb(y) − Hb(x),

where in the last equality we used that W vanishes on (−∞, 0).
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Let y∗
b be such that infy∈[0,b] Hb(y) = Hb(y∗

b). We then show that y∗
b is given by (5.9). For

y ≥ 0, by Lemma 5.3, we have

H′
b(y) = 2

W(b)
W(y)W(0) + 2

W(b)

∫ y

0
W(z)W ′(y − z) dz − 1

ψ ′(0+)

= 2

W(b)
W(y)W(0) + 2

W(b)

∫ y

0
W(y − z)W ′(z) dz − 1

ψ ′(0+)
.

Since W is non-negative and strictly increasing, we deduce that H′
b(y) is strictly increasing.

Thus, the function Hb(y) attains its infimum on [0, b] at the point

inf

{
y ∈ [0, b] :

2

W(b)
W(y)W(0) + 2

W(b)

∫ y

0
W(y − z)W ′(z) dz − 1

ψ ′(0+)
≥ 0

}
= inf

{
y ∈ [0, b] :

∫
[0,y]

F(y − z) F(dz) ≥ F(b)

2

}
= y∗

b,

where we used F(z) =ψ ′(0+)W(z) for all z ≥ 0, and that the measure F(dz) =ψ ′(0+) W(dz)
may have an atom at zero (when X is of bounded variation). Since y∗

b is defined within [0, b],
we follow the convention that inf ∅ = b.

It remains to verify that Vb(x) = Vb,y∗
b
(x). Since Vb,y(x) = 0 for x> y, we obtain from (5.6)

and (5.8) that

Vb(x) = inf
y∈[0,b]

Vb,y(x) = 0 ∧ inf
y∈[x,b]

Vb,y(x) = 0 ∧
(

inf
y∈[x,b]

Hb(y) − Hb(x)
)

= inf
y∈[x,b]

Hb(y) − Hb(x).

If x ≤ y∗
b, it is clear that Vb(x) = Hb(y∗

b) − Hb(x) = Vb,y∗
b
(x). If x> y∗

b, we have Vb,y∗
b
(x) = 0.

Further, since Hb(y) is strictly increasing for y ∈ [y∗
b, b] and x> y∗

b, we have infy∈[x,b] Hb(y) =
Hb(x) and thus Vb(x) = 0. �

Before we give a more explicit characterization of the optimal stopping boundary y∗
b, we

introduce some auxiliary results. For a ≥ 0, we define

K(a) =
∫

[0,a]
F(a − z) F(dz) − F(a)

2
.

Lemma 5.5. We have the following results for the auxiliary function K(a):

(i) If F(0) ≥ 1
2 , K(0) ≥ 0 and K(a)> 0 for all a> 0.

(ii) If F(0)< 1
2 , the equation K(a) = 0 has a unique solution b0 ∈ (0,∞) with K(a)< 0 for

all a ∈ [0, b0) and K(a)> 0 for all a ∈ (b0,∞).

Proof. First, since both y 	→ ∫
[0,y] F(y − z) F(dz) and F are cumulative distribution func-

tions, it can be seen that lima→∞ K(a) = 1
2 . Hence, there exists N > 0 sufficiently large that

[N,∞) ⊂ {a ≥ 0: K(a) ≥ 0}.
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From (2.4), we deduce that F′(x)/F(x) is non-increasing. Therefore, for any a> 0, it follows
from Lemma 5.3 that

K′(a) = 2F(0)F′(a) +
∫ a

0
F′(a − z)F′(z) dz − F′(a)

2

= 2F(0)F′(a) +
∫ a

0

F′(a − z)

F(a − z)
F(a − z)F′(z) dz − F′(a)

2

≥ 2F(0)F′(a) + F′(a)

F(a)

∫ a

0
F(a − z)F′(z) dz − F′(a)

2

= F′(a)

F(a)
[F(a)F(0) + K(a)].

In fact, this inequality is strict when X is of unbounded variation. If not, we have∫ a

0

F′(a − z)

F(a − z)
F(a − z)F′(z) dz = F′(a)

F(a)

∫ a

0
F(a − z)F′(z) dz,

for some a ≥ 0. Since F and F′ are strictly positive on (0,∞), we deduce that F′(y)/F(y) = C
for some C ≥ 0 and all y ∈ (0, a). This implies that F(y) = BeCy for some B ≥ 0 and any y ∈
(0, a). Using the fact that X is of unbounded variation, so then F(0+) =ψ ′(0+)W(0+) = 0,
we deduce that B = 0. This contradicts the fact that F is strictly increasing. Hence, when X is
of unbounded variation, we have

K′(a)>
F′(a)

F(a)
K(a). (5.10)

Since F(0)> 0 when X is of bounded variation, the strict inequality (5.10) holds regardless of
the path variation of X.

Further, it is easy to show from (5.10), the continuity of K and K′, and the behaviour of K
near 0 and at infinity that there exists a value b0 ≥ 0 such that {a ≥ 0: K(a) ≥ 0} = [b0,∞).
Moreover, K(a)< 0 for all a ∈ [0, b0), and K(a)> 0 for all a ∈ (b0,∞). In particular, if F(0) ≥
1
2 , K(0) = F(0)2 − F(0)/2 = F(0)

(
F(0) − 1

2

)≥ 0, so that b0 = 0. Otherwise, if F(0)< 1
2 , by the

continuity of K and (5.10), we deduce that b0 > 0 and b0 is the unique solution to the equation
K(a) = 0. �

The following lemma provides a more explicit characterization of the optimal stopping
boundary y∗

b.

Lemma 5.6.

(i) If F(0) ≥
√

1
2 , y∗

b = 0 for all b> 0.

(ii) If 1
2 ≤ F(0)<

√
1
2 , then for b ≤ F−1(2F(0)2), y∗

b = 0. For b> F−1(2F(0)2), the value

y∗
b ∈ (0, b) is the unique solution to

∫
[0,y] F(y − z) F(dz) − 1

2 F(b) = 0.

(iii) If F(0)< 1
2 , let b0 > 0 be the unique solution to

∫
[0,b] F(b − z) F(dz) = 1

2 F(b). For b ≤
b0, y∗

b = b. For b> b0, y∗
b ∈ (0, b) is the unique solution to∫

[0,y]
F(y − z) F(dz) − F(b)

2
= 0.
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Proof. We define the function Pb(y) = ∫
[0,y] F(y − z) F(dz) − 1

2 F(b) for y ≥ 0 and b> 0.
Hence, Pb(b) = K(b) and y∗

b = inf{y ∈ [0, b] : Pb(y) ≥ 0}.
(i). If F(0) ≥

√
1
2 , Pb(0) = F(0)2 − 1

2 F(b) ≥ 1
2 (1 − F(b)) ≥ 0 for all b> 0. Since Pb is

strictly increasing, and from the definition of y∗
b, we deduce that y∗

b = 0 for any b> 0.

(ii). Suppose that 1
2 ≤ F(0)<

√
1
2 . From Lemma 5.5 we know that K(a)> 0 for all

a> 0. This implies that y∗
b < b for all b> 0. Note that F−1(2F(0)2) is well defined

since 2F(0)2 ≥ F(0). For b ≤ F−1(2F(0)2), for any y ∈ (0, b], Pb(y)> Pb(0) = F(0)2 −
1
2 F(b) ≥ 0. Thus, we deduce that y∗

b = 0. On the other hand, for b> F−1(2F(0)2),
Pb(0)< 0. This, together with Pb(b) = K(b)> 0 and Pb(y) being strictly increasing on
(0,∞), mean we can deduce that y∗

b is the unique solution to the equation Pb(y) = 0.

(iii). Suppose that F(0)< 1
2 . From Lemma 5.5, we know that the value b0 is such that

K(a) ≤ 0 for all a ≤ b0 and K(a)> 0 for all a> b0. Hence, for b ≤ b0, Pb(y) ≤ Pb(b) =
K(b) ≤ 0 for all y ≤ b. Thus, y∗

b = b. Otherwise, for b> b0,

Pb(0) = F(0)2 − F(b)

2
<

F(0) − F(b)

2
≤ 0,

and Pb(b) = K(b)> 0. Thus, the value y∗
b is the unique solution to the equation

Pb(y) = 0. �
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