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Closed-form shock solutions
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It is shown here that a subset of the implicit analytical shock solutions discovered by
Becker and by Johnson can be inverted, yielding several exact closed-form solutions
of the one-dimensional compressible Navier–Stokes equations for an ideal gas. For a
constant dynamic viscosity and thermal conductivity, and at particular values of the
shock Mach number, the velocity can be expressed in terms of a polynomial root.
For a constant kinematic viscosity, independent of Mach number, the velocity can be
expressed in terms of a hyperbolic tangent function. The remaining fluid variables
are related to the velocity through simple algebraic expressions. The solutions derived
here make excellent verification tests for numerical algorithms, since no source terms
in the evolution equations are approximated, and the closed-form expressions are
straightforward to implement. The solutions are also of some academic interest as
they may provide insight into the nonlinear character of the Navier–Stokes equations
and may stimulate further analytical developments.
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1. Introduction

One of the few known nonlinear analytical solutions to the equations of fluid
dynamics was discovered by Becker (1922) and subsequently analysed by Thomas
(1944), Morduchow & Libby (1949), Hayes (1960) and Iannelli (2013). It captures
the physical profile of shock fronts in ideal gases, and, although it requires some
restrictive assumptions (a steady state, one planar dimension, constant dynamic
viscosity, an ideal gas equation of state and a constant Prandtl number Pr of 3/4), the
solution is exact in the sense that no source terms in the (one-dimensional) evolution
equations are neglected or approximated. Analogous solutions were discovered by
Johnson (2013) in the limit of both large and small Pr. These solutions provide a
useful framework for verifying numerical algorithms used to solve the Navier–Stokes
equations. A drawback, however, from the perspective of both physical intuition and
numerical implementation, is that the solutions are implicit, i.e. they are solutions for
x(v) rather than closed-form expressions for v(x) (x here is the spatial dimension in
which the shock propagates and v is the velocity magnitude).
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It is shown here that some of these implicit solutions can be inverted for particular
values of the shock Mach number, yielding closed-form expressions for the fluid
velocity as a function of position. In particular, for rational values of the shock
compression ratio, Becker’s implicit expression is a polynomial in v(x). Expressions
for the polynomial root relevant to a shock are provided up to a compression ratio of
four. Polynomial solutions also exist in both the large- and small-Pr limits under the
assumption of either a constant dynamic viscosity or constant thermal conductivity,
and expressions are provided for these as well. Under the assumption of a constant
kinematic (rather than dynamic) viscosity, the solution for v(x) takes the particularly
simple form of a hyperbolic tangent function; this solution is valid at any Mach
number and for both Pr→∞ and Pr→ 3/4.

An overview of the equations to be solved is given in § 2, the solutions are given
in § 3, and a summary is given in § 4.

2. Equations

In one planar dimension and a steady state, the compressible Navier–Stokes
equations reduce to the following ordinary differential equations:

4µ
3m0

v
dv
dx
= v2 + γ − 1

γ
h− γ + 1

2γ
(v0 + v1)v, (2.1)

κ

m0Cp

dh
dx
= h
γ
− v

2

2
+ γ + 1

2γ
(v0 + v1)v − γ + 1

γ − 1
v0v1

2
, (2.2)

where ρ is the mass density, h = e + p/ρ is the fluid enthalpy, p is the pressure,
e is the internal energy, µ is the dynamic viscosity (in the limit of negligible bulk
viscosity; otherwise µ is the sum of the dynamic viscosity and 3/4 of the bulk
viscosity), κ is the thermal conductivity and m0= ρv= ρ0v0 is the mass flux (Becker
1922; Zel’dovich & Raizer 2002; Johnson 2013). It has been assumed here that the
fluid obeys an ideal gas equation of state, p= (γ − 1)ρe, so that h= γ e=CpT , where
Cp is the specific heat at constant pressure, T is the temperature and γ = Cp/Cv

is the adiabatic index (Cv is the specific heat at constant volume). The integration
constants in (2.1) and (2.2) have been expressed in terms of both pre-shock (denoted
by a subscript ‘0’) and post-shock (denoted by a subscript ‘1’) velocities using the
shock compression ratio,

R≡ ρ1

ρ0
= γ + 1
γ − 1+ 2/M2

0
, (2.3)

where M2
0 = v2

0/c
2
0 is the shock Mach number and c0=√γ p0/ρ0 is the adiabatic sound

speed in the ambient fluid (Landau & Lifshitz 1987). The Prandtl number is given by
Pr≡µCp/κ .

3. Solutions

3.1. Becker’s (Pr= 3/4) solution
For Pr= 3/4, (2.1) and (2.2) can be reduced to the quadrature (Becker 1922)

x= 2Lκ
γ + 1

∫
(κ/κ0)η

(η− 1)(η− η1)
dη, (3.1)
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Closed-form shock solutions

R M2
0 Equation

4/3 8/(7− γ ) δ4 − f (δ3 + 3δ2/4+ 3δ/16+ 1/64)= 0
3/2 6/(5− γ ) δ3 + f (δ2 + 2δ/3+ 1/9)= 0
2 4/(3− γ ) δ2 − f (δ + 1/2)= 0
3 3/(2− γ ) δ3 + f 2(δ + 2/3)= 0
4 8/(5− 3γ ) δ4 − f 3(δ + 3/4)= 0

TABLE 1. Polynomials for Pr= 3/4 and Pr=∞.

and the algebraic expression

T
T0
= γ − 1

2
M2

0

(
γ + 1
γ − 1

η1 − η2

)
. (3.2)

Here η ≡ v/v0, η1 ≡ v1/v0 = R−1 and Lκ ≡ κ0/(m0Cv) is the ambient conductive
length scale. For constant κ = κ0, the integral (3.1) is given by (to within an arbitrary
constant)

x= 2Lκ
γ + 1

ln[(1− η)1/(1−η1)(η− η1)
−η1/(1−η1)], (3.3)

which is in turn equivalent to

(δ − δ1)f R−1 = (−δ)R, (3.4)

where δ ≡ η− 1, δ1 ≡ η1 − 1= R−1 − 1,

f ≡ ex/w (3.5)

and
w≡ 2L

γ + 1
. (3.6)

Here L= Lκ , but expression (3.6) is kept general for use in later sections.
For rational values of R, (3.4) is a polynomial in δ(x). Values for R that yield

closed-form expressions for v(x) are listed in table 1, the corresponding closed-form
expressions for η are given in appendix A, and plots of the density, temperature and
a proxy for the entropy (s≡ Tηγ−1) are shown in figures 1–3. Plotted quantities are
all normalised to their ambient values, and the x values have been scaled to M0Lµ
(=M0Lκ/γ for Pr = 3/4), as this is a length scale that is independent of the shock
Mach number. Table 1 also gives the curves in M0–γ space for which the closed-form
solutions are valid. These can be obtained by solving expression (2.3) for M0:

M0 =
√

2R
R+ 1− γ (R− 1)

. (3.7)

3.2. Large-Pr solution
For Pr→∞, (2.1) and (2.2) can be reduced to the quadrature (Taylor 1910; Johnson
2013)

x= 2Lµ
γ + 1

∫
(µ/µ0)η

(η− 1)(η− η1)
dη, (3.8)
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FIGURE 1. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr= 3/4 solutions with (a) R= 4/3 and (b) R= 3/2.
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FIGURE 2. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr= 3/4 solutions with (a) R= 2 and (b) R= 3.

where Lµ ≡ 4µ0/(3m0) is the ambient viscous length scale, and the algebraic
expression

T = T0
γ (γ − 1)M2

0

2

(
η2 − 4ηiη+ γ + 1

γ − 1
η1

)
, (3.9)

where

ηi ≡ γ + 1
4γ

(1+ η1). (3.10)

For constant µ=µ0, the integral (3.8) is given by (to within an arbitrary constant)

x= 2Lµ
γ + 1

ln[(1− η)1/(1−η1)(η− η1)
−η1/(1−η1)]. (3.11)
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FIGURE 3. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for (a) Pr= 3/4 and (b) Pr=∞ solutions with R= 4.

Comparing expression (3.11) with (3.3), it can be seen that the solutions for η in
this limit are the same as those of the previous section with L = Lµ in expression
(3.6). Figure 3 compares the large-Pr solution with R= 4 to the corresponding Pr=
3/4 solution. Notice that the entropy has no local maximum in this limit (it increases
monotonically from pre- to post-shock). This can be seen from

d ln T
dx
+ (γ − 1)

d ln η
dx
= 0 ⇒ η2 − (1+ η1) η+ η1 = 0, (3.12)

which is solved by η=1 and η=η1; the entropy has zero slope only at the boundaries.

3.3. Small-Pr solution
For Pr→ 0, (2.1) and (2.2) can be reduced to the quadrature (Taylor 1910; Johnson
2013)

x= 4Lκ
γ + 1

∫
(κ/κ0)(η− ηi)

(η− 1)(η− η1)
dη (3.13)

and the algebraic expression

T = T0γM2
0η(2ηi − η). (3.14)

For constant κ = κ0, the integral (3.13) is given by (to within an arbitrary constant)

x= 4Lκ
γ + 1

ln[(1− η)(1−ηi)/(1−η1)(η− η1)
(ηi−η1)/(1−η1)], (3.15)

which is in turn equivalent to

f |n−1|/2(δ − δ1)= (−δ)n, (3.16)

where

n≡ ηi − 1
ηi − η1

= (γ + 1)(1− γM2
0)

1− 3γ + (3− γ )γM2
0
, (3.17)

f is defined in expression (3.5) and L= Lκ in expression (3.6). For M2
0 > 1, one has

1< |n|<∞.
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n α M2
0 Equation

−3 2 (2γ − 1)/(γ [2− γ ]) δ4 − δ1δ
3 + f 2 = 0

−2 5/3 (5γ − 3)/(γ [5− 3γ ]) δ3 − δ1δ
2 − f 3/2 = 0

4/3 15 (15γ − 1)/(γ [15− γ ]) δ4 + f 1/2(−δ3 + 3δ1δ
2 − 3δ2

1δ + δ3
1)= 0

3/2 11 (11γ − 1)/(γ [11− γ ]) δ3 + f 1/2(δ2 − 2δ1δ + δ2
1)= 0

2 7 (7γ − 1)/(γ [7− γ ]) δ2 + f 1/2(−δ + δ1)= 0
3 5 (5γ − 1)/(γ [5− γ ]) δ3 + f (δ − δ1)= 0
4 13/3 (13γ − 3)/(γ [13− 3γ ]) δ4 + f 3/2(−δ + δ1)= 0
∞ 3 (3γ − 1)/(γ [3− γ ]) δ + f 1/2 = 0

TABLE 2. Polynomials for Pr= 0.
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FIGURE 4. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr= 0 solutions with (a) n= 4/3 and (b) n= 3/2.

For rational values of n, (3.16) is a polynomial in δ(x). Values for n that yield
closed-form expressions for v(x) are listed in table 2, the corresponding closed-form
expressions for η are given in appendix A, and plots of the density, temperature and a
proxy for the entropy are shown in figures 4–7. Plotted quantities are again normalised
to their ambient values, and the x values have been scaled to M0Lκ . Table 2 also gives
the curves in M0–γ space for which the closed-form solutions are valid. These can be
obtained by solving expression (3.17) for M0:

M0 =
√

αγ − 1
γ (α − γ ), α ≡ 3n+ 1

n− 1
. (3.18)

In terms of α,

δ1 =−2
γ − 1
αγ − 1

. (3.19)

For M0 >Mc, where

Mc ≡
√

3γ − 1
γ (3− γ ) (3.20)
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FIGURE 5. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr= 0 solutions with (a) n= 2 and (b) n= 3.
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FIGURE 6. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr= 0 solutions with (a) n= 4 and (b) n=∞.

(this is equivalent to n < 0), the solution in this limit is discontinuous (Zel’dovich
& Raizer 2002; Johnson 2013). For M0 = Mc, n = ±∞, ηi = η1 and (3.16) reduces
to f 1/2 = −δ, or η = 1 − f 1/2. This solution is valid until η = η1, where there is a
weak discontinuity in both velocity and temperature. The weak discontinuity in the
temperature occurs above the first derivative, since dT/dx∝ ηi − η= 0 at η= ηi.

3.4. Constant kinematic viscosity
For a constant kinematic viscosity, ν ≡ µ/ρ = ν0, the integrals (3.1) and (3.8) both
reduce to

x=w
∫

dη
(η− 1)(η− η1)

= w
1− η1

ln
(

1− η
η− η1

)
, (3.21)

which can be solved for η to give (this solution has the same form as the Taylor
(1910) structure function for weak shocks; the latter was derived under the assumption
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FIGURE 7. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for Pr= 0 solutions with (a) n=−3 and (b) n=−2.

of constant µ and κ)
η= σ(−z)+ η1σ(z), (3.22)

where
σ(z)≡ 1

1+ e−z
, z≡ x

w
(1− η1)= x

L
(1−M−2

0 ).

An equivalent expression for η is

η= η1 + 1
2
+ η1 − 1

2
tanh

( z
2

)
. (3.23)

This solution is valid for both Pr= 3/4, in which case L= Lκ = γLµ and T is given
by expression (3.2), and Pr=∞, in which case L= Lµ and T is given by expression
(3.9). Plots of the density, temperature and a proxy for the entropy (normalised to
their ambient values) are shown in figure 8 for both Pr= 3/4 and Pr=∞.

4. Summary

Several closed-form analytical solutions to the one-dimensional compressible
Navier–Stokes equations have been derived in the limit of a steady state and an
ideal gas equation of state. Solutions with a constant dynamic viscosity and thermal
conductivity can be obtained by solving a polynomial equation. Polynomial solutions
valid for large Pr and Pr = 3/4 are listed in table 1 and shown in figures 1–3.
Polynomial solutions valid for small Pr are listed in table 2 and shown in figures 4–7.
Tables 1 and 2 also give expressions for M0(γ ) for which these solutions are valid,
and the corresponding curves in M0–γ space are shown in figure 9. A solution can
also be obtained under the assumption of a constant kinematic viscosity, valid for
either large Pr or a constant Pr = 3/4 and at any Mach number; this solution is
described in § 3.4 and shown in figure 8.

The derived solutions are nonlinear and exact in the sense that no source terms in
the evolution equations are neglected or approximated. As such, they make excellent
verification tests for numerical algorithms. The most physically relevant solutions are
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FIGURE 8. Curves of density (solid), temperature (dashed) and a proxy for the entropy
(dotted) for (a) Pr= 3/4 and (b) Pr=∞ solutions with constant ν and M0 = 3.

1.1 1.2 1.3 1.4 1.5 1.6
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0(a) (b)

M0
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FIGURE 9. Curves in M0–γ space for which the derived closed-form solutions are valid,
for (a) R = 4/3, 3/2, 2, 3 and 4 (bottom to top), and (b) n = −3, −2, ∞, 4/3, 3/2,
2, 3 and 4 (top to bottom). In panel (b), a dashed line indicates a discontinuous solution,
a dotted line indicates a solution with a weak discontinuity, and a solid line indicates a
continuous solution.

those with Pr= 3/4, as this is close to the Pr of many gases. The small-Pr solutions
are somewhat relevant to gas mixtures and plasmas, whereas the large-Pr solutions are
primarily of academic interest and are only included for completeness (Johnson 2013).
The derived solution set is not exhaustive: additional polynomial solutions exist under
the assumption of a constant thermal diffusivity χ ≡ κ/ρ, and a solution in terms
of Lambert functions can be derived for µ ∝ T1/2, Pr→∞ and M0→∞. As none
of these solutions are more physically relevant than the ones discussed above, their
detailed derivation has not been included.

Perhaps the primary benefit of the derived solutions is their addition to the limited
number of known exact solutions to the Navier–Stokes equations. Further study of the
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solutions may provide insight into the nonlinear character of these equations, and the
methods employed may stimulate additional analytical developments.
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Appendix A

For the quadratic equations in tables 1 and 2 (δ2+ aδ+ b= 0), the solution branch
relevant to a shock (the other solution branch grows exponentially as x→∞) is given
by

η= 1− a
2
−
√(a

2

)2 − b. (A 1)

For the cubic equations in tables 1 and 2 (δ3+ aδ2+ bδ+ c= 0), the shock solution
is

η= 1−
(a

3
+ A+ p

A

)
, (A 2)

where

A≡
(

q+
√

q2 − p3
)1/3

, p≡
(a

3

)2 − b
3
, q≡

(a
3

)3 − ab
6
+ c

2
.

For R= 3/2 and n= 3/2, the solution is given by expression (A 2) for f < fc, where
fc is given in table 3, and by

η= 1+ 2
√

p cos
(
θ − 2πk

3

)
− a

3
, θ ≡ cos−1

(−q
p3/2

)
(A 3)

for f > fc (with k = 0). For n = −2, the solution is given by expression (A 3) for
f < fc (with k= 1), and there is a discontinuity at f = fc where the solution transitions
from 2ηi− η1 to η1 (Zel’dovich & Raizer 2002; Johnson 2013). Evaluating expression
(A 3) can be problematic as x→∞ owing to the subtraction of two large numbers
that are nearly equal. This can be seen in panel (b) of figures 1 and 4, where a glitch
in the density appears near the post-shock region. The data for these plots (generated
with NumPy) was noisy beyond this point and was replaced with post-shock values
at infinity.

For the quartic equations in tables 1 and 2 (δ4+ aδ3+ bδ2+ cδ+ d= 0), the shock
solution is

η= 1− a
4
+ k

2
B− k

2

√
−B2 + 3r− s

k
B
, (A 4)

where

A≡
(

q+
√

q2 − p3
)1/3

, B≡
√

r+ A+ p
A
,

p≡
(

b
3

)2

− ac
3
+ 4d

3
, q≡

(
b
3

)3

− abc
6
+ a2d

2
+ c2

2
− 4bd

3
, (A 5)

r≡
(a

2

)2 − 2
3

b, s≡ a3

4
− ab+ 2c, (A 6)
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Solution k fc

R= 4/3 1
R= 3/2 0 9/4
R= 4 1
n=−3 −1 (δ1δ

3
i − δ4

i )
1/2

n=−2 1 (δ3
i − δ1δ

2
i )

2/3

n= 4/3 1
n= 3/2 0 (27δ1/4)2
n= 4 1
n=∞ −δ1

TABLE 3. Branches and critical points.

and the value for k is given in table 3. For n=−3, there is a discontinuity at f = fc
where the solution transitions from 2ηi− η1 to η1 (Zel’dovich & Raizer 2002; Johnson
2013).

The translational invariance of the equations allows one to multiply f by any
constant factor. To set the origin x= 0 at η= ηo, where η1 < ηo < 1 but is otherwise
arbitrary, multiply f by a scale factor S, where S is obtained from the relevant
equation. For example, the equation for R= 2 with f → Sf is

δ2 − Sf (δ + 1/2)= 0.

Since f = 1 at x= 0, this equation can be solved for S to give

S= δ2
o

δo + 1/2
,

where δo = ηo − 1.
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