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ABSTRACT
This paper examines the potential of remote sensing–derived metrics of vegetation phenology and a Multi-Layer Perceptron neural 
network to model the most likely locations of large, agglomerated archaeological sites. Focusing on two different environments 
in central New Mexico, the Galisteo Basin and the Sandia-Manzano Mountain range, this pilot study distinguishes between 
archaeological sites and their surroundings based on differential growth in vegetation. Using data derived from Landsat Thematic 
Mapper, a time series of Normalized Difference Vegetation Indices were created to characterize vegetation phenology in the study 
areas. Distinguishing between archaeological sites and their surroundings, the neural network was trained on a series of known sites 
to develop an output activation layer indicating the possible locations of other, previously unknown sites. This output activation layer, 
treated as a site suitability model, was validated using the receiver operating characteristic area under the curve using known sites 
excluded from the training procedure. Results show promise in large, open areas such as basin environments. While differences in 
vegetation type have relatively little effect, differences in elevation, or more directly the changes in phenology that go along with 
them, negatively impact the ability to infer the presence of archaeological sites using this approach.

Este artículo examina la potencial de métricas de teledetección de fenología vegetal y una red neural de Multi-Layer Perceptron 
para modelar las ubicaciones más probables de sitios arqueológicas grandes y aglomerados. Este estudio preliminar enfoque en dos 
localidades diferentes en el centro de Nueva México, el Cuenco de Galisteo y la cordillera de Sandia-Manzano y distingue entre sitios 
arqueológicos y sus entornos basado en crecimiento diferencial en vegetación. Un serie temporal del índice de vegetación diferencial 
normalizado (NDVI) fue creada de datos derivado de Landsat Thematic Mapper para caracterizar la fenología de las plantas en los 
áreas de estudio. La red neural distingue entre sitios arqueológicos y sus entornos y fue entrenando en un serie de sitios conocidos 
para desarrollar una capa de activación de salida que indique las ubicaciones posibles de sitios desconocidos. Tratado por un modelo 
de idoneidad del sitio, la capa de activación de salida fue validada con sitios conocidos excluidos del proceso de entrenamiento 
usando el área de operador receptor característico bajo de la curva. Los resultados son prometedores para áreas abiertas tal 
como cuencos. Diferencias en vegetación tienen relativamente poco efecto. Sin embargo, diferencias en elevación y los cambios 
concomitantes en fenología afectan negativamente la utilidad de este enfoque para inferir sitios arqueológicos.

Traditionally, archaeology has been a very tactile 

discipline. Excavation, and the acquisition of 

data on the material culture of past people, has 

been completely reliant on the ability of the 

archaeologist to get out into the field. In recent 

years, Geographic Information Systems (GIS) 

and remote sensing techniques have allowed 

archaeologists to acquire data without ever 

having to set foot outside. Through geospatial 

modeling and analysis, including, in particular, 

remote sensing, it is now possible to interpret 

archaeological data on settlement patterns and the 

environment in ways that had not been possible 

prior to the widespread availability of high powered 

personal computers and the geospatial processing 

programs that go along with them (Chase et 
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al. 2012). While ground truthing, or checking 

remotely sensed data for accuracy, is often critical 

to such analyses, the use of satellite imagery in 

archaeological studies has allowed research to 

continue in war-torn areas like Mesopotamia, where 

conventional archaeological work is no longer 

possible (Hritz 2014). 

While references to archaeological data collection in politically 
unstable locations are perhaps the most extreme examples, the 
use of geospatial analysis and remotely sensed data does have 
practical applications for more traditional avenues of research as 
well. In a more mundane way, modern methods of remote sens-
ing have allowed for the examination of large swaths of land that 
are impractical for traditional survey (Kennedy and Bishop 2011; 
Sadr and Rodier 2012). Using tools such as ArcGIS Online and 
Google Earth, which provide access to high resolution imag-
ery of the earth’s surface, as well as data layers characterizing 
waterways, urban areas, and major transportation routes, remote 
sensing data and techniques allow archaeologists to discover 
and analyze sites from a bird’s eye view and gather information 
on settlement patterns on a broad scale (Kennedy and Bishop 
2011; Sadr and Rodier 2012). However, the manual interpretation 
of aerial photography and satellite images for site detection is 
not the only means archaeologists have to discover new sites via 
remote sensing. Using multispectral satellite data, archaeolo-
gists can obtain information on aspects of the environment that 
correspond to anthropogenic activity (e.g., differential vegeta-
tion patterns due to building materials at or below the soil sur-
face) with data that would not have adequate spatial resolution 
to use for visual assessment (Agapiou et al. 2013). When used 
in combination with information about how known archaeologi-
cal sites manifest in terms of remotely sensed environmental 
variables (e.g., vegetation vigor, soil moisture, vegetation type), 
environmental information obtained from remote sensing can 
be used to model site distribution. 

This paper examines the use of remotely sensed data indica-
tive of differential growth in vegetation between archaeologi-
cal sites and their surrounding areas to build site suitability 
models. Focusing on the Galisteo Basin and Sandia-Manzano 
Mountain Range of Central New Mexico, this study relies on the 
principle that anthropogenic modifications to the environment 
have a lasting effect. In areas of prior human habitation, buried 
stonework will have a depressive effect on vegetation growth, 
whereas ditches and middens will encourage the growth of 
plants (Bahn and Renfrew 2008; Lasaponara and Masini 2006). 
Findlow and Confeld (1980) have shown that in New Mexico, 
in particular, areas where humans once settled show changes 
in soil color. Using these differences in the growth of vegeta-
tion observed through remotely sensed data, the authors 
seek to derive a process by which the most likely locations for 
archaeological sites can be modeled in a relatively automated 
manner. In this vein, multispectral imagery was acquired from 
Landsats 5 and 8 (each having a 30m pixel resolution) and used 
to calculate Normalized Difference Vegetation Indices (NDVIs- 
calculated [NIR-Red]/[NIR+Red]) for a time-stacked series of 
images reflective of the rainy seasons in both 2009 and 2013 
(Table 1). These NDVI images were then subtracted from one 

another to heighten differences in vegetation between sites 
and the vegetation of the surrounding area over time. The sets 
of time-stacked images were then used as input variables in a 
Multi-Layer Perceptron (MLP).

MLP is a neural network, a form of machine learning that excels 
at recognizing patterns through a computational abstraction 
of the human brain’s structure (Lippitt, Rogan, Li, Eastman, and 
Jones 2008). Essentially, based on a set of inputs, in this case 
known archaeological sites, the computer uses a recursive learn-
ing procedure to understand the relationship between inputs 
and training data. It then uses the learned patterns to describe 
similarity to known samples, in this case archaeological sites, in 
the form of layers describing neuron activation (i.e., activation 
layers). In the case of presence/absence data like those used in 
this study, the output activation layer for the presence of a class 
(here archaeological sites) can be treated as a suitability layer 
for the likelihood of their existence. This information can then 
be used in the development of a random stratified sample for 
the purposes of survey. In this manner, high activation areas indi-
cated by the model can be weighted more heavily than those 
with a low activation, allowing ground surveys to focus on areas 
most likely to contain archaeological remains.

This analysis was carried out in New Mexico for a variety of 
reasons. While not inaccessible to traditional archaeological 
methods and research, the vast amount of underdeveloped 
and undeveloped land in the state presents a major barrier to 
effective traditional archaeological survey. The amount of time 
and manpower needed to locate and analyze all the historic and 
prehistoric archaeological sites in the state, like many sparsely 
populated regions of the world, would be cost prohibitive. 
These factors make remote sensing the most practical method 
for undertaking extensive archaeological survey of expansive 
regions such as New Mexico. 

BACKGROUND
While the basic principles of using aerial photography and 
vegetation indices for identifying archaeological sites are noth-
ing new to archaeology and have been used before in archaeo-
logical location modeling (Agapiou et al. 2013; Current and 
Schilling 1990; Custer et al. 1986), the use of an artificial learning 
technique such as MLP to automate the process is a relatively 
novel approach. Indeed, even the use of a time-stacked series 
of images to find differences in vegetation indicative of anthro-
pogenic alterations to the landscape is not commonly used in 
archaeological research (although it has been done at least once 
before, as seen in Agapiou et al. 2013). 

Aerial Photography, Satellite Imagery,  
and Archaeology
Since the late nineteenth century, archaeologists have benefited 
from the use of aerial photography for the study of past land-
scapes (for discussions of this, see Bewley [2003]; Parry [1992]; 
Reeves [1936]). As far back as 1919, aerial photography was 
used to map Mesopotamian sites and, shortly thereafter, sites 
in Egypt, South America, Britain, and the United States (Bewley 
2003; Reeves 1936). Soon after, variations in vegetation, such as 
positive and negative crop marks, were used to identify a variety 
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of prehistoric and historic archaeological sites (Bahn and Ren-
frew 2008; Bewley 2003; Lasaponara and Masini 2005; St. Joseph 
1945; Upex 1996). 

With the advent of satellite technologies, these initial remote 
sensing observations were expanded upon in the 1970s and 80s. 
Prior to digital imaging, it was often difficult for archaeologists 
to detect large-scale changes in ecological diversity, along with 
other indicators of past anthropogenic activity. The develop-
ment of satellite imagery allows for landscape wide anthro-
pogenic activities to be detected with relatively little expense 
(Agapiou et al. 2013; Custer et al. 1986; Findlow and Confeld 
1980; Menze and Ur 2004). Software such as Google Earth 
allows for archaeological research over areas too large to cover 
with traditional survey or aerial photography, not to mention 
in areas considered inaccessible to traditional study (Kennedy 
and Bishop 2011; Myers 2010; Sadr and Rodier 2012). Google 
Earth has already been used to locate stone-walled structures in 
South Africa (Sadr and Rodier 2012) and to locate archaeologi-
cal remains across vast tracts of desert in Saudi Arabia (Ken-
nedy and Bishop 2011). Furthermore, freely available Landsat 
imagery has been used to map extensive earthen features such 
as Roman field divisions on Mallorca (Montufo 1997) and those 
related to water management in Northeast Thailand (Parry 1992). 

VEGETATION INDICES AND 
GEOSPATIAL MODELING  
FOR SITE DETECTION
This paper, like others specifically examining how archaeological 
remains manifest themselves in the growth of overlying vegeta-
tion, does not intend to model human behavior. It only models 
the likely places of habitation based on residual phenological 
markers. Combining the idea that satellite imagery can be used 
for site detection and the idea that crop markers and ecological 
diversity provide a useful proxy for the presence of anthropo-
genic remains, several recent studies have looked at changes 
in NDVI to determine differences between archaeological sites 
and their surroundings (Agapiou, Hadjimitsis, and Alexakis 2012; 
Agapiou, Hadjimitsis, Alexakis, and Sarris 2012; Lasaponara and 
Masini 2007). These studies have determined that archaeological 
sites in the agricultural fields of Cyprus, Neolithic Tells in Thes-
saly, and medieval sites in the rolling hills of Italy all have differ-
ent NDVI returns than the areas immediately surrounding them 
(Agapiou, Hadjimitsis, and Alexakis 2012; Agapiou, Hadjimitsis, 
Alexakis, and Sarris 2012; Agapiou et al. 2013; Lasaponara and 
Masini 2007). Lasaponara and Masini (2005, 2006, 2007) have 
even taken this process one step further by examining spatial 
changes, as seen in linear deviations in NDVI in a process they 
call data fusion, to determine the layout of medieval sites using 
high-resolution satellite data from QuickBird. These studies 
demonstrate that, by using remotely sensed data, archaeolo-

gists can determine anomalies in vegetation patterns associ-
ated with the presence of archaeological sites. Taking this one 
step further, it should be possible to focus these efforts on the 
identification of probable sites based on differences in vegeta-
tion growth patterns for the purposes of archaeological survey. 
As high-resolution data from sources such as QuickBird and 
RapidEye come at a cost and cover limited area, this study will 
focus on the construction of a probability model for potential 
archaeological sites using data collected from Landsats 5 and 8, 
freely available from the United States Geological Service (USGS 
2014a) Earth Explorer website. 

While these data have a much lower spatial resolution than 
that acquired with satellites such as QuickBird and RapidEye, 
which offer roughly 2.8-m and 5-m pixel resolution, respectively 
(Heege et al. 2014; Lasaponara and Masini 2005), the key to this 
analysis is that it looks only for anomalies in the growth patterns 
of vegetation. Rather than seeking to understand the detailed 
pattern and structure of historic and prehistoric settlements 
on the landscape, it simply seeks to determine whether the 
patterns in vegetation growth are indicative of potential settle-
ment or anthropogenic landscape modifications. For regional 
archaeological survey (i.e., identification of previously undiscov-
ered sites), the ability to cover large swaths of land at little cost 
is more important than the ability to determine the pattern or 
layout of individual settlement features. 

Modeling the Effects of Human Habitation
As discussed by Mehrer and Wescott (2006), predictive model-
ing using geospatial technologies is becoming increasingly 
common in archaeology. It has been used to understand settle-
ment, environment, and the interplay between the two (Kohler 
et al. 2012; Legg and Anderton 2010). Unlike most American 
archaeological location models, with noted exceptions being 
Custer et al. (1986) and Findlow and Confeld (1980), this study 
does not seek to understand where a hypothetical site could 
have been located, but rather where sites are likely located, 
given observational determinatives that exist in satellite data. 
This perspective is common in academic studies focused on 
Europe (as demonstrated by Agapiou, Hadjimitsis, and Alexakis 
[2012]; Agapiou, Hadjimitsis, Alexakis, and Sarris [2012]; Agapiou 
et al. [2013]; Cavalli et al. [2007]; and Lasaponara and Masini 
[2006, 2007]) but stands in marked contrast to the approach of 
recent American settlement models that are typically based on a 
number of non-human influenced factors, such as seen in Kruse 
(2007) and Stirn (2014), or agent based modeling, such as seen 
in Kohler et al. (2012). 

Indeed, it would appear that the trend within American research 
is, as one paper put it, to develop “plausible models that 
encompass the range of factors affecting… land use” (Hamilton 
et al. 2007:93). Thus, a rift can be seen as developing between 
the two sides of the Atlantic. Archaeological location modeling 

TABLE 1. Dates of Satellite Data Acquisitions and Correlated Time Periods Used in This Study.

Year Time 1 Time 2 Time 3 Time 4 Time 5

2009 May 10 July 13 July 29 October 1 October 17

2013 May 30 June 22 September 26 October 12 -
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in the American academic literature tends to focus on a set of 
features thought to be necessary for settlement, whereas many 
European studies seek to locate sites based on the effects of 
human habitation on the environment. The techniques pre-
sented here tend to follow the latter more than the former and 
represents modeling based on effect rather than cause.

Using the neural network MLP, this study uses differences over 
space and time in vegetation growth, characterized by NDVI, 
to model site location based on the known effects of anthro-
pogenic features on the vegetation. It should be mentioned, 
however, that NDVI is not the only way to calculate a vegetation 
index; other indices do exist, including SR, TSAVI, and DVI, to 
name a few (see Table 1 in Agapiou, Hadjimitsis, Alexakis, and 
Sarris [2012:1500] for a complete list). NDVI was used due to 
the authors’ familiarity and its broad application, including its 
successful use in a different geographic area by Agapiou et al. 
(2013) and Lasaponara and Masini (2005; 2006; 2007). Account-
ing for variation in environmental conditions (e.g., soil type), 
vegetation growth should be fairly uniform across both space 
and time within a localized area. Areas of concentrated human 
activity larger than 30 m2 should show up as anomalies within 
any NDVI dataset based on imagery acquired from Landsat. 
Areas that register as having a phenological growth pattern 
most like that which covers other archaeological sites in the area 
can then be prioritized for survey over areas where vegetation 
growth is not reflective of known anthropogenic changes to the 
environment, ultimately enabling the discovery of new sites.

This method would not be able to identify smaller sites, such 
as those associated with hunters and gatherers or small tool 
production zones; this is in part due to the moderate resolution 
(30m) of Landsat data. The problem with using (primarily) free 
data is that it is typically coarser-grained (i.e., lower spatial resolu-
tion) than commercial data available for purchase. The large 
area covered by every pixel from moderate spatial resolution 
remote sensing data (30 x 30 m in the case of Landsat) makes it 
difficult to distinguish areas of human settlement due to every 
pixel being made up of multiple landscape features (i.e., the 
mixed pixel problem) (Lu et al. 2008). For archaeological data, 
poor resolution and the mixed pixel problem have traditionally 
meant that only sites of about one hectare (10,000 m2) or more 
were detectible using satellite remote sensing data (Verhoeven 
and Dales 1994). Using anomalies in phenological growth over 
time to seek out patterns indicative of anthropogenic alterations 
to the environment, rather than the spatial pattern of vegetation 
anomalies from a single point in time, the method presented 
here has the potential to substantially reduce the minimum 
size of settlements that can be detected using remote sensing 
data of a given spatial resolution. When modeling the location 
of potential sites based on a comparison of the phenological 
growth of samples to that of known archaeological sites, the min-
imum size a site would need to be, hypothetically, is one pixel. 

The effect of human activity on vegetation growth and the 
degree of similarity to the activities of known sites then become 
the primary determinants of the success of this method. Thus, 
a pixel or two containing a small adobe structure occupied 
over generations should appear similar to a pixel within a larger 
adobe structure of the same age due to similarities in construc-
tion, building materials, and possibly even the way in which those 

structures decayed. Similarly, Hejcman et al. (2013) have shown 
that specific use areas within a settlement promote the growth 
of specific species of plants. The identification of sites based on 
similarity in phenology, as characterized by vegetation indices, 
simultaneously considers both variation in vegetation species 
and growth rate. It relies fundamentally on the assumption that 
sites to be discovered exhibit similar anthropogenic effects on 
vegetation as those used to calibrate or train the model. 

METHODS 
Beginning with the assumption that the vegetation indices of 
plant life overlying archaeological sites differ, both spatially and 
temporally, from those of their surroundings (Agapiou, Hadjimit-
sis, and Alexakis 2012; Agapiou, Hadjimitsis, Alexakis, and Sarris 
2012; Agapiou et al. 2013; Cavalli et al. 2007; Custer et al. 1986; 
Findlow and Confeld 1980; Lasaponara and Masini 2006, 2007), 
we present and test a phenology-based site suitability model 
that leverages the demonstrated pattern-learning capacity of 
MLP to differentiate between anthropomorphic/archaeologi-
cal features and their surroundings (for more information on 
MLP analyses, see Eastman [2015:212] and Lippitt, Rogan, Li, 
Eastman, and Jones [2008:1203]). As MLP is a form of adap-
tive machine learning, it has the ability to tightly fit data with 
non-normal distributions (Lippitt, Rogan, Li, Eastman, and 
Jones 2008). The final result output from MLP, in this case, is 
known as an output activation layer describing the similarity of 
each location (i.e., raster grid cell) to the training data, which is 
here used as a site suitability model. MLP is known for having a 
higher degree of map accuracy than other parametric classifiers 
(Lippitt, Rogan, Li, Eastman, and Jones 2008) and for its high 
level of sensitivity to training parameters (Foody 2003), making 
it ideal for the type of modeling proposed here (Lippitt, Rogan, 
Toledano, Sangermano, Eastman, Mastro, and Sawyer 2008).

STUDY AREA
With the aim of locating previously unknown archaeological 
sites, the Sandia-Manzano Mountain Range was selected as an 
initial study area. The Manzano Mountains State Park (2004) has 
indicated that the area was in need of archaeological survey due 
to the high likelihood of previously unidentified archaeological 
sites existing within the park. Historically, the entire area was 
known to have held both early Spanish Colonial structures as 
well as a minimum of five Pueblo villages—the latter of which 
are all recorded as sites by the Laboratory of Anthropology in 
Santa Fe (Barrett 2012). Due to the high potential for archaeo-
logical discovery, the study area used in this analysis extended 
well beyond park boundaries across much of the mountain chain 
and surrounding area. Both of these locations can be found on 
the Path 33, Row 36, tile for LandSat but were analyzed sepa-
rately to test the effectiveness of the model in the relatively 
homogeneous environment of the hilly Galisteo Basin versus 
the relatively heterogeneous environment in the highly varied 
elevations of the Sandia-Manzano Mountains. These areas were 
selected and categorized as homogeneous versus heteroge-
neous due to differences in flora; the Galisteo basin has more 
uniform vegetation, while the vegetation in the Sandia-Manzano 
mountains changes with elevation. 
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Reference Data
Training sites were selected from Adams and Duff’s (2004) The 
Protohistoric Pueblo World, A.D. 1275–1600 and, to a lesser 
extent, Barrett’s (2012) The Spanish Colonial Settlement Land-
scape of New Mexico, 1598–1680 and Wilson’s (1994) Historic 
Resources Reconnaissance Survey of the Manzano and Sandia 
Mountain Villages. Their names and relative locations can be 
seen in Tables 2 and 3, as well as in Figure 1. Since geographic 
coordinates for these sites were not readily available, a majority 
of the sites had to be located through the use of Google Earth. 
The locations of sites found on Google Earth were cross-refer-
enced with maps found in Adams and Duff (2004) and Barrett 
(2012) that reflected their general locations. Similarly, site maps 
drawn during their initial excavations found on the Galisteo Basin 

Archaeological Sites Protection Act website (Center for New 
Mexico Archaeology 2014) were also used to locate these sites. 

A total of only eight sites, with samples being one pixel (30 x 30 
m) in size, were used in the Galisteo Basin, and five sites were 
used in the Sandia-Manzano Mountains. However, many of 
these sites were fairly large; therefore, some were broken down 
into two or three separate inputs so as to increase the sample 
size from which the MLP could train (i.e., calibrate), bringing 
the sample up to 23 archaeological locations (pixels) in the 
Galisteo Basin and 18 archaeological locations (pixels) in the 
Sandia-Manzano Mountains. This was determined to be viable 
due to work by Hejcman et al. (2013) showing that different 
parts of a site display different spectral signatures, given that 

TABLE 2. The Calibration Sites That Went into the Basin MLP Analysis for the Galisteo Basin.

Basin Model 1 Basin Model 2 Basin Model 3

Pueblo Las Madres Pueblo Las Madres Galisteo Pueblo

San Lazaro Galisteo Pueblo San Lazaro

San Lazaro 3 San Lazaro 2 San Lazaro 2

San Cristobal Ghost Town San Lazaro 3

Pueblo Colorado San Cristobal Ghost Town

San Cristobal 2 San Cristobal 2 Pueblo Colorado

Pueblo Blanco  Pueblo She Pueblo She

Pueblo She 2 Pueblo Blanco Pueblo Planco 2

Pueblo She 3 Sueblo She 2 Sam Cristobal 3

Pueblo Blanco 2 Pueblo She 3 San Cristobal 4

Galisteo Pueblo 3 San Cristobal 3 Galisteo Pueblo 3

San Lazaro 4 San Cristobal 4 Galisteo Pueblo 3

San Lazaro 5 Galisteo Puueblo 4 San Lazaro 4

Pueblo Colorado 2 San Lazaro 5 Pueblo Colorado 2

TABLE 3. The Calibration Sites for the Sandia Manzano Mountain Range MLPs..

Mountain Model 1 Mountain Model 2 Mountain Model 3

Paa'ko Gran Quivera Gran Quivera

Tijeras 2 Abo Mission Paa'ko 

Abo Excavation Abo Excavation Abo Mission

Abo Buried Abo Buried 2 Tijeras 2

Unknown Manzano Historic Site Unknown Manzano Historic Site Abo Buried

Quarai Mission Tijeras Abo Buried 2

Quarai Excavation Quarai Mission Tijeras 2

Paa'ko 2 Quarai Buried Quarai Excavation

Unknown Manzano Historic Site 2 Paa'ko 2 Quarai Buried

Gran Quivera 2 Unknown Manzano Historic Site 2 Gran Quivera 3

Gran Quivera 3 Gran Quivera 2 Gran Quivera 4

Paa'ko 3 Gran Quivera 4 Paa'ko 3
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they have different types of plants growing over them, often 
due to differences in activities performed across a site. This 
process was aided by maps available through the National Park 
Service (2014) website for the Salinas Pueblo Missions and, to 
a lesser extent, maps from the Galisteo Basin Archaeological 
Sites Protection Act (Center for New Mexico Archaeology 2014) 
website, showing the extent of these sites in cases where their 
full extent was not clearly visible from satellite imagery avail-
able on Google Earth. Regardless, due to the restrictive nature 
of archaeological site locations, the sample size in the area is 
still rather low. However, as this is a pilot study, it was seen that 
positive results would still be beneficial to the archaeological 
community as a whole and a larger, more representative sample 
will be tested in future research.

Remote Sensing Data
Landsat data was acquired from the USGS (2014a) Earth 
Explorer website for New Mexico’s monsoon season in 2009, 
a relatively dry year, and 2013, a relatively wet year (see Table 
1). This was done to gauge how much the amount of rain a site 

received in a year affected the results of the analysis. Fur-
thermore, the monsoon season for each year was selected to 
heighten temporal changes in plant growth over archaeologi-
cal sites during what is typically referred to as the “green up” 
period. Each image was downloaded as a Level 1 GEOTIFF that 
had already been preprocessed by the USGS for radiometric 
and geometric corrections (USGS 2014b). These images con-
tained full-color spectra and Near Infra-Red (NIR) spectra. Using 
EDRISI, these images were converted into NDVI (calculated as 
[NIR-Red]/[NIR+Red]), using the image calculator. Each image 
was then clipped to reflect the different study areas, so that 
they could be analyzed separately.

Figure 2 shows the processing workflow. Following calculation of 
NDVI, a series of subtractive images were created for each year 
by taking earlier images and subtracting them from later ones 
(i.e., Time 5−Time 4, Time 5−Time 3, Time 5−Time 2, etc.). This 
served to heighten the differences in growth over time between 
archaeological sites and their surroundings, as well as to char-
acterize the difference in growth patterns at different time lags. 
Once each set of images was made, values were extracted from 

FIGURE 1. Study area and the inputs that went into MLP analysis. Known archaeological sites are shown as green dots, while 
null (non-sites) are designated by red dots. Large sites were further subdivided to increase the sample size for inputs.
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a series of archaeological sites (sites that would later be used in 
the MLP analysis as inputs) in combination with a set of null sites 
(geographic points determined to not have any archaeological 
remains on them) to assess differences in phenological growth 
within the data. Previous iterations of this method concluded 
that within the Galisteo Basin, archaeological sites are more 
easily differentiated from non-sites in dry years, whereas in the 
Sandia-Manzano Mountain Range, sites are more easily dif-
ferentiated from non-sites in wet years. Thus, for the Multi-Layer 
Perceptron Analysis, only the images from 2009 were used for 
the basin models, whereas only images from 2013 were used for 
the mountain models. 

Analysis
MLP requires several inputs, including NDVI values for known 
archaeological sites, during what is known as the training pro-
cedure, where the algorithm “learns” how to identify patterns 
similar to the training (i.e., calibration) data it is shown. Itera-
tions of the model were run for both the raw NDVI images and 
the subtractive images, in each, the Sandia-Manzano mountain 
range (i.e., heterogeneous vegetation environment) and the 
Galisteo Basin. Given the relative paucity of training data, a 
modified leave-one-out cross-validation technique was adopted. 
In each iteration, two-thirds of the total number of sites for each 
environment were used to construct the model, with one-third 
being put aside to test the accuracy of that model (Tables 2 
and 3). The result was that three models were run for each set 

of data and each environment, leading to a total of 12 models. 
This was done to ensure that the procedure was both viable and 
repeatable based on the differences between sites and non-
sites rather than the inputs being used.

Once the models were complete, accuracy was assessed using 
both a receiver operating characteristic area under the curve 
(ROC) and high-resolution satellite imagery from Google Earth. 
While ROC checked the validity of each model against train-
ing sites that were not included in the formation of the model, 
Google Earth allowed for a real test to see whether or not previ-
ously unknown anthropomorphic features were being identified. 
These results are discussed below.

RESULTS OF MLP:  
OUTPUT ACTIVATION LAYERS
For the purpose of successfully building a site suitability model, 
an important concept is to build a model that narrows down the 
number of potential sites into something manageable for survey. 
Using MLP’s output activation layer, all models were built under 
this framework. The best results come from the use of the sub-
tractive NDVI images, where all six of the models created drasti-
cally reduced the area that could potentially hold archaeological 
sites (Figure 3). The analysis worked significantly better in the 
Galisteo Basin (ROC = .99) than it did in the Sandia-Manzano 

FIGURE 2. Model for using Landsat data for archaeological site detection using an MLP analysis.
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(ROC = .81–.98; average .895) Mountain Range. The output acti-
vation layers for the Galisteo Basin significantly narrowed down 
the number of potential sites to areas around water sources and 
places of logical human habitation. However, the models for the 
Sandia-Manzano Mountain Range narrowed down the locations 
that registered as potential sites only by about half; leaving an 
oversaturation of potential sites.

Models built for the Galisteo Basin display a higher degree 
of precision (i.e., a lower number of high activation areas) and 
accuracy (ROC = .99 as compared to ROC = .895 for the Sandia-
Manzano mountain range). Model 2 (Figure 3), in particular, 
worked the best out of the three models for the Galisteo Basin 
(ROC = .99). Within Model 2, one can see the pixels most indica-
tive of archaeological sites cluster around what appear to be 
arroyos and riverbeds, exactly where one would expect archaeo-
logical sites to be. Likewise, as New Mexico is an arid environ-
ment, large tracts of land appear to have no potential sites. 
Again, this is expected because it is unlikely that a site would be 
located in an area where the inhabitants would lack easy access 
to water. 

In addition to picking out potential archaeological sites, this 
method also picked out agricultural fields and the urban sprawl 
of Albuquerque. Thus, rather than picking out only archaeologi-
cal sites, the model identifies a variety of anthropogenic activity 
on the landscape. If one wishes to mask out currently built 
environments, it is entirely possible to do that using existing 
land cover datasets (e.g., the United States Geological Survey 
National Land Cover Dataset). 

As both Foody (2003) and Lippitt, Rogan, Li, Eastman, and Jones 
(2008) have pointed out, MLP is highly sensitive to training data. 
If the researcher feels that the results of the MLP analysis are too 
sensitive, then there are ways to correct for it. Two patterns are 
apparent when the results of Model 2 in the Galisteo Basin are 
taken as a case study and the values are extracted and plotted 
onto a bar graph (Figure 4) for both archaeological sites and 
a set of null sites (areas that are selected randomly based on 
satellite imagery and, for a variety of reasons, are believed not 
to contain any archaeological remains). The first is that certain 
sites, such as Pueblo Las Madres, Pueblo Colorado, and Pueblo 
Blanco, do not share the same output values as other sites, 

FIGURE 3: Site suitability model for the Galisteo Basin. Results from the second model run through MLP, showing how much 
like an input site every pixel is from high (red) to low (green). Areas of modern agricultural field near the Rio Grande and the 
circular fields in the center of the map. Albuquerque labeled for reference. Inset extent noted as black rectangle. 
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indicating that the pixels selected to represent them may have 
been poorly selected (i.e., a marker may have been placed on 
a pixel located on the periphery of the site, which would cause 
problems due to the mixed pixel problem (Lu et al. 2008)), and/
or that the phenological growth pattern of these sites substan-
tially differs from that of the other archaeological sites. The 
second is that there is a natural break between a majority of the 
archaeological sites and the null sites. 

If one takes this natural break and creates a binary image (Fig-
ure 5), the number of pixels representing likely sites is greatly 
reduced in a process referred to as thresholding. This was done 
for both the Basin and Mountain environments by taking the 
pixel value just above the highest null site to the nearest tenth 
of a decimal and reclassifying higher values as potential sites 

and lower values as non-sites. Again, using Model 2 for the 
Galisteo Basin as a case study, every pixel value of .5 and above 
was reclassified as a potential site and every pixel of .4999 and 
below was reclassified as having a low likelihood of being an 
archaeological site. Thresholds here were set conservatively, but 
an equally viable option would be to set the threshold much 
higher, attempting to seek out only those pixels that most reflect 
the training data, which would, of course, narrow the target 
search area even further.

ROC and Satellite Validation
Additional validation of this method was completed by using an 
ROC based on the set of inputs withheld from model training. 
As previously stated, one-third of the potential sites were left 

FIGURE 4. Differences in value results between archaeological sites and null sites used for inputs in the Galisteo Basin 
Suitability Model. Using this graph, it is possible to separate the values for sites and non-sites to create the binary image seen 
in Figure 5. 

TABLE 4. ROC Validation Number for the MLP Results. 

Model AUC Model AUC

NDVI  Basin 1 .998501 Subtractive Basin 1 .998159

NDVI  Basin 2 .993501 Subtractive Basin 2 .998392

NDVI  Basin 3 .797502 Subtractive Basin 3 .997734

NDVI Mountain 1 .909502 Subtractive Mountain 1 .817501

NDVI  Mountain 2 .986503 Subtractive Mountain 2 .989502

NDVI  Mountain 3 .899501 Subtractive Mountain 3 .893502
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out of each iteration of the models created by MLP, so that this 
could be done. Results for ROC (Table 4) show that five of the 12 
models created have a 99 percent accuracy rate with no model 
having an accuracy rate lower than 79 percent. However, this 
would indicate that the models created for the Sandia-Manzano 
Mountains also have a relatively high accuracy. Therefore, it was 
necessary to visually check a random sample of probable sites 
for accuracy as well.

Using the models based on the subtractive images showing the 
best results for both the Galisteo Basin and the Sandia-Manzano 
Mountain Range (Model 2 for both), a set of geographic coordi-
nates were selected for this test (Figure 6). In the Galisteo Basin, 
13 of17 randomly selected pixels from the binary image that reg-
istered as being a potential site showed some form of modern, 
historic, or prehistoric human modification when the coordinates 
were examined using Google Earth (Figure 7; Table 5). Human 
modification, here, is defined by the presence of straight lines or 
linear features visible from the air. However, within the coordi-
nates selected for the mountains, only one out of five potential 
sites seemed to show evidence for human modification, though 

it could be that anthropogenic features may not be visible from 
the surface in these areas due to heavy vegetation cover (Figure 
7; Table 5). Only five sites were chosen due to the oversatura-
tion of potential sites in the study area. Therefore, it seems that, 
when using this technique to predict site location, uniformity 
in vegetation phenology (in part due to elevation) is key. We 
note that this study would benefit from a field-based follow-up 
in which areas that registered as potential sites in our analysis 
could be ground truthed or shovel tested to determine accuracy.

DISCUSSION OF THE 
DIFFERENCES BETWEEN BASIN 
AND MOUNTAIN ENVIRONMENTS
Within a large, open area with relatively homogeneous vegeta-
tion and a uniform topography, such as the Galisteo Basin, the 
use of a phenology-based suitability model for the identification 
of potential archaeological sites appears promising. The output 

FIGURE 5. Binary image for the Galisteo Basin. Red indicates potential sites, and green indicates areas not likely to contain a 
site.
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activation layers produced by MLP can be used as a weight in 
the creation of a random stratified sample for the purposes of 
survey. However, results were not nearly as promising in the 
Sandia-Manzano Mountain Range (Figure 8). Looking at Model 
2 for the subtractive images of the mountains, one can see 
that nearly half the pixels in the binary image were classified as 
potential sites, likely indicating an extremely high false positive 
rate. However, we hypothesize that this is likely due to changes 
in the ecological diversity that occur with changes in elevation. 
Nonetheless, if the models for the Sandia-Manzano Mountain 
Range do accurately narrow down what could be considered 
a potential site, then the model presented here succeeds in 
reducing the area that needs to be surveyed by half. Thus, this 
method still presents viable information for weighting a random 
stratified sample in survey. 

Essentially, while the Galisteo Basin is characterized by more 
than one vegetation type, the environment itself is still fairly uni-
form. Within the mountains, however, as one ascends in eleva-
tion, the environment and ecological diversity has the potential 
for radical change. If the changes in phenology and vegetation 

caused by elevation are the cause of reduced inferential power 
in the mountain study site, it is likely that stratification of the 
model by elevation and environment type could substantially 
improve the usefulness of this technique in mountainous envi-
ronments. However, this presents a challenge to the use of MLP; 
to replicate this study within the stratified layers of the Sandia-
Manzano Mountains, there would need to be representative 
samples of archaeological sites in each stratigraphic layer to 
build the model. This is not the case in the Sandia-Manzanos.

POTENTIAL APPLICATIONS  
AND CONCLUSIONS
While the approach described here will allow for the detec-
tion of large, complex archaeological sites in relatively uniform 
environments such as basins and plains, using it across more 
heterogeneous environments, such as montane settings, pres-
ents certain challenges. In addition to its potential for locating 
and identifying previously unknown sites in large, open environ-

FIGURE 6. Locations that MLP characterized as being most likely to have sites were checked for signals of anthropogenic 
modification on Google Earth. These results were then plotted onto a vegetation map, with green dots indicating signs of 
anthropogenic modification and red dots indicating no visible signs.
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ments, in practical terms, this technique can also be used to 
weight a random, stratified sample for archaeological survey. 
Again, however, the size of the changes in sites would be an 
issue here as well. It should be reiterated that this technique 
cannot pick out smaller archaeological sites and features, 
though higher spatial resolution datasets may enable detection 
of smaller sites.

This pilot study focuses on the difference in vegetation over 
time within the study zones. Future iterations of this research will 
include inputs of elevation, soils, and rainfall, all of which directly 
impact the phenology of local flora. Additionally, NDVI is not the 
only vegetation index that can be run with MLP. Other indices 
(e.g., indexes of moisture, geology, other vegetation indices) 
should be run in the future to determine whether they are more 
sensitive to the presence and absence of archaeological sites. 
Similarly, the paired use of phenology with MLP may not be 
the only way to use this method in order to detect previously 
unknown sites. Other markers for site location (e.g., soil, water 
retention) may also be possible.

The phenology-based site detection model outlined here allows 
archaeologists to focus their efforts on areas with the greatest 
potential for archaeological sites, saving both time and money. 
Nonetheless, there are certain limitations. This approach can pick 
up only large, agglomerated sites, such as pueblos, when using 
the coarse-grained data provided by Landsat. Data from new and 
expected remote sensing systems (e.g., RapidEye) may allow this 
analysis to be applied at a finer grain, although the heterogeneity 
implicit in finer-grained data may present a challenge. 

Even with more fine-grained data, it is unlikely that this method 
could ever pick out smaller sites, such as those left by hunters 
and gatherers, due to their ephemeral nature and the minimal 
effect they likely have on vegetation. This method should be 
seen as a complement to traditional archaeological survey rather 
than a replacement (Custer et al. 1986:583; Montufo 1997). It 
allows for the identification of larger sites but can in no way take 
the place of survey for the detection of smaller sites. There is 
a limit to what remotely sensed data can detect. Valuable data 
will still be left undiscovered without the use of the traditional 
detailed survey methods established by scholars, such as the 
contributors to Kent Flannery’s (1982) The Early Mesoamerican 
Village. Nonetheless, because of its potential for finding previ-
ously unknown sites, and the implications this may have for the 
protection of national treasures from looters through cultural 
heritage management, this method does seem to be worth 
exploring.
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FIGURE 7. A subset of Google Earth images showing randomly selected high potential areas. Several areas reflect 
anthropogenic modifications: (a) and (b) Sandia Manzano Mountain Range; (f)–(i) Galisteo Basin. Other areas show no 
indications of human landscape alterations: (b)–(e) Sandia Manzano Mountain Range; (j) Galisteo Basin. 

TABLE 5. Matrix Showing the Results of a Google Earth-Based Analysis of Randomly Selected High Potential Pixels.

Galisteo Basin Sandia-Manzano Mountains

Yes No Model Yes No

N/A N/A No N/A N/A

13 (76%) 4 (24%) Yes 1 (20%) 4 (80%)

Note: Pixels that did not register as sites were not checked on Google Earth for potential sites.
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Data Availability Statement 
Original data were not used in the preparation of this manu-
script, and data that were used can be readily obtained from the 
Internet. The satellite imagery used in this study can be down-
loaded for free from http://earthexplorer.usgs.gov/ by looking 
at the correct tile (Path 33, Row 36) under the Landsat Archive 
dataset. Coordinates for archaeological sites used in this experi-
ment can be acquired through the New Mexico Department of 
Cultural Affairs at http://www.nmhistoricpreservation.org/arms/
faqs.html or by searching out the coordinates for individual sites 
on Google. For this study, the coordinates of sites were found by 
searching Google Earth for their location.

REFERENCES CITED
Adams, E. Charles, and Andrew I. Duff (editors)

 2004 The Protohistoric Pueblo World, A.D. 1275–1600. University of Arizona 
Press, Tucson.

Agapiou, Athos, Diofantos G. Hadjimitsis, and Dimitrios D. Alexakis

 2012 Evaluation of Broadband and Narrowband Vegetation Indices for the 
Identification of Archaeological Crop Marks. Remote Sensing 4:3892–3919. 

 2013 Development of an Image-Based Method for the Detection of 
Archaeological Buried Relics Using Multi-temporal Satellite Imagery. 
International Journal of Remote Sensing. 34:5979–5996.

Agapiou, Athos, Diofantos G. Hadjimitsis, Dimitrios Alexakis, and Apostolos 
Sarris

 2012 Observatory Validation of Neolithic Tells (Magoules) in the Thessalian 
Plain, Central Greece, Using Hyperspectral Spectroradiometric Data. 
Journal of Archaeological Science 39:1499–1512.

Bahn, Paul, and Colin Renfrew

 2008 Archaeology: Theories, Methods, and Practice. 5th ed. Thames and 
Hudson, London.

Barrett, Elinore M.

 2012 The Spanish Colonial Settlement Landscape of New Mexico, 
1598–1680. University of New Mexico Press, Albuquerque.

Bewley, Robert H. 

 2003 Aerial Survey for Archaeology. The Photogrammetric Record 
18:273–292.

Cavalli, Rosa Maria, Francesca Colosi, Angelo Polombo, Steffano Pignatti, and 
Maurizio Poscolieri

 2007 Remote Hyperspectral Imagery as a Support to Archaeological 
Prospection. Journal of Cultural Heritage 8:272–283.

FIGURE 8. Results for the Sandia-Manzano Mountain Range.

https://doi.org/10.7183/2326-3768.4.1.87 Published online by Cambridge University Press

http://earthexplorer.usgs.gov/
http://www.nmhistoricpreservation.org/arms/faqs.html
http://www.nmhistoricpreservation.org/arms/faqs.html
https://doi.org/10.7183/2326-3768.4.1.87


100 Advances in Archaeological Practice  |  A Journal of the Society for American Archaeology  |  February 2016

Predictive Modeling for Site Detection Using Remotely Sensed Phenological Data (cont.)

Center for New Mexico Archaeology

 2014 Galisteo Basin Archaeological Sites Protection Act. Electronic 
resource, http://galisteo.nmarchaeology.org/index.html, accessed 
November 13, 2015.

Chase, Arlen F., Diane Z. Chase, Christopher T. Fisher, Stephen J. Leisz, and 
John F. Weishampel

 2012 Geospectral Revolution and Remote Sensing LiDAR in Mesoamerican 
Archaeology. PNAS 109:12916–12921.

Current, John R., and David A. Schilling 

 1990 Location Modeling: Perspective and Overview. Geographical Analysis 
22:1–3.

Custer, Jay F., Timothy Eveleigh, Vytautas Klemas, and Ian Wells

 1986 Application of LANDSAT Data and Synoptic Remote Sensing to 
Predictive Models for Prehistoric Archaeological Sites: An Example from 
the Delaware Coastal Plain. American Antiquity 51:572–588.

Eastman, J. Ronald

 2015 TerrSet Manual. Clark Labs, Worcester.

Findlow, Frank, and Linda Confeld

 1980 Landsat Imagery and the Analysis of Archaeological Catchment 
Territories: A Test of the Method of Catchment Analysis. In Catchment 
Analysis: Essays on Prehistoric Resource Space, edited by Frank J. Findlow 
and Jonathon E. Ericson, pp. 31–52. University of California, Los Angeles.

Flannery, Kent (editor)

 1982 The Early Mesoamerican Village. Academic Press, Waltham.

Foody, G.M. 

 2003 Uncertainty, Knowledge Discovery and Datamining in GIS. Progress in 
Physical Geography 27:113–121.

Hamilton, Scott, James Graham, and B.A. Nicholson

 2007 Archaeological Site Distributions and Contents: Modeling Late 
Precontact Blackduck Land Use in the Northeastern Plains. Canadian 
Journal of Archaeology/ Journal Canadien d’Archéologie 31(3):93–136.

Heege, Thomas, Viacheslav Kiseleva, Magnus Wettlea, and Nguyen Nghia 
Hungb

 2014 Operational Multi-Sensor Monitoring of Turbidity for the Entire 
Mekong Delta. International Journal of Remote Sensing 35:2910–2926.

Hejcman, M., P. Karlík, J. Ondráček, and T. Klír 

 2013 Short-Term Medieval Settlement Activities Irreversibly Changed 
Forest Soils and Vegetation in Central Europe. Ecosystems 16:652–663.

Hritz, Carrie

 2014 Contributions of GIS and Satellite-based Remote Sensing to 
Landscape Archaeology in the Middle East. Journal of Archaeological 
Research 22:229–276.

Kennedy, David, and M.C. Bishop

 2011 Google and the Archaeology of Saudi Arabia. A Case Study from the 
Jeddah Area. Journal of Archaeological Science 38:1284–1293.

Kohler, Timothy A., R. Kyle Bocinsky, Denton Cockburn, Stefani A. Crabtree, 
Mark D. Varien, Kenneth E. Kolm, Schaun Smith, Scott G. Ortman, and 
Ziad Kobti

 2012 Modelling Prehispanic Pueblo Societies in Their Ecosystems. 
Ecological Modeling 241:30–41.

Kruse, Melissa

 2007 The Agricultural Landscape of Perry Mesa: Modeling Residential Site 
Location in Relation to Arable Land. Kiva 73(1):85–102.

Lasaponara, Rosa, and Nicola Masini

 2005 Quickbird-Based Analysis for the Spatial Characterization of 
Archaeological Sites: Case Study of the Monte Serico Medieval Village. 
Geophysical Research Letters 32(12):L12313.

 2006 Identification of Archaeological Buried Remains Based on the 
Normalized Difference Vegetation Index (NDVI) from QuickBird Satellite 
Data. IEEE Geoscience and Remote Sensing Letters 3:325–328. 

 2007 Detection of Archaeological Crop Marks by Using Satellite QuickBird 
Multispectral Imagery. Journal of Archaeological Science 24:214–221.

Legg, Robert J., and John B. Anderton

 2010 Using Paleoshoreline and Site Location Modeling in the Northern 
Great Lakes: Geoarchaeological Approaches to Prehistoric Archaeological 
Survey in the Pictured Rocks National Lakeshore. Geoarchaeology 
25:772–783.

Lippitt, Christopher D., John Rogan, Zhe Li, J. Ronald Eastman, and Trevor G. 
Jones

 2008 Mapping Selective Logging in Mixed Deciduous Forest: A 
Comparison of Machine Learning Algorithms. Photogrammetric 
Engineering and Remote Sensing 74:1201–1211.

Lippitt, Christopher D., John Rogan, James Toledano, Florencia Sangermano, 
J. Ronald Eastman, Victor Mastro, and Alan Sawyer

 2008  Incorporating Anthropogenic Variables into a Species Distribution 
Model to Map Gypsy Moth Risk. Ecological Modeling 210:339–350.

Lu, Dengsheng, Hanqin Tian, Guomo Zhou, and Hongli Ge

 2008 Regional Mapping of Human Settlements in Southeastern China with 
Multisensory Remotely Sensed Data. Remote Sensing of Environment 
112:3668–36679.

Manzano Mountains State Park

 2004 Manzano Mountains State Park Management Plan 2004–2008. 
Electronic document, http://www.emnrd.state.nm.us/SPD/documents/
ManzanoStatePark_000.pdf, accessed November 13, 2015. 

Mehrer, Mark, and Konnie Wescott

 2006 GIS and Archaeological Site Location Modeling. Taylor and Francis, 
Boca Raton. 

Menze, Bjoern H., and Jason A. Ur 

 2014 Multitemporal Fusion for the Detection of Static Spatial Patterns 
in Multispectral Satellite Images—With Application to Archaeological 
Survey. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing 7:3513–3524.

Montufo, Antonio M.

 1997 The Use of Satellite Imagery and Digital Image Processing in 
Landscape Archaeology: A Case Study from the Island of Mallorca, Spain. 
Geoarchaeology 12:71–85.

Myers, Adrian

 2010 Camp Delta, Google Earth, and the Ethics of Remote Sensing in 
Archaeology. World Archaeology 42:455–467.

National Park Service

 2014 Salinas Pueblo Missions. Electronic document, http://www.nps.gov/
sapu/index.htm, accessed November 13, 2015.

Parry, John T.

 1992 The Investigative Role of Landsat-TM in the Examination of Pre and 
Proto Historic Water Management sites in Northeast Thailand. Geocarto 
International 7(4):5–24.

Reeves, Dache M.

 1936 Aerial Photography and Archaeology. American Antiquity 2:102–107.

Sadr, Karin, and Xavier Rodier

 2012 Google Earth, GIS and Stone-walled Structures in Southern Gauteng, 
South Africa. Journal of Archaeological Science 39:1034–1042.

St. Joseph, J.K.

 1945 Air Photography and Archaeology. The Geographical Journal 
105:47–59.

Stirn, Matthew

 2014 Modeling Site Location Patterns Amongst Late-Prehistoric Villages 
in the Wind River Range, Wyoming. Journal of Archaeological Science 
41:523–532.

United States Geological Service (USGS)

 2014a USGS Earth Explorer. USGS. 01 July 2014. Electronic document, 
http://earthexplorer.usgs.gov/, accessed November 13, 2015.

 2014b Landsat Processing Details. USGS. 08 December 2014. Electronic 
document, http://landsat.usgs.gov/Landsat_Processing_Details.php, 
accessed November 13, 2015.

https://doi.org/10.7183/2326-3768.4.1.87 Published online by Cambridge University Press

http://galisteo.nmarchaeology.org/index.html
http://www.emnrd.state.nm.us/SPD/documents/ManzanoStatePark_000.pdf
http://www.emnrd.state.nm.us/SPD/documents/ManzanoStatePark_000.pdf
http://www.nps.gov/sapu/index.htm
http://www.nps.gov/sapu/index.htm
http://earthexplorer.usgs.gov/
http://landsat.usgs.gov/Landsat_Processing_Details.php
https://doi.org/10.7183/2326-3768.4.1.87


101February 2016  |  Advances in Archaeological Practice  |  A Journal of the Society for American Archaeology

Predictive Modeling for Site Detection Using Remotely Sensed Phenological Data (cont.)

Upex, Stephen

 1996 Leicestershire Headlands: Some Cropmarks in the Midlands. Current 
Archaeology 13:191–193.

Verhoeven, Kris, and L. Dales

 1994 Remote Sensing and Geographical Information Systems (GIS for 
Archaeological Research (Applied in Mesopotamia). In Cinquante-deux 
reflexions sur le Proche-Orient ancien, edited by Hermann Gasche, Michel 
Tanret, C. Janssen, and A. Degraeve, pp. 519–539. Peeters, Ghent. 

Wilson, Chris

 1994 Historic Resources Reconnaissance Survey of the Manzano and 
Sandia Mountain Villages. State Historic Preservation Division of Cultural 
Affairs, Santa Fe. 

AUTHOR INFORMATION
Scott Detrich Kirk and Amy E. Thompson n Department of Anthropology, 
University of New Mexico, Albuquerque, NM 87131 (kirks@unm.edu; 
athomp04@unm.edu)

Christopher D. Lippitt n Department of Geography, University of New 
Mexico, Albuquerque, NM 87131 (clippitt@unm.edu)

https://doi.org/10.7183/2326-3768.4.1.87 Published online by Cambridge University Press

https://doi.org/10.7183/2326-3768.4.1.87

