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Pedestrian Collision Mitigation Systems (PCMS) are already in the market for some years. Due to continuously evolving
EuroNCAP regulations their presence will increase. Visual sensors, already capable of pedestrian classification, provide func-
tional benefits, because the reaction behavior can be optimized when the imminent collision object is recognized as pedestrian
or cyclist. Nevertheless their performance will suffer under adverse environmental conditions like darkness, fog, rain or back-
light. Even in such unfavorable situations the performance of radar sensors is not significantly deteriorated. Enabling clas-
sification capability to automotive radar will further improve road safety and will lower PCMS’s overall costs. In this
paper, a multi-reflection-point pedestrian target model based on motion analysis is presented. Together with an appropriate
sensor model, pedestrian radar signal responses can be provided for a wide range of accident scenarios. Additionally velocity
separation requirements that are needed for classification of pedestrians are derived from the simulations. Besides determin-
ation of classification features, the model discloses the limits of classical radar signal processing and further offers the oppor-
tunity to evaluate parametric spectral analysis. Based on simulated and measured baseband radar signals of pedestrians one
of these techniques is deeper analyzed and its enhancement especially on the velocity separation capability is evaluated.

Keywords: Radar applications, Radar signal processing and system modeling

Received 13 October 2014; Revised 19 March 2015; Accepted 22 March 2015; first published online 16 April 2015

I . I N T R O D U C T I O N

According to the Euro NCAP Roadmap Pedestrian Collision
Mitigation Systems (PCMS) will be rated as from 2016.
Although modern PCMS are able to handle these tests,
improving the performance will still go on. After 2016 next
generation PCMS are expected to not just activate the brakes
of a car. Algorithms based on adaptive parameterized pedes-
trian tracking will be used to determine the most suitable emer-
gency manoeuvre out of a diversity of possible mitigation
strategies. Thereby, highest collision mitigation is achieved
while simultaneously preventing unjustified system interven-
tions [1]. To adapt target tracking algorithms to several
object classes, like pedestrians, reliable classification algo-
rithms are necessary. Because of its advantages compared
with other sensing technologies, radar will be one of the essen-
tial sensor technologies in future PCMS. However, one defi-
ciency of modern automotive radar sensors is still the lack of
reliability in pedestrian classification. Addressing this func-
tionality within future generations of radar sensors will
increase road safety especially under adverse weather condi-
tions, like fog, rain or visual reflections of headlights on wet

roads. The value of already existing safety functions will be
increased by reliable classification of critical objects like pedes-
trians because of a higher level of driver’s acceptance of auto-
matic interventions in situations pedestrians are involved.
Additionally unjustified system responses will be suppressed.
For instance, the activation of an active bonnet only in case
of an expected, well-classified pedestrian impact will minimize
maintenance effort and associated costs. First approaches in
automotive radar-based pedestrian classification mostly rely
on the evaluation of object’s range and velocity spreads [2].

In this paper, a multipoint radar target model capable of
simulating high resolution radar responses of most relevant
pedestrian accident scenarios is presented. Detailed results
of a well suited approach of motion analysis are discussed, fol-
lowed by the description of development and integration of
the target model in an automotive radar simulation environ-
ment. Finally, simulation results of pedestrian accident scen-
arios and deduced features for pedestrian classification are
presented. Additionally the impact of applying autoregressive
spectral signal analysis to resolution and classification features
is evaluated both with simulations and measurements.

I I . H U M A N M O T I O N A N A L Y S I S

Based on observations of pedestrians with a 24 GHz
Pulse-Doppler radar, a six point model representing feet,
knees, and two points of the upper body is developed in [3].
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Thereby the movements of the legs are approximated by
sinusoidal oscillations in the direction of motion superim-
posed to the motion of the center of gravity (CoG).
Swinging arms are neglected. A more detailed approach for
pedestrian modeling to estimate human walking parameters
is presented in [4]. Parameters, such as cycle frequency,
cycle length or cycle phase are estimated and visualized with
a human walking scene in virtual reality. In [5], high reso-
lution 12.5 GHz inverse synthetic aperture radar (ISAR) is
used for Doppler measurements of pedestrians. Human
motion simulation and measurements are compared to
define the constraints of image processing radar. Thereby two-
dimensional radar images were simulated from motion data
partially obtained from [6] with respect to seven distinctive
points (sternum, hands, knees, and toes). However, simula-
tions of pedestrian accident scenarios are very rarely
addressed in literature. Most existing target models underlay
simplifications which could affect the derivation of classifica-
tion features. Further on, observations of pedestrians in litera-
ture are often based on measurement principles, like synthetic
aperture radar (SAR) or ultra wideband radar (UWB), that do
not suitably match automotive requirements in terms of
sensor size or available bandwidth.

In this work, a simple but well suited measurement setup is
used to develop a pedestrian target model. Motion sequences
of test persons, tagged at the feet (FR/FL), knees (KR/KL),
hands (HR/HL), elbows (ER/EL), right shoulder, right hip,
and head (H), were recorded cinematically with a frame rate
of up to 240 fps to obtain the space-time information of differ-
ent body parts. Velocity-time functions have been derived
through numerical differentiation and low pass filtering.
Figure 1(a) displays the measured space versus time functions
and Fig. 1(b) the speed versus time functions of each body part.
Because of the linear uniform movement of the head, its func-
tion is considered to be representative for the pedestrian’s
CoG. Closer look at the speed-time-functions shows that
they do not follow an ideal sinusoidal shape, as simple
models in literature propose [3]. This must be kept in mind
when pedestrians shall be realistically represented during
system assessment by articulating dummies, capable of arm
and leg movement. Different lengths of arms and legs result
in different velocity amplitudes. Furthermore it is obvious
from the records that the body parts are accelerated several
times during one gait cycle. Thereby the feet reach the
highest spread in the velocity domain of approximately three
times the mean value. Caused by the rolling motion of

Fig. 1. Space-Time-Function of a walking pedestrian (a) and Speed-Time-Functions of a walking (b), strolling, (c) and jogging (d) pedestrian (FR/FL: foot right/
left, KR/KL: knee right/left, HR/HL: hand right/left, ER/EL: elbow right/left, H: head).
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the feet, their velocities reach zero only for a distinct amount of
time while other body parts are in motion over the whole gait
cycle. Caused by the cinematic measurement method the
positions of the left body parts could not be measured continu-
ously. Nevertheless the measured data are sufficient enough to
prove the assumption that the motion patterns of left and right
extremities are identical with exception of a phase shift of pi,
as can be seen in the space time functions given in Fig. 1(a).

For further investigations on the influence of the walking
speed to the maximum velocity, step frequency and step
length measurements of different paces of a person were con-
ducted. Figures 1(c) and 1(d) show the speed time functions of
strolling and jogging motion. Characteristic values of the dif-
ferent speed-time-functions are listed in Table 1. Thereby the
step frequencies and step lengths are given in relation to the
motion of single legs. Given the minor difference between
the peak velocity during walking and jogging, the existence
of an upper border for the peak velocity can be assumed.
For faster paces the increased mean value is achieved rather
by a broader shape of the curve than by the increase of the
peak velocity. Furthermore, in case of faster movement, sinus-
oidal approximation of the velocity functions is nearly justifi-
able. The results gained with the presented approach are quite
comparable with the findings of more sophisticated measure-
ment methods of [5, 6] and therefore highly suitable for simu-
lation model development.

I I I . S I M U L A T I O N E N V I R O N M E N T

A) Sensor model
A sensor model featuring chirp sequence modulation provides
the advantage of unambiguous range and velocity determin-
ation. Thereby K frequency modulated continuous wave
signals are consecutively transmitted. The reflected and
down converted signal of a single reflecting point with
radial velocity vr and radial distance dr is described by

sIF(t) = e2pj 2fc·dr[ ]/c0( )

·
∑K−1

k=0

e2pj 2fc·vr ·TRRI ·k( )/c0{ }+ 2fc·vr( )/c0{ }+ 2B·dr( )/T·c0{ }( )·t[ ]

· rect
t − k · TRRI

T

( )
, (1)

with single-chirp duration T, bandwidth B, carrier frequency fc,
chirp repetition interval TRRI, and the chirp number k of a chirp
sequence of length K21 [7]. Consequently, the radar target
model of the pedestrian must provide the radial range and vel-
ocity of all considered reflection points for each time step of a
given scenario. Characteristic values of the used modulation
are given in Table 2. These values ensure results with high

resolution and excellent target separability. With regards to
state of the art update rates of automotive radar sensors a dead
time was implemented between the chirp sequences for taking
into account the processing time of the sensor. Of course the
maximum detection range of 76 m is not suitable for all automo-
tive radar applications but it is considered as sufficient for
pedestrian detection at vehicle velocities of up to 100 km/h.

B) Pedestrian target model
To determine analytical velocity versus time and space versus
time functions of each reflection point of the pedestrian target
model, the measured data of Fig. 1 were processed by a Fast
Fourier Transform (FFT). Each velocity function can be repre-
sented by the sum of a small amount of oscillations depending
on a set of complex Fourier coefficients ck.

v(t) = cmean

c0
·
∑1

k=−1

ckej2pkf0t . (2)

Thereby f0 denotes the sample frequency of the camera
which was used for the cinematic measurements described
in Section II. To compensate slight measurement uncertainties
the steady components are rescaled to a common mean value
cmean, corresponding to vmean of Table 1. Integration of (2)
results in space-time representation

s(t) = cmean · t +
∑1

k=−1

cmean

c0

ck

j2pkf0
(ej2pkf0t − 1) + s0,

k [ Z∗, (3)

of the different body parts. Thereby the integration constant
was replaced by the position offsets (s0) between the CoG
and each body part at the beginning of the gait cycle. Given
(2) and (3) and the parameter set of ck enables the simulation
of a multiple point pedestrian motion model for any desired
time length. In the last step the functions were transformed
into a radial coordinate system of the sensor model and
included in the Matlab-based simulation environment. By
providing adjustable parameters such as starting point, direc-
tion angle, vehicle velocity, and simulation duration, this
environment enables the simulation of radar signal responses
of most relevant accident scenarios without the need to run
dangerous or life-threatening real-world tests.

To provide realistic radar signal responses the different
reflection points of the human body feature different Radar
cross-sections (RCS). The signal levels are approximated by
simply combining the mean RCS value of a pedestrian in
the 76 GHz band that is –6.6 dBsm [8] with the partial distri-
bution of the body surfaces according to [9]. The RCS used for
the different body parts are listed in Table 3. Additionally a
factor to model the free space loss was implemented.

Table 1. Characteristic values of different paces.

Strolling Walking Jogging

vmean [m/s] 0.95 1.43 2.20
vmax [m/s] 3.08 4.30 4.60
fstep [Hz] 0.75 0.97 1.20
sstep [m] 1.28 1.47 1.75

Table 2. Modulation characteristics.

Parameter Value Parameter Value

fc 76.5 GHz Cycle rate 20 Hz
B 1 GHz Dvr (resolution) 0.15 m/s
T 20 ms Ddr (resolution) 0.15 m
TRRI 25 ms dr,max 76 m
K 512 vr,max 39 m/s
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Measurements with a radar sensor in the 76 GHz band
were performed in an anechoic chamber to verify the devel-
oped model. Thereby the same modulation parameters, as
provided in Table 2, were used. Figure 2 shows the simulated
(a) and measured (b) Range-Doppler (RD) response of a
radial walking pedestrian developed over one 10 ms long
chirp sequence recorded at the point in gait cycle at which
the speed of 1 ft reached its maximum of approximately
4 m/s (e.g. at time instant of 0.35 s in Fig. 1(b)). Besides
ground clutter presence and minor RCS differences, both
RD responses show very similar distributions of velocities.
The nine points used for simulation are just enough to suffi-
ciently approximate the main reflection points of a pedes-
trian’s radar signal response. Especially the velocity spread,
which is needed to develop and test classification algorithms,
is comparable. However, to generate an accurate radar back-
scatter signal of a pedestrian with a high level of detail the
use of a model with more reflection points or even a simulated
body with continuous surface, comparable with real pedes-
trians, is recommended.

I V . A C C I D E N T S C E N A R I O
S I M U L A T I O N

A closer look on the distribution of accident scenarios shows,
that pedestrian accidents in real world happen not exclusively
in scenarios proposed by Euro NCAP tests [10]. A real world

interpretation of an exemplarily taken test of the NCAP proto-
col is illustrated in Fig. 3(a). Furthermore, a significant
amount of accidents with killed or seriously injured pedes-
trians occurs in additional scenarios like: “Along the carriage-
way on a straight road without obstruction” (Fig. 3(b)). A
system capable to indicate the presence of pedestrians under
adverse visibility conditions, like rain, fog or darkness in com-
bination with wet roads and related reflecting backlight, may
be a good opportunity for radar-based pedestrian classifica-
tion to enter the market.

An automatic triggered pedestrian warning enables the
driver to adapt his driving behavior faster and consequently
helps to avoid potential safety-critical situations. For PCMS
capable of automatic interventions the classification algo-
rithms increase system robustness and decrease the false inter-
vention rate.

In state of the art automotive radar signal processing,
where high resolution leads also to a high amount of backscat-
tering points, several detected reflections are clustered to a
lower amount of hypothesized objects. State variables, such
as position, speed or additional properties of these objects
are then further processed by appropriate tracking algorithms
like a Kalman-Filter. Additionally such a formed group of
reflections can also be used for classification of the objects
by analyzing the expansion in speed or range inside the
cluster. Classification results will be more reliable if more
reflections per object can be separated by the radar. To separ-
ate reflections three domains are available for radar signal pro-
cessing: range, velocity or angular domain. The minimum
requirement for separation of at least two reflections of the
same domain scattered by one real object is that the radar’s
resolution cell is smaller than half of the objects expansion
in the specific domain. To determine separability require-
ments for pedestrian classification in range, velocity, and
angle, pedestrian expansions were analyzed by simulation of

Table 3. RCS values for simulation of reflection points.

Reflection-point FR/FL KR/KL HR/HL ER/EL CoG

RCS [dBsm] 220.7 214.2 223.6 218.6 210.4

Fig. 3. Accident scenarios: (a) crossing pedestrian in a simplified urban area and (b) along a carriageway during darkness.

Fig. 2. Simulated (a) and measured (b) RD response of a walking pedestrian.
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the trajectories of pedestrian body parts in different significant
accident scenarios. Figure 4 exemplarily illustrates the curves
of the velocities and angles over time to collision (TTC) of the
simplified urban crossing scenario introduced in Fig. 3(a).

The expansion in velocity domain can be obtained to a
range of 0.15–0.45 m/s and the expansion in angular
domain to less than 0.58 at 3 s and to ca. 2.58 at 1 s before
impact. Based on human geometry the minimum expansion
in range is simply approximated to 0.5 m. Given those
values and a closer consideration of limitations in bandwidth
and sensor size, the conclusion that the velocity domain seems
to be the most suitable to determine separation requirements
can be drawn, which are achievable by state of the art and near
future radar systems.

For demonstration of the classification potential of high
resolution radar, Fig. 5 provides simulated RD responses
cumulated over several successive chirp sequences for differ-
ent scenarios. A comparison between Figs 5(a) and 5(b)
shows the principle possibility to discriminate a longitudinal
walking pedestrian from a static target next to the road by
evaluating the velocity distribution – even several seconds
before a possible collision may occur. Nevertheless the velocity
spread should not be the one and only feature for robust clas-
sification algorithms. A lot of additional effects are present in
real urban scenarios like the presence of multiple pedestrians
within the same resolution cell or multipath and interference
issues. These effects could lead to velocity spreads similar to
those of pedestrians. To overcome these issues high resolution
radar enables to distinguish between several scattering points
of one physical object. Additional features like the estimation

of multidimensional object size or further statistical analysis
should be derived after grouping of detections to develop
robust pedestrian classification with low false alarm rate.

Especially scenarios with lateral moving pedestrians and
high vehicle velocities, as illustrated in Fig. 3(a), are challen-
ging for radar-based pedestrian classification, because of
smaller angles and corresponding smaller contributions to
the radial velocities. Figure 5(c) shows the RD responses
cumulated over time of such a scenario. Even if some differ-
ences can be recognized by comparing the shapes of Figs
5(a) and 5(c), a clear separation of different reflection points
by their velocities is not reliably possible. Nevertheless a
wide spread of the detected velocities around their mean
values can be still observed over time. This is caused by the
different RCS of the body parts and the fact that radar back-
scatter always responds the superposition of non-resolvable
reflection points. Evaluation of the velocity’s variance over
time is also appropriate for classification of pedestrians in
case of poor separability. This effect can also be seen in the dis-
tribution of the blue dots of Fig. 8.

V . I N C R E A S I N G V E L O C I T Y
R E S O L U T I O N B Y S I G N A L
E X T R A P O L A T I O N

Improvement of the velocity separation capability of a micro-
wave radar requires in general extending the measurement
time and consequently decreasing the cycle rate of the
sensor. Linear prediction based signal extrapolation may

Fig. 4. Trajectories of radial velocities and angles of different body parts versus TTC of a crossing pedestrian scenario with the aim to obtain the necessary
separation requirements.

Fig. 5. RD responses of several measurement cycles cumulated over time for different scenarios: (a) approaching stationary target with 80 km/h and initial
distance of 76 m; (b) approaching longitudinally walking pedestrian with 80 km/h and initial distance of 76 m; (c) approaching crossing pedestrian on
collision course with vveh ¼ 50 km/h.
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offer solutions for this dilemma to some extent. The algorithm
used for this section was adapted from [11] and its application
to real measured data of a radial walking pedestrian is add-
itionally illustrated in Fig. 6. With Linear Prediction theory
previously unknown samples of a signal are generated from
a few known samples by the use of the following equation
and the corresponding linear prediction finite impulse
response (FIR) filter

xn =
∑M

i=1

hi · xn−1, P(z) =
∑M

i=1

hi · z−1, (4)

where xn is the new sample predicted from the previous
samples xn21 and the prediction filter coefficients hi [11].

The step-by-step application of (4) allows the prediction of
an unlimited amount of new samples. In the straightforward
approach hi are determined by application of (4) to a
known section of the signal and the minimization of the pre-
diction error. Because the exact analytical solution only exists
for noiseless theoretical signals for real radar signals another
approach should be used [11]. The coefficients can be deter-
mined by autoregressive modeling algorithms like the Burg
algorithm and relation

h = [h1, . . . , hM] = [−a1, . . . ,−ap], (5)

where [a0, . . ., ap], a0 ¼ 1 are the p + 1 coefficients of an auto-
regressive model of the order p determined from the original
signal. The step by step application of (4) can also be imple-
mented with the infinite impulse response (IIR) synthesis filter

H(z) = 1
1 − P(z) =

1

1 −
∑M

i=1 hi · xn−1

= 1∑p
i=0 ai · xn−1

, (6)

fed with zero input vector of the length of the amount of
samples to be predicted [11]. The needed initial conditions
for this filter are either obtained by feeding the linear predic-
tion FIR filter (4) with all samples of the original signal or by
assuming the prediction of the last p21 originally known
samples by the IIR extrapolation filter.

As displayed in Fig. 6 the presented extrapolation algo-
rithm can be applied to the Doppler signal which, according
to chirp sequence signal processing, is formed by the
complex spectral peaks of a specific range cell of successive
chirps. A frequency analysis of this signal gives the spectrum
of velocities for each range. Additional processing of Constant
False Alarm Rate (CFAR) based noise threshold estimation
and peak detection further leads to detected range velocity
pairs, indicated by pink rhombuses in Fig. 6. Extrapolation
increases the separability, which, for constant sample rate, dir-
ectly depends on the number of samples. The resulting separ-
ability of the presented two-staged algorithm consisting of
linear prediction based signal extrapolation and subsequent
FFT spectral analysis could maximally be as good as the
worst of each stage. In best case the separability of the FFT
can be expected to be the double of the frequency resolution,
whereas the separability of the AR spectra nonlinearly
depends on signal power (SNR) and model order [12].
Figure 7 compares the separation capabilities of autoregressive
spectral analysis with the classical Fourier spectrum separabil-
ity, without application of a window to the time signal.

For proper increase of separability the AR model order
should be chosen between the intersections of the dashed
lines, illustrating the separability of the FFT for length of the
original and extrapolated signal, with the lines of the SNR
dependent separability of the AR spectral analysis. For
highest possible separability enhancement the model order
should be chosen according to the intersection with the red
dashed line, e.g. for targets with 20 dB SNR an AR model
order of 60 would be appropriate in case 512 original
samples should be extrapolated to 1024 samples.

Fig. 6. Overview of the algorithm used for extrapolation applied to real measured data of a radial walking pedestrian.
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To validate the obtained gain in resolution and separability,
Fig. 8 shows the detections over time (blue dots) determined
by classical radar signal processing of 512 samples long simu-
lated signals in comparison with the detections determined by
processing simulated signals extrapolated to 1024 samples
(red rhombuses) of the lateral walking scenario presented in
Fig. 3(a). Doubling the number of samples increases the

spectral velocity separation from 0.3 to 0.15 m/s and enables
separation especially of the legs and feet from the body, at
least during the times of gait cycle when the feet reaches
maximum velocity. A further comparison of the detections
with the velocity functions of the underlying pedestrian
motion model shows that the additional detections deter-
mined by an analysis of the extrapolated signal are mainly
based on the pedestrian’s model functions than on random
effects or noise. To prevent possible disturbing influence the
same CFAR algorithm was used for both analyses.

The improved separation capability compared with classic-
al radar detection algorithms increases the number of detect-
able range Doppler pairs within one physical object. Adequate
grouping of these pairs to hypothesized objects enables esti-
mation of additional features for object classification.

For additional validation the algorithm was applied to real
data measured from a radial walking pedestrian. The pro-
cessed RD responses of the original and extrapolated baseband
signals of 50 consecutive measurement cycles cumulated over
time are given in Fig. 9. Thereby in sum about 400 reflections
have been detected from the original signal whereas more than
500 could be detected after extrapolation. Additionally the
narrower peaks and the corresponding increased separability
in the spectrogram of the extrapolated signal can be seen in
the circled areas. The peak widths especially in the velocity
domain in the spectrum of the extrapolated signal are
smaller compared with the spectrum of the original signal.
This is caused by the application of signal windowing and

Fig. 8. Detections based on simulated signal (blue dots) and based on the extended simulated signal (red rhombuses) versus time of the crossing pedestrian
scenario in comparison with the model based velocity functions.

Fig. 9. RD responses of a radial walking pedestrian cumulated over 50 consecutive chirp sequences without signal extrapolation (left) and with application of
extrapolation (right).

Fig. 7. SNR and model order dependency of AR model spectral separability in
comparision with seperability of FFTs with 512 or 1024 points and no
windowing applied.
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FFTs of larger sizes with respect to the processing of the ori-
ginal signal.

In theory all relevant high resolution target information of
the signal have already been included in the AR parameters or
in the initial conditions and filter coefficients of the synthesis
filter, respectively. A method to obtain signal parameters dir-
ectly from the AR parameters is expected to achieve an even
better separability because no separability deteriorating win-
dowing function needs to be applied in contrast to Fourier
analysis. For example, the frequencies of the original signal
can be obtained directly from the roots of the characteristic
polynomial of the FIR prediction filter. Unfortunately
thereby the phase and amplitude information are lost in the
first place and need to be recovered additionally. An advan-
tage of the proposed method is that, besides enlargement,
the classical radar signal processing chain consisting of FFT,
CFAR, and peak picking algorithm can be maintained.
Furthermore, the challenge of sensitive estimation of the
ideal order of the autoregressive model is avoided because
the proposed method seems to be more robust than the
direct method against common known effects like spurious
spectral peaks and line splitting caused by over fitting the
model order. Another observed advantage is the fact that
the synthesis filter only extrapolates predictable signal compo-
nents. Because noise is not predictable doubling the samples
halves the noise power in the spectrum of the extrapolated
signal. This can also directly be recognized from the color of
the noise levels of the spectrograms of Fig. 9. This effect sup-
ports especially the detection of smaller targets, whose ampli-
tudes without extrapolation would be close beneath the CFAR
threshold.

V I . C O N C L U S I O N

Starting with a detailed pedestrian motion analysis a
multi-reflection-point target model was developed to simulate
radar reflection characteristics of a pedestrian in most relevant
accident scenarios. Based on these, radar resolution and target
separation requirements for pedestrian classification were
derived. Additionally, the captured motion data provided in
this paper can be further used to specify articulating
dummies for system testing.

Because velocity resolution is proportional to measurement
time, which is limited by cycle rate requirements, the potential
of linear prediction based signal extrapolation increasing the
separability in the velocity domain was investigated.
Thereby the extrapolation algorithm was presented in detail
and auspicious results based on simulated and measured base-
band radar signals have been achieved.
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