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We present a direct numerical simulation (DNS) study of pseudo-turbulence in
buoyancy-driven bubbly flows for a range of Reynolds (150 < Re < 546) and Atwood
(0.04 < Ar <€ 0.9) numbers. We study the probability distribution function of the
horizontal and vertical liquid velocity fluctuations and find them to be in quantitative
agreement with the experiments. The energy spectrum shows a k=3 scaling at high Re
and becomes steeper on reducing Re. To investigate spectral transfers in the flow, we
derive the scale-by-scale energy budget equation. Our analysis shows that, for scales
smaller than the bubble diameter, the net transfer because of the surface tension and
the kinetic energy flux balances viscous dissipation to give k=3 scaling of the energy
spectrum for both low and high Ar.
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1. Introduction

Bubble-laden flow appears in a variety of natural (Clift, Grace & Weber 1978;
Gonnermann & Manga 2007) and industrial (Deckwer 1992) processes. The presence
of bubbles dramatically alters the transport properties of a flow (Mudde 2005; Ceccio
2010; Biferale et al. 2012; Pandit et al. 2017; Risso 2018; Alméras et al. 2019;
Elghobashi 2019; Mathai, Lohse & Sun 2020). A single bubble of diameter d,
because of buoyancy, rises under gravity. Its trajectory and the wake flow depend
on the density and viscosity contrast with the ambient fluid, as well as the surface
tension (Clift er al. 1978; Bhaga & Weber 1981; Tripathi, Sahu & Govindarajan
2015). A suspension of such bubbles at moderate volume fractions generates complex
spatiotemporal flow patterns that are often referred to as pseudo-turbulence or
bubble-induced agitation (Mudde 2005; Risso 2018).

Experiments have made significant progress in characterizing velocity fluctuations
of the fluid phase in pseudo-turbulence. A key observation is the robust power-law
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scaling in the energy spectrum, with an exponent of —3 either in frequency v or
the wavenumber k space (Mercado er al. 2010; Riboux, Risso & Legendre 2010;
Mendez-Diaz et al. 2013). The scaling range, however, remains controversial. Riboux
et al. (2010) investigated turbulence in the wake of a bubble swarm and found k=3
scaling for length scales larger than the bubble diameter d (i.e. k < 27w /d), whereas
Mercado et al. (2010) and Prakash et al. (2016) observed this scaling for scales
smaller than d in a steady-state bubble suspension. Experiments on buoyancy-driven
bubbly flows in the presence of grid turbulence (Lance & Bataille 1991; Prakash
et al. 2016; Alméras et al. 2017) observe Kolmogorov scaling for scales larger than
the bubble diameter and smaller than the forcing scale, and a much steeper k=3
scaling for scales smaller than the bubble diameter and larger than the dissipation
scale. Lance & Bataille (1991) argued that, assuming production because of wakes
to be local in spectral space, balance of production with viscous dissipation leads to
the observed k=3 scaling.

Fully resolved numerical simulations of three-dimensional bubbly flows for a range
of Reynolds number O(10) < Re < O(10°) (Bunner & Tryggvason 2002a,b; Roghair
et al. 2011) found k=3 scaling for length scales smaller than d (k > 2m/d), and
attributed it to the balance between viscous dissipation and energy production by the
wakes (Lance & Bataille 1991).

Two mechanisms proposed to explain the observed scaling behaviour in experiments
are: (i) superposition of velocity fluctuations generated in the vicinity of the bubbles
(Risso 2011) and (ii) at high Re, instabilities in the flow through bubble swarms
(Lance & Bataille 1991; Mudde 2005; Risso 2018). In an experiment or a simulation,
it is difficult to disentangle these two mechanisms.

In classical turbulence, a constant flux of energy is maintained between the
injection and dissipation scales (Frisch 1997; Pandit, Perlekar & Ray 2009). In
pseudo-turbulence, on the other hand, it is not clear how the energy injected
by buoyancy is transferred between different scales. In particular, the following
key questions remain unanswered: (i) How do liquid velocity fluctuations and the
pseudo-turbulence spectrum depend on the Reynolds number (Re)? (ii)) What is the
energy budget and the dominant balances? (iii) Is there an energy cascade (a non-zero
energy flux)?

In this paper, we address all of the above questions for experimentally relevant
Reynolds (Re) and Atwood (A7) numbers. We first investigate the dynamics of an
isolated bubble and show that the wake flow behind the bubble is in agreement with
earlier experiments and simulations. Next, for a bubbly suspension we show that
the liquid velocity fluctuations are in quantitative agreement with the experiments
of Riboux et al. (2010) and the bubble velocity fluctuations are in quantitative
agreement with the simulations of Roghair er al. (2011). We then proceed to derive
the scale-by-scale energy budget equation and investigate the dominant balances for
different Re and At. We find that for scales smaller than the bubble diameter, viscous
dissipation balances net nonlinear transfer of energy because of advection and the
surface tension to give a k—> pseudo-turbulence spectrum. The dominant balances are
robust and do not depend on the density contrast (Af).

2. Model and numerical details

We study the dynamics of bubbly flow by using Navier—Stokes (NS) equations with
a surface-tension force due to bubbles:

pDau =V - [218] — Vp + F° + F¥, 2.1a)
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runs L N N, d g ur % Ga At Bo Re A 17}

R1 256 512 60 24 1.0 032 26 104 004 18 150 113 36.6
R2 256 512 60 24 1.0 020 26 166 0.04 1.0 298 9.88 263
R3 128 432 10 22 875 042 26 206 0.04 2.1 315 851 8.1
R4 128 432 10 22 105 032 2.6 296 004 19 462 735 6.1
R5 256 256 40 24 01 032 17 113 090 20 173 100 38.7
R6 256 256 40 24 1.0 032 1.7 345 080 24 465 812 7.7
R7 256 256 40 24 1.0 032 1.7 358 090 19 546 731 7.0

TABLE 1. Table of parameters used in our DNS. Here, ép = pf — p, is the density

difference, Ga = +/p;8pgd®/i; is the Galilei number, Bo = 8pgd*/o is the Bond number,
At = 8p/(pr + pp) is the Atwood number, and Re = p;Vid/us is the bubble Reynolds

number, where V; is the rise velocity of an isolated bubble, 4 = /10usE/pse, is the
integral length scale, and 7, =A4//2E/3p; is the integral time scale.

V.u=0. (2.1b)

Here, D, =0, + (1 - V) is the material derivative, u = (u,, u,, u;) is the hydrodynamic
velocity, p is the pressure, S = (Vu + Vu')/2 is the rate of deformation tensor,
p = pc + pp(1 — ¢) is the density, u = usc + up(1 — ¢) is the viscosity, pr (05)
is the fluid (bubble) density and w, (u,) is the bubble (fluid) viscosity. The value
of the indicator function c¢ is equal to zero in the bubble phase and unity in the
fluid phase. The surface-tension force is F° = oxn, where o is the coefficient of
surface tension, « is the curvature and n is the normal to the bubble interface.
F¢ =[p,— plgz is the buoyancy force, where g is the acceleration due to gravity and
=1 f p(c)dx]/L? is the average density. For small Atwood numbers, we employ the
Boussinesq approximation, whereby p on the left-hand side of (2.1a) is replaced by
the average density p,. Note that low Atwood numbers can be experimentally realized
in near-critical binary fluids as well as mixtures of oil (Perlekar 2019; Shukla et al.
2019).

We solve the Boussinesq-approximated NS using a pseudo-spectral method (Canuto
et al. 2012) coupled to a front-tracking algorithm (Tryggvason et al. 2001; Aniszewski
et al. 2019) for bubble dynamics. Time marching is done using a second-order
Adams—Bashforth scheme. For the non-Boussinesq NS, we use the open source
finite-volume-front-tracking solver PARIS (Aniszewski et al. 2019).

We use a cubic periodic box of volume L* and discretize it with N* collocation
points. We initialize the velocity field # = 0 and place the centres of N, bubbles at
random locations such that no two bubbles overlap. The Reynolds number Re, Bond
number Bo and bubble volume fraction ¢ = | f (1 —¢)dx]/L? that we use (see table 1)
are comparable to the experiments (Riboux et al. 2010; Mendez-Diaz et al. 2013).

3. Results

In subsequent sections, we investigate the statistical properties of stationary
pseudo-turbulence generated in buoyancy-driven bubbly flows. Table 1 lists the
parameters used in our simulations. Our parameters are chosen such that the Reynolds
number, Bond number and volume fraction are comparable to those used in earlier
experiments (Riboux et al. 2010; Mendez-Diaz et al. 2013; Risso 2018). We conduct
simulations at both low and high At numbers to investigate the role of density
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FIGURE 1. Bubble positions at different times (in units of 7, = L/./8pgd/p;) and the
z-component of the vorticity (w, = du, — dyu,) for the case of a single bubble rising under
gravity. The non-dimensional parameters in representative cases are taken the same as run
R1 in (a), run R4 in (b) and run R6 in (c). Green regions correspond to w, <0, whereas
red regions correspond to w, > 0. We plot iso-contours corresponding to |w,| = £1073
in (a), |w.|==%10"2 in (b) and |w.|==%10"" in (c¢).

differences on the statistics of pseudo-turbulence. The rest of the paper is organized
as follows. In §3.1, we study the trajectory of an isolated bubble and, consistent
with the experiments, show that the bubble shape is ellipsoidal. In §§ 3.2 and 3.3, we
investigate the total kinetic energy budget and the fluid and bubble centre-of-mass
velocity fluctuations, then make quantitative comparisons with the experiments. In
§ 3.4, we study the kinetic energy spectrum and scale-by-scale energy budget. In § 3.5,
we investigate the length scale of pseudo-turbulence and, in § 3.6, we investigate the
clustering of bubbles. We present our conclusions in § 4.

3.1. Single bubble dynamics

In this section, we study the dynamics of an initially spherical bubble as it rises
because of buoyancy. The seminal work of Bhaga & Weber (1981), Wu & Gharib
(2002) and Tchoufag, Magnaudet & Fabre (2014) characterized the shape and
trajectory of an isolated bubble in terms of the Reynolds and Bond numbers.
Experiments on turbulent bubbly flows (Lance & Bataille 1991; Prakash et al. 2016;
Mathai et al. 2018) observe ellipsoidal bubbles. In the following, we characterize the
dynamics of an isolated bubble for the parameters used in our simulations.

To avoid the interaction of the bubble with its own wake, we use a vertically
elongated cuboidal domain of dimension 5d x 5d x 21d. After the bubble rise
velocity attains steady state, figure 1(a—c) shows the bubble shape and the vertical
component of the vorticity w, =(V x u) -Z. For Re =150 and Ar=0.04 (run R1), the
bubble shape is an oblate ellipsoid and rises in a rectilinear trajectory. On increasing
to Re = 462 (run R4), the bubble pulsates while rising and sheds varicose vortices
similar to Pivello et al. (2014). Finally, for high At = 0.80 and Re = 465 (run R6),
similar to region III of Tripathi et al. (2015), we find that the bubble shape is an
oblate ellipsoid and follows a zigzag trajectory.
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FIGURE 2. Representative steady-state snapshot of the bubbles overlaid on the iso-contour
plots of the z-component of the vorticity field w, =[V x u]-Z for Re =150, At=0.04 (a)
and for Re =465, Atr=0.8 (b). Regions with w, =20,(—20,) are shown in red (green),
where o, is the standard deviation of w,. As expected, bubble—wake interactions become
more intense on increasing Re. (c¢) Average bubble deformation ((S(z)/S(0))) versus Ga
for low and high Ar numbers. (d) Kinetic energy evolution for the runs given in table 1.

3.2. Bubble suspension and kinetic energy budget

The plots in figure 2(a,b) show the representative steady-state iso-vorticity contours
of the z-component of the vorticity along with the bubble interface position for
our bubbly flow configurations. As expected from our isolated bubble study in the
previous section, we observe rising ellipsoidal bubbles and their wakes, which interact
to generate pseudo-turbulence. The individual bubbles in the suspension show shape
undulations which are similar to their isolated bubble counterparts (see movies
available in the supplementary material at https://doi.org/10.1017/jfm.2019.991).
Furthermore, for comparable Bo & 2, the average bubble deformation ({S(¢)/S(0)))
increases with increasing Re (figure 2c¢). Here, ((-)) denotes temporal averaging over
bubble trajectories in the statistically steady state, S(¢f) is the surface area of the
bubble and S(0) = nd>.

The time evolution of the kinetic energy E = (pu?/2) for runs R1-R7 is shown in
figure 2(d). A statistically steady state is attained close to ¢~ 20t,, where 7, is the
integral time scale (see table 1). Using (2.1a), we obtain the balance equation for the
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FIGURE 3. Energy dissipation rate €, (filled plus), estimation of the liquid dissipation
rate €, =(8pgd/ps)**/d (empty squares) because of the bubble wakes (Lance & Bataille
1991), dissipation rate in the fluid €, (filled cross) and energy injection rate €;, (empty
circles) for runs R1-R7. The low-Ar runs are marked in red and the high-Ar runs are
marked in blue.

total kinetic energy E as

2
9, <”;’> — —2(u()S: ) + ([pu — P(Ouyg) + (F” - u), 3.1
——
4 n €inj €o

where (-) represents spatial averaging. In steady state, the energy injected by buoyancy
€;,; 1s balanced by viscous dissipation €,. The energy injected by buoyancy e;,; ~ (o; —
pp)9g(U), where (U) is the average bubble rise velocity. Note that €, = —9, f ods
(Joseph 1976), where ds is the bubble surface element, and its contribution is zero in
the steady state. The excellent agreement between steady-state values of €, and ¢;; is
evident from figure 3.

Lance & Bataille (1991) argued that the energy injected by the buoyancy is
dissipated in the wakes on the bubble. The energy dissipation in the wakes can be
estimated as €, = C,0((8p/p;)gd)*’?/d, where C, is the drag coefficient. Assuming
C, = O(1), we find that €, is indeed comparable to the viscous dissipation in the
fluid phase €, (see figure 3).

3.3. Probability distribution function of the fluid and bubble velocity fluctuations

In figure 4(a,b) we plot the probability distribution function (p.d.f.) of the fluid
velocity fluctuations &' = u[c = 1]. Both the horizontal and vertical velocity p.d.f.s
are in quantitative agreement with the experimental data of Riboux et al. (2010)
and Risso (2018). The p.d.f. of the velocity fluctuations of the horizontal velocity
components are symmetric about the origin and have stretched exponential tails,
whereas the vertical velocity fluctuations are positively skewed (Riboux et al. 2010;
Prakash et al. 2016; Alméras et al. 2017). Our results are consistent with the recently
proposed stochastic model of Risso (2016), which suggests that the potential flow
disturbance around bubbles, bubble wakes and the turbulent agitation because of flow
instabilities, together lead to the observed velocity distributions. We believe that the
deviation in the tail of the distributions arises because of the differences in the wake
flow for different Re and Ar (see figure 1). Note that positive skewness in the vertical
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FIGURE 4. The probability distribution function of the (a) horizontal component and
(b) vertical component of the liquid velocity fluctuations for runs given in table 1.
The p.d.f.s obtained from our DNS are in excellent agreement with the experimental
data of Riboux et al. (2010) (data extracted using Engauge https://markummitchell.github.
io/engauge-digitizer/).
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FIGURE 5. The probability distribution function of (a) the horizontal and (b) the vertical
component of the bubble velocity fluctuations for runs R1 and R6 (see table 1). The
experimental data of Mercado et al. (2010) and numerical results of Roghair et al
(2011) are also shown for comparison. The black continuous line represents a Gaussian
distribution.

velocity has also been observed in thermal convection with bubbles (Biferale et al.
2012).

By tracking the individual bubble trajectories we obtain their centre-of-mass velocity
u’. In agreement with the earlier simulations of Roghair et al. (2011), the p.d.f.s of
the bubble velocity fluctuation are Gaussian (see figure 5). The departure in the tail
of the distribution is most probably because of the presence of large-scale structures
observed in experiments that are absent in simulations with periodic boundaries
(Roghair et al. 2011).

3.4. Energy spectra and scale-by-scale budget
In the following, we study the energy spectrum
E'= > il (3.2)
k—1/2<m<k+1/2
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the co-spectrum

E]fuu = Z Eﬁ[(p,\u)_mﬁm] = déa/dk, (33)

k—1/2<m<k+1/2

and the scale-by-scale energy budget. Our derivation of the energy budget is similar
to Frisch (1997) and Pope (2012). For a general field f(x), we define a corresponding
coarse-grained field (Frisch 1997) f~(x) = ngk fm exp(im - x) with the filtering
length scale ¢ = 2m/k. Using the above definitions in (2.1a), we get the energy
budget equation

0+ Iy + F = Py — D + FE. (3.4)

Here, 2&; = (u; - (pu);) is the cumulative energy up to wavenumber k, 2T =
((ou)g « (w - Vu)g) + (ug - (w - Vpu)g) is the energy flux through wavenumber
k, 29, = —[{(puw)g - (V « [2uS]/p)7) + (ug - (V « [2uSD{)] is the cumulative
energy dissipated up to k, 2.%7 = —[((pu); - (F°/p)g) + (ug - (F°);)] is the
cumulative energy transferred from the bubble surface tension to the fluid up to
k, and 2.Z¢ = ((pu)g - (F*/p)7) + (u7 - (F®)7) is cumulative energy injected by
buoyancy up to k. In a crucial departure from the uniform density flows, we find a
non-zero cumulative pressure contribution 2% = ((pu); - (Vp/p)5).

In the Boussinesq regime (small Af), the individual terms in the scale-by-scale
budget simplify to their uniform density analogues: & = p,(u; - u;)/2, Iy =
oy ~ - Vu)R), D = —plIVu ), Fg = —(up - FOp), FE = (up - (FO;),
and &, =0.

3.4.1. Low-At (runs R1-R4)

We first discuss the results for the Boussinesq regime (low Af). For scales smaller
than the bubble diameter (k > k,), the energy spectrum (figure 6a) shows a power-law
behaviour E(k) ~ k= for different Re. The exponent B =4 for Re =150 — it decreases
on increasing Re and becomes close to f =3 for the largest value Re =462.

We now investigate the dominant balances using the scale-by-scale energy budget
analysis. In the statistically steady state 9,6, =0 and IT, + . = —%; + #{ (note
that &, =0 for low Ar). In figures 6(b) and 6(c) we plot different contributions to
the cumulative energy budget for Re = 150 and Re = 462 and make the following
observations:

(i) The cumulative energy injected by buoyancy .%; saturates around k ~ k,. Thus
buoyancy injects energy at scales comparable to and larger than the bubble
diameter.

(i) The energy flux I1; > 0 around k=~ k, and vanishes for k> k,.

(iii) Especially for scales smaller than the bubble diameter, the cumulative energy
transfer from the bubble surface tension to the fluid is the dominant energy
transfer mechanism.

(iv) Consistent with the earlier predictions (Riboux et al. 2010), for our highest
Re =462, simulation provides direct evidence that the balance of total production
d(IT, + #¢7)/dk ~ k=' with viscous dissipation [d%;/dk = vk*E(k)] gives the
pseudo-turbulence spectra E(k) ~ k= (Lance & Bataille 1991; Riboux et al.
2010; Roghair et al. 2011).

Our scale-by-scale analysis, therefore, suggests the following mechanism of
pseudo-turbulence. Buoyancy injects energy at scales comparable to and larger than
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FIGURE 6. (a) The log-log plot of the energy spectra E}* versus k/k, for our high-Re,
low-At runs R1-R4. Dash-dotted line indicates k=3 scaling. (b, ¢) Cumulative contribution
of viscous dissipation %, energy injected because of buoyancy .%; and the surface tension
contribution .#; versus k/k, for (b) run R1 and (c¢) run R4. Note that, for k > k,, the
balance between d.# /dk and d%,/dk is more prominent in (c) compared to (b).

the bubble size. A part of the energy injected by buoyancy is absorbed in stretching
and deformation of the bubbles and another fraction is transferred via wakes to scales
comparable to the bubble diameter. Similar to polymers in turbulent flows Perlekar,
Mitra & Pandit (2006, 2010), Valente, da Silva & Pinho (2014), the relaxation of the
bubbles leads to injection of energy at scales smaller than the bubble diameter.

Note that for low At, Boussinesq regime p = p,, there is no distinction between a
droplet and a bubble. Therefore, our results for low-Ar buoyancy-driven bubbly flows
are equally valid for a suspension of sedimenting droplets.

3.4.2. High-At (runs R5-R7)

Similar to the earlier section, here also the energy spectrum and the co-spectrum
show a scaling of k= at high Re = 546 (Roghair et al. 2011) and the spectrum
becomes steeper E(k) ~ k> (Bunner & Tryggvason 2002bh) on decreasing to
Re = 173 (figure 7a). However, because of density variations, the scale-by-scale
energy budget becomes more complex. Now, in the statistically steady state,
Hk+ﬁ]g:<@k—@k+ﬂf

In figure 7(b) we plot the scale-by-scale energy budget for our high-Az run R6. We
find that the cumulative energy injected by buoyancy and the pressure contribution
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FIGURE 7. (a) The log-log plot of the energy spectra (O) Ei* and co-spectrum (O0) E;*
versus k/k; for our high-Re, high-At runs R5-R7. Dash-dotted line indicates k> scaling.
(b) Cumulative contribution of the viscous dissipation %, the contribution due to buoyancy
and pressure .#;—2, the energy flux IT; and the surface-tension contribution . versus
k/k, for run R6.

F&+ Py reaches a peak around k=~ k,; and then decrease mildly to €;,. Similar to the
low-At case, we find a non-zero energy flux for k~k; and a dominant surface-tension
contribution to the energy budget for k > k,. Finally, similar to the previous section,
for k > k; the net production d(IT + .%°)/dk ~ k' balances the viscous dissipation
vk2E(k) to give E(k) ~ k3.

3.4.3. Frequency spectrum of pseudo-turbulence

To investigate the frequency spectrum of pseudo-turbulence, we now conduct a
time-series analysis similar to Roghair ef al. (2011) and Prakash er al. (2016) for
our high Ar=0.8, high Re =465 run R6. We monitor the time evolution of the three
components of the velocity and the density p for time 7 =90t,, with sampling time
8 x 10731, on 32% equally spaced Eulerian points within our simulation domain.
From these signals, we select continuous segments of liquid velocity fluctuations of
size T, > 197, and ignore regions where p = p,. We then use the Welch method, with
Hamming windows, to obtain the energy spectrum (Welch 1967; Prakash et al. 2016).
In figure 8(a) we plot the liquid velocity spectrum E(v) versus v/v, and find it to be
in excellent agreement with the experiments of Prakash et al. (2016). In figure 8(b)
we show that the normalized energy spectrum is not modified on doubling T > 387,.
Similar to Roghair et al. (2011), Prakash et al. (2016) and Alméras et al. (2017)
we find that E(v) ~ v~ for frequencies v > v;, where v, = (U)/2ntd (Prakash et al.
2016).

3.5. Length scales of pseudo-turbulence

We have used bubble diameter as a relevant scale of pseudo-turbulence (Mendez-Diaz
et al. 2013; Prakash et al. 2016). Riboux et al. (2010) proposed an alternative length
scale A Vg /8=46pd/(Bp;Cu), where V is the single bubble rise velocity and Cy is
the drag coefficient of an isolated bubble. Note that for large At, 5p/p;~ 1. In table 2
we present values of d and A obtained from our numerical simulations R1-R7. For
our large-At runs, we find that bubble diameter is comparable to A (d/A = 0.4-0.6).
On the other hand, for our small-Af runs, d/A =~ 4-6, indicating that k,/k, lies near
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FIGURE 8. (a) Kinetic energy spectrum of the liquid velocity fluctuations E(v) versus
v/v,; for our run R6. We also overlay the spectrum obtained from the experiments
of Prakash ef al. (2016) and find it to be in excellent agreement with our numerical
simulation. (b) Comparison of the normalized energy spectrum obtained from liquid
velocity segments of length 7, > 197, (1.9 x 10* trajectories) and 387, (5 x 103
trajectories).

runs R1 R2 R3 R4 R5 R6 R7

A 40 62 41 43 529 384 533
d/A 60 38 54 51 05 06 04

TABLE 2. Length scale A« V7/g=48pd/(3p;Cs) and the ratio d/A for our runs R1-R7.

the end of the k= scaling range. Thus A does not capture the beginning of the k=3
scaling for our low-At runs.

3.6. Clustering of bubbles

Using Voronoi analysis, Tagawa et al. (2013) investigated clustering in bubbly flows
with varying Re, surface tension o and d/L for ¢ =5 %—40%. They observed that
the clustering depends on the deformability of the bubbles. To investigate clustering
in our numerical study on dilute bubbly flows (¢ = 1.7 %-2.6 %), we repeated the
analysis of Tagawa et al. (2013) for our runs R1-R7. From the bubble centre-of-mass
positions, we construct Voronoi tesselations using the Voro++ library (Rycroft 2009).
We then evaluate the standard deviation X of the Voronoi volumes obtained from the
steady-state bubble configurations. We also generate 200 configurations of randomly
positioned, non-overlapping, N, bubbles of diameter d in a box of length L. Using the
Voronoi tesselation of these random configurations, we evaluate the standard deviation
X ma- The ratio C = X' /X,,; gives an indication of the bubble clustering. Note that
C <1 for a regular lattice arrangement, C = 1 for a random arrangement, and C > 1
for irregular clustering (Tagawa et al. 2013). We observe random or weakly irregular
clustering for our runs R1-R6 (see table 3). For our high-Re, high-Af run R7, C =
0.9, which indicates a weakly regular lattice arrangement of bubbles. Therefore, for
our simulations with ¢ = 1.7 %-2.6 %, we do not observe any systematic effect of
clustering on the energy spectrum.
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runs R1 R2 R3 R4 R5 R6 R7
C 13 13 11 11 13 1.0 09

TABLE 3. The clustering indicator C for our runs R1-R7.

4. Conclusion

To conclude, we have investigated the statistical properties of velocity fluctuations
in pseudo-turbulence generated by buoyancy-driven bubbly flows. The Re values
that we have explored are consistent with the range Re ~ [300-1000] used in the
experiments (Riboux et al. 2010; Mendez-Diaz et al. 2013; Prakash et al. 2016). Our
numerical simulations show that the shape of the p.d.f. of the velocity fluctuations
is consistent with experiments over a wide range of Re and Ar numbers. For large
Re, and for low as well as high Az, the energy spectrum shows a E(k) ~ k= scaling
(Roghair ef al. 2011). However, on reducing Re, the spectrum becomes steeper
E(k) ~ k=% (Bunner & Tryggvason 2002b). We observe a non-zero positive energy
flux for scales comparable to the bubble diameter. Our scale-by-scale energy budget
validates the theoretical prediction that the net production balances viscous dissipation
to give E(k) ~ k3.

Experiments on pseudo-turbulence have investigated the liquid velocity fluctuations
either within the bubble swarm (Larue De Tournemine 2001; Mercado et al. 2010;
Mendez-Diaz et al. 2013; Prakash et al. 2016) or in the wake of the bubble swarm
(Riboux et al. 2010). All these experiments show a robust —3 spectrum. However,
Riboux et al. (2010) also observed that the —3 spectrum is followed by nearly half
a decade of —5/3 spectrum. A similar observation, albeit for a much smaller scaling
range, was also made by Mendez-Diaz et al. (2013). Consistent with bubble swarm
experiments (Larue De Tournemine 2001; Mercado et al. 2010; Prakash er al. 2016),
we do not observe a —5/3 spectrum. A plausible reason for the observed discrepancy,
as indicated by Riboux et al. (2010), could be that strong flows generated in the
vicinity of the bubbles are absent in the wake of the bubble swarm.
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