
Ergod. Th. & Dynam. Sys., (2022), 42, 2575–2582 © The Author(s), 2021. Published by Cambridge
University Press.
doi:10.1017/etds.2021.53

2575

On one-sided topological conjugacy
of topological Markov shifts and gauge

actions on Cuntz–Krieger algebras
KENGO MATSUMOTO

Department of Mathematics, Joetsu University of Education, Joetsu 943-8512, Japan
(e-mail: kengo@juen.ac.jp)

(Received 4 July 2020 and accepted in revised form 5 April 2021)

Abstract. We characterize topological conjugacy classes of one-sided topological Markov
shifts in terms of the associated Cuntz–Krieger algebras and their gauge actions with
potentials.

Key words: Cuntz–Krieger algebra, gauge action, topological conjugacy, topological
Markov shift.
2020 Mathematics Subject Classification: 37A55, 46L55 (Primary); 46L35, 37B10
(Secondary)

For an irreducible non-permutation matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, let
us denote by (XA, σA) the associated one-sided topological Markov shift. It consists
of the compact Hausdorff space XA of right one-sided sequences (xn)n∈N of xn ∈
{1, 2, . . . , N} satisfying A(xn, xn+1) = 1, n ∈ N, and the continuous surjective map of
the right one-sided shift σA : XA −→ XA defined by σA((xn)n∈N) = (xn+1)n∈N. The
topology of XA is defined by the relative topology of the infinite product topology of
{1, 2, . . . , N}N. A two-sided topological Markov shift (X̄A, σ̄A) is similarly defined by
replacing right one-sided sequences (xn)n∈N with two-sided sequences (xn)n∈Z. See the
textbooks [7, 8] for general theory of symbolic dynamical systems. By the monumental
introduction of Cuntz–Krieger algebras OA by Cuntz and Krieger in [6], lots of important
and interesting interplays between topological Markov shifts and the Cuntz–Krieger
algebras have been studied and clarified. The Cuntz–Krieger algebra OA for the matrix
A is defined by the universal unital C∗-algebra generated by N partial isometries
S1, . . . , SN satisfying the relations 1 = ∑N

j=1 SjS
∗
j and S∗

i Si = ∑N
j=1 A(i, j)SjS

∗
j , i =

1, 2, . . . , N . As in the paper [6], the original space XA appears in the algebra OA as a
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maximal commutative C∗-subalgebra, written DA, generated by projections of the form
Sμ1 · · · SμmS∗

μm
· · · S∗

μ1
for μ1, . . . , μm ∈ {1, 2, . . . , N} that is canonically isomorphic

to the commutative C∗-algebra C(XA) of complex-valued continuous functions on XA,
through the identification between the projection Sμ1 · · · SμmS∗

μm
· · · S∗

μ1
and the char-

acteristic function χUμ1 ···μm
on XA for the cylinder set Uμ1···μm = {(xn)n∈N ∈ XA | x1 =

μ1, . . . , xm = μm}. The gauge action ρA on OA is defined by the automorphisms ρA
t , t ∈

R/Z = T satisfying ρA
t (Sj ) = exp(2π

√−1t) · Sj , j = 1, 2, . . . , N . Cuntz and Krieger
themselves proved in [6] the following fundamental results (A), (B) and (C) that show
close relationships between topological dynamical systems and C∗-algebras. Let us denote
by K and C the C∗-algebra of compact operators on the separable infinite-dimensional
Hilbert space �2(N) and its maximal commutative C∗-subalgebra consisting of diagonal
operators, respectively. Let A, B be two irreducible non-permutation matrices with entries
in {0, 1}.
(A) If one-sided topological Markov shifts (XA, σA) and (XB , σB) are topologically

conjugate, then there exists an isomorphism � : OA −→ OB of C∗-algebras such
that

�(DA) = DB and � ◦ ρA
t = ρB

t ◦ �, t ∈ T. (1)

(B) If two-sided topological Markov shifts (X̄A, σ̄A) and (X̄B , σ̄B) are topologi-
cally conjugate, then there exists an isomorphism �̄ : OA ⊗ K −→ OB ⊗ K of
C∗-algebras such that

�̄(DA ⊗ C) = DB ⊗ C and �̄ ◦ (ρA
t ⊗ id) = (ρB

t ⊗ id) ◦ �̄, t ∈ T. (2)

(C) If two-sided topological Markov shifts (X̄A, σ̄A) and (X̄B , σ̄B) are flow equivalent,
then there exists an isomorphism �̄ : OA ⊗ K −→ OB ⊗ K of C∗-algebras such
that

�̄(DA ⊗ C) = DB ⊗ C. (3)

The converse implications of the above three implications for each have been longstand-
ing open problems. Matui and the author in [18] showed that the converse implication of
(C) holds (cf. [2, 3, 5, 14, 19], etc). Carlsen and Rout in [4] showed that the converse
implication of (B) holds by a groupoid technique (cf. [3, 5, 15], etc). Concerning
the implication (A), the author in [12] showed that the condition that there exists an
isomorphism � : OA −→ OB of C∗-algebras satisfying (1) is equivalent to the condition
that (XA, σA) and (XB , σB) are eventually conjugate, where one-sided topological Markov
shifts (XA, σA) and (XB , σB) are said to be eventually conjugate if there exist a
homeomorphism h : XA −→ XB and a non-negative integer K such that{

σK
B (h(σA(x))) = σK+1

B (h(x)), x ∈ XA,

σK
A (h−1(σB(y))) = σK+1

A (h−1(y)), y ∈ XB .
(4)

If one may take the integer K as zero, then the relations (4) reduce to the definition
of topological conjugacy h : XA −→ XB . In [1], Brix and Carlsen found an example
of irreducible topological Markov shifts (XA, σA) and (XB , σB) that are eventually
conjugate, but not topologically conjugate. In the paper, they characterized topological
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conjugacy of one-sided topological Markov shifts not only in terms of their associated
étale groupoids [1, Corollary 3.5(ii)], but also in terms of their Cuntz–Krieger algebras
[1, Corollary 3.5(iii)] in the following way. Following [1], let τA : OA −→ OA be a
completely positive map defined by τA(Y ) = ∑N

i,j=1 SiYS∗
j , Y ∈ OA. Brix and Carlsen

proved that (XA, σA) and (XB , σB) are topologically conjugate if and only if there exists
an isomorphism Φ : OA −→ OB of C∗-algebras satisfying Φ(DA) = DB and Φ ◦ τA =
τB ◦ Φ [1, Corollary 3.5]. This gives rise to a characterization of one-sided topological
conjugacy of one-sided topological Markov shifts in terms of C∗-algebras. We note that
the gauge action also appears in their other characterization of one-sided topological
conjugacy as in [1, Theorem 3.3(iv)].

In this short paper, we will attempt to characterize one-sided topological conjugacy of
one-sided topological Markov shifts in terms of Cuntz–Krieger algebras and their gauge
actions with potentials to compare with the characterization of eventual conjugacy as in (1).
For an integer-valued continuous function g ∈ C(XA, Z) on XA, the action ρA,g is defined
by the automorphisms ρ

A,g
t , t ∈ T on OA satisfying ρ

A,g
t (Sj ) = exp(2π

√−1tg) · Sj , j =
1, 2, . . . , N . The action ρA,g was called a generalized gauge action in [11, 13]. In this
paper, we call it the gauge action with potential g. We will prove the following theorem.

THEOREM 1. Let A, B be two irreducible non-permutation matrices with entries in {0, 1}.
The following assertions are equivalent.
(i) The one-sided topological Markov shifts (XA, σA) and (XB , σB) are topologically

conjugate.
(ii) There exists an isomorphism � : OA −→ OB of C∗-algebras such that �(DA) = DB

and

� ◦ ρ
A,f ◦h
t = ρ

B,f
t ◦ � for all f ∈ C(XB , Z), t ∈ T, (5)

where h : XA −→ XB is a homeomorphism induced by � : DA −→ DB satisfying
�(a) = a ◦ h−1 for a ∈ DA under the canonical identification between DA and C(XA).

Proof. (i) �⇒ (ii): Suppose that there exists a topological conjugacy h : XA −→ XB

between (XA, σA) and (XB , σB). It satisfies h ◦ σA = σB ◦ h. As h : XA −→ XB gives
rise to a continuous orbit equivalence between them in the sense of [10], a homomorphism
Ψh : C(XB , Z) −→ C(XA, Z) of abelian groups is defined by setting

Ψh(f )(x) =
l1(x)∑
i=0

f (σ i
B(h(x))) −

k1(x)∑
j=0

f (σ
j
B(h(σA(x))), f ∈ C(XB , Z), x ∈ XA,

(6)
where k1(x), l1(x) are non-negative integers satisfying the equation

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) for x ∈ XA. (7)

By [13, Theorem 3.2], there exists an isomorphism � : OA −→ OB of C∗-algebras such
that

�(DA) = DB and � ◦ ρ
A,Ψh(f )
t = ρ

B,f
t ◦ � for all f ∈ C(XB , Z), t ∈ T. (8)
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Now h : XA −→ XB is a topological conjugacy, so that one may take the integers such
as k1(x) = 0, l1(x) = 1 for all x ∈ XA. Hence, we know that Ψh(f ) = f ◦ h, proving the
assertion (ii).

(ii) �⇒ (i): Assume that there exists an isomorphism � : OA −→ OB of C∗-algebras
satisfying �(DA) = DB and the equalities (5). Since the isomorphism � : OA −→ OB

satisfies �(DA) = DB , the homeomorphism h : XA −→ XB satisfying �(a) = a ◦ h−1

under the canonical identification between DA and C(XA) gives rise to a continuous orbit
equivalence between (XA, σA) and (XB , σB) [10, Propositions 5.3 and 5.5]. Hence, as in
[13, Theorem 3.2], the homeomorphism h : XA −→ XB extends to the whole C∗-algebra
OA, so that there exists an isomorphism �1 : OA −→ OB of C∗-algebras such that

�1(DA) = DB and �1 ◦ ρ
A,Ψh(f )
t = ρ

B,f
t ◦ �1 for all f ∈ C(XB , Z), t ∈ T, (9)

and �1(a) = a ◦ h−1 for a ∈ DA under the canonical identification between DA and
C(XA). The condition �1(a) = a ◦ h−1 for a ∈ DA follows from the construction of
�1 : OA −→ OB in [13]. Since the original isomorphism � : OA −→ OB satisfies the
condition �(DA) = DB and �(a) = a ◦ h−1, a ∈ DA, the restriction of the automor-
phism �−1

1 ◦ � on DA is the identity. By [9, Lemma 4.6], one may find a unitary
U1 ∈ DB such that �1(Si) = U1�(Si), i = 1, 2, . . . , N , where Si , i = 1, 2, . . . , N are
the canonical generating partial isometries of OA. By (9), we have

�1 ◦ ρ
A,Ψh(f )
t (Si) = ρ

B,f
t ◦ �1(Si) for f ∈ C(XB , Z), t ∈ T.

Since ρ
A,Ψh(f )
t (Si) = exp(2π

√−1tΨh(f )) · Si , we have

�1(exp(2π
√−1tΨh(f ))) · �1(Si) = ρ

B,f
t (U1�(Si)).

As �1(exp(2π
√−1tΨh(f ))) = �(exp(2π

√−1tΨh(f ))), because exp(2π
√−1tΨh(f )) ∈

DA, we have

�(exp(2π
√−1tΨh(f ))) · U1�(Si) = U1ρ

B,f
t (�(Si))

and hence

�(exp(2π
√−1tΨh(f ))) · �(Si) = ρ

B,f
t (�(Si)),

so that

�(ρ
A,Ψh(f )
t (Si)) = ρ

B,f
t (�(Si)).

This implies that the equality

� ◦ ρ
A,Ψh(f )
t = ρ

B,f
t ◦ � for all f ∈ C(XB , Z) (10)

holds. By (5) and (10), we have

Ψh(f ) = f ◦ h for all f ∈ C(XB , Z). (11)

In (5), by taking f ≡ 1, we have �(DA) = DB and � ◦ ρA
t = ρB

t ◦ �, t ∈ T. Hence,
(XA, σA) and (XB , σB) are eventually conjugate via the homeomorphism h : XA −→ XB .
Hence, there exists a non-negative integer K satisfying (4). The final step to complete the
proof of the implication (ii) �⇒ (i) is to show the following lemma.

https://doi.org/10.1017/etds.2021.53 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.53


On one-sided topological conjugacy 2579

LEMMA 2. Suppose that (XA, σA) and (XB , σB) are eventually conjugate such that there
exists a non-negative integer K satisfying (4). If the equality (11) holds, then h : XA −→
XB gives rise to a topological conjugacy between (XA, σA) and (XB , σB).

Proof. Now the non-negative integer K satisfies (4), so that we have, by (6),

Ψh(f )(x) =
K+1∑
i=0

f (σ i
B(h(x))) −

K∑
j=0

f (σ
j
B(h(σA(x)))), f ∈ C(XB , Z), x ∈ XA.

If K = 0, the homeomorphism h : XA −→ XB gives rise to a topological conjugacy
between (XA, σA) and (XB , σB). Hence, we assume that K ≥ 1.

By the condition (11) together with the equality σK+1
B (h(x)) = σK

B (h(σA(x))), we see
that the equality

K∑
i=1

f (σ i
B(h(x))) =

K−1∑
j=0

f (σ
j
B(h(σA(x)))), f ∈ C(XB , Z), x ∈ XA (12)

holds. For a fixed x ∈ XA, we put y = σB(h(x)), w = h(σA(x)), so that we obtain the
equalities σK

B (y) = σK
B (w) and

K−1∑
i=0

f (σ i
B(y)) =

K−1∑
j=0

f (σ
j
B(w)), f ∈ C(XB , Z). (13)

Put y(j) = σ
j
B(y), w(j) = σ

j
B(w), j = 0, 1, . . . , K − 1, and

Y0 = {y(0), y(1), . . . , y(K − 1)}, W0 = {w(0), w(1), . . . , w(K − 1)}.
By (13), we have ∑

y(i)∈Y0

f (y(i)) =
∑

w(j)∈W0

f (w(j)), f ∈ C(XB , Z). (14)

If Y0 ∩ W0 = ∅, one may find f0 ∈ C(XB , Z) such that

f0(y(i)) = 1, f0(w(i)) = 0 for all i = 0, 1, . . . , K − 1,

a contradiction to (13) unless K = 0. Hence, Y0 ∩ W0 �= ∅. Take i0, j0 ∈ {0, 1, . . . ,
K − 1} such that y(i0) = w(j0). We put

Y1 = Y0\{y(i0)}, W1 = W0\{w(j0)},
so that we have ∑

y(i)∈Y1

f (y(i)) =
∑

w(j)∈W1

f (w(j)), f ∈ C(XB , Z). (15)

Inductively, we finally know that Y0 = W0 unless K = 0. Hence, we may find p, q ∈
{0, 1, . . . , K − 1} such that y = σ

p
B (w), w = σ

q
B(y). If q = 0, then we have h(σA(x)) =

σB(h(x)). If q �= 0, we have y = σ
p+q
B (y) and hence y is periodic. Therefore, we conclude

that the equality h(σA(x)) = σB(h(x)) holds for x ∈ XA such that y = σB(h(x)) is not
periodic. A point x ∈ XA is said to be eventually periodic if σL

A (x) is periodic for
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some non-negative integer L. The set of non-eventually periodic points is dense in the
topological Markov shift for an irreducible non-permutation matrix. Since a continuous
orbit equivalence preserves the set of eventually periodic points, we know that the equality
h(σA(x)) = σB(h(x)) holds for all x ∈ XA.

Remark 3. The equality (5) is equivalent to the following equality:

� ◦ ρ
A,g
t = ρ

B,g◦h−1

t ◦ � for all g ∈ C(XA, Z), t ∈ T. (16)

Let A, B be irreducible, non-permutation matrices with entries in {0, 1}. As in [10],
one-sided topological Markov shifts (XA, σA) and (XB , σB) are said to be continuously
orbit equivalent if there exist non-negative integer-valued continuous functions k1, l1 on
XA and k2, l2 on XB such that

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)), x ∈ XA, (17)

σ
k2(y)
A (h−1(σB(y))) = σ

l2(y)
A (h−1(y)), y ∈ XB . (18)

If one may take k1 ≡ 0, l1 ≡ 1, k2 ≡ 0, l2 ≡ 1, then the above equalities (17) and (18)
reduce to the definition that (XA, σA) and (XB , σB) are topologically conjugate. If one may
take k1 ≡ K , l1 ≡ K + 1, k2 ≡ K , l2 ≡ K + 1 for some constant non-negative integer
K , then the above equalities (17) and (18) reduce to the definition that (XA, σA) and
(XB , σB) are eventually conjugate. If one may take l1 − k1 = 1 + b1 − b1 ◦ σA and l2 −
k2 = 1 + b2 − b2 ◦ σB for some integer-valued continuous functions b1 : XA −→ Z and
b2 : XB −→ Z, respectively, then the above equalities (17) and (18) reduce to the definition
that (XA, σA) and (XB , σB) are strongly continuous orbit equivalent [11]. The continuous
orbit equivalence between (XA, σA) and (XB , σB) is completely characterized by the
condition that there exists an isomorphism � : OA −→ OB satisfying �(DA) = DB . Take
a homeomorphism h : XA −→ XB such that �(a) = a ◦ h−1 for a ∈ DA. In particular,
we see that �(g) = g ◦ h−1 for g ∈ C(XA, Z). We finally summarize characterization of
these subequivalence relations of continuous orbit equivalence in one-sided topological
Markov shifts in the following way.

COROLLARY 4. (Theorem 1 and [13, Corollary 3.5]; see also [12, Theorem 1.5] and
[11, Theorem 6.7]) Let � : OA −→ OB be an isomorphism of C∗-algebras satisfying
�(DA) = DB . Let h : XA −→ XB be the homeomorphism satisfying �(a) = a ◦ h−1 for
a ∈ DA.
(i) The homeomorphism h : XA −→ XB gives rise to a topological conjugacy between

(XA, σA) and (XB , σB) if and only if

� ◦ ρ
A,g
t = ρ

B,�(g)
t ◦ � for all g ∈ C(XA, Z), t ∈ T. (19)

(ii) The homeomorphism h : XA −→ XB gives rise to an eventual conjugacy between
(XA, σA) and (XB , σB) if and only if

� ◦ ρA
t = ρB

t ◦ �, t ∈ T. (20)
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(iii) The homeomorphism h : XA −→ XB gives rise to a strongly continuous orbit
equivalence between (XA, σA) and (XB , σB) if and only if there exists a unitary
one-cocycle vt ∈ DB for the gauge action ρB such that

� ◦ ρA
t = Ad(vt ) ◦ ρB

t ◦ �, t ∈ T. (21)

Proof. (i) The ‘if’ part follows from Theorem 1 (ii) �⇒ (i) and its proof by noticing
Remark 3. We will show the ‘only if’ part. Suppose that h : XA −→ XB is a topological
conjugacy between (XA, σA) and (XB , σB). By Theorem 1 (i) �⇒ (ii) and its proof,
one may find an isomorphism �1 : OA −→ OB of C∗-algebras such that �1(DA) = DB ,
�1(a) = a ◦ h−1 for a ∈ DA and

�1 ◦ ρ
A,g
t = ρ

B,�1(g)
t ◦ �1 for all g ∈ C(XA, Z), t ∈ T. (22)

Hence, �1 coincides with � on the subalgebra DA. By using a similar argument to the
proof of Theorem 1 (ii) �⇒ (i), one may find a unitary U1 in DB such that �1(Si) =
U1�(Si), i = 1, 2, . . . , N , where Si , i = 1, 2, . . . , N , are the canonical generating par-
tial isometries of OA, so that we have � ◦ ρ

A,g
t = ρ

B,�1(g)
t ◦ � by the same argument as

the one obtained from (9) to (10). As �1(g) = �(g), we conclude the equality (19).
(ii) and (iii) The ‘if’ parts of (ii) and (iii) follow from [13, Corollary 3.5(i)] and [13,

Corollary 3.5(ii)] (see also [13, Theorem 3.3(i)] and [13, Theorem 3.3(ii)]) and their
proofs, respectively. The ‘only if’ parts follow from [13, Theorem 3.3(i)] and [13, Theorem
3.3(ii)] and their proofs, respectively, by using a similar argument to the ‘only if’ part of
the above proof (i).

A generalization of Theorem 1 to more general subshifts treated in the paper [16] will
be studied in a forthcoming paper [17].
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