
Robotica (2015) volume 33, pp. 1446–1470. © Cambridge University Press 2014
doi:10.1017/S0263574714000782

Vision-based topological mapping and localization by
means of local invariant features and map refinement
Emilio Garcia-Fidalgo∗ and Alberto Ortiz
Department of Mathematics and Computer Science, University of the Balearic Islands, Spain

(Accepted February 27, 2014. First published online: April 9, 2014)

SUMMARY
We propose an appearance-based approach for topological visual mapping and localization using
local invariant features. To optimize running times, matchings between the current image and
previously visited places are determined using an index based on a set of randomized kd-trees.
We use a discrete Bayes filter for predicting loop candidates, whose observation model is a novel
approach based on an efficient matching scheme between features. In order to avoid redundant
information in the resulting maps, we also present a map refinement framework, which takes into
account the visual information stored in the map for refining the final topology of the environment.
These refined maps save storage space and improve the execution times of localizations tasks. The
approach is validated using image sequences from several environments and compared with the
state-of-the-art FAB-MAP 2.0 algorithm.
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1. Introduction
Mapping and localization are essential problems in mobile robotics. In order to solve them, several
approaches propose to perform both tasks at the same time, creating an incremental map of an
unknown environment while localizing the robot within this map. These techniques are known
as Simultaneous Localization and Mapping (SLAM).1 In SLAM, loop closure detection is a key
challenge to overcome. It entails the correct detection of previously seen places from sensor data.
This allows generating consistent maps and reducing their uncertainty.

Ultrasounds and laser sensors have been used for years for SLAM and loop closure detection.
Nevertheless, in the last decades there has been a significant increase in the number of visual
solutions because of the low cost of cameras, the richness of the sensor data provided and the
availability of cheap powerful computers. This naturally guides us to an appearance-based SLAM,
where the environment is represented in a topological way by means of a graph. Each node of
this graph represents a distinctive visual location visited by the robot, while the edges indicate
connectivities between locations. Using this representation, the loop closure problem can be solved
by direct image comparison, what avoids the need of maintainance and estimation of the position of
the feature landmarks found within the environment.

In the Bag-of-Words (BoW)2 approach, local invariant features obtained from an image are
quantized into a vector according to a visual vocabulary, typically built during a training phase
through a clustering algorithm, e.g. k-means. This representation is one of the most used techniques
in appearance-based SLAM. However, this method presents some drawbacks. On the one hand, it
is affected by the perceptual aliasing effect,3 i.e. two different places are perceived as the same
because of the similarity between their representations. The quantization process performed during
the clustering step can contribute to emphasize this effect even more. On the other hand, the training
phase is typically performed off-line and can take a long time.

Topological maps obtained from visual information tend to contain spurious paths and nodes.4, 5

This is because of image noise, partial invariance of image descriptors to viewpoint, scale and/or
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illumination changes, or due to the mapping algorithm itself. The final map obtained can be very
large and can contain more nodes than are actually required to represent the environment, resulting
in an increment of the storage needs and the computational requirements. We propose to refine the
map as it is being built, instead of investing efforts in improving the mapping algorithm.

To cope with the aforementioned issues, this paper presents a complete visual mapping and
localization framework based on raw local invariant features and a map refinement strategy. Our
framework was assessed using multiple indoor and outdoor datasets captured under different weather
conditions and illumination changes. As main contributions, we present a Bayesian framework for
visual loop closure detection which uses constellations of local invariant features as image descriptors.
It comprises a novel observation model which allows us to succeed in challenging loop closure
situations such as camera rotations, occlusions and changes in illumination. Using this algorithm as
a key component, we also propose a topological mapping and localization framework, which uses a
map refinement strategy to remove the redundant paths that may appear during the graph building
process. The strategy is presented in this work, by means of a novel map refinement theory based
on the visual information gathered from the environment. This refinement is done online each time a
loop closure is detected.

This work extends our previous solution6 with the contributions enumerated above and as well as
with a more extensive evaluation of the approach. A comparison with the well-known FAB-MAP 2.0
algorithm is also included.

The rest of the paper is organized as follows: Section 2 enumerates fundamental works related
to loop closure detection and visual localization and mapping, Section 3 explains the basics of our
algorithm, including how images are described and matched, our Bayesian loop closure algorithm
using visual features and our novel map refinement framework, Section 4 reports experimental results
obtained from different datasets, and Section 5 concludes the paper.

2. Related Work
A high number of appearance-based localization and mapping solutions were proposed during the
last decade. Although many approaches assume the availability of omnidirectional images,7–13

many others make use of monocular configurations.14–19 Our approach belongs to this latter
class.

Referring to the description of the image, the BoW approach, initially used by Sivic and Zisserman2

for searching images in video sequences, has become quite popular. Descriptors extracted from a set
of training images are clustered using the k-means algorithm, generating a visual vocabulary. When
a query input frame is received, its descriptors are quantized using these visual words. As a result,
the image is described by a list of integers specifying the number of occurrences of each visual word
in the image. Using inverted files, a scoring process based on Term Frequency Inverse Document
Frequency (TF-IDF) weighting is performed in order to select similar previous images. The main
drawback of this approach was the high computational cost, since a linear search was performed
in order to find the nearest reference descriptor in the visual dictionary. Nister and Stewenius20

improved this indexing scheme proposing a vocabulary tree based on a hierarchical k-means approach.
This hierarchical quantization allows to use a larger vocabulary size leading to a better recognition
performance. Using this approach, Fraundorfer et al.18 presented a highly scalable vision-based
localization and mapping method using image collections. They used local geometric information
to navigate within the topological map. Since the BoW approach does not take into account the
spatial arrangement of the detected features, recently Johns and Yang19 showed that quantizing local
features in both feature and image space enhances the recognition performance at different times of the
day.

Probably the most popular solution based on the BoW approach is Fast Appearance-Based Mapping
(FAB-MAP),14 where a Chow-Liu tree approximates the co-occurrences between the visual words
in the vocabulary. This approximation permits the authors to compute efficiently an observation
likelihood which is used in a Bayes filter for predicting loop closure candidates. Initially, this likelihood
was computed for each image candidate in the filter, resulting into computational problems. To speed
up this process, their work was improved in ref. [21] , introducing a probabilistic bail-out test based
on the use of concentration inequalities for rapidly identifying promising loop closure hypotheses,
and in ref. [22], adapting the probabilistic model to be used with an inverted index architecture
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similar to image typical search engines. Recently, Glover et al.23 employed FAB-MAP as a loop
closure component to create a robust appearance-based SLAM system obtaining interesting results
in outdoor environments.

Some authors proposed that a visual vocabulary can be built online while the robot is navigating,
avoiding the offline training phase. Angeli et al.,15, 16 using the online visual dictionary proposed by
Filliat,24 extended the BoW paradigm to incremental conditions and relied on Bayesian filtering to
estimate the probability of loop closure. Their work was expanded constructing a complete topological
SLAM system4 and including robot odometry information.25 Nicosevici and Garcia26 presented an
online visual vocabulary building method based on agglomerative clustering. They used this algorithm
for mapping underwater environments. Since these methods avoid the execution of the offline training
phase, they are limited to smaller vocabulary sizes.

Despite its well-known general performance, the BoW paradigm is more affected by perceptual
aliasing.3 For this reason, our loop closure detection algorithm follows an approach similar to refs.
[15, 16], but uses local invariant features for image description and matching.

Other approaches make use of global descriptors, such as Gist.27 Singh and Kosecka12 computed
Gist descriptors from omnidirectional images of urban environments for detecting loop closures.
They presented a novel image matching strategy for panoramas, but Bayes filtering is not considered
in this work. Liu and Zhang28 applied Principal Component Analysis (PCA) to Gist descriptors
in order to compute the likelihood in a particle filter which is used for detecting loop closures.
Siagian and Itti29 presented a biologically-inspired system to scene classification using Gist as
image representation. Recently, other global descriptors were used for mapping and localization,
e.g. BRIEF-Gist,30 Weighted Gradient Orientation Histogram (WGOH),31 Weighted Grid Integral
Invariant (WGII),32 Orientation Adjacency Coherence Histogram (OACH)33 or Whole Image SURF
(WI-SURF).34 The main drawback of these descriptors is that they are not descriptive enough, and
thus they are more sensitive to noise, which leads to a larger number of incorrect detections. For this
reason, they are usually employed for place categorization, where the goal is to know the type of
place where it is.

Rather than BoW or global descriptors, some authors used local invariant features for visual
localization and mapping as well as for loop closure detection. Kawewong et al. presented Position-
Invariant Robust Features (PIRFs),11 a method for generating averaged features from Scale-Invariant
Feature Transform (SIFT) keypoints35 that can be matched along several consecutive frames. These
features are then used as input in an incremental appearance-based SLAM algorithm based on
a majority voting scheme. Valgren et al.36 used Incremental Spectral Clustering (ISC) to cluster
images and create a topological map of the environment. Bacca et al.37 proposed an innovative
feature management approach for topological map-building and localization, which is based on a
human memory model and implements concepts such as Short-Term Memory (STM) and Long-Term
memory (LTM). Using Feature Stability Histograms (FSH), their method can deal with temporary
occlusions and changes in illumination caused by dynamic environments. Booij et al.5 showed a
navigation system based on a topological map which used the epipolar geometry to obtain a robust
heading estimation. Recently, Zhang3 presented a method for selecting a subset of SIFT features
extracted from an image. These features are used for matching consecutive images. A location is
represented by a set of features that can be matched consecutively along several images. The problem
of this approach is that the number of features to manage increases while new images are added, and
a linear search for matching becomes intractable. In order to overcome this issue, in this work, we
index features using a set of randomized kd-trees.

Even though most solutions are based on either topological or metric maps, some authors tried
to make hybrid solutions. Zivkovic et al.7 presented an algorithm for automatically generating
hierarchical maps from images. A low-level map is built using SIFT keypoints. Then they cluster
nodes to construct a high-level representation. In ref. [13],13 a hierarchical localization method
for omnidirectional images is proposed. Vertical lines are matched using pyramidal matching in
order to obtain the most similar image to the current one in a predefined visual memory. The
1D radial trifocal tensor is employed to obtain a metric localization. Blanco et al.38 presented a
solution called Hybrid Metric-Topological SLAM (HTM-SLAM), where they propose probability
distributions over both metric and topological maps. These approaches try to maximize the advantages
and minimize the problems of each kind of map alone and combine them in a different mapping
technique.
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Fig. 1. Overall algorithm diagram. See text for details.

Fig. 2. Image selection policy. The current image taken by the camera (6) is matched with the image that
represents the current keyframe (0) and the last received image in the sequence (5) in order to determine if it is
a useful frame. K represents the current location (keyframe), S and T represent images discarded because they
are, respectively, similar enough to the current location or camera turns.

3. Algorithm Overview
The main goal of our approach is to construct a clean visual representation of the robot environment
using a single monocular camera while localizing the robot within this map. Since in a real scenario
storing all images taken by the camera is impossible, we need to reduce the number of images to
manage without losing visually distinct locations found in the robot environment. The elements of
this subset of images are called keyframes.39 Our approach is also based on the keyframe concept, as
it is outlined in Fig. 1 and Algorithm 1. In our map, each node represents a keyframe image, and each
keyframe is represented by its corresponding SIFT35 features. In order to select these keyframes, we
discard: (a) images similar to the current location of the robot (keyframe), since they do not provide
distinct visual information about the environment and therefore are redundant; and (b) robot camera
turns, because they are noisy and can introduce errors in the mapping and localization processes. For
the first case, SIFT features of the current image are matched applying the ratio test35 to the features of
the current location keyframe. If the number of matched features is higher than a threshold, the image
is considered similar to the current location. The same matching step is applied between the current
image and the last received image in the sequence: if it is not possible to match a certain number of
features, the image is classified as a turn. In these two cases, the image is discarded. Otherwise, it is
considered useful and needs to be processed in order to determine whether it is a loop closure or a
new keyframe to be added to the map. This keyframe selection policy is shown graphically in Fig. 2.

Our loop closure approach makes use of a discrete Bayes filter. This filter is updated with every
image irrespective of whether the image has been discarded or not. If a loop closure is not found, the
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Algorithm 1 Appearance-based mapping and localization
1: /* Variables */
2: I = {I0, . . . , IN−1}: Sequence of N input images.
3: G: Graph representing the environment topology.
4: k: Current keyframe index.
5: Ft : Set of SIFT features obtained from image It .
6: c: Candidate keyframe index for closing a loop.
7: Mi

j : Matchings between images Ii and Ij .
8: C: List of nodes not inserted in the filter as hypotheses yet.
9: l: Boolean variable indicating whether a loop was detected or not.

10:

11: k = 0
12: F0 = describe(I0)
13: addToCache(C, 0)
14: for t = 1 to N − 1 do /* While there are images */
15: Ft = describe(It )
16: updateFilter(Ft )
17: Mt

k = match(Ft , Fk)
18: Mt

t−1 = match(Ft , Ft−1)
19: if useful(Mt

k,M
t
t−1) then /* Useful Image */

20: l, c = detectLoopClosure(G, Ft )
21: if l then /* Loop Closure Detected */
22: addLink(G, k, c)
23: refineMap(G)
24: k = c

25: else /* New node */
26: addNode(G, t)
27: addLink(G, k, t)
28: addToCache(C, t)
29: k = t

30: end if
31: end if
32: releaseHypotheses(C)
33: end for

current image is considered as a new keyframe and is added to the map as a new node. Otherwise,
we create a link between the current location of the robot and the loop closure candidate and, then,
a map refinement process runs, in order to determine if redundant paths exist. As a consequence, a
set of superfluous nodes may be detected. If this is the case, they are removed from the map, and the
robot position within the map is updated accordingly.

In order to avoid false loop closure detections between the current image and its neighbours in the
sequence, new keyframes are not inserted directly as loop closure hypotheses in the filter. They are
instead stored in a temporarily cache list and pushed into the filter once a certain number of images
have been considered.

The image description and matching process, the loop closure detection algorithm and the map
refinement strategy are detailed in the following sections.

3.1. Image description and matching
As commented above, in our approach, each image is described using the SIFT35 algorithm. It has
been empirically verified to be invariant to uniform scaling and orientation, and partially invariant
to affine distortion and illumination changes. SIFT has been used for several applications, including
object recognition, robot localization and mapping, image stitching, gesture recognition and 3D
scene modeling. Another reason for using SIFT is that our algorithm uses a kd-tree-based algorithm
for indexing features. These algorithms assume the features exist in a real vector space where each
dimension of the features can be continuously averaged. For this reason, binary features like BRISK,40

ORB41 or FREAK42 are not suitable to our needs, despite their lower detection and description times.
SIFT defines interest points as maxima and minima of a difference of Gaussians function applied,

in scale space, to a series of resampled images. Each feature is then described using a histogram of
gradient orientations around the point at the selected scale, resulting in a 128-dimensional descriptor.
In this work, we compare these descriptors using Euclidean distance.

The loop closure detection algorithm, as we will see shortly, needs to match efficiently the features
of the current image with features of all previously considered keyframes, in order to determine
whether it is a revisited place. Therefore, a method for an efficient nearest neighbour search is needed
in order to match these high-dimensional descriptors. Tree structures have been widely used to this
end, since they reduce the search complexity from linear to logarithmic. To the same purpose, we
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maintain a set of randomized kd-trees containing all the SIFT descriptors of previously detected
keyframes. An inverted index structure, which maps each feature to the keyframe where it was found,
is also created. Given a query descriptor, these structures allow us to obtain, traversing the tree just
once, the top K nearest keypoints among all keyframes in an efficient way.

3.2. Probabilistic loop closure detection
Given a new image, a discrete Bayes filter is used to detect loop closure candidates. This filter
estimates the probability that the current image closes a loop with previously seen locations, allowing
us to deal with noisy measurements and uncertainty in the robot location and helping us to discard
false recognitions. The Bayesian framework is also used for ensuring temporal coherency between
consecutive predictions, integrating past estimations over time. It can also be used for fusing sensory
information from different sources, such as cameras, lasers or IMUs, providing an observation model
for each one. In our case, we only use a camera as input.

Given the current image It at time t , we denote zt as the set of SIFT descriptors extracted from this
image. These are the observations in our filter. We also denote Lt

i as the event that image It closes a
loop with image Ii , where i < t . Using these definitions, we want to detect the image of the map Ic

whose index satisfies:

c = arg max
i=0,...,t−p

{
P

(
Lt

i

∣∣z0:t
) }

, (1)

where P (Lt
i |z0:t ) is the full posterior probability at time t given all previous observations up to time

t . As in ref. [16], the most recent p images are not included as hypotheses in the computation of the
posterior since It is expected to be very similar to its neighbours and then false loop closure detections
will be found. This parameter p delays the publication of hypotheses and needs to be set according
to the frame rate or the velocity of the camera.

Separating the current observation from the previous ones, the posterior can be rewritten as:

P
(
Lt

i |z0:t
) = P

(
Lt

i |zt , z0:t−1
)
, (2)

and then, using conditional probability properties1, the next equality holds:

P
(
Lt

i |zt , z0:t−1
)
P (zt |z0:t−1) = P

(
zt |Lt

i, z0:t−1
)
P

(
Lt

i |z0:t−1
)
, (3)

from where we can isolate our final goal to obtain:

P
(
Lt

i |zt , z0:t−1
) = P

(
zt |Lt

i, z0:t−1
)
P

(
Lt

i |z0:t−1
)

P (zt |z0:t−1)
. (4)

where P (zt |z0:t−1) can be seen as a normalizing factor since its computation does not depend on Lt
i .

Under this premise and the Markov assumption, the posterior is defined as:

P
(
Lt

i |z0:t
) = ηP

(
zt |Lt

i

)
P

(
Lt

i |z0:t−1
)
, (5)

where η represents the normalizing factor, P (zt |Lt
i) is the observation likelihood and P (Lt

i |z0:t−1) is
the probability distribution after a prediction step. Decomposing the right side of (5) using the Law
of Total Probability, the full posterior can be written as:

P
(
Lt

i |z0:t
) = ηP

(
zt |Lt

i

) t−p∑
j=0

P (Lt
i |Lt−1

j )P (Lt−1
j |z0:t−1), (6)

where P (Lt−1
j |z0:t−1) is the posterior distribution computed at the previous time instant and

P (Lt
i |Lt−1

j ) is the transition model.

1 P (A | B, C) P (B | C) = P (B | A, C) P (A | C) ⇒ P (A∩B∩C)
P (B∩C)

P (B∩C)
P (C) = P (A∩B∩C)

P (A∩C)
P (A∩C)

P (C)
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Unlike Angeli16 and Cummins,14 we do not model explicitly the probability of no loop closure in
the posterior. If the loop closure probability of It with Ic (P (Lt

c|z0:t )) is not high enough, we discard
Lt

c as a possible loop candidate.

3.2.1. Transition model. Before updating the filter using the current observation, the loop closure
probability at time t is predicted from P (Lt−1

j |z0:t−1) according to an evolution model. The probability
of loop closure with an image Ij at time t − 1 is diffused over its neighbours following a discretized
Gaussian-like function centered at j . In more detail, 90% of the total probability is distributed among
j and exactly four of its neighbours (j − 2, j − 1, j , j + 1, j + 2) using coefficients (0.1, 0.2, 0.4,
0.2, 0.1), i.e. 0.9 × (0.1, 0.2, 0.4, 0.2, 0.1). The remaining 10% is shared uniformly across the rest
of loop closure hypotheses according to 0.1

max{0,t−p−5}+1 . This implies that there is always a small
probability of jumping between hypotheses far away in time, improving the sensitivity of the filter
when the robot revisits old places.

Our model is similar to the one presented by Angeli16 but using different coefficients in
order to give more importance to the central image of the Gaussian. FAB-MAP employs
a Gaussian-like function using only two neighbours, reducing the speed transition of the
filter.

3.2.2. Observation model. Once the prediction step is performed, the current observation needs to
be included in the filter. We have to compute the most likely locations given the current image It and
its keypoint descriptors zt , but we want to avoid comparing It with each previous keyframe, since
this is not tractable. To this end, we use the structures described in Section 3.1. Note that if the robot
revisits the same place several times and the current image It closes this loop again, each descriptor
in zt can be close to descriptors from different previous images in the Euclidean space. This fact is
taken into account in the computation of our likelihood.

Since we do not use a BoW model, we can not rely on solutions created for these representations
like the TF-IDF score2 used by Angeli,16 or on an observation likelihood based on a precomputed
Chow-Liu tree like Cummins.14 Instead, our observation model provides an efficient way of obtaining
loop closure candidates using local scale invariant features and an indexing structures such as
kd-trees.

For each hypothesis i in the filter, a score s(zt , zi) is computed. This score represents the likelihood
that the current image It closes the loop with image Ii given their descriptors, zt and zi respectively.
Initially, these scores are set to 0 for all frames from 0 to t − p. For each descriptor in zt , the K

closest descriptors among the previous keyframe images are retrieved without taking into account
the p previous frames; next, each of them, denoted by n, adds a weight wn to the score of the
image where it appears. This value is normalized using the total distance of the K candidates
retrieved:

wn = 1 − dn∑
k∈K

dk

, ∀n = 1, . . . , K , (7)

where d is the Euclidean distance between the considered query descriptor in zt and the nearest
neighbour descriptor found in the tree structure. This value is accumulated onto a score according to:

s
(
zt , zj (n)

) = s
(
zt , zj (n)

) + wn , ∀n = 1, . . . , K , (8)

being j (n) the index of the image where the candidate descriptor n was extracted. The computation
of the scores is finished when all descriptors in zt have been processed. Then, the likelihood function
is calculated according to the following rule (similarly to16):

P
(
zt |Lt

i

) =
{

s(zt ,zi )−sσ

sμ
if s (zt , zi) ≥ sμ + sσ

1 otherwise
, (9)

being respectively sμ and sσ the mean and the standard deviation of the set of scores. Notice that by
means of (9), given the current observation zt , only the most likely locations update their posterior.
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Algorithm 2 Visual loop closure detection
1: /* Variables */
2: B: Discrete Bayes filter.
3: Ft : Set of SIFT features obtained from image It .
4: c: Candidate image index for closing a loop.
5: Pc : Probability of candidate image c.
6: nhyp : Number of hypotheses in the Bayes filter.
7: Ei

j : Set of matchings surviving the epipolarity constraint-based filter.
8: L: Output boolean variable for indicating the existence of a loop.
9: Lim: Output integer with the index of the loop closure image.

10:

11: /* Thresholds */
12: Tloop : Minimum probability to consider a loop candidate.
13: Tep : Minimum number of surviving matchings after epipolar geometry validation.
14: Thyp : Minimum number of hypotheses for considering loop candidates.
15:

16: c, Pc = getCandidate(B) /* Getting the best loop candidate */
17: if Pc > Tloop and nhyp > Thyp then
18: Et

c = epipolarGeometry(Ft , Fc)
19: if length(Et

c) > Tep then
20: L = True; Lim = c

21: else
22: L = False; Lim = −1
23: end if
24: else
25: L = False; Lim = −1
26: end if

After incorporating the observation to our filter, the full posterior is normalized in order to obtain a
probability distribution.

Our observation model enables us to obtain similar past scenes in challenging situations such as
illumination changes, appearance modifications, camera rotations and scene occlusions. This will be
shown in the experimental results section, where the observation likelihood for these kinds of loop
closure situations presents clear peaks despite their complexity.

3.2.3. Selection of a loop closure candidate. In order to select a final candidate, we do not search
for high peaks in the posterior distribution, because loop closure probabilities are usually diffused
between neighbouring images. This is due to visual similarities between consecutive keyframes in
the sequence. Instead, for each location in the filter, we sum the probabilities along a predefined
neighbourhood. This neighbourhood is the same as defined in Section 3.2.1, i.e. frames (j − 2, j − 1,
j , j + 1, j + 2) for image j .

The image Ij with the highest sum of probabilities in its neighbourhood is selected as a loop
closure candidate. If this probability is below a threshold Tloop, the loop closure hypothesis is not
accepted. Otherwise, an epipolarity analysis between It and Ij is performed in order to validate if
they can come from the same scene after a camera rotation and/or translation. Matchings that do
not fulfill the epipolar constraint are discarded by means of RANSAC. If the number of surviving
matchings is above a threshold Tep, the loop closure hypothesis is accepted; otherwise, it is definitely
rejected.

Finally, we define another threshold Thyp to ensure a minimum number of hypotheses in the filter,
so that loop closure candidates are meaningful. This step counteracts the fact that first images inserted
in the filter tend to attain a high probability of loop closure after the normalization step, what leads
to incorrect detections. The full loop closure detection approach is outlined in Algorithm 2.

3.3. Map refinement
Visual topological maps tend to contain redundant nodes and paths due to several reasons. On the one
hand, sometimes the current image acquired by the robot is blurred, what makes difficult to identify
loop closures at the right time and therefore new nodes are added to the map. The loop closure is
identified once the image stream becomes stable again. The net result is that a redundant path is
generated because of the noisy images. On the other hand, the Bayes filter does not detect a revisited
place instantaneously, but needs some frames to become aware of the loop closure: along these
frames, the posterior moves from one keyframe (hypothesis) to another, while a new path containing
the unmatched frames is created. In this work, we present a map refinement framework based on the
visual information obtained from each node of the environment in order to correct these problems,
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Fig. 3. Example of erasability. Two paths exist between node 1 and node 8. The red path (up) is classified as
non-erasable, since the inner node 6 does not hold condition (11). This path can not be removed without losing
the path starting at node 9. The green path (bottom) is classified as erasable and is a candidate to be removed.

which are common of many vision-based topological mapping solutions, and in order to maintain the
map structure as simple as possible in storage and computational terms.

Our method is executed each time a loop closure is detected. The idea is to refine the local area
of the map around the loop-closing node, since the redundant paths are generated within this zone.
To this end, its k-neighbourhood is obtained. This is the set of nodes from which we can reach the
loop-closing node in k steps or less, where k was set experimentally to 10. For each element in this
set, all paths to the loop-closing node are obtained using an adjacency list. If there is only one path
between the nodes, there are no redundant paths and this route is left unaltered. Otherwise, a further
analysis of the different paths is performed. To this end, a path P between nodes i and j is defined
as:

P i
j = {N0, N1, . . . , Nn}, 0 ≤ n ≤ k + 1 , (10)

being N0 the starting node of P i
j and Nn the loop-closing node. We define the erasability of a path as:

M
(
P i

j

) = (deg−(Ni) = 1) ∧ (deg+(Ni) = 1) , ∀i = 1, . . . , n − 1 , (11)

where deg− and deg+ are, respectively, the input degree and the output degree of a vertex. Therefore,
a path is classified as erasable if (11) holds for each inner node of the path. Otherwise, the path is
classified as non-erasable. The meaning of an erasable path in our context is that the route can be
deleted without breaking the topology of the environment. Examples of erasable and non-erasable
paths are shown in Fig. 3.

Once all paths have been classified according to their erasability, a decision about which ones can
be deleted is made, taking into account that real alternative paths need to be preserved, since they
correspond to parts of the environment. To this end, we propose to generate a model path taking into
account the visual features of all paths and comparing each erasable path against this model to verify
if this is a redundant or a real path. In order to create the model path, a k-means clustering process
with 100 centroids is performed using the SIFT features of the keyframes that are included in all paths
between the corresponding nodes. This gives us a set of reference virtual descriptors representing all
the paths as a whole. Then, k-means is also used for quantizing the descriptors of the nodes of each
erasable path, obtaining representatives for each route. A set of randomized kd-trees is created using
the reference virtual descriptors. The virtual descriptors of each path are matched against the model
using these trees in order to obtain a distance between each erasable path and the model path. This
distance is computed as the average distance of the matched centroids.

For each erasable path between the nodes, if the distance is below a threshold, this path is considered
similar to the others and thus is regarded as redundant. If there is at least one non-erasable route
between the nodes, the inner nodes belonging to the rest of erasable paths are deleted. Otherwise, if
all paths are classified as erasable, the most different path (higher distance) is left unaltered, and the
remaining ones are removed. The full algorithm for map refinement is outlined in Algorithm 3.

Figure 4 shows several examples of situations that our map refinement strategy is able to overcome.
In (a), (b) and (c), the removed paths were selected because the distances to the model path are lower
than the others. In (d), since there exists a non-erasable path and the distances of the other paths to
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Algorithm 3 Map refinement
1: /* Variables */
2: nl : Input loop closing node.
3: N : K-neighbourhood of a node.
4: P : The set of paths between two nodes.
5: M: Array to store the erasability of each path in a set.
6: D: Array to store the distances between each path in a set and a reference model.
7: Rm: Reference model path. It is computed using k-means clustering.
8: Pmax : Path with maximum distance to the Rm.
9: k: Number of steps that define the neighbourhood under consideration.

10:

11: /* Thresholds */
12: Tp : Maximum distance to consider two paths as similar to one another.
13:

14: N = getKNeighbours(nl , k)
15: for all nn ∈ N do
16: P = getPaths(nn, nl )
17: if length(P ) > 1 then
18: M = array(length(P ))
19: D = array(length(P ))
20: Rm = computeModelPath(P)
21: for p ∈ indexOf(P ) do
22: M[p] = computeErasability(P [p])
23: Rp = computePathDescriptor(P [p])
24: D[p] = distance(Rm, Rp)
25: end for
26: Pmax = computeMaxPath(D)
27: for p ∈ indexOf(P ) do
28: if M[p] and D[p] < Tp and (existNonErasable(P ) or P [p] 
= Pmax ) then
29: deletePath(P [p])
30: end if
31: end for
32: end if
33: end for

Fig. 4. Examples of situations solved by our map refinement strategy. Green and red paths are, respectively,
erasable and non-erasable paths. Red nodes indicate that they will be removed by our approach. When there
are several erasable paths, the decision is taken according to the distance of the paths to the model path, as
explained in the text.

the model are lower than Tp, both erasable routes are deleted. In (e), any of the routes can be deleted
since they are non-erasable paths. In (f), there exists a non-erasable path and then, the erasable one
could be deleted. However, since the distance of the path to the model is higher than Tp, indicating
that this is a real alternative path, in this case the path can not be removed.
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Fig. 5. Examples of images from the UIBIndoor environment. (Top, Left) First image in the sequence. (Top,
Right) Image taken from the stairs. (Bottom, Left) Overexposed image. (Bottom, Right) Image after camera
stabilization.

4. Experimental Results
In this section, we will report about the results of several experiments, assessing our approach from
different points of view. This section is organized as follows: first, the loop closure detection algorithm
is evaluated irrespective of the mapping and localization process; then, results for the full approach for
mapping and localization algorithm are shown; finally, experiments for validating our map refinement
algorithm are reported.

4.1. Loop closure detection
Several experiments were carried out in order to validate the suitability of our framework for loop
closure detection tasks. We processed datasets from indoor and outdoor environments, providing
results under different environmental conditions. In the following, the main features of each dataset
are presented first. Next, results from particular cases are highlighted. Finally, global results and
considerations for the whole set of sequences are reported.

In more detail, the Lip6Indoor dataset comprises 388 images of two loops along the corridors
of a research building, what leads to strong perceptual aliasing conditions during the loop closure
analysis. The Lip6Outdoor is a longer dataset of 1063 images that completes a large loop outdoors
under sunny weather conditions.

The UIBSmallLoop and UIBLargeLoop datasets were recorded by ourselves around the Anselm
Turmeda building at our University campus. They consist of 388 and 997 images, respectively, taken
under bad weather conditions, for verifying the performance of our approach under these situations.
Finally, the UIBIndoor dataset, also recorded by ourselves inside the Anselm Turmeda building,
presents an indoor environment which means a number of difficulties for loop closure. First of all, the
camera velocity is not constant. This is due to the fact that we needed to climb up and down the stairs
during the recording. This difficulty enables us to validate the capability of the filter to self-adapt
under camera speed changes. Besides, a number of images of white walls result when the camera is
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Fig. 6. (Left) Ground truth loop closure matrix for the Lip6Indoor dataset. (Right) Likelihood matrix computed
using our approach.

Fig. 7. Example of loop closure detection visiting several times the same place and with changes in the
environment in the Lip6Indoor dataset. Image 331 (Top, Left) closes a loop with image 189 (Bottom, Left)
and image 48 (not shown). As can be seen in (Top, Right), the current likelihood presents two strong peaks
despite a person in the current image occludes part of the same. Peaks correspond to loop candidates. After
the normalization step, the posterior (Bottom, Right), shows a single peak in the last candidate frame. Red and
green lines show respectively sμ and sμ + sσ values.

at the stairs, what gives rise to the detection of very few features. Moreover, the dataset presents some
parts with significative illumination changes, what leads on some occasions to overexposed images.
Some examples of these problems are shown in Fig. 5.

Figure 6 illustrates the performance of the observation likelihood for detecting loop closures within
the Lip6Indoor dataset. The right picture shows the likelihood function values for every pair of frames
Ii and Ij while the left picture is the ground truth. As can be seen, our likelihood presents high values
for real loop closures, which are shown as diagonals in the images. There are more noise in the
likelihood at the beginning of the sequence because there are less images in the trees, which implies
that nearest neighbours for each descriptor are shared between a minor number of images. This effect
decreases as we move forward along the sequence.

Figure 7 shows the suitability of the Bayes framework in a loop closure detection situation. In this
case, the camera visited twice the same place. When it returns to this place again, two high peaks
corresponding to the previous visits can be observed in the likelihood, representing possible loop
candidates for the current image. After the prediction, update and normalization steps, the posterior
presents only one single peak at the second candidate image, i.e. the filter ensures temporal coherency
between predictions. This figure also shows an example of situation where a loop is detected despite
there is a person in the image who was not in the previous visit, what proves the ability of the filter
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Fig. 8. Example of loop closure detection under camera rotations. Despite there is a camera rotation, image 216
(Top, Left) closes a loop with image 72 (Bottom, Left). The likelihood (Top, Right) presents two high peaks
since it is the third time the camera visits this place. (Bottom, Right) shows the final posterior, proving that the
filter ensures the temporal coherency between loop detections. Red and green lines show respectively sμ and
sμ + sσ values.

Fig. 9. Example of loop closure detection under bad weather conditions and camera rotations for the
UIBSmallLoop dataset. Image 330 (Top, Left) closes a loop with image 139 (Bottom, Left). (Top, Right)
Likelihood given the current image. (Bottom, Right) Full posterior after the normalization step. Red and green
lines show respectively sμ and sμ + sσ values.

for detecting loops when the appearance of the environment changes. Our approach accepts the loop
closure since the epipolar constraint between the two images is satisfied. It is also able to detect loop
closures under camera rotations, as can be seen in Fig. 8.

If an overexposed image or with not enough features is considered by the filter, the full posterior
does not present high peaks and a false negative is generated. However, as soon as the image stream
becomes stable, the algorithm reacts and starts detecting loop closures again. This shows that our
approach is able to manage these challenging kinds of situations.

An example of loop closure detection for one of the UIB outdoor datasets under bad weather
conditions and camera rotations can be found in Fig 9.

In order to obtain global performance measures, each dataset was provided with a ground truth,
which indicates, for each image in the sequence, which images can be considered as a loop closure
with it. The assessment against this ground truth has been performed counting for each sequence
the number of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN),
where positive is meant for detection of loop closure. Then, the two following metrics were computed:

� Precision. Ratio between real loop closures and total amount of loop closures detected ( T P
T P+FP

).
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Fig. 10. Precision-recall curves for each dataset using our approach and FAB-MAP 2.0.

Fig. 11. Path followed by the camera during the UIBSmallLoop experiment. Green and blue points indicate
respectively the beginning and the end of the sequence; the black lines show no loop closure detections (highest
posterior probability is under Tloop) and the yellow lines represent loop closure detections (highest probability
is above Tloop and the epipolar constraint is satisfied). Notice that the camera passes through the same place in
successive loops, but the lines are drawn in parallel for visualization purposes.

� Recall. Ratio between real loop closures and total amount of loop closures existing in the sequence
( T P
T P+FN

).

The results for each sequence are shown in Table I. As can be seen, no false positives resulted in
any case. This is essential, since false positives can induce errors in mapping and localization tasks.
As a consequence, the classifier always reaches 100% in precision for all datasets. The best recall
rates for 100% precision are shown in the table.
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Table I. Results for the five datasets using our approach and for FAB-MAP 2.0. Precision (Pr) and Recall (Re)
columns are expressed as percentages. See text for details. aAverage for all sequences.

Our approach FAB-MAP

Dataset #Imgs Size TP TN FP FN Pr Re Pr Re

Lip6Indoor 388 240×192 191 151 0 31 100 86 33 66
Lip6Outdoor 1063 240×192 551 435 0 52 100 91 98 13
UIBSmallLoop 388 300×240 194 172 0 2 100 99 98 28
UIBLargeLoop 997 300×240 439 491 0 47 100 90 97 19
UIBIndoor 384 300×240 157 177 0 30 100 84 88 8

3220 1532 1426 0 162 100a 90a 83a 27a

Fig. 12. Path followed by the camera during the UIBLargeLoop experiment. Green and blue points indicate
respectively the beginning and the end of the sequence; the black lines show no loop closure detections (highest
posterior probability is under Tloop), the red lines show rejected hypoteses (no epipolar geometry is satisfied) and
the yellow lines represent loop closure detections (highest probability is above Tloop and the epipolar constraint
is satisfied). Notice that the camera passes through the same place in successive loops, but the lines are drawn
in parallel for visualization purposes.

As can be seen, a high rate of correct detections were obtained from all experiments. False negatives
are due to, on the one hand, the sensitivity of the filter. In effect, when an old place is revisited, the
likelihood associated to that hypothesis needs to be higher than the other likelihood values during
several consecutive images in order to increase the posterior for this hypothesis. This introduces a
delay in the loop closure detection, which derives in false negatives. This sensitivity can be tuned by
modifying the transition model of the filter, although a higher sensitivity can introduce loop detection
errors, i.e. false positives. On the other hand, false negatives can also be due to camera rotations.
When the camera is turning around a corner, it is difficult to find and match features in the images,
which prevents the hypothesis from satisfying the epipolar constraint and leads to the loop closure
hypothesis to be rejected, despite the posterior for this image is higher than Tloop. However, in spite
of the difficulties of the UIB Indoor dataset, our approach is able to succeed, as can be seen in
Table I.
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Fig. 13. (Top) Reference map for the Lip6Indoor dataset. (Bottom) Topological map generated using our
approach. Each part of the map is identified with a letter in both maps. The red node identifies the beginning of
the sequence. The reference map comes from http://cogrob.ensta-paristech.fr/loopclosure.html. Maps locations
are visited in the following order: A-B-I-H-A-B-C-D-E-F-G-H-A-B-C-D-E-F-G-H-A-B-I.

In order to validate the reliability of our loop closure algorithm against other existing solutions,
we performed a comparison with the state-of-the-art FAB-MAP 2.0 algorithm,22 whose binaries
and visual vocabularies for indoors and outdoors are available online. We executed FAB-MAP
configured with default parameters against the datasets, using the indoor vocabulary for Lip6Indoor
and UIBIndoor sequences, and the outdoor vocabulary for the rest. The output is a matrix, the n-th
entry of which corresponds to the probability distribution over previously seen places due to the n-th
image. In this matrix, the main diagonal corresponds to the probability that the image comes from a
new place. Since we do not take into account this case and we want to avoid the false detection of loop
closures with recent frames, the output matrix was rectified by removing the most recent probabilities
for each row and normalizing the final distribution. A loop closure is detected if the probability is
above a predefined threshold p. The output loop detections of FAB-MAP are compared against the
ground truth of each sequence and measured in terms of precision-recall. The final results are shown
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Fig. 14. (Top) Reference map for the Lip6Outdoor dataset. (Bottom) Topological map generated using our
approach. Each part of the map is identified with a letter in both maps. The red node identifies the beginning
of the sequence. Maps locations are visited in the following order: A-B-C-D-E-F-G-H-A-B-C-D-E-F-G-H-A-B

graphically in Fig. 10, varying the p parameter. The curves for our approach were plotted modifying
the threshold for loop acceptance (Tloop). Clearly, our approach outperforms FAB-MAP in all datasets,
obtaining a higher recall for a 100% of precision. As can be seen, our solution is also more stable,
specially in indoor environments, where the performance of FAB-MAP decreases dramatically. We
think this is due to the use of the indoors vocabulary and the complexity of finding features in these
kinds of environments. As a further benefit, our approach can deal better with the sensor noise. Notice
that a precision below 100% implies the presence of false positives, what will have an influence over
the generated map. Our algorithm allows us to obtain a higher recall than FAB-MAP maintaining the
maximum precision possible. The maximum precision of FAB-MAP together with its recall for each
dataset is also shown in Table I.
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Fig. 15. (Top) Reference map for the UIBSmallLoop dataset. (Bottom) Topological map generated using our
approach. Each part of the map is identified with a letter in both maps. The red node identifies the beginning of
the sequence. Maps locations are visited in the following order: A-B-C-D-E-A-B-C-D-E.

Fig. 16. Example of adding intermediate nodes in the Lip6Indoor dataset. Images 13 (Left) and 86 (Right) were
added to the map at the first loop. Image 228 (Center) was added to the map the next time the camera visits the
same place. As can be seen, image 228 is visually in-between the left and right images.

The paths followed by the camera in the UIB datasets are shown in Figs. 11 and 12. Whenever
the camera explores new places, no loop closures are found. When a place is revisited, the algorithm
starts to find loop closures. Several images are usually needed until closing the loop, due to the filter
inertia. These images correspond to the false negatives found.

4.2. Mapping and localization
The same sequences used in the previous experiments were also employed to validate our framework
regarding mapping and localization. To this end, the loop closure detection algorithm was adapted
to be used with the detected keyframes. A real map of the environment and the topological map
generated by our approach are shown for each sequence. The main zones of these maps were labelled
with letters to simplify the identification of each part in the topological structure, since these maps
do not preserve the shape. The results are shown from Figs. 13–18.

As can be seen, the maps generated by our framework represent topologically the real scenario.
Connections between each part of the topological map are the same of the real environment, and the
maps do not contain redundant paths or spurious nodes between locations, saving storage space and
improving the computational efficiency of the localization process. Therefore, we can conclude that
our map refinement strategy helps us to clean the final structure, correcting the problems generated
by the blurred images and the delays inherent to the loop closure detection process.
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Fig. 17. (Top) Reference map for the UIBLargeLoop dataset. (Bottom) Topological map generated using our
approach. Each part of the map is identified with a letter in both maps. The red node identifies the beginning
of the sequence. Maps locations are visited in the following order: A-B-C-D-F-G-H-I-J-K-F-G-H-I-J-K-E-A-
B-C-D-E.

Maps are mainly created during the first exploration of the environment, so that revisiting a
place normally turns into reassigning the current location of the robot to an existing node of the map.
However, sometimes maps are completed with new nodes corresponding to images which are visually
in-between two nodes. Generally, they provide unregistered information about the robot scenario, as
can be seen for example in Fig. 16.
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Fig. 18. (Top) Reference map for the UIBIndoor dataset. (Bottom) Topological map generated using our
approach. Each part of the map is identified with a letter in both maps. The red node identifies the beginning of
the sequence. Maps locations are visited in the following order: B-C-D-E-F-A-B-C-D-E-F-A-B.

To finish, it is typical that a few nodes at the beginning of the sequence do not close any loop,
generating a short tail in the map. This is due to the prediction of the Bayes filter, which tends to move
the probability away from the beginning of the sequence, producing that the first loop is closed with
the subsequent frames. Notice that this, however, does not affect the final result of the localization
process.

4.3. Map refinement
The main goal of this last section is to verify the quality of the refined maps, in terms of storage
space, computational times and usefulness/efficiency. We want to assess that the generated maps are
representative of the environment and can be used for localization without compromising the original
performance. To this end, we compare the maps of the five datasets used in this work with and without
refinement. The former appear from Figs. 13–18, while the latter are shown from Figs. 19–23. As can
be seen, the original maps contain spurious nodes and alternative redundant paths between nodes,
incrementing the execution time of mapping and localization processes, since more nodes need to be
considered at each step. The refined maps shown in Section 4.2 present better the environment.

An additional experiment was performed in order to verify whether refined maps could be employed
for localization with a similar performance to the original ones. To this end, we first generated the map
of the environment and, for each image, the assigned keyframe was stored. After that, the sequence
was processed again using the localization filter to determine, for each image, the closest location in
the map. If that location was the same as the one stored during the mapping process, the image was
considered as a correct localization (CL). For each sequence, we also obtained the total mapping and
localization times, as well as the number of nodes generated in the graph. These values were measured
for each sequence with and without the refinement step. The results can be found in Table II. As it
is shown, map refinement leads to less nodes than without it. Despite the correct localization rate
is slightly lower for some environments, refining the map improves the computational times of the
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Fig. 19. Map of the Lip6Indoor dataset obtained without using the map refinement strategy. The red node
identifies the beginning of the sequence.

Fig. 20. Map of the Lip6Outdoor dataset obtained without using the map refinement strategy. The red node
identifies the beginning of the sequence.

mapping and localizations processes. This effect increases with the length of the sequence, as is the
case of the Lip6Outdoor and the UIBLargeLoop datasets. The UIBSmallLoop dataset presents small
differences between the two versions of the map. This is because the resulting structures in the maps
are practically the same, resulting into similar processing times. From the table we can also observe
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Fig. 21. Map of the UIBSmallLoop dataset obtained without using the map refinement strategy. The red node
identifies the beginning of the sequence.

Fig. 22. Map of the UIBLargeLoop dataset obtained without using the map refinement strategy. The red node
identifies the beginning of the sequence.

that, in general, the outdoor environments are more affected by the refinement step, since the correct
localization rates are lower for these cases. In general terms, we can argue that the map refinement
strategy proposed in this work can be used for saving space in memory and for improving the speed
of the mapping and localization tasks without compromising the performance.
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Table II. Results for the map refinement experiment. N: number of nodes; M: mapping time
in seconds; L: localization time in seconds; %CL: ratio between correct localizations and total

number of elements. See text for details.

With map refinement Without map refinement

Dataset N M L %CL N M L %CL

Lip6Indoor 40 137.37 6.27 64 62 155.36 9.08 63
Lip6Outdoor 103 1005.52 29.05 63 141 1150.87 42.95 61
UIBSmallLoop 59 152.2 8.25 75 61 155.3 8.57 77
UIBLargeLoop 100 728.94 44.29 74 111 798.53 60.98 78
UIBIndoor 40 118.4 16.2 76 59 190.39 24.64 73

Fig. 23. Map of the UIBIndoor dataset obtained without using the map refinement strategy. The red node
identifies the beginning of the sequence.

5. Conclusions and Future Work
A complete appearance-based mapping and localization framework based on local invariant features
is presented here. When a new useful image is acquired, a discrete Bayes filter is used to select a
loop closure candidate and decide whether this frame is a loop closure or a new node to be added to
the map. This probabilistic filter presents a novel observation model based on an efficient matching
scheme between the current image and the features of the current nodes in the map, using an index
based on a set of randomized kd-trees. As a result, a topological map of the environment is obtained,
which represents the scenario of the robot as a graph.

Using probabilistic filters for mapping and localization tasks usually produces spurious nodes and
redundant paths over the graph. This is due to imperfections in the acquired images and the delays
introduced by the filter. A key contribution of this work is a map refinement strategy for solving
these problems, producing cleaner maps and saving storage space and computation resources for
the mapping and localization tasks. This framework is executed each time a loop is closed, and
a predefined neighbourhood is refined in each step. The final decision of deleting nodes is taken
according to the visual features of each path, avoiding to delete the real paths of the environment.

In order to validate our solution, results from an extensive set of experiments, using datasets
from different environments, have been reported. These results are very promising, showing that our
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mapping and localization approach using a map refinement phase can be employed for generating
topological maps of the environment that, if they are provided with odometry information, can also
be used for navigating in the current scenario in an efficient way. We also compared our approach
with the state-of-the-art FAB-MAP 2.0 algorithm.

Referring to future work, we intend to explore: (a) the use of other kinds of image descriptors
based on local invariant features, such as binary descriptors, since they can improve our approach
in computational terms; (b) the execution of the Bayes filter in a Graphics Processing Unit (GPU)
to further speed up the loop closure detection; and (c) the use of the full algorithm for mapping
larger environments, since unused descriptors in the tree structures should be purged to maintain a
reasonable response time of the loop closure detection algorithm.
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