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Abstract

In aquatic microbial systems, high-magnitude variations in abundance, such as sudden
blooms alternating with comparatively long periods of very low abundance (“apparent
disappearance”), are relatively common. We suggest that in order for this to occur,
such variations in abundance in microbial systems and, in particular, the apparent
disappearance of species do not require seasonal or periodic forcing of any kind or
external factors of any other nature. Instead, such variations can be caused by internal
factors and, in particular, by bacteria–phage interaction. Specifically, we suggest that
the variations in abundance and the apparent disappearance phenomenon can be a result
of phage infection and the lysis of infected bacteria. To illustrate this idea, we consider
a reasonably simple mathematical model of bacteria–phage interaction based on the
model suggested by Beretta and Kuang, which assumes neither periodic forcing nor
action of other external factors. The model admits a loss of stability via Andronov–Hopf
bifurcation and exhibits dynamics which explains the phenomenon. These properties of
the model are especially distinctive for spatially nonhomogeneous biosystems as well
as biosystems with some sort of cooperation or community effects.
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1. Introduction

In marine biosystems, high-magnitude variations in abundance and unstable
dynamics, such as sudden planktonic and bacterial blooms alternating with extended
periods of low abundances, are quite common. In particular, marine microbial
communities frequently exhibit bacterial and bacteriophage blooms, which alternate
with comparatively long periods of low abundance, when the concentrations of species
are of several orders of magnitude lower than the peak bloom concentrations [11, 12,
39]. To describe such periods of very low abundance, when the species concentrations
are extremely low and can drop below detection level, the microbiologist Prentice [31]
suggested the term “apparent disappearance”, which we adopt in this paper.

In many cases, the planktonic and microbial blooms are immediate consequences
of seasonal variations in temperature, light and other conditions (the “spring blooms”).
Increases in aquatic bacteria abundance can also be caused by external forcing
of nonseasonal (and nonperiodic) nature, such as the ones that occur after dust
pulses in the Western Mediterranean [27]. In these cases, an increase in bacterial
abundance occurs due to a massive discharge of a certain nutrient benefiting a
particular bacterial strain. In turn, this blooming bacterial strain would be infected by
a specific bacteriophage, thus leading to a dramatic increase in abundance of a single
phage genotype [39]. (This type of succession corresponds to the “kill the winner”
hypothesis [34].) Nevertheless, while external forcing of seasonal and nonseasonal
nature can be accountable for many cases of planktonic and microbial blooms, for
many incidences links to external factors are dubious. In terrestrial ecosystems,
Anderson and May [4] provided numerous examples of irregular explosions in
abundance of insects, which are not linked to seasonal forcing and where the existence
of external forcing of nonseasonal nature is unlikely or questionable.

In order to explain the high-magnitude outbreaks followed by periods of low
abundance, a number of hypotheses were suggested. The hypothesis that in marine
microbial communities the rapid decreases of abundance followed by comparatively
long periods of low abundance (the “apparent disappearance”) can be a result of
phage infection and killing of a particular bacterial species (the “killing the winner
population”) is appealing and accepted. A certain drawback of this conjecture is that
it does not provide the reasons behind the bacterial bloom of this specific bacterial
species. As a result, this concept is often coupled with an assumption that the bacterial
blooms are triggered by some favourable events, such as an influx of a particular
limiting nutrient, which creates favourable conditions for the growth of a particular
species, that is, a sort of external forcing, or an external factor is still implicitly
assumed.

Hoffmann et al. [22] further developed this concept suggesting that the interaction
of a pair of “target bacteria–phage” is sufficient for the rise of high-magnitude
self-sustained oscillations in abundance of both species and that no external factor
is needed. Unfortunately, to some extent this idea was handicapped by some
shortcomings of a mathematical model used by Hoffmann et al. for illustrating this
possibility. In particular, this model assumes the unlimited Malthusian growth of
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bacteria (in this aspect, it is similar to the first version of the Lotka–Volterra predator–
prey model without carrying capacity of the environment) and, as a result, it is
structurally unstable (and hence its dynamics should be destroyed by the slightest
perturbation in the model). The phase orbits of this model form a one-parameter
family of closed curves, that is, the model has a first integral (it is not clear, however,
whether Hoffmann et al. recognized this fact). Consequently, the outcome of this
model crucially depends on the initial conditions.

A few years ago, Sobolev proposed a purely theoretical hypothesis that in the
predator–prey-type interactions with slow–fast dynamics, the phenomenon of apparent
disappearance does not require seasonal forcing and can be explained with the
existence of the so-called canard trajectories (see [21, 30, 33] and the references
therein).

In order to explain irregular variations in abundance of high magnitude in a
seemingly regular system and the phenomenon of apparent disappearance, in this paper
we consider a simple model of bacteria–phage interaction, which is a straightforward
development of a model proposed by Beretta and Kuang [6]. The model is autonomous
and, hence, assumes neither seasonal or periodic forcing, nor external factors of any
other nature. However, despite its simplicity, this model is capable of producing results
that are able to explain the phenomenon.

2. Model

Bacteriophages (or, simply, phages) are small viruses which infect and kill bacteria,
and these were discovered independently by Twort [35] and d’Herelle [16]. Phages are
one of the most widespread and diverse entities in the biosphere [28] and it is in the
ocean where the highest abundances are found. (There are 107 phages per millilitre of
sea water; this figure grows up to 10 times at the surface in microbial mats reaching
108 virions per millilitre [38].) It was estimated that between 10% and more than 60%
of bacterioplankton biomass is killed by bacteriophages [8, 18] and it is observed in
different aquatic systems that bacterial mortality due to viral lysis is comparable with
protist grazing [9, 10, 36].

While the bacteriophages that are able to infect two or more bacteria species are
known [17, 23, 29], it is generally assumed that bacteriophages are usually specific for
target bacteria, thus forming stable phage–bacteria pairs. There is no direct interaction
between these pairs or, where there is some interaction, it is negligibly weak. However,
there is indirect interaction between pairs, because bacteria from different pairs can
compete for the same resource; for the sake of simplicity, in this paper we disregard
this factor. Following Hoffmann et al. [22], we assume that the dynamics of the
“bacteria–phage” pairs are identical in the sense that for all these pairs it is governed
by the same principles and depends on the same factors, while the current state of each
of these pairs is independent of the others.

A phage consists of a protein hull and the enclosed genetic material, which for
the majority of the known phages consists of double-stranded DNA [1]. According
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to their mode of reproduction, phages can be roughly divided into two major types.
The first type, the so-called lytic phages, is a highly virulent type. The phages of this
type begin reproduction immediately after infecting a bacterium and after a short time
lyse (destroy) the host bacterium, releasing new free phages. Phages of the second
type, which are known as the non-lytic, or temperate, phages, are either integrating
their genetic material into the chromosomal host’s DNA or establishing themselves as
plasmids. These endogenous phages are then copied with every cell division together
with the DNA of the host. They do not kill the host cell until it starts to show signs
of stress (meaning it might be about to die soon); at this stage the endogenous phages
become active again and start their reproductive cycle, resulting in the lysis of the host
cell.

In this paper, we consider the phages with the lytic reproduction cycle. To
describe the interaction of a lytic phage–bacteria pair, a mathematical model of
host–microparasite interaction with a free-living infective stage of a parasite can be
employed. The basic concept for models of a host–microparasite interaction, where
the microparasite has a free-living infective stage, was proposed by Anderson and
May [4]. Such a model is typically composed of three populations, namely, the
susceptible hosts (bacteria, in our case), the infected hosts and parasites in the free
stage (phages, in our case), of sizes or concentrations x(t), y(t) and v(t), respectively.
The model postulates that the free-living parasites infect the susceptible hosts, that
after an instance of infection the infected host moves into the infected class where
it remains until death and that the infected hosts produce the free parasites. For a
particular case of bacteria–lytic phage interaction, Beretta and Kuang [6] proposed a
model where, instead of the unlimited Malthusian reproduction in the Anderson–May
model [4], a limiting carrying capacity of the environment, K, was postulated and it
was assumed that the susceptible hosts reproduce according to the logistic law. It is
assumed that only uninfected bacteria are able to reproduce. This is equivalent to an
assumption that the parasite’s cytopathogenicity is high and the life span of the infected
bacteria is comparatively short and, hence, their contribution to the proliferation of the
population is negligible or that the parasite totally suppresses the reproductive ability
of the infected bacteria. All the offspring are assumed to be susceptible.

The Anderson–May [4] and Beretta–Kuang [6] models assume homogeneous
mixing of all populations and postulate that infective incidences occur according to
the law of mass action and, hence, the incidence rate in both these models is bilinear
and equal to αxv. However, in marine environment, neither bacteria nor phages are
homogeneously distributed in sea water. Sea water is now viewed as a gel composed
of microscopic particles ranging from colloids to marine snow, which are composed
of organic matter and provide a source of concentrated nutrients for microorganisms
[2, 5, 7, 13]. Microorganisms form colonies on the surface of these particles. Phage
lysis of such a microbial colony would locally create high concentrations of both
parasites and hosts. Moreover, the simultaneous massive release of phage from a
dead bacterium in such a colony represents a cooperative effect. Furthermore, there is
evidence of phage cooperation; it appears that a simultaneous attack of a bacterium by
a few bacteriophages significantly increases chances of infection.
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In the framework of an ordinary differential equation model, a nonhomogeneity of
an environment and community effects can be captured by a nonlinearity of functional
responses [15]. Accordingly, we assume that the incidence rate is a nonlinear function
with respect to both variables. These assumptions lead to the following system of
differential equations:

ẋ = ax
(
1 −

x + y
K

)
− h(x) f (v),

ẏ = h(x) f (v) − dy,
v̇ = σy − mv.

(2.1)

Here, x(t) and y(t) are the concentrations of the susceptible and infected bacteria, and
v(t) is the concentration of free phages, a is the per capita bacteria reproduction rate,
K is the carrying capacity and 1/d and 1/m are average life spans of the infected
bacteria and the free phages, respectively. The parameter σ reflects the fact that the
free phages are produced by the infected bacteria and are released at the moment of
their death (that is, σ = Nd, where N is an average number of phages produced by
a single infected cell). The functions h(x) and f (v) are positive and monotonically
growing for x, v > 0 such that the conditions h(0) = f (0) = 0 hold.

Compared to the Beretta–Kuang model [6], apart from the nonlinear incidence rate,
the model (2.1) also disregards the loss of phages due to infection, since this is typically
very small compared with the phages’ mortality rate mv. Moreover, computations and
analysis show that this term does not affect the qualitative dynamics.

As was mentioned above, the use of a nonlinear incidence rate h(x) f (v) in this
model is motivated by nonhomogeneity of the hosts’ distribution and cooperative
effects of the bacteriophages. For an ordinary differential equation model, a gathering
of the hosts in dense colonies or clusters can be described by a concave function with
respect to the variable x(t) [15], whereas cooperation of predators or parasites can be
captured by a convex function of v(t). For simplicity, further in this paper, we assume
that h(x) = x/(1 + νx) and f (v) = αv(1 + ηvp) (where α > 0 and p > 0 are parameters).
Then η = ν = 0 implies the bilinear response. The other functional responses in
the model can be assumed nonlinear as well. However, simulations indicate that a
nonlinearity of the incidence rate is most important for the model dynamics.

The nonnegative octant R3
≥0 = {(x, y, v) ∈ R3 | x, y, v ≥ 0} is a positive invariant

set of the model, that is, any solution with initial conditions in R3
≥0 remains there

indefinitely. Indeed, the natural constraints h(0) = f (0) = 0 and h(x), f (v) > 0 for
x, v > 0 (which hold for the functions h(x) = x(1 + νx) and f (v) = αv(1 + ηvp)) ensure
that ẋ = 0 at x = 0, and ẏ ≥ 0 and v̇ ≥ 0 hold at y = 0 and v = 0, respectively. These
relationships imply that there is no phase flow through the plane x = 0, whereas phase
flow through the planes y = 0 and v = 0 is only possible in the positive direction
(that is, inside the positive octant). Furthermore, solutions of the system (2.1) are
bounded. More precisely, there is a region Ω bounded by the coordinate planes and
the planes x + y = K and v = σK/m, which is a positive invariant set of the system (2.1)
(and hence any solution initiated in the region remains there, while solutions initiated
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outside of Ω eventually enter this region). Indeed, the total bacteria population x + y
does not exceed the carrying capacity K, and ẋ + ẏ = ax − bx2 − bxy − dy < 0 (where
b = a/K) holds for all x + y ≥ K. Moreover, in the region {x, y, v ≥ 0 | x + y ≤ K}, v̇ ≤ 0
holds for all v ≥ σK/m.

The origin, E0 = (0, 0, 0), is an equilibrium state of the model and it is always a
saddle point. The yv-plane forms a stable manifold of this three-dimensional saddle,
and the x-axis is an unstable manifold. The system also has a phage-free equilibrium
state EK = (K, 0, 0). The stability and properties of this equilibrium state as well as the
system general global properties depend on the basic reproduction number [24, 25]

R0 =
σ

d
1
m
∂ f (0)
∂v

h(K).

(This number is equal to an average number of offspring produced by a single phage
introduced in a phage-free environment.) For the model with the bilinear incidence
rate,

R0 =
σ

d
α

m
K.

The phage-free equilibrium state EK is asymptotically stable (at least locally) if R0 ≤ 1
and unstable (a saddle point) if R0 > 1. Apart from these two equilibrium states,
which always exist, the system can have positive equilibria, where phages and bacteria
coexist. For the bilinear incidence rate αxv, the positive equilibrium state E∗ is unique
and has coordinates

x∗ =
md
ασ

, y∗ =
am
ασ
·

R0 − 1
R0 + a/d

, v∗ =
σ

m
y∗.

Note that the bilinear incidence rate R0 > 1 is necessary and sufficient for the existence
of the positive equilibrium state.

For the functions h(x) = x/(1 + νx) and f (v) = αv(1 + ηvp), which we consider in
this paper, the system has at most two positive equilibrium states. However, if R0 > 1
holds, then for these functions the positive equilibrium state E∗ is unique and appears
in the positive octant of the phase space as a result of a saddle-node bifurcation of the
point EK at R0 = 1 [24, 25]. For these functions h(x) and f (v), two positive equilibrium
states are possible when R0 < 1. In this case the point EK is asymptotically stable, and
two positive equilibrium states can appear as a result of a “blue sky” saddle-node
bifurcation. This scenario corresponds to the Allee effect [3, 14], when a population
should be over a certain threshold level to have the mean individual fitness (usually
measured as current reproduction number) above level 1 and, thus, to persist [24, 25].

3. Apparent disappearance

A remarkable property of the model (2.1) is that even for the bilinear incidence
rate αxv, it admits a supercritical Andronov–Hopf bifurcation. Specifically, a decrease
of a, d or m or, alternatively, an increase of α, σ and, in particular, of the carrying
capacity K, eventually leads to the loss of stability of the equilibrium state E∗ and to
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the appearance of a stable limit cycle in the system phase space [6, 26]. In the model
(2.1), the values of the parameters a, d,m and σ, as well as the forms of the functions
h(x) and f (v), are specific for a particular phage–bacteria pair, and sizeable variations
of these parameters are unlikely to occur. In contrast, in marine environment, the
carrying capacity K can significantly vary (for example, seasonally). Moreover, it is
commonly believed that in marine ecosystems there is no lack of nutrient for bacteria
and that food is not a limiting factor for bacterial growth [2, 5, 13, 22, 38, 39]. These
considerations make K the most important parameter for the phage–bacteria system
dynamics, and indicate that principal changes of this dynamics are possible in response
to variations of environmental conditions.

Such a loss of stability in a predator–prey system via the Andronov–Hopf
bifurcation, which occurs in response to the growth of the carrying capacity of the
environment, is referred to as “the paradox of enrichment”. We have to stress, however,
that a nonlinearity of the incidence rate (or the attack rate, in the case of a predator–
prey system) with respect to the prey population x(t) is essential for the Andronov–
Hopf bifurcation in a two-dimensional predator–prey model [32]. Therefore, it is
remarkable that in the model (2.1) the bifurcation occurs even for the bilinear incidence
rate.

A stable limit cycle appears in the system phase space as a result of a supercritical
Andronov–Hopf bifurcation, which occurs when a pair of isolated nonzero, simple
complex-conjugate eigenvalues of a linearized system crosses the imaginary axis from
left to right at a nonzero speed, while the rest of the spectrum (the third eigenvalue)
remains in the open left half-plane. Let us assume for simplicity that the incidence rate
is bilinear (that is, h(x) f (v) = αxv) and that R0 = (σ/d)(α/m)K > 1 holds. Then the
positive equilibrium state E∗ exists. The Jacobian matrix at the point E∗ is

J =

−bx∗ −bx∗ −αx∗

αv∗ −d αx∗

0 σ −m

 ,
where b = a/K. The corresponding characteristic equation is

λ3 + a1λ
2 + a2λ + a3 = 0, (3.1)

where

a1 = −tr J = bx∗ + d + m > 0,
a2 = bx∗(d + m + αv∗) > 0,
a3 = − det J = αx∗v∗(bm + σα) > 0.

By the Routh–Hurwitz criterion [19, p. 197], conditions for the Andronov–Hopf
bifurcation are satisfied if a1, a2, a3 > 0 and ∆ = a1a2 − a3 = 0. Here, the inequalities
a1,a2,a3 > 0 ensure that all roots of the characteristic equation are in the open left half-
plane, while ∆ = a1a2 − a3 = 0, together with a1, a2, a3 > 0, is a sufficient condition
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for the existence of one negative real root and a pair of pure imaginary roots. For the
characteristic equation (3.1),

∆ = x∗[b(bx∗ + d + m)(d + m) + αv∗b(bx∗ + d) − σα2v∗].

That is, ∆ = 0 holds when

m3 d
σα

b3 + m[(d + m)2 + d(m + a)]b2 + σα[(d + m)2 + d(m + a)]b − a(σα)2 = 0.

Denoting κ = K−1 and M = [(d + m)2 + d(m + a)]/σα, and recalling that b = a/K = aκ,

P(κ) =
a2

d2 (x∗)3κ3 +
am
σα

Mκ2 + Mκ − 1 = 0. (3.2)

If the positive equilibrium state exists, then the product of the roots of the
polynomial P(κ) is positive (and equal to d2/a2(x∗)3), whereas their sum is negative
(and equal to −Md2/a2(x∗)3). Hence, (3.2) always has one positive root κcr > 0 such
that ∆(κcr) = 0. (Two other roots are in the open left-half of the complex plane.)
Furthermore, for κ→ ∞ (that is, for K → 0), the polynomial (3.2) is positive and,
hence, by the Routh–Hurwitz criterion, for κ→∞ all three roots of the characteristic
equation (3.1) have negative real parts. When κ → 0 (that is, for K → ∞), the
polynomial (3.2) is negative. This implies that if K is not sufficiently large, the
equilibrium E∗ is asymptotically stable. However, as K grows, ∆(K) decreases and
eventually crosses zero level at K = Kcr = κ−1

cr . At this value of K, a supercritical
Andronov–Hopf bifurcation occurs, the equilibrium reverses its stability and a stable
limit cycle appears. The size of this cycle grows as K further increases.

With a further increase of α, σ or, most importantly, of the carrying capacity K, or
with a decrease of a, d or m, the size of this limit cycle grows as well. With the growth
of K, the feasible region Ω also expands towards the inner part of the octant R3

≥0.
(Indeed, the planes x + y = K and v = σK/m are parts of the boundary of the region.)
However, only these parts of the boundary move with varying of K, whereas the rest
of the boundary is formed by the coordinate planes and hence is fixed. Moreover, the
coordinate x∗ of the positive equilibrium state E∗ does not depend on K either. This
implies that as the size of the limit cycle grows, the cycle moves closer and closer
to the coordinate planes. In particular, the cycle approaches the yv-plane, which is
a part of the boundary and, at the same time, the stable manifold of the equilibrium
state E0 = (0, 0, 0). Therefore, as the limit cycle size grows with the growth of K, the
limit cycle is squeezed to the yv-plane and, as a result, it unavoidably comes into the
vicinity of the origin, where all three populations, as well as their rates of change, are
very low. The larger K becomes, the closer the limit cycle is squeezed to the yv-plane
and, hence, it comes closer to the vicinity of the origin, where it remains longer.

This implies that to a large extent the system dynamics varies in response to
variations (seasonal or random) of K. It also implies that this system can exhibit
dynamics with long periods of low abundance, when one of the populations, or
all populations, remain at very low and probably undetectable levels (the “apparent
disappearance”), alternating with comparatively short periods of a high abundance.
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Figure 1. Appearance of the stable limit cycle; here, K = 3.33.

Figure 2. Further extension of the stable limit cycle: note the squeezing of the cycle to the yv-plane and
x-axis; here, K = 10.

These speculative considerations are illustrated by Figures 1–3, where the
appearance and development of the stable limit cycle, as well as an arising
phenomenon of apparent disappearance in the model (2.1), is clearly seen. In these
figures we used α = 0.1. The other parameters are a = 1.0, d = 1.0, σ = 1.0 and
m = 0.3. Furthermore, K = 3.33 in Figure 1, K = 10 in Figure 2 and K = 20 in Figure
3. Please note that a comparatively small increment of the carrying capacity (K is
three times larger in Figure 2 compared with Figure 1) leads to the growth of the limit
cycle size and to its squeezing to the yv-plane and to the origin, which is clearly seen
in Figures 2 and 3. Note that the population size scales in these figures are different.

A concavity of the incidence rate with respect to x, which corresponds to the
spatial heterogeneity of the environment or the target bacteria spatial distribution,
makes the apparent disappearance phenomenon more distinctive. Figure 4 shows
the variation of the bacterial (the dashed black curves) and viral (the solid blue
curves) abundance in time for a nonlinear incidence rate of the form αxv/(1 + νx)
for ν = 0.1, 1.0, 2.0, 2.5, 2.9. Figure 4(f) exhibits the limit cycle in the system phase
space for ν = 2.9. In Figure 4, K = 20 and the other parameters are the same as in
Figures 1–3. Please note that the time interval in Figure 4 is 800 (days), whereas in
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Figure 3. Further expansion of the limit cycle and arising of apparent disappearance. Here, K = 20; the
other parameters are the same as in Figures 1 and 2.

Figures 1–3 it is 200 (days). Note that for small concavity (ν = 0.1), the period of
oscillations does not differ from that in Figure 3. However, as the concavity increases
(ν grows), the period increases as well. Thus, for ν = 2.0 the period is approximately
two times longer than that for ν = 1.0.

Another distinctive feature of the system with the concave incidence rate is that in
this case the bacterial abundance exhibits alternating phases of very low (the apparent
disappearance) and very high (close to K) abundance. Moreover, for larger ν, the
phases of high bacterial abundance are longer than those of low abundance. This
implies that for the concave incidence rate, the stable limit cycle in the phase space is
tightly squeezed to the phage-free equilibrium state EK , and the system remains in the
vicinity of this saddle point for a comparatively longer time.

The convexity of the incidence rate with respect to v makes the properties exhibited
in Figure 4 even more striking, since for such an incidence rate the null-surface of the
variable y(t) is not a vertical plane (as it is for the linear function f (v)), but it is bent in
such a way that its point of intersection with the x-axis moves closer to the equilibrium
state EK (see Figure 5). Hence, the canard point also moves in the right-hand direction
closer to the equilibrium state EK and, accordingly, the system remains in the vicinity
of this equilibrium state longer.

4. Discussion and conclusion

In marine ecosystems, significant variations of microbial abundances of
nonseasonal nature are common. In many cases, such variations are caused by seasonal
variations. Nevertheless, unexpected outbreaks and blooms that cannot be explained
by seasonality are not unusual either. During such outbreaks, microorganisms undergo
the phenomenon of “apparent disappearance”. Moreover, in such cases, the transitions
from high to low abundance and then to the succeeding blooms are usually very fast.

With an aim to demonstrate why and how such irregular variations of abundance
and the apparent disappearance can arise in a seemingly regular marine environment,
in this paper we considered a simple model of bacteria–phage interaction. As a
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Figure 4. Subfigures (a)–(e): variation of the bacterial (the dashed black curves) and viral (the
solid blue curves) abundance in time for the model (2.1) with incidence rate αxv/(1 + νx) for ν =

0.1, 1.0, 2.0, 2.5, 2.9, respectively. Subfigure (f): the limit cycle in the phase space for ν = 2.9. In all
figures, K = 20 and the other parameters are the same as in Figures 1–3.
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Figure 5. Schematic representation of the mutual location of the null-surface of the variable y(t), the
canard point and the phage-free equilibrium state EK for the linear (in (a)) and convex (in (b)) with
respect to y incidence rates.

basis for this study, we took the Beretta–Kuang host–parasite model [6] with a free-
living infective stage of the phage, where we postulated the logistic proliferation of
the bacteria and bilinear infection rate. Despite its simplicity, this model exhibits
complex dynamics and demonstrates that the behaviour of the system may undergo
a radical transformation in response to a variation of the parametrization. In particular,
in response to an increment of the environment carrying capacity (simply speaking, an
increase of nutrient concentration in the sea water), this model admits a supercritical
Andronov–Hopf bifurcation leading to a loss of stability and a rise of self-sustained
oscillations. This resembles the enrichment phenomenon in a two-dimensional
predator–prey model. A principal difference is that the enrichment phenomenon
crucially depends on the nonlinearity of the incidence rate with respect to the prey
population, whereas in the Beretta–Kuang model the loss of stability and the rise
of the self-sustained oscillations occur even for the standard bilinear incidence rate.
Furthermore, due to a significant difference in the life cycle time scales of the host
bacteria and the phage, and to the delay between the instance of infection and the death
of infected hosts, which is captured to some extent by this model, the loss of stability
and the appearance of the stable limit cycle can eventually lead to the phenomenon of
apparent disappearance.

Our model allows a simple interpretation for the irregularities in the abundance
and apparent disappearance of microorganisms. This interpretation is based on a
combination of three factors, namely: (i) instability of a positive equilibrium state, (ii)
the existence of a stable limit cycle in a bounded feasible region, (iii) the existence of a
saddle-type equilibrium state at the origin, with a stable manifold forming a part of the
boundary of the feasible region. Under these conditions, as the size of the limit cycle
grows, it is squeezed to the boundary of the feasible region and closely approaches
the equilibrium state along its stable manifold. In the vicinity of an equilibrium state,
the rates of changes for the phase variables are low and, given that this equilibrium
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is at the origin, their values are small. Consequently, as the trajectory is squeezed to
the equilibrium state, the system exhibits lengthy periods of very low abundance. The
difference in the bacterial and viral life cycle time scales changes the abundance from
high to low very fast.

Moreover, in the vicinity of the origin, the rates of change of the phase variables
are proportional to the distance between a current state and the equilibrium. Hence,
durations of the low-abundance periods essentially depend on how closely the cycle
is pressed to the boundary and the origin. This implies that these durations are
very sensitive to variations of the system parameters and, in particular, to variations
of the carrying capacity K. In marine ecosystems, the carrying capacity can vary
significantly (for instance, seasonally) and, as a result, irregularities of the dynamics
can be rather typical for marine microbial systems, especially for marine bacteria–
phage interactions. These also indicate that the results of isolated tests, and even a
sequence of tests taken with too wide intervals, can be misleading.

For viruses, the periods of low abundance can be even longer if the x-axis is a
heteroclinic orbit connecting two saddle points (as in our model and, in fact, as it
should be in any realistic model of bacteria–virus interaction). In such a case, as the
size of the stable limit cycle grows, the cycle comes into the vicinity of the second
saddle-type equilibrium state, where x ≈ K, v ≈ 0 and v̇ is small. As a result, the
system exhibits an oscillatory regime of alternating prolonged periods of high and
low bacterial abundance with fast switchings. Such regimes arise and become more
apparent as the canard point on the x-axis moves to the right-hand side.

In this paper, we initially considered the model with the standard bilinear incidence
rate and postulated that the other functional responses are linear. However, there are
a number of reasons to believe that in marine ecosystems the functional responses are
nonlinear [20, 22]. In particular, the bilinear incidence rate is based on the assumption
of a homogeneous distribution of the bacteria and bacteriophage populations in sea
water, whereas, in reality, in the marine environment, bacteria often form dense
colonies on the surface of small particles providing a source of concentrated nutrients
for them [2, 5, 7, 13]. The distribution of phages is also nonhomogeneous, because
they are released as a cohort at the moment of death of their bacterium host;
community effects and some form of cooperative effects are likely to occur for such
massive simultaneous releases of the virus [18]. In the framework of an ordinary
differential equation model, a nonhomogeneity of the host distribution and cooperative
effects of the phage can be captured, to some extent, by nonlinearities of the functional
responses. Specifically, the nonhomogeneous spatial distribution of the bacteria can be
mimicked by an incidence rate which is concave with respect to the host population,
whereas community effects in the viral population correspond to an incidence rate
that is convex with response to the phage population [15]. The nonhomogeneity of
the environment can also be captured by nonlinear death/removal rates. Note that for
such an incidence rate, the phenomenon of apparent disappearance is more intense.
By the analogy with the phenomenon of enrichment, for such an incidence rate, the
Andronov–Hopf bifurcation (which leads to the loss of stability and the appearance of
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the stable limit cycle) occurs at a lower level of K. Moreover, for such incidence rates,
the canard point is located on the x-axis further to the right-hand side and, hence, the
break up from the canard is delayed, compared with the bilinear incidence rate. As
a result, the cycle is pressed closer to the virus-free equilibrium point (K, 0, 0). This
yields solutions with prolonged periods of high bacterial abundance, longer periods of
viral apparent disappearance and a sharper and shorter viral outbreak.

In this model, irregularities in the dynamics can arise due to slow variations of
the carrying capacity K, which hardly remains constant in the real aquatic systems.
However, apart from that, the model indicates another possibility that should be taken
into account as well. As we mentioned above, the bacteria–phage pairs can indirectly
interact, because the bacterial species in different pairs compete for the same resource.
As a result, fast changes of this resource concentration (and, consequently, changes in
the carrying capacity) caused by blooms of the competing bacterial species are also
possible. In a system where several bacterial species compete for the same resource
and are parasitized by viruses, a likely outcome would be an extremely irregular (and
probably chaotic) dynamics.

In conclusion, in the dynamics with the alternations of abundance, when fast
explosions of a population are followed by equally fast declines, the phenomenon
of apparent disappearance is not uncommon in the population dynamics in general,
including terrestrial ecosystems (in particular, in invertebrates and microorganisms)
and host–parasite systems [4, 37]. It is likely that in many other cases, where the
phenomenon of apparent disappearance cannot be influenced by seasonal impact, the
mechanism behind this irregular dynamics is the same as, or similar to, one that we
described in this paper. An essential element of this dynamics is the existence of a
stable trajectory (a stable limit cycle) that passes near one of the several saddle-type
equilibrium states. It is not necessary for one of these saddle points to be located at
the origin, as it is in the model (2.1). However, their stable manifolds should be part
of the boundary of the feasible region, to which the trajectory is squeezed, and, hence,
the saddle points should be located on the boundary as well.

Acknowledgements
Elena Shchepakina and Vladimir Sobolev are supported by the Russian Foundation

for Basic Research and Samara Region (project 16-41-630529-p) and the Ministry
of Education and Science of the Russian Federation under the Competitiveness
Enhancement Program of Samara University (2013–2020).

References
[1] S. T. Abedon, “Phage evolution and ecology”, Adv. Appl. Microbiol. 67 (2009) 1–45;

doi:10.1016/S0065-2164(08)01001-0.
[2] A. L. Alldredge, J. J. Cole and D. A. Caron, “Production of heterotrophic bacteria inhabiting

macroscopic organic aggregates (marine snow) from surface waters”, Limnol. Oceanogr. 31 (1986)
68–78; doi:10.1088/1742-6596/55/1/008.

[3] W. C. Allee and E. Bowen, “Studies in animal aggregations: mass protection against colloidal
silver among goldfishes”, J. Exp. Zool. 61 (1932) 185–207; doi:10.1002/jez.1400610202.

466

https://doi.org/10.1017/S1446181120000085 Published online by Cambridge University Press

https://doi.org/10.1016/S0065-2164(08)01001-0
https://doi.org/10.1088/1742-6596/55/1/008
https://doi.org/10.1002/jez.1400610202
https://doi.org/10.1017/S1446181120000085


[15] The effect of apparent disappearance

[4] R. M. Anderson and R. M. May, “The population dynamics of microparasites and their invertebrate
hosts”, Philos. Trans. R. Soc. Lond. Ser. B 291 (1981) 451–524; doi:10.1098/rstb.1981.0005.

[5] F. Azam, “Microbial control of oceanic carbon flux: the plot thickens”, Science 280 (1998)
694–696; doi:10.1126/science.280.5364.694.

[6] E. Beretta and Y. Kuang, “Modeling and analysis of a marine bacteriophage infection”, Math.
Biosci. 149 (1998) 57–76; doi:10.1016/s0025-5564(97)10015-3.

[7] N. Blackburn, T. Fenchel and J. Mitchel, “Microscale nutrient patches in planktonic habitats shown
by chemotactic bacteria”, Science 282 (1998) 2254–2256; doi:10.1126/science.282.5397.2254.

[8] J. A. Boras, M. M. Sala, F. Baltar, J. Aristegui, C. M. Duarte and D. Vaqué, “Effect of viruses
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