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Abstract

The analysis of complex networks has so far revolved mainly around the role of nodes and

communities of nodes. However, the dynamics of interconnected systems is often focalized

on edge processes, and a dual edge-centric perspective can often prove more natural. Here

we present graph-theoretical measures to quantify edge-to-edge relations inspired by the

notion of flow redistribution induced by edge failures. Our measures, which are related to

the pseudo-inverse of the Laplacian of the network, are global and reveal the dynamical

interplay between the edges of a network, including potentially non-local interactions. Our

framework also allows us to define the embeddedness of an edge, a measure of how strongly

an edge features in the weighted cuts of the network. We showcase the general applicability

of our edge-centric framework through analyses of the Iberian power grid, traffic flow in road

networks, and the C. elegans neuronal network.
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1 Introduction

The use of network formulations for the analysis of complex systems has attracted

tremendous interest over the last years. Network-centric approaches, in which the

entities (agents, particles) of a system are represented as nodes in a graph and their

interactions are denoted by (weighted, directed, multiplex) edges between nodes, have

been successfully employed to model biological, technical, and social systems (Albert

& Barabási, 2002; Boccaletti et al., 2006; Arenas et al., 2008). The trend toward

this network perspective has been facilitated by the increased availability of large
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relational datasets and growing computational resources. Inevitably, this data-driven

approach has led to the generation of large, highly complex networks. However, such

networks have limited explicative power, and further analysis is usually needed to

extract relevant representations from system interactions. In this context, community

detection aims at obtaining coarse-grained, simplified descriptions of a network

based on group of nodes (i.e., communities) which can provide insight about the

structure and function of the overall system (Schaeffer, 2007; Fortunato, 2010).

Thus far, the majority of research on complex networks has focused on nodes,

their roles, and their groupings into meaningful communities. However, in a number

of scenarios it is the dynamics on the edges and their interplay that defines the

behavior of the system. Consider the generic case in which edges carry a flow

(signal, data, mass, energy, etc.) and where fluctuations or total/partial failures

on edges can occur or be induced. If the direct path between nodes A and B is

blocked and only a fraction of the original flow can be transmitted, this blockade

can cascade through the network affecting the flow on other links. In this case,

edge variables and their mutual influences constitute the object of interest in the

modeling. The duality between edge- and node-based descriptions is at the heart

of applications in circuit theory (even with nonlinear elements; Barahona et al.,

1997; Barahona & Watanabe, 1998), computational mechanics, estimation theory

as well as Systems Engineering and primal/dual problems in optimization theory.

In all these cases, an equivalent edge formulation can be exploited to highlight the

relevance of processes focalized on the edges (or the cycles) rather than on the nodes

of the network (Strang, 1986). (See Appendix A for further connections to classic

work in these areas.) However, such an edge-centric analysis has not been a focus in

the recent literature of complex networks, in which graph-theoretical notions based

on edges, such as the line graph (Harary & Norman, 1960; Godsil & Royle, 2001)

that records the immediate adjacency of edges, have only been used to investigate

overlapping node communities in networks (Evans & Lambiotte, 2009; Ahn et al.,

2010).

In the following, we introduce such an edge-centric framework. Specifically, we

derive an edge-to-edge matrix based on the redistribution of linear flow under

perturbations to the network and rewrite this matrix in terms of global graph-

theoretical measures that quantify the specific architecture of edge-to-edge influences

and the likelihood that each edge is critical to flow redistribution in the network.

Our derivation relates these notions explicitly to generic algebraic graph properties.

The analysis of this edge-to-edge matrix allows us to uncover potentially long-range

relations between edges and can reveal non-local features in the organization of

complex networks. We exemplify the general applicability of our measures with

analyses of the Iberian power grid, traffic flow in road networks, and the C. elegans

neuronal network.

1.1 Notation

We consider connected, weighted, undirected graphs with N nodes (or vertices) and

E edges (or links). Each edge e is endowed with an arbitrary (but fixed) “reference”

direction from the tail node t(e) to its head h(e). Note that the graph is still

undirected : the flow is allowed to pass in both directions along each edge and the
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reference direction merely specifies the sign of the flow on the edge. Each edge e is

associated with a N × 1 incidence vector be with entries [be]h(e) = −1, [be]t(e) = 1

and zero otherwise. Note that other authors use the opposite sign convention for be.

The node-to-edge incidence matrix is then written as:

BN×E = [b1 · · · bE].

Each edge e has an associated (positive) weight or conductance ge, which we compile

into a diagonal matrix

GE×E = diag(ge). (1)

The (weighted) graph Laplacian or Kirchhoff conductance matrix L is then:

LN×N =

E∑
e=1

gebeb
T
e = BGBT . (2)

For connected, undirected graphs, L is symmetric positive semi-definite, with a

simple zero eigenvalue and corresponding eigenvector 1, the vector of ones (Mohar,

1992; Mohar & Juvan, 1997). In the following, node variables are denoted by capital

letters, while small letters are reserved for edge quantities.

2 Edge-to-edge relationships based on flow redistribution

2.1 The flow-redistribution matrix K

As a means to make our formulation of linear flows more concrete, we introduce our

framework through the canonical example of electrical resistor networks (Guattery,

1998; Strang, 1986) and its well-known connection with random walks (Doyle &

Snell, 1984). Indeed, electrical resistor networks are not only relevant for electrical

engineering applications but can also be seen as archetypal models for linear

processes of interest in various biological applications, e.g., vision (Poggio et al.,

1985; Hutchinson et al., 1988), or in the area of community detection (Wu &

Huberman, 2004). A more detailed discussion, reviewing some of the notions of

linear flows on networks, electrical quantities, and classical relations to random

walks can be found in Appendix A. The links of resistor networks to random

walks, commute times, and spectral properties of graphs have also been used for

applications in data mining (Saerens et al., 2004; Fouss et al., 2007), and discussed

in the context of convex optimization (Ghosh et al., 2008) and graph sparsification

(Spielman & Srivastava, 2008). In all these contexts, however, the focus has still

remained on the node space of the graph. In contrast, here we are interested in

defining relations between edges in the network and using them for the analysis in

the edge space of the graph.

The question of how edges influence each other arises naturally in electrical

networks, such as the power grid, in which it is important to assess the effect of an

edge failure on other edges in terms of the extra redistributed flow that those edges

must carry. This effect is quantified through the so-called line-outage distribution

factor (LODF) (Wood & Wollenberg, 1996). We now present a graph-theoretical

formulation of this concept and use it to construct an edge-to-edge matrix, the

flow-redistribution matrix that contains all such edge-to-edge dependencies.
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Fig. 1. Schematic description of the line outage distribution factor (LODF; columns of the

flow-redistribution matrix) and the edge-to-edge transfer function. (a) LODF: a line failure

of edge f will influence the flow on other edges in the network, as illustrated here for edge

e. (b) Edge-to-edge transfer function: an ideal unit current injection along an edge f induces

flows in the network, as depicted here for edge e. (color online)

A resistor network with weighted Laplacian L, given by Equation (2), and external

current injection/extraction Iext is described by the network equations:

LV = Iext. (3)

A set of node voltages V with zero mean and its corresponding edge currents i can

be obtained by computing

V = L†Iext (4)

i = GBTL†Iext (5)

where L† is the Moore–Penrose pseudoinverse of the Laplacian. For a detailed

discussion see Section A.1 in Appendix A.

Consider now a line outage event: An edge f fails and the flow redistributes

through the network (see Figure 1(a)). The redistributed flow can be calculated

easily as follows. The Laplacian matrix L̂f of the new network after the failure of

edge f is:

L̂f = L − gfbfb
T
f . (6)

Applying a generalized version of the Sherman–Morrison–Woodbury formula for

the pseudoinverse (Meyer Jr., 1973), new voltages are:

V̂ = L̂
†
fIext =

(
L† +

L†bfgfbTf L†

1 − gf bTf L
†bf

)
Iext. (7)

The change in the node potentials is then:

ΔfV = (L̂†
f − L†)Iext =

L†bfgfbTf L†

1 − gf bTf L
†bf

Iext. (8)

Note that if , the current on edge f before its failure, is:

if = gfvf = gfb
T
f V = gfb

T
f L

†Iext. (9)
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Using Equations (5) and (8) and (9), the E×1 vector of changes in the edge currents

when edge f fails can be written as:

Δf i =

[
GBTL†bf

1 − gf bTf L
†bf

]
if ≡ kf if. (10)

In the electrical engineering literature, the vector kf is called the LODF for edge f.

Intuitively, the LODF is a measure of the edge-to-edge dependency in terms of

the flow redistribution following an edge failure. Crucially, kf is independent of

the injected current pattern Iext. If we consider the effect of each of the E edges

failing in turn, we get the corresponding vectors ki, which we assemble into the

flow-redistribution matrix :

KE×E ≡ [k1 · · · kE] (11)

which describes the edge-to-edge sensitivity under all possible single edge failures.

Again, the flow redistribution matrix is independent of the particular current

injection, and K describes a topological property of the system: the edge-to-edge

influence under a perturbation of the flows on the links.

We remark that the fth component of Δf i in Equation (10) (and hence the

diagonal entries of K) does not correspond to the (trivial) change in current on the

failed edge. We will show below that these entries convey information which can be

directly related to structural properties of the failing edge.

2.2 Decomposing the flow redistribution matrix

The matrix K is one of the key ingredients for our edge-centric network analysis.

However, to gain a deeper understanding, it is insightful to pause here to discuss

some important graph-theoretical notions underlying the structure of K .

Note that the flow redistribution matrix can be factorized as the product of two

matrices with specific graph-theoretical meaning as follows. Consider a network with

weighted Laplacian L and assume we inject and extract a current I0 at the tail and

head of edge f, i.e., Iext = I0bf (see Figure 1(b)). Equation (5) shows that such an

injection/extraction of current across edge f induces the following current flows in

the rest of the network:

i[f] = [GBTL†bf]I0 ≡ I0 mf . (12)

The edge vector mf is a transfer function relating the injection/extraction of the

current I0 at edge f to the currents induced on all other edges. The matrix compiling

all transfer function vectors is the edge-to-edge transfer function matrix :

ME×E ≡ [m1 · · · mE] = GBTL†B, (13)

where an entry Mef describes how an “input” unit current injected/extracted at

(the endpoints of) edge f is translated into an “output” current flowing at edge e.

Using Equation (10), we rewrite Equation (12) in terms of the LODF vector kf as:

i[f] = I0
[
1 − gfb

T
f L

†bf
]
kf ≡ I0 εf kf (14)

where we have defined the edge embeddedness, εf .
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With these definitions, the flow-redistribution matrix can be rewritten as

K = M [diag(ε)]−1, (15)

where ε is the vector of edge embeddednesses.1 From this decomposition, it becomes

clear that an edge failure will affect the edges in the graph in a similar way as

if an additional source were attached to the failing edge with strength inversely

proportional to the embeddedness of this edge.

The matrices K and M and the vector ε constitute the main object of our work

as graph-theoretical tools for the analysis of edge-to-edge relations, as shown below

in detail.

2.2.1 The edge-to-edge transfer function matrix M

As discussed above, the edge-to-edge tranfer function matrix M describes the input–

output relations in the edge space of the graph. However, it has further important

graph-theoretical properties of interest in different fields: It can be regarded as a

discrete Green’s function on the edge space of the graph, and it also appears in

contexts such as graph sparsification (Spielman & Srivastava, 2008).

Graph-theoretically, M defines an orthogonal projection onto the weighted cut

space of the graph (see Appendix C). The weighted cut space, which is defined as

the range of GBT or the column space of K (Equation (15), provided no edge has

zero embeddedness), establishes the linear combinations of weighted edge vectors

that disconnect the network. Hence, the action of M has a purely graph-theoretical

interpretation: It finds the projection of an “input” edge current (or combinations

of those) onto the space of weighted cuts, thus evaluating how much of the input

current gets distributed onto the weighted cuts disconnecting the network.

The matrix M can also be understood in terms of effective resistances and

commute times. Consider edge e linking nodes i and j, and edge f linking nodes k

and l. From Equation (13),

Mef = ge

(
L

†
ik − L

†
il + L

†
jl − L

†
jk

)
=

ge

2
(Rjk − Rik + Ril − Rjl) (16)

=
πe

4
((Tjk − Tik) + (Til − Tjl)) (17)

where Rij is the resistance distance and Tij is the commute time between two nodes

i, j (see Appendix A.2). Thus (Tjk −Tik) is the difference of commute times to nodes

i and j when starting from node k, and (Til − Tjl) is the difference of commute

times to nodes i and j when starting from node l. Here πe = ge/trace(G) is just the

probability of a random walker crossing edge e (in any direction) at stationarity in

the original network. From this point of view, the edge-to-edge transfer function

compares the difference in commute times to the two nodes of the “output” edge e as

observed from the two nodes of the “input” edge f. A similar formula to Equation

1 The columns of the flow-redistribution matrix are undefined for edges with zero embeddedness. As will
become clear in Section 2.2.2, if such an edge fails, the effect can be trivially understood by considering
the related subgraphs independently. Hence, we only consider examples in which the flow-redistribution
matrix is well defined.
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(16) for the flow-redistribution matrix K can also be given (Lehmann & Bernasconi,

2013).

The relationship between the flow-redistribution matrix K and the edge-to-

edge transfer function matrix M is subtle. While M describes how a current in-

jected/extracted at an edge translates into currents at all edges, the flow-redistribution

matrix describes the relative dependency of edge flows under edge failure. The

edge-to-edge transfer function appears naturally as the flow-redistribution matrix

of a partial α-line failure. Assume that instead of a complete failure of edge f,

its conductance is fractionally reduced by αgf, α ∈ [0, 1]. From Equation (6), the

Laplacian after such an α-line failure is L̂f(α) = L − αgfbfb
T
f . Assuming the same α

applies to all edges, the flow-redistribution matrix for the α-line failure is:

K(α) = αM [I − α diag(Mee)]
−1 . (18)

For small α, this expression can be linearized to give:

K(α) ≈ K(0) +
dK(α)

dα

∣∣∣∣
α=0

α = 0 + M [I − α diag(Mee)]
−2

∣∣∣
α=0

α = αM. (19)

Therefore, M is the slope with which small conductance fluctuations at each edge

affect the flow on other edges.

2.2.2 The edge embeddedness ε

The embeddedness of edge e that we defined in Equation (14) can be rewritten as:

εe = 1 − ge bTe L
†be = 1 − Mee = 1 − geRe (20)

where Mee is the corresponding diagonal element of M, and Re ≡ Rh(e)t(e) is

the resistance distance (Equation (A.7)) between the two endpoints of edge e.

Expression (20) makes again clear that the resistance distance along an edge Re

is not the same as its local, “physical” resistance, re = 1/ge. In fact, the edge

embeddedness measures how close Re and re are.

It is well known from Rayleigh’s Monotonicity law (Doyle & Snell, 1984) that

Re � re, with equality only if edge e is part of no graph cycle, i.e., if e accounts for

the only path between t(e) and h(e). Indeed, Re can always be written as the local

resistance re in parallel to a resistance Rrest stemming from the rest of the network:

1

Re

=
1

Rrest
+

1

re
. (21)

Intuitively, Rrest will be small if the network has many alternative paths (i.e., cycles)

with low resistance connecting h(e) and t(e). Hence, for εe to be large, edge e

should participate in many cycles of short weighted length, i.e., it should be highly

“embedded” and not crucial for the weighted cuts of the graph. On the other hand,

a small εe indicates that the edge participates in few cycles of small weight in the

network. Such an edge would have a major influence on the induction of cuts in the

network and is a key in providing a connection that keeps the network connected.

It is important to remark that the edge embeddedness is not just another measure

of betweenness centrality, as can be easily seen in a variety of examples discussed in

Appendix D.
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Some complementary interpretations of the embeddedness are also worth noting

briefly. In terms of random walks, Equations (17) and (20) allow us to write the

embeddedness of an edge e with tail node i and head node j as:

εe = 1 − πe
Tij

2
= 1 − Tij

2τe
(22)

where τe is the expected time for a random walker to return to edge e. Thus, the

embeddedness compares the expected return time of a random walker to an edge

and the commute time between the two edge endpoints. Furthermore, for unweighted

graphs: (i) the embeddedness of an edge is the probability that the edge is not found

in a spanning tree selected randomly with uniform probability, which follows directly

from the interpretation of the resistance distance in terms of spanning trees (Doyle

& Snell, 1984); (ii) the embeddedness of an edge provides a measure of how global

the influence of a current injection along edge e is, which follows from the fact that

M is symmetric and idempotent (see Equation (C1)) and Mee is equal to the squared

L2 norm of the columns of M (Spielman & Srivastava, 2008).

3 Using edge-to-edge measures for network analysis

Let us now use the flow-redistribution matrix K , and the edge embeddedness

ε defined above to provide an edge-centric analysis of networks. To aid us in

our network-theoretic analysis, we draw upon tools from community detection.

Specifically, we use the recent method of Markov stability of graph communities

(Delvenne et al., 2010, 2013; Lambiotte et al., 2009) to find relevant groupings

of edges by interpreting the flow-redistribution matrix as the adjacency matrix of

an effective edge-to-edge network. Thus, we do not seek to partition the original

graph into distinct node communities but rather aim at grouping edges according to

their influence on each other. Note that the specific choice of community detection

method is not essential, and any other community detection method can be used

in conjunction with our edge-to-edge measures. However, the Markov stability is

particularly useful for our purposes since it intrinsically scans across scales, thus

enabling the detection of communities that include long-range or non-clique-like

structures, which can escape detection by other commonly used methods (Schaub

et al., 2012a, 2012b). The relevant partitions are then selected based on their

robustness properties. Within the framework of the Markov stability, we consider

partitions to be relevant only if they are robust to variability to both the optimization

of the cost function and the parametric dependence on the scale given by the Markov

time, i.e., the robustness is assessed via the variation of information of the found

solutions at each Markov time, as well as the persistence of a partition throughout

the Markov time (see Delmotte et al., 2011; Schaub et al., 2012b).

3.1 A simple constructive example: a ring of small-worlds

To illustrate our analysis, consider a network of N = 150 nodes in which five

small-world (Watts & Strogatz, 1998) subgrids of 30 nodes each are coupled in a

ring-like structure (see Figure 2(a) and Schaub et al., 2012b for details). Intuitively,

the links between the individual subgrids are most critical for the flows traversing
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Fig. 2. Edge-to-edge analysis of a ring of small-worlds. (a) The network analyzed with edges

colored according to the community structure found in the flow-redistribution matrix using

the Markov stability method. The partition into six communities is stable over a long span

of the Markov times with vanishing variation of information, thus signalling its robustness.

(b) Embeddedness of the edges in the network. (c) Heat map of the first 10 PCA components

of the flow-redistribution matrix. Note that the edges linking the small-worlds are grouped

together in one community in (a); have low embeddedness in (b); and concentrate a large

weight of the dominant principal components in (c). (color online)

the system. In case of failure, the inter-grid links will have an effect not only on

the flow distribution inside the sub-grids but more importantly on the other inter-

grid couplings, since all the flows that went through a particular inter-grid link

would have to be “re-routed.” Such a failure might thus lead to an overloading of

another distant inter-grid link—a non-local effect that does not follow trivially from

the pattern of immediate node adjacencies. In power grids, the significance of this

event is obvious: An overloading of another line might in turn lead to another line

failure possibly resulting in a rapid cascade of failures and a blackout of the system.

This intuitive picture can be captured quantitatively with our analysis, as shown in

Figure 2. Figure 2(b) shows that the links between the sub-grids show the smallest

values of embeddedness in the network, as expected.

In order to detect edge-to-edge influences, we analyze the community structure

of graph edges using the Markov stability (Delvenne et al., 2010, 2013; Lambiotte

et al., 2009) on the weighted, directed adjacency matrix of absolute values of the

flow-redistribution matrix (with removed diagonal). We find a robust partition into

six communities: five communities correspond to the subgrids, and all the links

between subgrids are grouped into another community (Figure 2(a)). As stated above,

the robustness of the partition is to be understood here (and in the examples below)

in two ways: (i) robustness with respect to the optimization of the cost function

(Markov stability) of the partitioning at the particular Markov time (which is seen

as a low value of the variation of information calculated from an ensemble of

runs of the Louvain algorithm); and (ii) robustness with respect to the parametric

dependence on the Markov time, i.e., the partition is persistent in time as shown by

the existence of a long plateau across the Markov time (see Figure 2(a)).
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As one might expect, edges within a subgrid are clustered together, as their

influence is mostly constrained to their local subgrid. The fact that the inter-grid

links form one community means that their influence on each other is very strong.

These edges also possess a relatively strong influence on the adjacent subgrids

(as they can “disconnect” them) but their relative influence on each other is even

stronger. In fact, the magnitude of the LODF between two of these edges is exactly

one, indicating that in the case of line failure the other inter-grid edges would be

maximally affected. The use of community detection in combination with the flow-

redistribution matrix thus reveals non-local properties of the network. In the context

of power grids, discovering such structural features could complement percolation-

based node-centric analyses (see, e.g., Brummit et. al., 2012) and provide input to

load-flow-based cascading failure models (Lehmann & Bernasconi, 2010).

The above community analysis is confirmed through a complementary principal

component analysis (PCA) of the flow-redistribution matrix K (Figure 2(c)). As

discussed above, the range of K (and hence its principal components) lies in the

weighted cut space of the graph. Therefore, PCA reveals the most important weighted

cuts in the network with respect to flow redistribution. Figure 2(c) shows that the first

principal components only have components involving the inter-subgrid couplings,

confirming the results of our community detection. In all the examples below, we

have systematically carried out this PCA analysis (not shown), which similarly

confirm the results obtained with the edge embeddedness and the Markov stability

community detection.

4 Applications to real-world networks

We now consider several real-world examples to illustrate the general applicability

of our edge-centric tools. Our aim here is not to perform an in-depth analysis of

each of these systems, which would be beyond the scope of this paper, but rather to

highlight different aspects of the edge-to-edge measures introduced above.

4.1 The Iberian power grid

Our first example is the Iberian subnet of the European Power Grid (Rosas-Casals

et al., 2007; Solé et al., 2008; Schaub et al., 2012b), which consists of 403 nodes

corresponding to generators and substations and 622 edges representing high-voltage

transmission lines. Our description of power systems as resistor networks corresponds

to the so-called DC power flow approximation, a common linearized representation

of the nonlinear load-flow equations around a reference state. Beyond ascertaining

the N − 1 robustness against failure propagation (Wood & Wollenberg, 1996), we

apply here our network-theoretic analysis to reveal (non-local) edge-to-edge features

in this network.

Our community detection analysis finds a robust partition that splits the edges

into three main communities, as shown in Figures 3(a) and (b). Interestingly,

this partition uncovers non-local relationships between the edges: the transmission

lines that connect the northeast with the central part of the grid (edges c1–c3 in

Figure 3(b)), roughly going from Saragossa toward Madrid, appear to be strongly

linked to the north-western part of the grid and form part of this community
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Fig. 3. Analysis of the Iberian power grid. (a) flow-redistribution matrix ordered according

to the community structure found with the Markov stability method. (b) Map of the Iberian

power grid with colors denoting edge communities. The community structure displays

non-local structure: the edges c1–c3 are grouped with the northwest (green) community,

although these edges lie between the northeast (red) and central-south (blue) communities

and have no direct connection with the northwest (green) community. Small local circles

(encircled with gray dotted lines) form their own isolated communities, i.e., they are

effectively “decoupled” from the rest of the network. (c) Influence of edges c1–c3 on

all other edges in the network as measured by the magnitude of the LODF. (d) Edge

embeddedness of all the edges in the network. There are several weakly embedded paths

of lines (marked with magenta arrows), e.g., those connecting the center and south of

Portugal with Spain; the lines going from the centre to the south, from Madrid toward

Andalusia; or the lines connecting Asturias and Galicia along the North-Northwest coast (see

http://en.wikipedia.org/wiki/List of power stations in Spain). (e) Weakly embedded edges

in the Iberian power grid. From left to right, the lowest 10%, 20%, and 35% embedded edges

and associated nodes. (color online)

(green). Figure 3(c) confirms this finding: the influence of edges c1–c3 are much

more significant on the northwest (green) community. This behavior follows from

the fact that edges c1–c3 are part of a long loop going from the northwest eastwards;

connecting to the center via a southern branch containing edges c1–c3, and eventually

going back to the northwest.
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An analysis of the embeddedness of the edges in the Iberian grid is shown in

Figures 3(d) and (e). As we might expect from our previous analysis, edges c1–c3

are only weakly embedded in the graph. Note also that the lines connecting the

center and south of Portugal with Spain show very small embeddedness due to

the lack of alternative routes. A similar observation applies to the line leading

from Madrid toward the south and the line connecting Asturias and Galicia

in the Northwest coast. All of these lines are indicated with magenta arrows in

Figure 3(d). Interestingly, several of these lines are associated with relatively new

solar plants (see http://en.wikipedia.org/wiki/List of power stations in Spain). An

additional assessment of the importance of individual lines is shown in Figure 3(e),

in which the skeleton of increasingly embedded lines of the Iberian grid is displayed.

4.2 Traffic networks

As a second example, we consider traffic networks corresponding to parts of the

street networks of London, Boston, and New York (Youn et al., 2008). We analyze

the networks reported in Youn et al. (2008) (data kindly provided by H. Youn),

in which the nodes correspond to street intersections and the edges are principal

roads as classified by Google Maps. In our analysis we assume the streets to be

undirected, and the edge weights correspond to the number of street lanes. In these

systems, currents can be naturally identified with traffic flows and voltages with

delays, although the relationship between flows and delays is, in general, nonlinear

(see Youn et al., 2008 and references therein). Hence, our analogy with a linear

resistor network amounts to assuming a socially optimal behavior for all drivers,

and in particular “Braess paradox” (Youn et al., 2008; Witthaut & Timme, 2012)

cannot arise in our context. However, based on our simplified linear model, we use

the flow-redistribution matrix and related measures to perform a coarser, topological

analysis of traffic flows independent of patterns of injected flow. We can thus assess

the relative interdependence and importance of the edges (roads) with respect to any

(linear) traffic flow, rather than focussing on the influence of an edge for a particular

source-target pair.

Figure 4 displays the results of our community detection algorithm on these

street networks based on the edge-to-edge flow-redistribution matrix. In the case of

London, we find a robust partition into nine communities of streets, eight of which

correspond to well delimited city areas, while the ninth is a non-local community of

edges comprising two alternative main north–south routes across the Thames: Wa-

terloo Bridge and Farringdon Street, which is a continuation of Blackfriars Bridge.

Our analysis indicates that these two routes are therefore strongly coupled in terms of

flow redistribution. For the two American cities, such non-local community structure

is not observed, as could be expected given the more regular, grid-like structure of

both networks. In the case of New York, we obtain a robust partition into three

communities of streets corresponding approximately to Lower Manhattan/Financial

district in the south; Kips Bay/Lower East Side/East Village on the east side; and

Greenwich Village/Chelsea on the west side. Similarly, Boston is split into three

communities of streets corresponding to Back Bay/Downtown/Beacon Hill; the

second community extending over Cambridge; and the third, smaller community

comprising the Boston University area and Harvard Bridge over the Charles.
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Fig. 4. Analysis of Urban Street Networks of London (82 nodes, 130 edges), Boston (88 nodes,

155 edges), and New York (125 Nodes, 217 edges). Nodes correspond to intersections and

edges to (undirected) streets weighted according to the number of lanes. Light blue dashed

lines indicate some connecting roads not part of the analyzed network. (a) Communities

of streets (denoted by different colors) found from the analysis of the flow-redistribution

matrix with the Markov stability method. The streets within each community have a strong

influence on each other. Unlike Boston and New York, we detect non-local community

structure in the streets of London (red community). (b) Embeddedness of edges in the street

networks. The mean embeddedness in London, 〈ε〉London = 0.377, is lower than for the US

cities (〈ε〉Boston = 0.439, 〈ε〉NewYork = 0.429), mainly due to the more grid-like structure of the

principal roads in the US street networks. Note the low embeddedness of most bridges (or

continuation streets) in London and the existence of a core of highly embedded streets at the

center of Lower Manhattan. (color online)

The study of the edge embeddedness reveals further differences between the cities.

In particular, London and New York present the most dissimilar profiles of ε:

London has the lowest mean embeddedness with a significant tail of streets with

low ε, while New York has the broadest distribution of ε. The edge embeddedness in

New York markedly increases as we go toward Chinatown/Little Italy/Canal Street,

where we find a central core of highly embedded streets. This is expected from the

grid-like structure of the street network one typically encounters in American cities,

which by construction provides many alternative paths to most locations in the

network. New York also has a set of streets with low embeddedness mostly in the

periphery. The presence of low ε edges at the boundaries of the graph is expected

since the flows at the boundaries have fewer alternative paths to be redistributed.

Studying the relevance of such low peripheral ε on larger street networks that have

not been artificially “cropped” will be the subject of future work. Interestingly,

the presence of “internal boundaries” can also induce low-edge embeddedness. An

example for such a street with low ε is the Lincoln Highway/West Street on West
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Lower Manhattan, which has the Hudson River as a natural boundary. In the case

of London, a significant fraction of the streets with low ε lies in the north-south

direction, connecting the areas south of the river Thames with the northern part of

the network. Most of these roads correspond to bridges, which are bottlenecks in

the real street network. In fact, all but one bridge have ε below the mean, including

Waterloo Bridge, London Bridge, and Westminster Bridge with particularly low

scores. The street network of Boston shows a less extreme grid-like structure than

that of New York and falls therefore somewhere in-between London and New York

(see Figure 4).

4.3 Neuronal network of C. Elegans

Our final example is the neural network of the worm C. elegans, one of the few model

organisms for which the entire neural wiring is almost completely available. Here

we use the strongly connected giant component of the network of gap junctions

and chemical synapses (recently enlarged and curated by Varshney et al., 2011;

http://web.mit.edu/lrv/www/elegans/), which consists of 274 nodes (neurons) and

2,253 edges (synapses and gap junctions), which we assume to be undirected. An

in-depth analysis of the functional and structural features of this neuronal network

is beyond the scope of this paper — for pointers to the vast and comprehensive

literature on the subject, see, e.g., White et al., (1986); Varshney et al. (2011); and

Sohn et al. (2011) and references therein.

To display and interpret our results, we use the classification of neurons into body

compartments and functional types in http://www.wormatlas.org/neuronalwiring.

html (Varshney et al., 2011). Position-wise, edges are denoted according to the

compartment (head: H, mid-body: B, or tail: T) in which its end points lie, e.g.,

an HB edge connects the head and mid-body regions. Type-wise, edges are denoted

according to the type of neuron (sensory (S), interneuron (I), and motor (M)) that

they connect, e.g., a S-I edge connects a sensory neuron to a motor neuron.

Figures 5(a) and (b) show the eight communities of edges of this neuronal network,

as obtained by analyzing the flow-redistribution matrix with the Markov stability.

Figure 5(a) shows the communities of synapses ordered according to body positions.

As expected, the edge communities are closely linked to the body structure of the

worm. More precisely, the communities are mainly centered around either head,

mid-body, or tail positions, i.e., the core of each community comprises a group

of either HH, BB, or TT edges. Interestingly, the edges linking different regions

tend to belong to communities centered around the region closest to the tail, e.g.,

HB edges tend to belong to body-centered communities, while HT edges belong to

tail-centered communities (Figure 5(a)). This indicates a “downstream” organization

in the way that synaptic changes affect other neurons: a synaptic failure will tend

to cascade “downstream” from the head region, where most sensory neurons lie,

toward the body and tail regions, where most interneurons and motor neurons lie. In

this sense, changes in sensory synapses “upstream” tend not to affect other similar

sensory synapses, and only affect synapses downstream.

Figure 5(b) shows the edge communities displayed in accordance with their

associated neuronal types (S , I , M). We find that the two communities of edges

connecting to mid-body-positioned neurons (magenta and cyan colors) correspond
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Fig. 5. Analysis of the neural network of C. elegans. The edges of this network (synapses and

gap junctions) were found to belong to eight robust communities (denoted by different colors

in (a) and (b)) according to the analysis of the flow-redistribution matrix using the Markov

stability method. (a) Visualization of the edge communities in the adjacency matrix ordered

according to body position (anteroposterior order). (b) Visualization of the edge communities

in the adjacency matrix ordered according to functional categories: sensory neurons S ,

interneurons I , and motor neurons M. An anteroposterior ordering is applied within each

group. (c) Embeddedness of the edges in the C. elegans neural network. Neurons are colored

according to type: sensory neurons (white), interneurons (gray), and motor neurons (black).

For the visualization of the network we used the planar display suggested by Varshney et.

al (2011): vertical axis corresponds to the position of the neuron in the signaling pathway

(sensory neurons tend to be at the top, motor neurons at the bottom); horizontal axis is

the normalized Fiedler vector (which tends to group nodes with more connections to each

other closer in space). In this visualization, we see that the embeddedness grows as the

processing depth increases: synapses between sensory neurons (upstream) tend to be more

embedded, while edges linked to motor neurons (downstream) tend to be less embedded.

(d) This observation is also confirmed by the skeleton of weakly embedded edges in the

neuronal network of C. elegans: the connections with the lowest 1% (left) and 3% (right)

edge embeddedness. (color online)

mainly to M-M or I-M edges. Hence, these communities might be thought

of as “downstream” executive communities. On the other hand, the tail-centered

community (light green) and one of the head communities (dark green) comprise

mostly couplings from interneurons (of all types S-I , I-I , I-M), suggesting a key

role of these edges in agreement with the commonly accepted role of interneurons

as controlling units in the neural circuitry. The edge community (blue) with the

strongest impact on the sensory modalities includes connections to all neuron types.

In particular, the interneurons linked by the I-I edges in this blue community
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appear to have a central position in the network: they link from/to any edge

community and neuron type, including a large number of connections to motor

neurons. One may thus hypothesize that this group of interneurons interconnected

by the I-I edges in the blue community acts as a control hub processing the inputs

from sensory neurons and relaying it to motor neurons.

The edge embeddedness of the connections in the neuronal network of C. elegans

is shown in Figures 5(c) and (d). We find that the edge embeddedness decreases as

the processing depth increases, i.e., edges with low embeddedness are predominantly

located downstream, in the late stages of the processing hierarchy and connected

to motor neurons (see Figures 5(d)). This can be explained by the fact that motor

neurons are essentially terminal nodes activated from upstream processing via only

a few connections and, in this sense, they belong to weakly embedded “pathways.”

On the other hand, further up in the signaling chain (in synapses related to sensory

neurons), very few edges have low embeddedness (Figure 5(d)), indicating that

signalling synapses are embedded in “circuits” with more alternative paths. One

notable exception is the connection between the interneurons AVFL and AVFR,

which shows low embeddedness even if it is high up in terms of the processing depth.

This low embeddedness reflects a lack of alternative paths for flow redistribution

if this synapse fails. Interestingly, the AVFL and AVFR neurons are thought to be

involved as decision-making interneurons in the temporal coordination of egg-laying

and locomotion of the nematode (Hardaker et al., 2001).

5 Discussion

Analytical tools used to investigate complex networks have commonly adopted a

node-centric perspective, aiming at the characterization of individual nodes or group

of nodes and their relations to each other. In this paper, we have presented tools

to characterize edge-to-edge relations inspired by the redistribution of flow induced

by line failures. We have shown that the flow-redistribution matrix is a topological

descriptor of the network that can be used to quantify edge-to-edge relations induced

by the flow redistribution after a single line failure. Further extensions of this work

are currently under way to consider multiple line outages and the connection with

cascading processes (Güler et al., 2007).

We have illustrated how flow-redistribution matrix can be decomposed into an

edge-to-edge transfer function matrix, which describes how much the injection of

flow at an edge translates in changes of flow in other edges, and a vector of

edge embeddednesses, which describes how costly it is to transit between the two

endpoints of each edge through alternative paths in the network. Our analysis

provides us with explicit network-theoretic interpretations of these edge-to-edge

measures. Adopting such an edge-based perspective can provide a complementary

view of network properties and allows for a natural detection of structural features

which may not be readily found by node-centric methods.

Importantly, the flow-redistribution matrix and the associated edge-to-edge trans-

fer function matrix and embedddedness vector ε take into account non-local

properties of the graph and go beyond local adjacency relations between edges,

as represented by the line graph (Evans & Lambiotte, 2009; Ahn et al., 2010). This

fundamentally non-local nature of our measures emanates from the fact that their
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graph-theoretical description is underpinned by the pseudoinverse of the Laplacian.

The pseudoinverse of the Laplacian incorporates global properties of the graph and

serves to link our measures to other (graph-) theoretically relevant properties such

as the resistance distance, commute and hitting times of random walks as well as

graph embeddings. As discussed in Appendix B, there exist efficient algorithms for

the computation of these measures which are equivalent to the solution of a linear

sparse system.

The examples presented above highlight how our edge-based measures are able to

detect relevant structural features with an impact on the dynamics of the respective

systems. In addition, there are other applications in which adopting an edge-based

perspective would appear natural, including metabolic control analysis, the structural

analysis of biomolecules under bond fluctuations (Delmotte et al., 2011), or financial

networks, in which the disturbance of financial flows between different actors may

have significant effects on different parts of the network.
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Appendix A: Linear flows, electrical networks and random walks

A large class of network processes can be modeled by linear dynamics on a network,

described by state variables on the nodes and edges of a graph (c.f. Strang, 1986 for

an insightful discussion and the reformulation of diverse problems in these terms).

Systems of this type include widely used models of spring–mass–damper networks

of mechanical systems as well as electrical networks and reversible Markov chains

(i.e., random walks or diffusion processes on undirected networks), among many

others. In all cases, a constitutive relation links the flow along an edge with the

node variables at its tail and head. The simplest such relation is an Ohm-type law

that establishes a linear relationship between the flow on the edge and the difference

between the associated node variables.

A.1 Linear flows on networks and electrical quantities

The canonical example of linear flows on edges is the electrical resistor network (and

its analogy to random walks). Henceforth, node variables are denoted by capital

letters, while small letters are reserved for edge quantities. In a resistor network, the

flows on the edges correspond to electrical currents driven by potential differences

across the edges (Ohm’s law). Each node k in the network has an associated potential

Vk , and the potential difference over edge e is ve = Vt(e) − Vh(e). Given the vector of

node potentials V, the vector of voltages across the edges is: v = BTV. The current

on each edge is equal to the edge voltage times the conductance:

i = GBTV (Ohm’s law). (A.1)

Furthermore, by Kirchhoff’s current law (KCL), the in- and out-flow of currents at

each node are balanced:

Bi = Iext (Kirchhoff’s current law), (A.2)

where Iext is the vector of external currents injected into the nodes.2

The properties of the incidence matrix B are directly connected with certain

physical constraints. First, the vector of ones 1N×1 is in the nullspace of BT ,

consistent with KCL. Hence, 1T Iext = 0 and the net injected current into the system

must be zero. Second, the nullspace of B is the cycle space (Guattery, 1998; Godsil

& Royle, 2001), i.e., the space spanned by all cycle vectors. Any (oriented) cycle in

the graph can be represented by a vector cE×1 as follows: moving along the edges

in the cycle, ce = 1 if the edge direction is aligned with the direction of the cycle

and ce = −1 if it is opposite, with all other entries of c zero. Then for any cycle,

cT v = cTBTV = 0, i.e., the voltage drop around any cycle in the graph must be

zero.3 This is, of course, Kirchhoff’s voltage law.

2 If external voltage sources vext along the edges are present, then i = G(BTV − vext). We do not need
to consider external voltage sources separately since each external voltage source can be transformed
into its equivalent current source (Norton equivalent).

3 If magnetic fields need to be included in this formulation, they would be represented by additional
current/voltage sources.
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Combining Equations (A.1) and (A.2), we get the well-known network equations

relating input currents and node voltages:

LV = Iext. (A.3)

Using standard nodal analysis (Strang, 1986), we must first solve for the potential

of the nodes V in Equation (A.3) and then obtain the edge currents from Equation

(A.1). Equation (3) can always be solved, though not uniquely since L is singular.

This corresponds to the fact that the node potentials have an arbitrary reference. To

fix a reference, the network is commonly grounded, i.e., the potential of one (arbitrary)

node is set to zero. This leads to the definition of a (N − 1)-dimensional grounded

Laplacian matrix obtained by deleting a row and the corresponding column (Yuan

et al., 2013; Jadbabaie et al., 2004).

Alternatively, a unique V can be obtained from Equation (A.3) through the

Moore–Penrose pseudoinverse of the Laplacian, L†, which can be written as (Ghosh

et al., 2008):

L† =

(
L +

1

N
11T

)−1

− 1

N
11T . (A.4)

The particular vector of node potentials (and the corresponding edge currents):

V =L†Iext (A.5)

i =GBTL†Iext (A.6)

is the solution of Equation (A.3) with minimal L2 norm, and VT1 = 0. Hence,

the node potentials obtained have zero mean, i.e., the voltages are referred to the

average potential (Jadbabaie et al., 2004).

A.2 Effective resistances and random walk interpretations

An important property of electrical networks is the effective resistance Rij between

two nodes i and j. Physically, Rij is the potential drop measured when a unit

current is injected at node i and extracted at node j. The effective resistance can be

compactly written in terms of the Laplacian pseudoinverse (Ghosh et al., 2008):

Rij = (Ui − Uj)
TL†(Ui − Uj), (A.7)

where Ui is the ith unit vector, with a one at the ith coordinate and zeros in all other

coordinates. Clearly, Rij = Rji. The effective resistance defines a distance metric on

the graph (Klein & Randić, 1993) and is also commonly known as the resistance

distance (between two nodes). For a detailed overview and additional interpretations

of this quantity, see Ghosh et al., (2008) and references therein. Note that Rij has a

global dependence on the network as it takes into account all possible paths between

i and j. Therefore, even if nodes i and j are directly connected by an edge with

conductance ge, the effective resistance Rij will not in general be equal to 1/ge. This

effect, induced by the presence of the network, underpins the concepts developed in

this paper.

A broader, alternative perspective on the electrical formalism discussed above

is provided by the theory of harmonic functions on a graph, which establishes a

fundamental relationship between electrical networks and reversible random walks
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on a graph. Detailed accounts of this topic are given by Doyle & Snell (1984) and

Aldous & Fill (2012), among others. In the context of random walks, the resistance

distance is shown to be proportional to Tij , the commute time of a random walker

between nodes i and j (Aldous & Fill, 2012; Lovász, 1994; Ghosh et al., 2008):

Rij =
Tij

2 trace(G)
, (A.8)

where Tij is the expected time for a random walker to return to node i for the first

time after starting from node i and passing through node j.

The random walk picture also provides interpretations for the currents and

voltages (Doyle & Snell, 1984). Let a unit current be injected into node i and

extracted at node j. Then the current ie corresponds to the net expected number of

times a random walker which starts at node i and walks until she reaches j will cross

edge e in the defined orientation. On the other hand, voltages can be interpreted as

relative hitting probabilities. Let a unit voltage be applied between nodes i and j.

Then the potential at node k corresponds to the probability that a random walker

starting from k will hit node i first before reaching j.

Appendix B: Computational aspects of edge based measures

The computational cost of our method is dominated by the computation of the

pseudoinverse of the Laplacian matrix, for which there are efficient methods (Bozzo

& Franceschet, 2012). In fact, we do not need to compute the pseudoinverse explicitly,

but rather solve a linear system of the form Lx = b. As this system is usually sparse

for many graphs, there exist very fast standard techniques to obtain the matrices K ,

M and the vector of embeddedness ε. In addition, there also exist fast algorithms

to obtain approximately all currents and voltages in the network based on local

averaging. The running time of such methods is O(N + E) to obtain all voltages in

the network (Wu & Huberman, 2004). Hence, all of our measures are computable

by simple (sparse) matrix multiplications. Alternatively, Spielman et. al (2008) have

recently presented an efficient algorithm that allows the (approximate) computation

of any resistance distance between any two nodes in the graph in O(log(N)) time.

Using this method in combination with formulas (20) and (16) can also facilitate

the edge-centric analysis of very large networks in terms of the flow redistribution.

Appendix C: Additional properties of the edge-to-edge transfer function matrix

In the following, we elaborate on further properties and interpretations of the

edge-to-edge transfer function matrix (see also Spielman et al., 2008). First, M is a

projection (idempotent) matrix: M2 = M. To see this:

M2 = GBTL†BGBTL†B = GBTL†LL†B = GBTL†B = M, (C.1)

which follows from the definition of the pseudoinverse. Second, all the eigenvalues

of M are either zero or one. To prove this, consider the symmetrised matrix

M̃ = G−1/2MG1/2 = G1/2BTL†BG1/2 and use the singular value decomposition of B.

It is then easy to show that the eigenvalues of M are (N − 1) ones and (E − N + 1)

zeros (see Spielman et al., 2008 for a different proof of the same results).
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Fig. 6. Comparison between edge embedddedness and betweenness centrality. (a) Illustration

of the difference between embeddedness and betweenness centrality with an unweighted

hierarchical tree (the same argument applies to other centrality measures): while the

betweenness of each edge depends on its position within the tree, the embedddedness is

zero for all edges, independent of their position, since any edge failure will disconnect the

graph. (b) Scatter plots of the embedddedness against betweenness centrality for all edges

of all the networks used in this work. Pearson correlation coefficients are displayed as r.

No dependence between edge embeddedness and betweenness centrality is apparent. (color

online)

We can give a physical interpretation to these results as follows. Since the graph

has N nodes and E edges, we know there are E − (N − 1) independent cycles

spanning the cycle space (Godsil & Royle, 2001; Guattery, 1998). Input currents

that fall into the cycle space will balance and yield zero output, thus leading to the

E − (N − 1) zero eigenvalues. Only inputs that lie in the orthogonal complement

of the cycle space, the so-called cut space (Godsil & Royle, 2001; Guattery, 1998),

will yield a non-zero current output. Let us call the current input orthogonal to

the cycle space the effective input. Conservation of flow implies that the effective

input can only be redistributed in the network, i.e., the flow across any weighted

cut can at most match this input. In particular, the sum of the flows across any

set of (weighted) cut vectors forming a basis for the weighted cut space has to be

equal to the effective input. This corresponds to the fact that the remaining N − 1

eigenvectors of M have unit eigenvalues.

Appendix D: Additional properties of edge embedddedness and comparison with

other centrality measures

As discussed above, the embedddedness of an edge can be interpreted as measuring

how much an edge forms a “bottleneck” in the network. Such a notion is also

inherent in many (edge) centrality measures, which try to assess the importance

of a particular node/edge in a network (Freeman, 1978; Bonacich, 1987; Borgatti,

2005; Delvenne & Libert, 2011). The most prominent notion of edge centrality is

arguably betweenness centrality (Freeman, 1977), which measures how many times

an edge participates in the shortest (geodesic) paths between any two nodes. Another

popular centrality measure is based on random walks (Newman, 2005).
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It is important to note that the embeddedness of an edge presents significant

differences with such measures of edge centrality. While edge centrality measures

assess how important a particular edge is for traversing between any two nodes,

the embeddedness measures how important an edge is for traversing between its

two endpoints through alternative paths. Hence, embeddedness incorporates the

importance of cycles in the graph. To illustrate this difference, consider a binary

tree, as shown in Figure 6(a). The closer we get to the root of the tree, the higher

the betweenness centrality of the edges will be. In contrast, the embedddedness will

be zero for all edges independent of their relative positions, since the outage of

any edge will disconnect the graph. Similar differences apply to random walk-based

betweenness centrality (Newman, 2005).

To give a more quantitative assessment of these differences, we display in

Figure 6(b) a numerical comparison between the betweenness centrality and the

embeddedness of all edges for all the examples used in this work. No dependence

between them is apparent, emphasizing that the embedddedness is an distinctive

measure, different from betweenness centrality.
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