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On scaling pipe flows with sinusoidal
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Direct numerical simulation was used to study laminar and turbulent flows in circular
pipes with smoothly corrugated walls. The corrugation wavelength was kept constant
at 0.419D, where D is the mean diameter of the wavy-wall pipe and the corrugation
height was varied from zero to 0.08D. Flow rates were varied in steps between
low values that generate laminar flow and higher values where the flow is in the
post-transitional turbulent regime. Simulations in the turbulent regime were also
carried out at a constant Reynolds number, Reτ = 314, for all corrugation heights. It
was found that even in the laminar regime, larger-amplitude corrugations produce flow
separation. This leads to the proportion of pressure drop attributable to pressure drag
being approximately 50 %, and rising to approximately 85 % in transitional rough-wall
flow. The near-wall structure of turbulent flow is seen to be heavily influenced by
the effects of flow separation and reattachment. Farther from the wall, the statistical
profiles examined exhibit behaviours characteristic of smooth-wall flows or distributed
roughness rough-wall flows. These observations support Townsend’s wall-similarity
hypothesis. The organized nature of the present roughness allows the mean pressure
drop to be written as a function of the corrugation height. When this is exploited
in an analysis of the mean dynamical equation, the scaling problem is explicitly
revealed to result from the combined influences of roughness and Reynolds number.
The present results support the recent analysis and observations of Mehdi et al.
(J. Fluid Mech., vol. 731, 2013, pp. 682–712), indicating that the length scale given
by the distance from the wall at which the mean viscous force loses leading order is
important to describing these combined influences, as well as providing a dynamically
self-consistent connection to the scaling structure of smooth-wall pipe flow.
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1. Introduction
Roughness plays an important role in the fluid dynamics of numerous transport

processes. Most surfaces in engineering applications are rough and, as a consequence,
rough-wall turbulent flows have also been studied by many investigators. A major
difference between smooth- and rough-wall flows is that for smooth walls, there is
only viscous drag, while for rough-wall flows, both pressure (form) drag and viscous
drag exist. In a smooth-wall pipe or channel flow, there is only a favourable mean
pressure gradient. However, for pipe or channel flows having sufficiently organized
roughness, there can be spatially localized regions in which an adverse mean pressure
gradient persists, as seen, for example, in the region upstream of spanwise rib
roughness, e.g. Leonardi et al. (2003).

Hydraulic pipes or channels are often designed with different wall geometries in
order to accommodate specific design objectives, such as industrial and compact heat
exchangers, blood oxygenators in extra-corporeal systems, membrane separators,
vortex wave membrane bioreactors, etc. One of the popular forms is a wavy
shape. Two common configurations in wavy passages have been reported in several
investigations. One is a pipe or channel with periodically converging–diverging
cross-section where the flow axis is straight. The other is a pipe or channel with
uniform cross-section but with a wavy flow axis. These two configurations are usually
referred to as symmetric and asymmetric flow passages respectively. Symmetric wavy
flow passages can take the form of different geometries such as triangular (Sparrow &
Prata 1983; Faghri & Asako 1987; Hossain & Islam 2004; Eiamsa-ard & Promvonge
2007), arc shaped (Tatsuo et al. 1990; Bahaidarah, Anand & Chen 2005) or an
‘egg-carton’ shape (Sawyers, Sen & Chang 1998). Asymmetric wavy passages with
uniform cross-section commonly have either zigzag (O’Brien 1982; Asako & Faghri
1987; Faghri & Asako 1987; Hwang, Jang & Cho 2006) or sinusoidal flow axes
(Popiel & Van der Merwe 1996; Wang & Du 2008; Guzmán et al. 2009; Sui, Teo
& Lee 2012). In addition, different types of spiral shapes (another kind of waviness)
are commonly used for promoting mixing, e.g. helical pipes (Cookson, Doorly &
Sherwin 2009). However, an asymmetric pipe with a sinusoidal flow axis provides
more vigorous mixing through the alternating bends than, for example, in coiled pipes
(Shimizu et al. 1982).

Various linear stability analyses have been presented of incompressible flows in
corrugated channels and pipes. It is accepted that laminar flow in straight pipes is
linearly stable at all Reynolds numbers investigated to date. The two studies most
relevant to the present work are those by Cotrell, MacFadden & Alder (2008)
and Loh & Blackburn (2011), which both analysed flows in axisymmetrically
corrugated pipes. Cotrell et al. (2008) mainly analysed axisymmetric instability
for axis wavelengths incommensurate with the corrugation wavelength Lm = 0.5D
and showed that the addition of corrugation makes the laminar flow unstable to
axisymmetric disturbances, although, for the corrugation amplitudes employed in the
present work, at rather large Reynolds numbers. Loh & Blackburn (2011) concentrated
instead on three-dimensional disturbances in wavy-wall pipes at the same corrugation
wavelength of Lm= 0.5D employed by Cotrell et al. (2008) and demonstrated that the
laminar flow became unstable to disturbances of low azimuthal wavenumber ko = 3,
4 at Reynolds numbers of order 2000–3000 for comparatively small corrugation
amplitudes. We will return to consideration of these findings in relation to our results
in §§ 4 and 6.

Direct numerical simulations (DNS) of turbulent flow for wavy walls and walls
with transverse ribs have been carried out by many researchers; in part to gain a
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deeper understanding of rough-wall turbulent flows. These geometries are commonly
accepted as idealizations of ‘rough-wall’ turbulent flows. To date, however, DNS
of turbulent fluid flow in symmetric wavy-wall pipes is relatively limited, although
some related studies have been conducted which consider asymmetric wavy pipe
or channel flows. The present effort on symmetric wavy-wall pipes builds upon the
initial study of Blackburn, Ooi & Chong (2007). The most recent DNS of fluid flow
and heat transfer in asymmetric sinusoidal wavy channels were performed by Guzmán
et al. (2009) and Sui et al. (2012). These investigations were, however, limited to
the laminar and transitional regimes. Wang & Du (2008) carried out DNS studies of
viscous flow in a pipe having asymmetric sinusoidal wall corrugations for a friction
Reynolds number Reτ of up to 670.

A knowledge of the scaling properties of turbulent flow for the cases of smooth,
transitionally rough and fully rough pipe or channel flows is important to the design of
many commercial applications. The roughness height of a surface, k, was considered
by Nikuradse (1933) to usefully characterize the roughness-induced properties of the
mean profile. The concept of ‘equivalent sand-grain roughness’, ks, was discussed
in Nikuradse (1933) and Schlichting (1936), and is commonly used by engineers
to classify the so-called fully smooth, fully rough or transitionally rough conditions.
This classification has been employed in numerous studies (e.g. Jimenez 2004; Gioia,
Chakraborty & Bombardelli 2006; Shockling, Allen & Smits 2006; Allen, Shockling,
Kunkel & Smits 2007; Flack & Schultz 2010). More recently, Mehdi, Klewicki
& White (2013) provided evidence that, because of the combined dependences on
roughness and Reynolds number, there exists a richer set of dynamically distinct
roughness regimes than indicated by the traditional classification. In general, these
regimes become more apparent as the overall scale separation (friction Reynolds
number) becomes large.

The highly regular form of roughness considered in the present investigation is
not typical of many practical applications. It does, however, afford opportunities to
theoretically relate various important parameters, like the pressure drop and friction
factor, to the roughness topography. This is contrasted with the classical view of
Nikuradse (1933) and Schlichting (1936) which, at least partially, supports a broad
framework for roughness scalings based upon the notion of equivalent sand-grain
roughness. Consider, for example, a fully developed pipe flow having a small
but dimensionally fixed roughness. At a low Reynolds number, when normalized
equivalent sand-grain roughness k+s = ksuτ/ν is small, the flow is hydraulically
smooth and there is no detectable effect of roughness. With an increase in the
Reynolds number, the flow becomes transitionally rough. Here, the friction factor is
higher than in smooth-wall flow, and is a function of both the roughness height and
the Reynolds number. Further increase in the Reynolds number forces the flow to
become fully rough. Here, k+s is large, and the friction factor essentially loses its
dependence on the Reynolds number.

The two-layer theory of Millikan (1938) has been applied to the transitionally
rough and fully rough regimes. In accord with observations, this theory provides for
a formulation of the mean velocity profile that accounts for an additive constant that
depends on the roughness length scale. All traditional rough-wall scaling theories
are based on either the smooth-wall variable, y+, or the rough-wall variable, y/k, as
considered by Benedict (1980), Raupach, Antonia & Rajagopalan (1991), Jimenez
(2004) and many others. In this case, the additive constant in the logarithmic mean
profile formula is supplemented with the roughness function, 1U+, as proposed
by Clauser (1954) and Hama (1954). Physically, 1U+ represents a loss of mean
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FIGURE 1. Schematic view of the simulation domain for the wavy-wall pipe along with
the cylindrical-coordinate system.

momentum relative to the smooth-wall flow, as it generally describes an increasing
downward shift in the mean velocity profile with increasing roughness (due to an
increasing drag force). Hence, a number of methods have been explored to determine
the roughness function 1U+ (Granville 1987; Schultz & Myers 2003).

Townsend (1956) observed that for k/D � 1 the profiles of U+ and 〈u′〉+,
when plotted versus the outer-normalized distance from the wall, do not exhibit a
dependence on the surface roughness. He hypothesized that the influence of roughness
at high Reynolds number was only localized in a region where the roughness scales
directly influenced the scales of the turbulence. This wall-similarity hypothesis has
been shown to at least approximately hold for a variety of roughness topographies,
including cylindrical roughness, sand-grain, mesh, spheres and two-dimensional
grooves (Flack, Schultz & Shapiro 2005). There are also notable cases, such
as two-dimensional bars, where this hypothesis apparently fails to hold, e.g. see
Mehdi et al. (2013). Recently, Chung, Monty & Ooi (2014) presented an idealized
assessment of Townsend’s outer-layer similarity hypothesis by using uniform
shear-stress boundary conditions. Their results suggested that wall-turbulence motions
of energetic significance obtained their character from the wall shear stress and wall
impermeability. All these considerations motivate the exploration of how the present
corrugation height influences outer-layer similarity.

Afzal & Seena (2007), Afzal (2013) and Afzal, Seena & Bushra (2013) recently
proposed roughness scaling laws for transitionally rough pipes which employ alternate
variables. They defined an inner transitional roughness variable as the ratio of the
wall-normal coordinate measured above the mean roughness level to the actual
wall roughness level. They provided evidence that this allows one to express the
mean velocity profile and friction factor in a universal form for the transitionally
rough flows that they considered. Similarly, using the same alternate variables Afzal,
Seena & Bushra (2006) also proposed an alternate power-law velocity profile for
transitionally rough pipe flows. These same authors also developed expressions for
the scaling properties of an intermediate layer in a transitionally rough channel flow
(Seena & Afzal 2008). By proposing a matched asymptotic expansion solution, they
showed evidence of an intermediate layer having its own characteristic scaling and
existing between the traditional inner and outer layers. Herein, we explore the validity
of intermediate variables that arise by directly considering invariant forms admitted
by mean momentum equation.

In the present work we study DNS of incompressible flows within straight pipes
whose walls have smooth sinusoidal corrugations, e.g. as shown in figure 1. The
corrugation wavelength is maintained constant and the amplitude of the wave is
varied, thus allowing a straightforward parametric variation of the corrugation height.
At any Reynolds number, this means that the wavelength is constant with respect
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to streamwise length scales of flow in a smooth pipe. We note, however, that the
corrugations so generated are not geometrically self-similar. We investigate variations
of both the wave height and the Reynolds number. The present Reynolds number
range spans from the laminar regime, through the transitional regime and into the
low-Reynolds-number turbulent regime. Our analysis focuses on examining the effect
of variations in h/D, where h is the peak-to-peak wave height at a fixed Reτ while
allowing the bulk-flow Reynolds number, ReD, to vary. The outcomes are not readily
extended to cover the effect of variations of h/D at fixed ReD.

2. Mathematical formulation
2.1. Problem definition

The dynamics of the flow is established by the incompressible Navier–Stokes
equations,

∂tu+ N(u)=−ρ−1∇p+ ν∇2u+ g, (2.1a)
∇ · u= 0, (2.1b)

where p is the fluctuating pressure, ρ is the density of the fluid, ν is the kinematic
viscosity, g is a forcing vector and N(u) represents the nonlinear advection terms.
Since a wavy-wall pipe is axisymmetric, it is convenient to examine the problem in
a cylindrical-coordinate system, and thus we denote the axial, radial and azimuthal
components of velocity by u(z, r, θ)(t)= (u, v,w)(t). For a fully developed turbulent
pipe flow the driving force g = (g, 0, 0) corresponds to the mean pressure gradient
in the streamwise z direction, and, as is common in simulations of this type, is used
in order to allow both the pressure and the velocity to be axially periodic. No-slip
boundary conditions are applied to the velocity field along the walls of the domain.

The fundamental length scale is the diameter D of the corresponding smooth pipe.
The highest Kármán number or friction Reynolds number is Reτ =uτD/2ν=314. Here,
the friction velocity is defined by uτ = (τo/ρ)

1/2, where τo is the mean wall shear
stress. The axial mean pressure gradient per unit mass go=4τo/ρD=λρU2

b/2D (where
Ub is the bulk-flow velocity) is required to drive the flow in a smooth pipe, and the
friction factor λ in smooth pipes is given by

λ= 8τo/(ρU2
b). (2.2)

Here, Ub is used to define the bulk-flow Reynolds number as ReD = UbD/ν =
4〈Q〉/πDν, where 〈Q〉 is the average volumetric flow rate. From the definitions above
one can also determine that

λ= 32(Reτ/ReD)
2. (2.3)

The methodology pursued in the present work produces sets of simulations, each
with constant Reτ , from the maximum value Reτ = 314 down to the laminar regime,
typically with the driving force per unit mass go halved between successive sets. Since

Reτ = (goD3/16ν2)1/2, (2.4)

the friction Reynolds number typically varies by a factor of (2)−1/2 between successive
sets of simulations. It should be noted that the Blasius friction factor correlation for
smooth pipes is given by λ= 0.3164Re−1/4

D (Nikuradse 1933); for moderate turbulent
Reynolds numbers this yields the relationship Reτ = 0.09944Re7/8

D . Consequently, the
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maximum value of the bulk-flow Reynolds number in the smooth pipe for the present
work, with Reτ = 314, is ReD ≈ 10 000.

All the domains have the same mean radius R̄ = D/2, and for turbulent flow
calculations the same axial length L = 2πD. The length to diameter ratio was
chosen based on the previous pipe length convergence studies by Chin et al. (2010).
They showed that a pipe length of at least 2πD is required to achieve converged
turbulent-flow statistics for Reτ ≈ 500.

For the wavy-wall flows, 15 corrugation wavelengths were chosen within the domain
length of 2πD. This number is large enough to ensure that, even at transitional
Reynolds numbers, the number of wavelengths is sufficient to reduce the streamwise
correlation of near-wall structures to acceptably low values at half the domain length
(Chin et al. 2010). With a corrugation amplitude of a= h/2, the radius of the wavy
pipe, R(z), is given by

R(z)/D= (R̄/D)+ (a/D) cos(15z/D), (2.5)

as illustrated in figure 1. For laminar-flow calculations, only a single module of
the axial wave is represented, i.e. the domain length is reduced to Lm = 2πD/15 ≈
0.41888D.

When attempting to define both the bulk-flow and friction Reynolds numbers for a
wavy-wall (or any non-uniform) pipe, one needs an equivalent diameter. For simplicity,
we have adopted the mean diameter D= 2R̄ for this measure. However, for a constant
mean radius the volume of the domain increases as the corrugation height increases,
and thus we reduce the driving force g as h increases in order to maintain the total
body force constant at each Reτ .

From Pappus’ second theorem (Kern & Bland 1948), the domain volume can be
found in closed form as π(R̄2+ h2/8)L, provided that the length comprises an integral
number of wavelengths. Using the equivalent diameter, an equivalent mean wall shear
stress is found by equating the mean wall tractive force to the mean body force on
the domain, i.e.

2πLR̄τo = ρπ(R̄2 + h2/8)Lg, (2.6)

from which

u2
τ =

τo

ρ
= R̄

2

(
1+ h2

8R̄2

)
g. (2.7)

Thus, if one wishes to keep the friction velocity and hence Reτ constant as h increases,
the driving force per unit mass g must be reduced as h increases according to

g(h)= goVo/V = go/(1+ h2/8R̄2). (2.8)

Here, Vo is the volume of the smooth-wall pipe and go is the corresponding axial
driving force.

By employing uτ and D for normalization, equation (2.1) takes on the dimensionless
form

∂τu+ + N(u+)=−∇p+ + 1
2Reτ
∇2u+ + F+, (2.9)

where F+= (4Vo/V, 0, 0) and the ‘+’ superscript indicates normalization by ν and uτ .
The use of (2.9) is well-suited for numerical simulation, as one only needs to assign
the value of Reτ . The resultant value of ReD can be easily evaluated after the flow
field becomes statistically stationary.
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Label Reτ h+ h/D Rmin/D V/Vo ES Symbol

A 314 0 0.00000 0.50000 1.00000 0.00000 @
B 314 5 0.00795 0.49602 1.00003 0.03795 C
C 314 10 0.01590 0.49205 1.00013 0.07592 B
D 314 20 0.03181 0.48410 1.00051 0.15188 E
E 314 30 0.04771 0.47615 1.00114 0.22779 ♦
F 314 40 0.06361 0.46819 1.00202 0.30371 A
G 314 50 0.07952 0.46024 1.00316 0.37968 D
G180 180 30 0.07952 0.46024 1.00316 0.37968 u
G250 250 40 0.07952 0.46024 1.00316 0.37968 f

TABLE 1. Summary of the wavy-wall geometric parameters and simulations. Here, h+ is
the peak-to-peak wave height expressed in wall units at the corresponding Reτ ; V/Vo is
the domain volume normalized by that for the smooth pipe (case A).

Napoli, Armenio & De Marchis (2008) introduced an important roughness parameter
called the ‘effective slope’ (ES). The effective slope ES accounts for the roughness
corrugation shape, and is defined by

ES= 1
L

∫
L

∣∣∣∣∂R
∂z

∣∣∣∣ dz, (2.10)

where, in the present case, L is an integral number of corrugations. This function will
allow us to investigate the influence of a rough wall on the roughness function as well
as friction and pressure drag.

Table 1 summarizes the main parameters of the wavy-wall geometries. The
maximum peak-to-peak corrugation amplitude of h/D = 0.07952 was chosen to
be 50 wall units at Reτ = 314, i.e. h+ = 50. Direct numerical simulations were
performed for a range of Reynolds numbers at this corrugation height (case G). The
post-transitional turbulent regime simulations were at Reτ = 180 and 250, as also
listed in table 1. Simulations were also carried out for corrugation heights of h+= 40,
30, 20, 10, 5 and 0 (all at Reτ = 314). It can be seen that the fractional increase in
volume, V/Vo, and hence the fractional reduction in driving force, is less than half a
per cent even at the largest corrugation height, case G. The corrugation wavelength,
Lm = 2πD/15, corresponds to 263 wall units at Reτ = 314.

2.2. Mean momentum equation
The mean momentum equation for flow inside a wavy-walled pipe is developed and
discussed in this section according to the analysis of Wei et al. (2005a,b). By applying
the Reynolds decomposition, time averaging and simplifying for statistically stationary
axisymmetric flow, the streamwise component of (2.1) becomes

0=− 1
ρ

dP
dz
+ ν d

r dr

(
r

dU
dr

)
− d(r〈u′v′〉)

r dr
, (2.11)

where U is the mean velocity component in the z direction, P is the mean pressure
and 〈u′v′〉 is the Reynolds shear stress. The expression for the mean pressure gradient
(2.8) allows (2.11) to be written as

0= 2u2
τ

R̄

(
1+ h2

8R̄2

)−1

+ ν d
r dr

(
r

dU
dr

)
− d(r〈u′v′〉)

r dr
. (2.12)
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Equation (2.12) contains two unknown functions, U and 〈u′v′〉, and thus is unclosed.
The boundary conditions at the pipe centreline, r= 0, are

dU
dr
= 〈u′v′〉 = 0. (2.13)

Integrating (2.12) with respect to r and making use of (2.13) yields

0= u2
τ r
R̄

(
1+ h2

8R̄2

)−1

+ ν dU
dr
− 〈u′v′〉. (2.14)

Using (2.14), (2.12) then becomes

0= u2
τ

R̄

(
1+ h2

8R̄2

)−1

+ ν d2U
dr2
− d〈u′v′〉

dr
. (2.15)

It is convenient to rewrite (2.15) using y= R̄− r, where it is understood that y is the
average wall position. With this, one obtains

0= u2
τ

R̄

(
1+ h2

8R̄2

)−1

+ ν d2U
dy2
− d〈u′v′〉

dy
. (2.16)

The friction velocity, uτ , inner length scale, ν/uτ , and outer length scale, R̄,
constitute the basic normalization parameters. Hence, the inner-normalized mean
momentum equation can be obtained from (2.16) as

d2U+

dy+2
+ dT+u

dy+
+ ε2 = 0; (2.17)

VF+ TI + PG= 0. (2.18)

The small parameter ε is defined by

ε= 1√
Reτ

(
1+ h2

8R̄2

)−1/2

, (2.19)

where ε → 0 as Reτ → ∞, y+ = yuτ/ν is the inner-wall-normalized distance,
U+ = U/uτ is the inner-normalized streamwise-mean velocity and T+u = −〈u′v′〉/u2

τ

is the inner-normalized Reynolds shear stress. It is important to note that ε
explicitly contains the roughness effect, thus indicating the combined roughness
and Reynolds number nature of the problem. Equation (2.17) indicates a balance
of three terms, namely VF = the mean viscous force (viscous stress gradient),
TI = the mean effect of turbulent inertia (Reynolds shear-stress gradient) and
PG = the mean pressure gradient. The relative magnitudes of these three terms
determine a distinct layer structure characterized by the leading-order balances in
(2.17).

The outer form of the equation uses the mean pipe radius R̄ to normalize the wall-
normal distance η= y/R̄. This gives

ε2 d2U+

dη2
+ dT+u

dη
+ 1= 0 (2.20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

41
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.414


Pipe flows with sinusoidal transversely corrugated walls 253

and the boundary conditions at η= 1 are

T+u =
dU+

dη
= 0. (2.21)

Equations (2.17)–(2.21) are considered in § 5 to help to clarify the scaling
behaviours associated with the mean dynamics.

3. Numerical methods
3.1. Discretization

A cylindrical-coordinate spectral element/Fourier spatial discretization is employed
(Blackburn & Sherwin 2004). Nodal spectral elements are deployed to discretize the
meridional semi-plane, and Fourier expansions are used in the azimuthal direction.
This is possible because the domain is axisymmetric. The velocity, u+, and pressure,
p+, can be projected onto a set of two-dimensional complex Fourier modes,

û+ko
(z/D, r/D, tuτ/D)= 1

2π

∫ 2π

0
u+ko
(z/D, r/D, θ, tuτ/D) exp(−ikoθ) dθ, (3.1)

where ko is the azimuthal wavenumber. Only a finite number of these modes are
represented in the calculation.

The nonlinear advection terms N(u+) are computed in skew-symmetric form
N(u+)= (u+ ·∇u++∇ ·u+u+)/2 for robustness, but are not explicitly dealiased. Time
integration is carried out via a second-order mixed implicit–explicit pseudo-spectral
velocity correction scheme (Karniadakis, Israeli & Orszag 1991; Guermond &
Shen 2003). More detail about the numerical method is presented by Blackburn
& Sherwin (2004), who demonstrate that the method attains spectral convergence for
non-axisymmetric flows and provide a full explanation of how geometric singularities
at the axis are overcome.

The computational meshes retain a quadrilateral spectral element strategy that has
been successfully implemented in our previous DNS and wall-resolving large-eddy
simulations for smooth-wall geometries (Schmidt et al. 2001; Blackburn & Schmidt
2003; Chin et al. 2010; Saha et al. 2011). The viscous length scale, `v = ν/uτ , is
first determined for the maximum Reynolds number to be attempted. In the radial
direction, the distance of the first element boundary from the wall is set at 10`v.
This resolves the viscous sublayer. The distance from the wall to the second element
boundary is then set near the height of maximum turbulent energy production (here,
we have used 25`v). The remaining element heights to the pipe centreline form
a geometric progression, where the number of elements is chosen on the basis of
experience. The result is then checked to ensure that features near the centreline of
the pipe are adequately resolved.

To estimate the remaining mesh parameters, rules of thumb for resolving wall-flow
DNS are adopted from Piomelli (1997). Near the wall, ∆+y < 1, ∆+z ≈ 15 and ∆+θ ≈ 6
in the wall-normal, streamwise and cross-flow directions respectively. Given the
wall-normal height of the first element, we employ 10th-order nodal shape functions
(i.e. with 11 points along the edge of an element) in order to satisfy ∆+y < 1.
Because the elements employ equal-order tensor-product shape functions, there is the
same number of points within each element in the streamwise direction as in the
wall-normal direction, and we use ∆+z ≈ 15 for the streamwise length of a near-wall
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FIGURE 2. Spectral element meshes, each with 240 elements in the meridional semi-plane.
Here, h is the peak-to-peak wave height and a = h/2 is the corrugation amplitude. The
labels match those used in table 1: (a) smooth-wall pipe; (b) h+314 = 20; (c) h+314 = 50.

element. In the present case, this requires 26 elements to reach the streamwise domain
length of 2πD.

We therefore adopt 30 elements in the streamwise direction for convenience,
allowing two elements per geometric wavelength. For the present problem, the added
complexity of a hierarchical mesh design to resolve fine-scale near-wall geometric
features is not required or justified, and thus we have a simple (logically rectangular)
30 × 8 array of elements to cover the meridional semi-plane. These elements are
distorted isoparametrically to accommodate the wavy-wall shapes, as shown in
figure 2. In order to establish the number of planes of data required in the azimuthal
direction, we find from ∆+θ ≈ 6 that 320 planes (160 Fourier modes) are adequate
at Reτ = 314. Overall, the number of independent mesh nodes in the meridional
semi-plane is 7020, and the total number of nodes is then approximately 2.25 million
for the simulations conducted at Reτ = 314. Fewer mesh nodes are required at lower
values of Reτ . The same spectral element outlines are retained, but the orders of the
element shape functions and Fourier azimuthal interpolants are reduced as appropriate.

We note that since the corrugated domains are two-dimensional, it follows that the
associated time-mean flows and local turbulent statistics are too. When we present
one-dimensional profile data for turbulence statistics below, the values have also been
averaged in the streamwise direction. This implies that profiles representing averages
of product terms, such as Reynolds stresses, contain contributions from streamwise
averages of products of the deviations of the time-mean flow velocity components
from the streamwise-mean profile as well as from the streamwise averages of the
local fluctuation products. Contributions from the time-mean or ‘coherent’ streamwise
fluctuations from the mean velocity profile are typically only significant within one
corrugation height of the mean radius.

3.2. Validation for smooth-pipe flow
Due to the lack of availability of wavy-wall pipe flow data, the veracity of the
smooth-wall turbulent-flow calculations was tested by comparing statistical profiles
with laser Doppler velocimetry (LDV) measurements obtained at Reτ = 314.5 by den
Toonder & Nieuwstadt (1997). Comparisons were presented in figure 7 of Blackburn
et al. (2007). It should be noted that statistical data were only calculated after all the
initial transients had convected out of the computational domain and the flow field had
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reached a statistically stationary state. The mean velocity showed excellent agreement
with the measurements. The comparison of the second-order statistics between the
DNS and measurements was also very good, except in the near-wall region where
measurement inaccuracies became apparent. The r.m.s. profile of the radial fluctuations
was also slightly but consistently lower than the experimental measurements. Such
deviations are, however, common, e.g. as observed by Westerweel (1993) and den
Toonder & Nieuwstadt (1997). The reasons behind this underestimation of the radial
velocity r.m.s. apparently remains an open question.

4. Axisymmetric laminar flows

Steady laminar axisymmetric flows were computed on a domain of one axial
wavelength, Lm = 2πD/15, and steady flows were computed using an adaptation
of a time-stepping code that uses a matrix-free Newton–Raphson method based on
Stokes preconditioning (Tuckerman & Barkley 2000; Blackburn 2002). Results were
computed for Reτ = 27.8, 39.3, 55.6 and 78.6 (ReD ≈ 300–3000). These laminar
flows for all wave heights investigated are stable to axisymmetric disturbances at
these Reynolds numbers. A further check that the axisymmetric flows are stable to
axisymmetric perturbations in the wavy pipe can be made by computing the flow in
the whole domain using the two-dimensional unsteady Navier–Stokes equations, and
perturbing the solution impulsively with white noise. This was done at Reτ = 78.6
for the largest wave height (case G), and it was found that the perturbed solution
returned to the steady-state solution. We note that these flows may be unstable to
non-axisymmetric disturbances. Stability analysis carried out by Loh & Blackburn
(2011) for corrugated pipes with a similar corrugation wavelength to that employed
here showed that the flow first became unstable to disturbances with azimuthal
wavenumbers ko = 3, 4 and at bulk Reynolds numbers similar to the upper end of
the range we have used.

Example streamwise velocity profiles extracted at the axial location corresponding
to Rmin for laminar flows computed at Reτ = 55.6 are shown in figure 3(a). (It should
be noted that the pipe cross-section of minimum radius is located at z= Lm/2.) The
profile for the smooth pipe matches the parabolic Hagen–Poiseuille solution, and has
a peak velocity of twice the bulk velocity. The rough-wall profiles are distorted near
the wall but approach a parabolic profile near the pipe centreline. The velocity defect
plot, shown in figure 3(b), confirms that well away from the wall, the profiles all
approach a common shape. Thus, the axial-average flow near the centre of the pipe
is not greatly influenced by the detail of the wall corrugation, other than through the
influence this has on the surface shear stress.

We now turn to an examination of the friction factor, λ, for the laminar flows.
From velocity profiles extracted at z=Lm/2, the volumetric flow rates were computed,
followed by the bulk-flow Reynolds numbers based on the mean diameter, i.e. ReD,
and then from (2.3) the pipe friction factor, λ. The data for the four laminar-flow
Reynolds numbers are shown in figure 4. Several points are worth noting. First, on
this log–log plot, lines of constant Reτ have a slope of −2 (see (2.3)), hence each
set of data falls along such a line. Second, the data for the smooth pipe fall exactly
on the analytical result λ = 64/ReD, as expected (the slope and intercept values for
a power-law curve fit through the four smooth-pipe data points match the analytical
values to five-digit accuracy). Third, the friction factors for the wavy-wall cases are
greater than those for a smooth pipe. While it is conventional to accept that in laminar
flow roughness has no effect on the friction factor, some reflection suggests that this is
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FIGURE 3. Velocity profiles for laminar flow at Reτ = 55.6. (a) Profiles obtained at the
axial location of the minimum pipe radius, Rmin = R̄− a, normalized by the bulk velocity
in that section. The arrow indicates increasing wave height, h. (b) Axial-average velocity
defect. Note the vertical separation applied to the curves.

39.3

55.6

78.610–1

10–2

100

103102

FIGURE 4. Pipe friction factor λ as a function of ReD for laminar flows at four different
values of Reτ . In each set, the lowest point corresponds to the smooth pipe and the
upper point corresponds to the highest-amplitude wave, case G. The solid and dashed lines
through the data points show best-fit power laws, λ= 64/[1− 0.8(h/D)1.2]ReD.

an approximate result for small roughness height that can only be true in the smooth-
pipe limit. Fourth, power laws fitted through the wavy wall results (the dashed and
solid lines in figure 4) have slopes that progressively become somewhat less negative
with increasing wave height.

5. Inner and outer normalizations in the turbulent regime
5.1. Mean velocity profiles

The effects of the corrugation height and Reynolds number are evident in the
behaviour of the mean velocity profile. Figure 5 presents mean velocity profiles in
both inner and velocity defect forms. The results for the smooth-wall pipe (case A)
are also included for comparison. The mean statistics in the corrugated pipe were
computed by averaging over z–θ planes uniformly up to the minimum sensible
radius Rmin. The velocity field around the wavy surface is strongly influenced by
the surface profile. This is clearly seen by comparing the near-wall flow with the
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FIGURE 5. Mean velocity profile for different corrugation heights at Reτ = 314 and for
different values of Reτ at the highest corrugation height (h/D= 0.46024): (a) inner scaling
and (b) outer scaling (velocity defect law). The symbol shapes for the DNS data are given
in table 1.

smooth-wall case. With an increase in corrugation height, the maximum centreline
velocity decreases in comparison to the smooth pipe. The offset in the maximum
mean velocity profiles depends on the magnitude of the corrugation amplitude, as
suggested by Blackburn et al. (2007). By plotting the mean velocity profiles for
case G for Reτ = 180 250 and 314, figure 5(a) shows an increasing downward shift
of the inner-normalized profiles with increasing Reynolds number. The near-wall
velocity profiles also remain substantially different from the smooth-wall pipe flow.
The existence of the no-slip boundary condition causes the mean velocity profiles to
vary sharply within the near-wall corrugated region. Hence, the overall velocity field
(averaged over z–θ planes) exhibits a larger momentum deficit when compared with
the smooth-wall flow. In contrast, the mean velocity profiles in defect form (figure 5b)
exhibit agreement for all cases in the region η> 0.2 for the present conditions. This is
in accord with Townsend’s wall-similarity hypothesis (Townsend 1956). Observations
similar to these were made by Shockling et al. (2006) for distributed roughness pipe
flows in the transitionally and fully rough regimes. The mean profiles systematically
vary as a function of corrugation amplitude within the corrugated sublayer. This is
consistent with the study of Wu & Christensen (2007).

The effect of the corrugation height is characterized here using a corrugation
amplitude, a= h/2. This has similarity to an equivalent sand-grain roughness height,
ks (Nikuradse 1933; Schlichting 1936). When a increases to become comparable to
ν/uτ , the inner-scaled profiles exhibit a downward shift relative to the smooth-wall
profile. The wall-normal extent of this deficit, which can be interpreted as an internal
layer within which the length scales imposed by the corrugated surface directly impact
the dynamics, is surface-dependent, with the highest corrugation height showing the
largest wall-normal extent of velocity deficit (y+> 50). Consistent with enhanced drag,
this deficit increases with increasing corrugation height, and is largest for case G. For
the set of conditions explored, the mean velocity profile can be expressed as

U+ = 1
κ

ln y+ + Ao −1U+, (5.1)

where 1U+ is denoted as the corrugation function. Analogous to the roughness
function of Hama (1954), the corrugation function depends on a+ or h+. The
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FIGURE 6. Mean velocity profile plotted (a) against y+ showing the logarithmic region
and (b) against y/a. The data sets are as for figure 5.

relationship between 1U+ and a+ follows from the concept of equivalent sand-grain
roughness. For the profiles of figure 6(a), 1U+ = 4.45 and 8.0 for h+314 = 20 and
50 respectively. According to the analogy with equivalent sand-grain roughness, for
sufficiently large a+ there should be a loss of dependence on viscosity, allowing the
log-law velocity profile to be written as

U+ = 1
κ

ln
( y

a

)
+ A′, (5.2)

where A′ is the effective corrugation function, analogous to the Nikuradse roughness
function.

Figure 6(b) plots U+ versus y/a. In the fully rough regime, the viscous sublayer
no longer exists. Consistently, the effective corrugation function appears to approach
an approximately constant value of A′ ' 5.6, which is smaller than the Nikuradse
roughness function value of approximately 8.5 in the fully rough regime. We also
observe that for the conditions explored herein the increasing a+ profiles at fixed Reτ
continue to exhibit a small but apparently persistent variation. This probably indicates
that the largest a+ condition may still not be in the fully rough (fully corrugated)
regime. For completeness we note that from (5.1) and (5.2), the corrugation function
in the fully rough regime is given by

1U+ = 1
κ

ln a+ + Ao − A′. (5.3)

In the present work, the corrugation function 1U+ is plotted against the ES as
shown in figure 7. For comparison, data from Napoli et al. (2008), Schultz & Flack
(2009) and De Marchis & Napoli (2012) are included in the plot. The results are
presented for 0 6 ES 6 0.38 at the highest Reynolds number and are found to show
a trend similar to other observations. Napoli et al. (2008) observed linear variation
of 1U+ for ES 6 0.15, whereas the corrugation function for sinusoidally corrugated
pipes increases linearly up to approximately ES∼ 0.24.

5.2. Velocity fluctuation r.m.s. profiles
The effects of roughness in the inner and outer regions of the flow are examined in
the context of Townsend’s outer similarity hypothesis by comparing the turbulence
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FIGURE 7. Dependence of the roughness function 1U+ on the ES of the wall corrugations
at Reτ = 314. Data for different types of wall corrugation and Reτ from Napoli et al.
(2008), Schultz & Flack (2009) and De Marchis & Napoli (2012) are included here for
comparison.

intensity profiles from the wavy- and smooth-wall pipes. Figure 8(a–f ) shows
the turbulence intensities in the streamwise, wall-normal and azimuthal directions
as normalized by the friction velocity, and for both inner- and outer-normalized
corrugation heights. The root-mean-square (r.m.s.) profiles of the streamwise velocity
fluctuations in figure 8(a) do not vary with the presence of corrugation for y+ > 60,
and agree very well with the results for the smooth-pipe flow in the outer region
of the flow. As the wall is approached, however, the wavy-wall data fall below the
smooth-wall data. This is generically consistent with the findings for other rough-wall
pipe flows, e.g. Allen et al. (2007).

The profiles of radial and tangential velocity fluctuation (see figure 8c–f ) also merge
outside the corrugated sublayer. These findings are consistent with the notion of outer-
layer similarity. Relative to u′+rms, the effect of the roughness is more subtly realized
for the v′+rms and w′+rms profiles, whose near-wall peak values and locations show little
change from the smooth-wall profile. Overall, the main influence on the u′+rms profile
is that its peak value attenuates near the wavy wall and shifts away from the wall
with increasing h+. On the other hand, the primary apparent effect on the v′+rms and
w′+rms profiles is that the locations of their peaks shift slightly towards the pipe centre
with increasing h+.

By considering increasing Reτ for a fixed corrugation height, the traditional
description leads to the expectation of encountering a dynamically smooth wall,
followed by a transitionally rough wall and culminating with a fully rough-wall flow.
The Reynolds number range of the present study (Reτ = 180, 250, 314), however,
apparently only resides in the transitional rough-wall regime. This is even so for
the case of the largest corrugation height (h/D = 0.07952), which corresponds to
h+≈ 30, 40 and 50 respectively. Figure 8 also displays the inner- and outer-normalized
turbulence intensities for the cases G180 and G250. These data indicate an increasing
trend in the peak values of v′+rms and w′+rms with Reτ , while the peak in the u′+rms
profile decreases. Continued profile variations of the type displayed for increasing
h+ provide evidence of transitional rough-wall flow. The data in the outer region
are in imperfect agreement with Townsend’s similarity hypothesis, indicating results
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FIGURE 8. Root mean square profiles of turbulent intensities for different corrugation
heights at Reτ = 314 and for different values of Reτ at the largest corrugation height
(h/D = 0.46024): (a,b) streamwise velocity fluctuation; (c,d) radial velocity fluctuation;
(e,f ) azimuthal velocity fluctuation; (a,c,e) profiles representing inner normalization; (b,d,f )
profiles in outer-scaled variables. The data sets are as for figure 5.

similar to those presented by Flack et al. (2005). Likely reasons for this include low
Reynolds number and insufficiently small δ/h.

5.3. Reynolds shear-stress profile
Profiles of the Reynolds shear stress are presented in figure 9. Over a considerable
outer-region extent, and for inner- and outer-normalized distance from the wall, the
wavy-wall profiles T+u =−〈uv〉+ convincingly merge with the smooth-wall profile. The
effect of corrugation becomes stronger only at high corrugation height, and thus the
profiles near the wavy-wall fall below the smooth-wall data. Under outer normalization
the corrugated- and smooth-wall profiles consistently merge at a wall-normal position
just beyond the peak of T+u . As discussed in § 7, this behaviour correlates with
an important feature of the mean dynamical balance. The influence of Reτ is also
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FIGURE 9. Reynolds shear-stress profiles for different corrugation heights at Reτ = 314
and for different values of Reτ at the largest corrugation height (h/D= 0.46024): (a) inner
scaling and (b) outer scaling. The data sets are as for figure 5.
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FIGURE 10. Average kinetic energy in non-axisymmetric modes as a function of the
azimuthal wavenumber ko for turbulent flow at Reτ = 314. Values are normalized by the
average axisymmetric energy, 〈E0〉. Inset: data replotted in linear coordinates, emphasizing
the emergence with increasing corrugation height of a peak in energy at low wavenumbers
centred around ko = 3.

apparent. The inner-normalized profiles of figure 9(a) exhibit an expected shift with
increasing Reτ . The outer-normalized profiles of figure 9(b), however, show excellent
agreement beyond the T+u peak, suggesting robust support for outer similarity in the
domain where the mean dynamics is inertially dominated (see § 7).

6. Other features of wavy-wall turbulence
Three additional features of wavy-wall turbulence are now noted and described.

Figure 10 shows the normalized azimuthal wavenumber spectra of the time-averaged
kinetic energy in the modes with k0 > 0 for turbulent flow at Reτ = 314. The measure
of kinetic energy is defined as

Eko =
1

2AU2

∫
A

û+ko
· û∗+ko

r dA, (6.1)
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FIGURE 11. Pressure drag as a proportion of total drag for laminar and turbulent flows,
plotted as a function of the ES of the wall waviness.

where U is the local mean velocity, û+∗ko
represents the complex conjugate of velocity

data in the koth azimuthal Fourier mode and A = LR̄ = πD2 is the area of the
meridional semi-plane. It can be seen that there is more than a four-decade spread
of energy over the represented non-axisymmetric wavenumbers, and that aliasing has
a detectable but small effect at the highest wavenumbers. The inset to figure 10
demonstrates that with increasing corrugation amplitude, a peak in the azimuthal
energy spectrum begins to emerge at ko = 3. Loh & Blackburn (2011) found that
for a corrugation wavelength of Lm/D= 0.5, similar to the presently employed value
of Lm/D ≈ 0.419, steady axisymmetric flow in corrugated pipes became unstable to
global modes with comparatively low azimuthal wavenumbers of ko = 3 and ko = 4.
Hence, the emergence of this peak with increasing corrugation height at ko= 3 seems
likely to be related to this instability mechanism.

The total viscous and pressure drag exerted on the wall were computed, thus
allowing their contribution to the total to be assessed as a function of ES. Figure 11
shows the pressure drag relative to the total drag as a function of the corrugation
height for the four laminar-flow and one turbulent-flow Reynolds numbers studied here.
It is observed that the relative proportion of pressure drag increases with the Reynolds
number, as with the corrugation height. It is notable that when Reτ >55.6, the pressure
drag component can be up to 50 % or more for ES& 0.3 (h/R̄& 0.1, see table 1). As
shown in figure 11 at Reτ = 314, the increasing relative importance of the pressure
component of the overall average wall drag more than counteracts the decrease in
the viscous component. At the maximum corrugation height (case G), the overall
contribution of pressure drag is relatively higher, and accounts for approximately
85 % of the total. This suggests that the flow is approaching the fully rough-wall flow
condition, since asymptotically all the drag derives from the pressure difference in this
case. This correlates with the findings discussed relative to the effective corrugation
function of figure 6.

Although a regular corrugated wall (with no geometric randomness) is only a
simplified representation of the generic ‘rough’ wall, an attempt was made to estimate
the equivalent sand roughness. Nikuradse’s classic experimental data helps us to carry
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FIGURE 12. Nikuradse’s data (Nikuradse 1933) for the pipe friction factor as functions
of ReD and the relative roughness R̄/k (open circles). Also shown is the variation of the
friction factor with ReD for the corrugated wall at various values of ReD, computed for
cases B–G (filled circles except case E) and case E (open squares), together with the
relative corrugation height R̄/h.

out the primary comparison. Nikuradse (1933) obtained these data by glueing various
fine-sized sands inside smooth pipes. The friction factors λ versus ReD are plotted
for the geometries B–G as shown in figure 12 at Reτ = 314. Only the values of
the friction factor for case E (open squares) are shown in the laminar regime in
order to avoid clutter. The small open circles represent Nikuradse’s data for different
relative roughnesses R̄/k. The onset of transition from laminar to turbulent flow takes
place for the bulk-flow Reynolds number ReD ∼ 2500 in both data sets; thus the
transitional value of λ for case E falls within the scatter band of Nikuradse’s data,
and this is also similar to the linear instability values found by Loh & Blackburn
(2011). It is interesting to observe that the onset of turbulence begins more rapidly
with increasing ReD for the corrugated wall cases than for sand roughness. We note
that the turbulent-flow data sets represented in figure 12 were generated by restarting
at successively lower Reynolds number from the previous simulation beginning with
Reτ = 314. The apparent sudden transition from turbulent to laminar states observed
in figure 12 for ReD ≈ 2000 may correspond to subcritical transition behaviour – a
point not examined in the linear stability analysis of Loh & Blackburn (2011). Finally,
it seems likely that the smooth transition behaviour observed by Nikuradse (1933)
for all roughness heights is related to the use of randomly distributed roughness in
his study.

The values of λ for the present turbulent-flow simulations can be compared with
Nikuradse’s data for similar values of R̄/h and R̄/k, although it is difficult to draw any
firm conclusions. If one accepts the criteria set in § 5.1 for the analogy of corrugation
height to equivalent sand roughness, then one should see the data for R̄/h= 62.9 or
R̄/a= 31.45 (case B) asymptote close to Nikuradse’s data for R̄/ks = 30.6. Similarly,
the data for R/h = 31.4 or R̄/a = 15.7 asymptotically approach Nikuradse’s data
for R̄/k = 15. At a minimum, these findings suggest that further investigations are
warranted.

7. Scaling mean dynamics
Beyond the transitional regime, the leading-order balances of terms in the mean

momentum equation for smooth-wall flows organize into a four-layer structure
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Physical layer I II III IV

1y increment O(ν/uτ ) ('3) O(
√
νδ/uτ ) ('1.6) O(

√
νδ/uτ ) ('1.0) O(δ) (→ 1)

1U increment O(uτ ) ('3) O(Uc) ('0.5) O(uτ ) ('1) O(Uc) (→ 0.5)

TABLE 2. Scaling characteristics of the layer width and velocity increments of
smooth-wall pipe flow associated with the mean momentum equation.

(Wei et al. 2005a,b; Klewicki et al. 2012). The Reynolds number scaling behaviour
associated with the layer properties (see table 2 for layer widths and velocity
increments) has been analytically determined and empirically verified (Fife, Klewicki
& Wei 2009; Klewicki 2013b). It is relevant that two of the four layer widths
vary with the Reynolds number in proportion to the intermediate length, (νδ/uτ )1/2,
where δ is either the pipe radius, half channel height or boundary layer thickness.
The significance of these findings to rough-wall flows is associated with an
intermediate length being the geometric mean of the inner and outer length scales
(i.e. (νδ/uτ )1/2 = (δ × (ν/uτ ))1/2), and thus inherently depending upon the overall
separation of scales, which increases with Reτ . Clarity regarding the dynamical
implications of this is gained by briefly reviewing the nature of the leading-order
balances of terms across the flow.

7.1. The four-layer structure
A sketch representing the smooth-wall four-layer structure at a fixed Reynolds
number is illustrated in figure 13. Not all of the terms in (2.17) are of leading order
throughout, and this leads to a different magnitude ordering of terms in each of
the four layers: layer I, |PG| ∼= |VF| � |TI|; layer II, |VF| ∼= |TI| � |PG|; layer III,
|VF| ∼= |TI| ∼= |PG|; layer IV, |TI| ∼= |PG| � |VF|. For smooth-wall pipe flow, the
magnitude of the ratio (VF/TI) exceeds unity in layer I, indicating a nominal balance
between the pressure gradient and the mean viscous force. Thus, layer I coincides with
the viscous sublayer, which is obliterated in the presence of dynamically significant
roughness. In layer II, the dominant balance is between the viscous stress gradient
and the Reynolds stress gradient. Conventional notions lead to the expectation that
for transitionally or fully rough flows, layer II is obliterated as well, since roughness
is typically viewed as generating inertially dominated flow from the roughness crests
outward. Consistent with the results of Mehdi et al. (2013), the results presented
below reveal that this is distinctly not the case. Namely, layer II continues to exist.
Across layer III, all three terms are of equal order, but by layer IV the VF term loses
leading-order importance and there exists a dominant balance between the PG and
TI terms.

Roughness imposes scales of motion in the range between O(ν/uτ ) and O(δ).
These scales modify the distribution of dynamically relevant length scales with
distance from the wall. The net result of this is that the layer structure that describes
the leading-order mean dynamics, and, in particular, the position at which the VF
term loses leading order, now becomes a function of the roughness and Reynolds
number. Apart from this, the analysis and evidence presented by Mehdi et al. (2013)
indicate that the overall scale separation in rough-wall flows can be segregated into
contributions associated with the scale separation between the inner and roughness
scale and the roughness and outer scale. By adopting a natural extension of the
smooth-wall theory, they further show that a unifying element in describing the
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II III IVI

–1

0

Peak Reynolds
stress location

FIGURE 13. Sketch of the four layers of turbulent flow in a smooth-wall pipe at fixed
Reynolds number (Wei et al. 2005a). It should be noted that across layer III the TI term
changes sign and there is an exchange of dominant balance. From the outer edge of layer
III to the pipe centreline the leading-order mean dynamics is governed by the inertial
terms, TI and PG.

structure of both smooth- and rough-wall flows is that the onset of inertially
dominated mean dynamics is described by an intermediate length scale. For the
smooth-wall flow, this length scale is analytically shown to be solely a function of
the overall scale separation (as reflected in the value of Reτ ), while in the rough-wall
case, this intermediate scale is a function of the relative scale separations between the
inner, roughness and outer scales, and the Reynolds number (overall scale separation).

Due to the geometric complexity of the roughnesses employed in the experiments
of Mehdi et al. (2013), the wall-normal location of the peak in Tu was used as a
surrogate for the intermediate length scale, i.e. a surrogate for the position from
the wall to the outer edge of layer III – the position where the leading-order mean
dynamics becomes wholly inertial. A remarkable feature of the present wavy-wall
roughness is that it allows one to consider normalizations of (2.17) in which the
driving mean pressure gradient is given by an explicit analytical expression that
includes the effect of corrugation height. Thus, for example, the definition of ε in
(2.19) allows one to recover the exact inner-normalized mean momentum equation
for smooth-wall pipe flow, i.e. as h+ → 0. More importantly, this representation
also allows the description of mean dynamics given by Mehdi et al. (2013) to be
formally tested by replacing the surrogate intermediate length with an exact analytical
expression.

The ratio of the gradient of the viscous stress to the gradient of the Reynolds stress
is plotted against the wall-normal distance y+ in figure 14(a). As generically observed
by Mehdi et al. (2013), the ratio (VF/TI) attains a value of approximately −1 interior
to where the TI term crosses zero (i.e. where the ratio asymptotes to ±∞). In this
region of the flow, there is also more data spread than farther from the wall. The
profile variability here is a direct effect of the roughness, while the scatter within
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FIGURE 14. Ratio of the mean viscous force to the mean effect of turbulent inertia: (a)
versus y+; (b) versus ŷ, the intermediate normalization that yields the invariant form (7.6).
Inset: the data replotted showing the shift in layer II with increasing Reynolds number.
The data sets are the same as in figure 5.

each profile is a consequence of taking the ratio of derivative quantities in a region
where the statistical convergence below the roughness elements is not as good as away
from the wall. For all corrugation heights and Reynolds numbers explored, the data of
figure 14 unambiguously reveal the existence of layer II. The physical significance of
this is that the VF term retains leading order. The highest corrugation height (case G)
exhibits a noticeable y+ shift in the position of layer II as the Reynolds number
increases from 180 to 314. Moreover, the combined effect of the Reynolds number and
corrugation height does not noticeably influence the existence of the other two distinct
layers (layers III and IV), albeit their y+ position is clearly influenced by Reτ and h+.
As anticipated, for all values of h+ greater than 5, layer I is completely destroyed.

7.2. Scaling via invariant representation of the mean dynamics
We now determine an invariant form of the relevant mean momentum equation that is
applicable over most of the flow domain and that inherently accounts for the combined
effects of roughness and Reynolds number. We begin by noting that the inner and
outer variables y+ and η are appropriate to the inner and outer domains respectively.
Layer III in figure 13 is of particular interest, since it has been shown (for smooth-
wall flow) that its structure is replicated as a function of y over a hierarchy of scaling
layers that span from O(ν/uτ ) to O(δ) (Fife et al. 2009). The distinctive feature of
each layer in this hierarchy, and layer III, is that all of the terms in (2.17) have the
same order of magnitude.

According to the approach used for channel flow, rescaling is most easily
accomplished for the differentials dy+ and dT+u (Wei et al. 2005a). The simplest
successful rescaling takes the form

dy+ =π1 dŷ, dT+u =π2 dT̂u, dU+ = dÛ, (7.1a−c)

where Û and T̂u are the rescaled O(1) functions of ŷ and ε, and π1 and π2 are scaling
parameters, functions of ε, to be determined. The terms in (2.17) then transform as

d2U+

dy+2
= 1

π2
1

d2Û
dŷ2

,
dT+u
dy+
= π2

π1

dT̂u

dŷ
. (7.2a,b)
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Invariance is satisfied when the derivatives on the right of (7.2), namely d2Û/dŷ2

and dT̂u/dŷ, are rescaled to formally become O(1) quantities for all Reynolds numbers
and roughness heights. By the requirement established above, the orders of magnitude
of both terms on the right, namely 1/π2

1 and π2/π1, must match (in order of
magnitude) the third term in (2.17), namely ε2 : π−2

1 = π2/π1 = ε2. This is only
possible if π2 = ε,π1 = ε−1.

Thus, from (7.1)
dy+ = ε−1 dŷ, dT+u = ε dT̂u. (7.3a,b)

Integrating (7.3) gives two integration constants which are chosen to be y+m and T+um;
they are the values of y+ and T+u where ŷ= 0 and T̂u = 0. The result is

y+ = y+m + ε−1ŷ, T+u = T+um + εT̂u, (7.4a,b)

where the quantities with subscript m are the values of those variables at the maximum
point y+m of T+u . The rescaled intermediate variables now become

ŷ= ε(y+ − y+m), T̂u = ε−1(T+u − T+um), Û =U+ −U+m , (7.5a−c)

where y+m and T+um are the maximum Reynolds shear-stress location and value
respectively and U+m is the value of the mean streamwise velocity at the maximum
point y+m .

Normalization of the mean momentum equation according to these variables results
in

d2Û
dŷ2
+ dT̂u

dŷ
+ 1= 0 (7.6)

and thus provides the desired parameter-free representation in which all scaled
terms are formally represented as being O(1). The rescaled functions satisfy
T̂u(0) = dT̂u/dŷ(0) = 0, d2Û/dŷ2(0) = −1. It should be noted that the present
rescaling differs from that used for smooth-wall flows. In the smooth-wall case,
the intermediate variable is equal to the geometric mean between the inner and outer
length scales, i.e. ŷ= y/(δ(ν/uτ ))1/2. Due to (2.19), the new meso-variable takes the
form ŷ = y((Vo/V)/(δν/uτ ))1/2, where the factor Vo/V = 1 + h2/(8R̄2) analytically
accounts for the influence of varying corrugation height. While the present analyses
support and illuminate the notions associated with the dynamical relevance of the
intermediate length scale in rough-wall flows, we stress that this analysis still requires
knowledge of the location of the T+u peak, which cannot be obtained without first
carrying out the simulations. Hence, we still do not have an a priori description of
the effect of a particular roughness.

The ratio of VF/TI profiles is plotted versus ŷ in figure 14(b). As is apparent,
from layer III outward, the agreement between the different h+ and Reτ profiles is
much improved. Furthermore, a good portion of the scatter in layer II is rationally
attributable to the aforementioned uncertainty associated with statistical convergence,
while the remaining profile variations in this region are probably associated with
genuine dependences on h+ and Reτ . These findings are consistent with the
smooth-wall analysis, indicating that, with increasing Reτ , self-similar mean dynamics
is most rapidly developed in a domain beginning near the outer edge of layer III
(i.e. the log layer), while over a region interior to that point, and extending to the
lower portion of layer II, Reynolds number invariance is established more slowly
(Klewicki 2013b). These findings are also in accord with the rough-wall observations
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FIGURE 15. Meso-normalized profiles of the mean velocity (a) and Reynolds shear stress
(b) for turbulent flow in smooth and wavy-walled pipes. The data sets are the same as in
figure 5.

of Mehdi et al. (2013), indicating that interior to the outer edge of layer III the
interactions involving the viscous and inertial forces are, in general, significantly
influenced by the scales of motion imposed by the roughness. Conversely, beyond
layer III they surmise that for roughnesses that sufficiently three-dimensionalize and/or
reduce the characteristic scales of the layer II vorticity field the flow properties
beyond layer III (i.e. in the domain where the leading-order dynamics is wholly
inertial) become independent of the roughness details, and thus satisfy Townsend’s
outer similarity hypotheses. The results of §§ 5.2 and 5.3 generally support these
findings in that outer similarity is empirically observed to hold near to, or slightly
beyond, the wall-normal location of the peak in T+u .

The veracity of the scaling depicted in figure 14(b) is more directly tested by
examining whether the solutions of (7.6) are indeed invariant for variations in h+ and
Reτ . The mean velocity and Reynolds shear-stress profiles ranging from smooth to the
maximum h+ explored are plotted in figure 15(a,b). The result is encouraging, as these
profiles exhibit convincing invariance, except possibly for the h+= 50 case, where the
roughness height is approximately 1/6 of the mean pipe radius. This is likely to be a
case where the vorticity field in layer II does not sufficiently three-dimensionalize at
small scales, and outer similarity breaks down. Here, it is also relevant to note that
the invariance approximated in figure 15 should improve with increasing Reτ .

Evidence in support of this interpretation is given by figure 16, which shows the
normalized magnitude of the mean vorticity, Ωz = −dU/dy. Analysis of the mean
momentum equation reveals that the mean vorticity will decay from its wall value
of |Ω+z | = 1 to a value that is O(ε) by y+ = O(ε−1), and then decay from there
to O(ε2) by y+ = O(ε−2), e.g. Klewicki (2013b). These features predicted by the
analysis can be directly tested by plotting the data according to the normalization
of figure 16. Smooth-wall pipe data in the range 1800 6 Reτ 6 530 000 (not shown
in figure 16) and boundary layer data in the range 1000 6 Reτ 6 17 000 confirm
that, for all Reτ , ε−1|Ω+z | = 1 at the outer edge of layer III, i.e. εy+ ' 2.6 (Klewicki
2013b). Furthermore, by using the position of the peak in T+u as a surrogate for
the intermediate length scale, Mehdi et al. (2013) showed that, except for large
organized roughness (i.e. large two-dimensional transverse bars), this same condition
is also satisfied for a range of roughnesses covering over a decade in Reτ and over
two decades in k+s . Physically, this observed decay rate stems from the reduction
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FIGURE 16. Meso-normalized mean velocity gradient (−Ωz) profiles for smooth and
wavy-walled pipes. The horizontal line denotes ε−1|Ω+z | = 1 and the vertical line denotes
εy+ = 2.6. The expression for ε is given by (2.19).

in scale and three-dimensionalization of the near-wall vorticity field, caused by
vorticity stretching, and that results in an exchange of mean enstrophy to fluctuating
enstrophy (Klewicki 2013a). In accord with this interpretation, the h+ = 50 profile
in figure 16 does not quite adhere to the predicted decay rate, presumably due to
the roughness-induced motions in layer II being too large and organized. Again,
the distinct (and remarkable) advantage of the present analysis is that its explicit
representation of the pressure drop as a function of the corrugation height allows the
present scaling theory to be analytically tested.

8. Discussion and conclusions
Direct numerical simulation data were presented for both laminar and turbulent

flows through wavy-walled pipes of fixed axial wavelength and with a number of
corrugation amplitudes. The largest Reynolds number considered was Reτ = 314,
corresponding in the smooth-pipe case to ReD ≈ 9930. The radial height of the
largest corrugation corresponded to approximately 0.16 times the mean radius
of the wavy-wall pipe. Within these limits, it is believed that the turbulent-flow
data represent and support scaling predictions derived from analysis of the mean
momentum equation.

The data from laminar flows exhibit flow separation and increased pressure drag
with increasing surface waviness. One of the notable findings is that the pressure drag
accounts for more than 50 % of the total for Reτ > 55.6 and ES > 0.26, even in the
absence of (mean) flow separation. Moreover, the laminar flow inside a wavy-wall pipe
follows a linear friction-factor relationship with the Reynolds numbers.

Before exploring the scaling properties of wavy-wall pipe flow, a series of notable
features were observed in relation to the characteristics of the generic rough-wall flow.
It was identified that the mean flow profiles have a trend nearly identical to those
of pipe flows having randomly distributed roughness. The mean streamwise velocity
profile of a wavy-wall pipe flow follows the well-accepted velocity defect law and is
consistent with the rough-wall ‘log law’. The definition of ‘fully rough’ flow can also
be applicable to ‘fully corrugated’ flow if the corrugation height exceeds a certain
limit. The outer normalizations of the mean streamwise velocity profiles in velocity
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defect form with the variation of corrugation height agree with Townsend’s outer-layer
similarity hypothesis, even at the present low Reτ . Namely, increasing the corrugation
height at Reτ = 314 revealed a broad region (η> 0.2) in the outer layer that continued
to agree with outer-flow similarity.

Like flow over distributed roughness, the offset in the maximum mean velocity
profile (at the pipe centreline) depends on the magnitude of the corrugation height. As
a result, following the representation of Nikuradse’s rough-wall flows, the ‘equivalent
sand-grain roughness height’, ks, is analogous to the corrugation amplitude, a, of wavy-
wall flows. This representation compares the similarity of the rough-wall flows through
the determination of the ‘effective corrugation function’, which is found to be constant
but a little lower than the Nikuradse roughness function in the fully rough regime.

The turbulent intensities of the wavy-wall pipe under both inner and outer
normalizations consistently exhibit evidence of the outer-layer similarity with
variations in corrugation height. In fact, the radial and tangential velocity intensity
profiles follow the smooth-wall flow data almost from the peak location to the centre
of the pipe. The streamwise velocity intensity under the outer normalization merges
into a single curve beyond η= 0.2. As expected in rough-wall flows, the peak value
of u

′+
rms drops from the smooth-wall data with increasing h+. The effect of Reynolds

numbers on the velocity fluctuations marginally satisfies the outer-layer similarity
relatively far from the respective peak fluctuation location. Moreover, under inner
normalization there is a noticeable influence of the Reynolds number in the outer
region of the flow. The outer-scaled Reynolds shear-stress profiles also follow a
similar trend with changes in corrugation height for η > 0.2, whereas the profiles
appear to be invariant in the region η> 0.3. Hence, from these results we tentatively
conclude that wavy-wall flows have properties that, in many respects, mimic those of
distributed roughness flows.

Assessment of hydrodynamic performance is of primary practical interest. It
was found that increasing wall corrugation influences the overall contribution of
pressure drag, which rises to almost 85 %. This suggests a transitional rough-wall
flow condition. For turbulent flow, using the analogy of the corrugation amplitude
of a wavy-wall pipe to the equivalent sand roughness, the friction factor appears to
approach Nikuradse’s data at higher ReD.

The scaling properties of a wavy-wall pipe were investigated in the post-transitional
turbulent regime, i.e. beyond the onset of the four-layer mean force balance structure.
The present estimates of the (VF/TI) ratio indicate that layers III and IV in smooth-
and wavy-wall pipe flows are qualitatively the same. However, the width of layer II
interior to the peak in the Reynolds shear stress strongly depends on the corrugation
height, and its location shifts consistently with the increase of Reynolds numbers.

The positions and widths of the layers vary with changing Reτ and h+. For
wavy-wall flows, it is expected that the transition (balance breaking and exchange
mechanism) from layer II, across layer III and into layer IV is a function of the
relative scale separations as reflected on average by the intermediate length scale
defined in § 7.2. The present theory indicates that the transition (with increasing y) to
inertially dominated mean dynamics can be represented using the analytical expression
for this intermediate length scale.

The scaling framework associated with the mean momentum equation is established
for wavy-wall pipe flow. The analysis presented herein has an analytical formalism
that was not possible in the similar, semi-empirically based, analyses of Mehdi
et al. (2010, 2013). The present approach determines an invariant form of the
mean momentum equation that explicitly includes the characteristics of the surface
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corrugation and allows one to analytically represent the associated scaling properties.
Using this information, the mean streamwise velocity and Reynolds shear-stress
profiles show evidence of invariance for variations of both the corrugation height and
the Reynolds number.
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