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ABSTRACT

We extend the Annually Recalculated Virtual Annuity (ARVA) spending
rule for retirement savings decumulation (Waring and Siegel (2015) Financial
Analysts Journal, 71(1), 91-107) to include a cap and a floor on withdrawals.
With a minimum withdrawal constraint, the ARVA strategy runs the risk of
depleting the investment portfolio. We determine the dynamic asset allocation
strategy which maximizes a weighted combination of expected total with-
drawals (EW) and expected shortfall (ES), defined as the average of the worst
5% of the outcomes of real terminal wealth. We compare the performance of
our dynamic strategy to simpler alternatives which maintain constant asset
allocation weights over time accompanied by either our same modified ARVA
spending rule or withdrawals that are constant over time in real terms. Tests
are carried out using both a parametric model of historical asset returns as well
as bootstrap resampling of historical data. Consistent with previous literature
that has used different measures of reward and risk than EW and ES, we find
that allowing some variability in withdrawals leads to large improvements in
efficiency. However, unlike the prior literature, we also demonstrate that fur-
ther significant enhancements are possible through incorporating a dynamic
asset allocation strategy rather than simply keeping asset allocation weights
constant throughout retirement.
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1. INTRODUCTION

The ongoing transition from defined benefit to defined contribution (DC)
pension plans places the burden of managing financial assets on the plan’s
members. This is a challenging task for most plan members, which becomes
more complex upon retirement. Individuals then must continue to manage
their financial assets but also have to determine a strategy to withdraw assets to
pay living expenses with uncertain longevity. It is often suggested that retirees
should buy annuities, but for many reasons this rarely happens in practice
(MacDonald et al., 2013).

Assuming that purchasing an annuity is undesirable, retirees must devise
suitable decumulation strategies. Such strategies can generally be classified as
having fixed or variable withdrawals. Within these categories, several vari-
ations have been proposed. MacDonald ef al. (2013) summarize various
possibilities.! In a fixed scheme, the amounts taken out each year are constant,
typically in real (i.e., inflation-adjusted) terms. This produces a smooth profile
of spending over time, provided the retiree remains solvent. Risk is then effec-
tively due to longevity: the danger is insufficient funds to sustain a very long
retirement period, given fixed annual withdrawals. With a variable scheme,
withdrawals fluctuate in response to factors such as investment returns. An
extreme example of this is fixed percentage withdrawals: the investor takes out
a constant percentage of the portfolio value each year. In principle, this puts all
of the risk onto the spending stream. It is impossible to run out of funds since
something is always left for the next year. The obvious problem is that with-
drawals may fall below a minimally viable threshold if the retiree lives long
enough. There are many other possibilities for variable schemes which attempt
to strike a balance between the two fundamental risks of spending fluctuations
and longevity, typically through changes in spending in response to financial
market returns.

Perhaps the best known decumulation strategy is the 4% rule (Bengen,
1994). In this fixed scheme, retirees with an annually rebalanced portfolio
split evenly between bonds and stocks withdraw 4% of their initial wealth
each year in real terms. Backtesting on US data showed that retirees would
never have run out of funds, over any rolling historical 30-year period consid-
ered. Although common in the practitioner literature, backtesting with rolling
historical periods can seriously underestimate risk. Any two adjacent 30-year
periods will have 29 years in common, any two 30-year periods beginning two
years apart will have 28 years in common, etc. The overall results will tend
to be highly correlated, and potentially misleading. In addition to the cor-
relation issue, using rolling historical periods only considers what happened,
giving zero weight to any other plausible scenario that might have happened,
and which could occur in the future. A better sense of risk can be found by
fitting a parametric model to the historical data and running Monte Carlo
simulations based on the estimated parameters, or through block bootstrap
resampling the data (Politis and Romano, 1994), that is randomly drawing
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with replacement shorter periods of data and chaining them together over the
decumulation horizon. We use both of these approaches below and find that
the 4% rule is quite risky.’

As mentioned above, variable schemes have been proposed that let spend-
ing fluctuate with portfolio returns. These strategies typically permit higher
initial withdrawal rates compared to fixed schemes such as the 4% rule. These
withdrawal rates can be further increased following portfolio gains, but need
to be reduced (sometimes severely) after investment losses. Bengen (2001) con-
siders fixed percentage withdrawals augmented with a floor and ceiling. The
initial withdrawal rate can be increased in line with investment returns up to
a maximum of 25% higher in real terms than the first withdrawal, or reduced
no further than 10% below the real value of the initial withdrawal. Bengen
concludes that the safe initial withdrawal rate for this strategy is about 4.6%,
notably higher than the fixed 4% rule. Guyton and Klinger (2006) consider a
complicated set of heuristic rules governing withdrawals, portfolio decisions,
caps and freezes on inflation adjustments, etc. They conclude that an initial
withdrawal rate of 5.2-5.6% is sustainable given a portfolio equity allocation
of 65%. As a third example, Waring and Siegel (2015) introduce the Annually
Recalculated Virtual Annuity (ARVA) rule, for which the amount taken out
of the portfolio in any given year is based on the annual cash flow of a virtual
(i.e., imaginary) fixed term annuity that could be purchased using the current
value of the portfolio. This strategy is similar to fixed percentage withdrawals
in that the portfolio can never be fully depleted, but withdrawals can become
unsustainably small if retirement is sufficiently long and/or portfolio returns
are poor. Alternatively, the ARVA rule will lead to increased withdrawals
following good investment returns.

Pfau (2015) compares the performance of several spending strategies by
Monte Carlo simulation with parameters calibrated to long-term (1890-2013)
annual data for financial market returns and inflation. Pfau begins with a
modification of the Bengen (1994) rule which uses constant inflation-adjusted
withdrawals, but with a spending rate of 2.86% rather than 4%. This lower rate
of 2.86% was estimated on the basis of there being at least a 90% chance of 1.5%
of the initial amount of real wealth remaining after 30 years of withdrawals,
assuming a 50/50 portfolio allocation between stocks and bonds. Using the
same portfolio allocation and the same 90% criterion for other strategies per-
mitted higher initial spending rates. For example, the initial spending rate
for Bengen (2001)’s fixed percentage scheme with a floor of 85% and ceiling
of 120% of the real value of the first year’s withdrawal 120% was estimated
to be 3.31%. As additional examples, Pfau’s implementations of the ARVA
approach (Waring and Siegel, 2015) and the Guyton and Klinger (2006) rules
produced initial spending rates of 4.34% and 4.82%, respectively.

A relatively unexplored issue is the effect of more sophisticated asset allo-
cation, beyond simply rebalancing to constant weights for bonds and equities.
Tretiakova and Yamada (2017) explore rebalancing to a constant level of
a (time-varying) equity market risk measure using several withdrawal rules
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and report that sustainable spending is significantly improved. However, this
leaves open the question of the impact of using an asset allocation strategy
that is optimized to achieve a well-defined financial objective. Implementing
such an approach necessitates stating a suitable objective function and solving
the resulting optimization problem, which in turn requires more technically
sophisticated methods.

Along these lines, Dang et al. (2017) use a multi-period mean variance
objective to examine the effect of different (fixed) withdrawal rates coupled
with an adaptive portfolio allocation strategy. The objective function depends
on the mean and variance of wealth 20 years after retirement, based on the
assumptions of retirement at the age of 65 years and a wealth target of one-half
initial retirement wealth remaining after two decades.

Irlam (2014) uses dynamic programming methods to determine asset allo-
cation, given an objective of maximizing the number of years of solvency
divided by the number of years lived. Irlam concludes that asset allocation rules
that depend only on time such as “age in bonds” or various target-date fund
glide paths require higher investment to obtain the same withdrawal rates in
retirement, as compared to an approach where asset allocation is time- and
state-dependent. However, Irlam only considers a fixed annual withdrawal
amount in retirement.

We explore further the effect of a variable spending rule in combination
with an asset allocation strategy tailored to optimizing a financial objective. In
particular, we use an ARVA spending rule augmented by constraints on mini-
mum and maximum annual withdrawals. The minimum withdrawal constraint
means that there is risk of depleting the portfolio entirely prior to the end of
the investment horizon. We measure risk using the expected shortfall (ES) of
terminal portfolio value.> As a measure of reward, we use total expected with-
drawals (EW). Based on a parametric model calibrated to historical data, we
determine the portfolio allocation strategy that optimizes the multi-objective
EW-ES function.*

We verify the robustness of this strategy through tests using bootstrap
resampling of historical return data. We find that the ARVA spending rule
coupled with an optimal allocation strategy is always more efficient than a
constant withdrawal, constant weight strategy. In fact, our optimal dynamic
ARVA strategy outperforms this alternative even when the minimum with-
drawal under ARVA is equal to the constant withdrawal with constant weights.
This shows that allowing some variability in withdrawals sharply reduces
the risk of depleted savings, consistent with Pfau (2015) and Tretiakova
and Yamada (2017). In addition, we demonstrate that solving an optimal
stochastic control problem to specify asset allocation can provide further sig-
nificant benefits beyond those obtained by allowing withdrawal variability
alone.

The rest of the paper proceeds as follows. Sections 2—4 give details about
the ARVA spending rule, the investment market, and notational conventions.
Sections 5-7 describe the risk and reward measures, the objective function,
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and the solution method. Sections 8-9 discuss parameter estimates and the
investment scenario. Sections 1011 give results and Section 12 concludes.

2. ARVA SPENDING RULE

Consider the following spending rule. Each year, a virtual (hypothetical) fixed
term annuity is constructed, based on the current portfolio value, the number
of remaining years of required cash flows, and a real (inflation-adjusted) inter-
est rate. The investor then withdraws an amount based on the hypothetical
payment of this virtual annuity. Clearly, the annual payments will be variable,
since the virtual annuity is recalculated each year, and is a function of the cur-
rent portfolio value. The portfolio is liquidated at the end of the investment
horizon. A surplus will be returned to the investor (or the investor’s estate).
Any shortfall must be settled at this time as well.

We are now faced with the choice of determining a timespan for the vir-
tual fixed term annuity. Rather than specifying a maximum possible life span
(which would be overly conservative), we assume that retirees are in the top
20% of the population in terms of conditional expected longevity (Westmacott,
2017). Consider a retiree who is x years old at = 0. Assuming that the x + #-
year-old retiree is alive at time ¢, let 77(7) be the time at which 80% of the cohort
of x + t-year-olds are expected to have passed away, conditional on all mem-
bers of the cohort being alive at time 7. At time ¢, the fixed term of the virtual
annuity is then 77 (¢) — ¢. This mortality assumption has the effect of providing
increased spending during the early years of retirement. By varying the fraction
of the cohort assumed to have passed away, we can increase/decrease spending
in early retirement years at the cost of decreased/increased spending in later
years. Note that our ARVA withdrawal amount is not generally the same as
would be obtained from a currently purchased life annuity.

Our default choice of determining 77(f) based on a 20% survival prob-
ability is slightly more conservative than the 25% suggested by the Institute
Québécois de Plainification Financiére.” We are also implicitly assuming that
the DC plan investors who have a sizeable accumulation of wealth at retirement
are wealthier (and healthier) than the median Canadian at the same age.

Given the real interest rate r, the present value of an annuity which pays
continuously at a rate of one unit per year for 77(¢) — t years is denoted by the
annuity factor:

a(t) = I —exp[—r(T3() -] @0

r

It follows that W(¢)/a(¢) is the continuous real annuity payment for (77(¢) —
t) years, which can be purchased with wealth W (z) at time ¢. We make the
assumption that withdrawals occur at discrete times in

T={ty=0<tj<---<ty=T}, (2.2)
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where ¢, denotes the time that the x-year-old retiree begins to withdraw money
from the DC plan. We assume the times in 7 are equally spaced with ¢, — ¢, | =
At=T/M,i=1,...,M. We let At= 1 year. We determine the cash with-
drawal at time ¢; by converting the continuous payment above into a lump
sum received in advance of the interval [¢;, ¢;;1]. This lump-sum withdrawal at
t; 1S W(Zi)A(Zi), where

litl efro"ft,')
A(t) = dr. 2.3
(1) f - (2.3)

In this work, we will compute Equation (2.3) based on the CPM 2014 mortality
tables (male) from the Canadian Institute of Actuaries® to compute 77() with
x = 65. Further discussion of the ARVA spending rule can be found in Forsyth
et al. (2020).

3. INVESTMENT MARKET

We assume that the investment portfolio consists of two index funds: a stock
market index fund and a constant maturity bond index fund. Let the invest-
ment horizon be T, and S, and B,, respectively, denote the real amounts
invested in the stock index and the bond index. These amounts can change
due to (i) changes in the real unit prices and (ii) the investor’s asset allocation
strategy. In the absence of the application of an investor’s control, all changes
in S, and B, result from changes in asset prices.

We model the stock index (in the absence of an applied control) as a
jump diffusion process. Let S;- = S(¢ — €), e — 01, that is, ¢t~ is the instant of
time before ¢, and let &* be a random jump multiplier. When a jump occurs,
S; =&°S,-. The use of jump processes allows for modeling of fat-tailed (non-
normal) asset returns.” We assume that log (&%) follows a double exponential
distribution (Kou and Wang, 2004). The probability of an upward jump is p,
with 1 — p’ being the probability of a downward jump. The density function

for y =log (§%) is
L o) =pme s+ (1= pnse™ 1, . (3.1)
Define

S 00 1 —p5 )t
punl + ( pu)nZ —1. (32)

=EE - 1]=- s
g n —1 n+1

Without an applied control,

ds ‘
o = —2) ditotdz +d | Y@ D). (3.3)
- i=1
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where u* is the (uncompensated) drift rate, o is the diffusive volatility, Z* is a
Brownian motion, 7] is a Poisson process with intensity parameter A}, and &
are i.1.d. positive random variables having distribution (3.1). Moreover, &’, 7/,
and Z® are assumed to all be mutually independent.

As in MacMinn et al. (2014) and Lin et al. (2015), we use a common
practitioner approach and model the returns of the constant maturity bond
index (absent an applied control) as a stochastic process. This approach has
the advantage that estimating model parameters from market data is quite
straightforward, without the need to devise a parametric process for real inter-
est rates. As in MacMinn et al., we assume that the constant maturity bond
index follows a jump diffusion process. In particular, B- = B(t — €),e — 0.
In the absence of control, B, evolves as:

b
dB i
= (W =l il ) di+ ot dZ 1 d | SOE =D | G
-

i=1

where the terms in Equation (3.4) are defined analogously to Equation (3.3). In
particular, 7’ is a Poisson process with positive intensity parameter A2, and &°

has distribution:
£ =Tog&") = phate ™ + (1 Pyt 1, o, (3.5)

and « = E[§" —1]. &, =}, and Z" are assumed to all be mutually indepen-

dent. The term M?lw,f <oy in Equation (3.4) represents an additional cost of
borrowing (B, < 0), that is a spread between borrowing and lending rates.
We assume that the diffusive components of S; and B, are correlated, that is,
dzZ* - dZ" = py, dt. However, the jump process terms for these two indexes are
assumed to be mutually independent.?

It is possible to include more complex stock and bond processes, such as
stochastic volatility for example. However, Ma and Forsyth (2016) have shown
that including stochastic volatility effects does not have a significant effect on
the results for long-term investors. In order to verify the robustness of the
strategies, we will determine the optimal controls using the parametric model
based on Equations (3.3) and (3.4). We then test these controls on bootstrapped
resampled historical data. This is quite a strict test, since the bootstrapped
resampling algorithm makes no assumptions about the underlying bond and
stock stochastic processes.

We define the investor’s total wealth at time ¢ as W, =S, + B,. We impose
the constraints that (assuming solvency) shorting stock and using leverage (i.e.,
borrowing) are not allowed. Insolvency can arise from withdrawals. If this hap-
pens, the portfolio is liquidated and debt accumulates at the borrowing rate.
The borrowing rate is taken to be the return on the constant maturity bond
index plus a spread p?.
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4. NOTATIONAL CONVENTIONS

For ease of explanation, we sometimes use the notation S, = S(¢), B, = B(¢),
and W, = W(r). Earlier in Equation (2.2), we specified a set of times 7 for
which withdrawals are permitted. We now expand the scope of 7 so that
portfolio rebalances are also allowed at those times, that is, 7 is the set of
withdrawal/rebalancing times. More specifically, let the inception time of the
investment be £, = 0. At each withdrawal/rebalancing time ¢;,, i =0,1,..., M —
1, the investor (i) withdraws an amount of cash ¢; from the portfolio and
then (ii) rebalances the portfolio. At #,, = T, the portfolio is liquidated and
the final cash flow ¢,, occurs.

Given a time-dependent function f(¢), we use the shorthand notation
fhH= 1ir(r)1+f(t,- +¢€) and f(¢,) = linoa+f(z,- —€). We assume that no taxes are

triggered by rebalancing. This would normally be the case in a tax-advantaged
DC savings account. Since we assume yearly application of the controls
(rebalancing), we expect transaction costs to be small and hence they can be
safely ignored.” With no taxes or transaction costs, it follows that W(s") =
wW(t) — q.

The multi-dimensional controlled underlying process is denoted by X (¢) =
(S (?), B(t)), with ¢ € [0, T]. The realized state of the system is x = (s, b). Let
the rebalancing control p,(-) be the fraction invested in the stock index at
rebalancing date ¢;, that is,

S(t)

A(XE)) =p (X(6), t) = ————. 4.1
p((l)) p( (z) ) S(l;‘—)—FB(lj—) ( )
The controls depend on the state of the investment portfolio before the rebal-
ancing occurs, that is, p,(-)=p (X(#7), ;) =p (X; . #;), t; € T. We search for
the optimal strategies among all controls with constant wealth after cash

withdrawal:

pi( ) =pW (), 1)
W(t5) = S(t) + B(5,) — g

St =S =p(WH W

B(t7) =B =(1 —p(W)) W (4.2)

We assume that rebalancing occurs instantaneously, with the implication
that the probability of a jump occurring in either index is zero during the
rebalancing period (¢;, £}).

Let Z represent the set of admissible values of the control p;( - ). An admis-
sible control P € A, where A is the admissible control set, can be written as
P={p(-)eZ : i=0,...,M —1}. We impose no-shorting and no-leverage
constraints by specifying

Z=[0,1]. 4.3)
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We also apply the constraint that if W(z) <0, the stock index holding is
liquidated,

pOW(EH), 1) =0if W(t") <0, (4.4)

and no further stock purchases are permitted, with the result that debt accu-
mulates at the bond return plus a spread. In addition, we define P, =P, C P
as the tail of the set of controls in [¢t,, 41, ..., ty—1], that is, P, ={p.(-),

P-4

5. RISK AND REWARD MEASURES

Initially, we describe our measure of risk. Suppose g(W7) is the probability
density function of terminal wealth W, at =T, and let

/ W AWy =a, 5.1)

oo

so that Prob[Wr > W ]=1—«a. We can interpret W} as the value at risk
(VAR) at level «. The expected shortfall (ES) at level « is then

f_VZf W g(Wr)dWr

o

ES. = (5.2)

which is the mean of the worst « fraction of outcomes. Usually, « € {.01, .05}.
We emphasize that the definition of ES in Equation (5.2) uses the probabil-
ity density of the final wealth distribution, not the density of /oss. This has
the implication that a larger value of ES is desirable (the worst case average
portfolio value at 7).'°

Define X;” = X(#), X; = X(¢;). Given an expectation under control P,
Ep[-], Rockafellar and Uryasev (2000) show that ES, can be alternatively
written as:

+ o+
Xyt

1
ES.(Xy, ty) =sup Ep, [W* + —min (W — W*, 0):|. (5.3)
W o

The notation ES,(X| , ¢;) indicates that ES, is as seen at (X; , #,). This def-
inition is then the pre-commitment ES. A strategy based on optimizing the
pre-commitment ES at time zero is time-inconsistent, since the investor may
have an incentive to deviate from the strategy at z > 0. Thus, some authors have
described pre-commitment strategies as being non-implementable. However,
this is really a matter of interpretation: we consider the pre-commitment strat-
egy as a useful technique to compute an appropriate value of W* in Equation
(5.3). In fact, the strategy which fixes W* V¢ > 0 is the induced time-consistent
strategy (Strub et al., 2019) and is consequently implementable. We delay
further discussion of this point to Section 6.
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Our measure of reward is expected total withdrawals (EW), defined as:
+ o+ =M
EW(X;, ;)= Ep " [ > a4 ] (5.4)
i=0

Note that we do not discount withdrawals, with either a market-based measure
of the appropriate risk-adjusted discount rate or with a subjective discount
rate. This reflects a desire to avoid basing our strategy on parameters that
are difficult to estimate. Since the portfolio weights will depend on realized
investment returns and withdrawals over time, it is problematic to estimate the
appropriate risk-adjusted discount rate. Moreover, it is likely to be difficult to
determine a subjective discount rate, which could easily vary across investors
and/or over time. However, we observe that the economic effect of discount-
ing the withdrawals would be to make earlier withdrawals more desirable. We
have already incorporated a similar effect through the mortality boost to the
spending rule discussed in Section 2 above.

6. OBJECTIVE FUNCTION

Our overall approach involves a statistical trade-off between reward and risk,
similar to mean-variance portfolio analysis but with different measures of
reward and risk. The main alternative would be a standard life cycle approach,
where we would maximize a specified utility function. This would raise con-
cerns related to estimating parameters such as risk aversion or elasticities of
intertemporal substitution, similar to the subjective discount rate discussed in
the preceding paragraph. However, this would pose more of a problem since
the appropriate form of the utility function itself is open to question. The most
popular specification in the literature is power utility, which implies constant
relative risk aversion. However, a recent empirical study by Meeuwis (2020)
of the portfolio holdings and income of millions of US retirement investors
indicates that such a model is mis-specified: actual investors exhibit decreas-
ing (not constant) relative risk aversion. More generally, the standard life cycle
approach in principle requires knowledge of the investor’s total wealth includ-
ing wealth due to human capital, illiquid assets such as a home, etc., not just a
retirement savings portfolio. Although the standard life cycle approach offers
some insightful theoretical implications, it is difficult to use in practice because
the information required is often either not available or measured very impre-
cisely. We can also point out that the empirical validity of the standard life
cycle approach has been questioned on behavioral grounds (Thaler, 1990).
Accordingly, we avoid standard life cycle modeling based on utility functions.
We also avoid extending the standard life cycle approach to more compli-
cated preference specifications which may fit the data better (see, e.g., Meeuwis,
2020, and references therein). Instead, we take the relatively simple approach
of optimizing the reward-risk trade-off.
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EW and ES are conflicting measures, so we use a scalarization tech-
nique to find the Pareto points for this multi-objective optimization problem.
Informally, for a given scalarization parameter « > 0, we seek the control Py
that maximizes

EW(X;y, 7)) + KESo(Xy, 7). (6.1)

More precisely, we define the pre-commitment EW-ES problem in terms of the
value function:

Wy — W*,0
J (s, b,1;) = sup Sup{E . 0|:Z%+K(W* min (Wr )>

Poc A W* =0 o

‘nm=mm“ (6.2)

and the constraints:

(S;, B)) follow processes (3.3) and (3.4); t¢ T
Wi =S, +B, —q: X/ =(S/. B)

=p( W/} Bf =0 —p(-) W
pe(-)eZ=[0,1]if W/ >0, pi(-)=0if WS <0
£=0,....M—1; t,€T. (6.3)

By reversing the order of the sup sup in Equation (6.2), the value function
can be written as:

J (s,b,15) =sup sup{EO O[Zq""K(W* min (W — W*, O))

W+ PyeA i=0 o

‘X(tg) = (s, b)] } (6.4)

Denote the investor’s initial wealth at 7y by W =S, + B, . Observe that the
inner supremum in Equation (6.4) is a continuous function of W*. Then,
assuming that the domain of W* is compact, we define

W0, Wy )—argmax{sup{E i |:Zq,+/< (W* min (Wr — W™, 0))

: Poed i=0 o
Pva=mﬁwﬂ}} (6.5)

Regarding W*(0, W) as fixed V¢ >0, the following proposition follows
immediately:
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Proposition 6.1 (Pre-commitment strategy equivalence to a time-consistent pol-
icy for an alternative objective function). The pre-commitment EW-ES strategy
P* determined by solving J(0, Wy, t,) with W*(0, W) from Equation (6.5) is
the time-consistent strategy for an equivalent problem with fixed YW*(0, W) and
value function J(s, b, t) defined by:

< cmin(Wy—WH0, W;),0)
Z q;i +

o

~ _ X+t
J(s,b,t,)=sup {Ep' "
PneA "

i=n

'X(tn) — (s, b)“. (6.6)

Remark 6.1 (EW-ES induced time-consistent strategy: an implementable con-
trol). In the following, we consider the actual strategy followed by the investor
for any t > 0 as given by the induced time-consistent strategy'' that solves prob-
lem (6.6) with the fixed value of WW*(0, Wy") from Equation (6.5). This strategy
is identical to the EW-ES strategy at time 0. Hence, we refer to this strategy
as the EW-ES strategy. It is understood that this refers to the strategy that
solves the time-consistent equivalent problem (6.6) for any t > 0. Consequently,
this strategy is implementable (Forsyth, 2020a) (the investor has no incentive to
deviate from this control for t > 0 ).

7. SOLUTION METHOD

To solve the pre-commitment EW-ES problem (6.2), we start by interchang-
ing the supsup to arrive at Equation (6.4). We expand the state space to

X = (s, b, W*) and define the auxiliary value function:

min (W — W*, O))

o

v+ o+ M
V(s,b, W*,t,)= sup {Eg: ¥ |:Z qi+« (W* +
PpeA

i=n

‘5((;;) =(s, b, W*)i| } (7.1)

and slightly revised constraints:

(S;, B)) follow processes (3.3) and (3.4); t¢ T

W,=S; + B, —qu X/ =(S{ B;, W)

Sy =p( WS Bf =1 —p(-) W]

pe(-)e Z=[0,11if W} >0, p(-)=0if W/ <0
£=0,....M—1; t, 7. (7.2)
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We can solve auxiliary problem (7.1) using dynamic programming. The opti-
mal control p,(w, W*) at time ¢, is determined from

argmax V(wp',w(l —p"), W*,tf) ifw>0
puw, W5y =1 reZ . (13)
0 ifw<0

Following the dynamic programming algorithm, we move the solution back-
ward across across time ¢, via

Vs, b, W*, 1)
=V(wrp,(w, W), wr (1 = p,(w*, W), W5, t) + q,(w™, W*),  (7.4)

where w™ =s+ b, and wr =w™ — g,.. ¢,(w™, W*) is based on our ARVA spend-
ing rule (see Section 9 for a precise specification). Note that the spending rule
will be a function of wealth before withdrawal. At t = T, we have

min (s +b — W*, 0))

(1.5)

V(s,b, W*, T") =K<W* +

o
For times ¢ € (¢,_1, t,), there are no cash flows or controls applied. Recall that
all quantities are real, and that there is no discounting. The iterated expectation
property combined with It6’s Lemma for jump processes in Equations (3.3)-
(3.4) then gives

(O_s)ZSZ } . ) 400 ? S
Vt+ TVSS+(M _kéKg)SV5+Aé V(e}s7 b, Z)f ()’) dy
(O_b)2b2 , b b 5 400 .
+ > Vip + (” — )”EKE WbV, + )"S Vs, &b, t)f°(y)dy
- ()\'é + )\'g)V + ’OXbOJO’bSb I/Sb = 0 5 te (tnfl; [n) (76)
Define
J(s,b,ty)=sup V(s,b, W', 1;). (7.7)
W

It is then straightforward to see that formulation (7.1)—(7.6) is equivalent to
problem (6.2)."

We briefly describe our numerical solution approach. We refer the reader to
Forsyth and Labahn (2019) and Forsyth (20200) for further details. We start
by solving the auxiliary problem (7.1)—(7.2) with fixed values of W*, k, and
a. Since shorting of the stock index is not allowed, S(z) > 0. We localize the
domain s > 0 on a finite localized domain s € [¢*»», ¢*»]. The computational
domain for s is discretized using n; equally spaced nodes in the X =log s direc-
tion. Similarly, we define the localized domain for b > 0 to be b € [bpin, Oimax] =
[ePmin, e"mx]. The computational domain for b > 0 is discretized using n, equally
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spaced nodes in the y =logb direction. Since the investor can become insol-
vent due to withdrawals, we also define a mirror image grid for b < 0 (Forsyth,
2020b).

We use the Fourier methods described in Forsyth and Labahn (2019)
to solve PIDE (7.6) between rebalancing times. Wrap-around errors are
minimized using the domain extension technique in Forsyth and Labahn
(2019). The localized domain [Xmin, Xmax] = [log (10%) — 8, log (10%) + 8], with
[Pmin» Ymax] = [Xmin» Xmax] (units for e* are thousands of dollars). Numerical tests
showed that the errors involved in this domain localization were at most in the
fifth digit.

At rebalancing times, we discretize the equity fraction p € [0, 1] using n,
equally spaced nodes and evaluate the right-hand side of Equation (7.3)
using linear interpolation. We then solve the optimization problem (7.3) using
exhaustive search over the discretized p-values.

Given an approximate solution of the auxiliary problem (7.1)—(7.2) at t =0,
which we denote by V(s, b, W*, 0), we then compute the solution of problem
(6.2) using Equation (7.7). More specifically, we solve

J(0, Wy, 07) =sup V' (0, Wo, W’,07) (7.8)
W/

given initial wealth 1. We solve this outer optimization problem using a one-
dimensional optimization algorithm.!?

If W,> W*and t — T, then Prob[Wr < W*] ~ 0. In addition, for large val-
ues of W, the withdrawal is capped at gn... As a result, the objective function
is almost independent of the control, and thus determination of the control
becomes ill-posed. To avoid this, we change the objective function (6.2) by
adding a stabilizing term € Wr, giving

i=M .
+ o+ W _ W*,()
J(s,b,t,)= sup Sup{Egg g {Z i+ (W* " min (Wr )) oW,
PocA W* o

i=0

‘X(to) = (s, b)} } (7.9)

A negative value for ¢ forces the strategy to invest in the bond index
when W, is very large and t — T, where the original control problem is ill-
posed. This choice is consistent with de-risking retirement assets as soon as
possible (Merton, 2014). Setting e = —10~* gave the same results as setting
€ =0 to four digits for the summary statistics of the problem solution. This
is due to the fact that outcomes with very large terminal wealth are highly
unlikely.
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TABLE 1

ESTIMATED ANNUALIZED PARAMETERS FOR THE DOUBLE EXPONENTIAL JUMP DIFFUSION
MODEL (3.3-3.4). SAMPLE PERIOD 1926:1 TO 2018:12. GBM REFERS TO A GEOMETRIC BROWNIAN
MOTION MODEL (I.E., NO JUMPS). THE THRESHOLD METHOD IS DESCRIBED IN APPENDIX A.

Real CRSP value-weighted stock index

Method w o A Py m m Psb

Threshold (8 =3) 0.08607 0.14600  0.32258  0.23333  4.3578  5.5089  0.08311
GBM 0.08044  0.18460 N/A N/A N/A N/A 0.05870

Real 30-day T-bill index

Method b ot A 7, m m Psb

Threshold (8 =3) 0.00454  0.01301  0.51610 0.39580  65.875 57.737  0.08311
GBM 0.00448  0.01814 N/A N/A N/A N/A 0.05870

8. DATA AND PARAMETER ESTIMATES

As mentioned above, our model assumes that the retiree’s portfolio is allocated
to either a stock index or a constant maturity bond index. In order to have a
long history encompassing expansions, recessions, stock market booms and
crashes, and different levels of interest rates, we use US financial market data.
In particular, the stock index is taken to be the Center for Research in Security
Prices (CRSP) Value-Weighted Index,'* while the bond index is the CRSP 30-
Day Treasury bill (T-bill) index. Both indexes are measured on a monthly basis
from January 1926 to December 2018, giving a total of 1116 observations. To
work in real terms, we deflate both indexes by the consumer price index (CPI),
which was also provided by CRSP.!?

We use the threshold technique (Mancini, 2009; Cont and Mancini, 2011;
Dang and Forsyth, 2016) to estimate the parameters for the stochastic pro-
cess models (3.3)—(3.4) (see Appendix A). All estimated parameters reflect real
(inflation-adjusted) returns. Table 1 shows the annualized parameter estimates.
For reference, the table also gives the estimated parameters for the two time
series assuming geometric Brownian motion (GBM).!® For the threshold case,
after removing any returns which occur at times corresponding to jumps in
either series, the correlation p, is then estimated using the remaining sample
covariance.

The annualized real value-weighted stock index parameters in Table 1 for
the double exponential jump diffusion model correspond to an (uncompen-
sated) drift rate of 8.6% and a diffusive volatility of 14.6%. Jumps in the stock
index are estimated to occur about once every 3 years. Conditional on a jump
occurring, a downward jump is about three times more likely than an upward
jump. The mean jump size is about 23% in the upward direction and 18% in
the downward direction. Since the standard deviation is equal to the mean for
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an exponentially distributed random variable, the magnitudes of both upward
and downward jumps can vary considerably. The corresponding GBM param-
eter estimates imply a drift of about 8% per annum, with a volatility of 18.5%.
This volatility is higher than the diffusive volatility for the jump model since
in the GBM case this term effectively combines the effects of volatility due to
both diffusion and jumps.

Turning to the T-bill index, the annualized jump model parameters corre-
spond to a real (uncompensated) drift of approximately 0.45% and a diffusive
volatility of about 1.3%. Jumps are estimated to occur about every 2 years,
slightly more often than for the stock index. Downward jumps are again more
likely than upward jumps, though somewhat less so compared to the stock
index. The mean jump size is around 1.5% in the upward direction, and about
1.7% in the downward direction. The GBM parameter estimates indicate a drift
that is also about 0.45%, and a volatility of approximately 1.8%. Finally, the
correlation between the diffusive terms for the two indexes is quite low, around
.083 for the jump model and .059 for the GBM case.

9. INVESTMENT SCENARIO

In order to focus exclusively on decumulation, we consider an investor just
entering retirement at the age of 65 years with savings of $1 million. Our
investor is assumed to have the life expectancy characteristics of a Canadian
male. According to the CPM 2014 mortality table, this investor has a 13%
probability of attaining the age of 95 years and a 2% probability of reaching
the century mark. We set the investment horizon 7T to be 30 years.

We alter the standard ARVA spending rule so as to include an annual floor
of ¢min = $30,000 and an annual cap of gm. = $80,000. Recall that all quanti-
ties are expressed in real (i.e., inflation-adjusted) terms. Our modified ARVA
spending rule is then

¢; = max [qmin’ min (A(tl) I/Viis (Imax)] > (91)

where A(t;) is given in Equation (2.3). To provide more context, a Canadian
male who has worked for 40 years in a high-earning occupation can expect to
receive slightly over $20,000 per year in government benefits. Hence, we are
assuming that the minimum total amount needed per year is about $30,000 +
$20,000 = $50,000 per year. Of course, the investor would like to withdraw
more than the minimum amount of $30,000. However, as noted, we also place
a cap of $80,000 per year on withdrawals. The cap prevents the retiree from
reducing savings very quickly, establishing a buffer against potential poor
investment returns. We are thus effectively assuming that our retiree has no
need for income above $80,000 + $20,000 = $100,000 per year.!’

Our retired investor withdraws cash and rebalances his portfolio at the
start of each year, beginning immediately. The interest rate used in the ARVA
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TABLE 2

BASE CASE INPUT DATA. MONETARY UNITS: THOUSANDS OF DOLLARS. THE CPM 2014 MORTALITY
TABLE IS FROM THE CANADIAN INSTITUTE OF ACTUARIES.

Investment horizon T (years) 30

Investor (1 =0) 65-year old Canadian male
Mortality table CPM 2014

Equity market index'® CRSP value-weighted index (real)
Bond index'? 30-day CRSP T-bill index (real)
Initial portfolio value W, 1000

Cash withdrawal/portfolio rebalance times (years) t=0,1,...,30

Gmax 80

Gmin 30

Borrowing spread when W, <0 ub=.02

Interest rate for ARVA computation (2.3) ub =0.00454

Rebalancing interval (years) 1

Market parameters See Table 1

calculation (2.3) is set equal to the estimated value of w;, which is given in
Table 1 as 0.454%. We will use this constant real rate to be consistent with our
approach when we use bootstrap resampling. In the bootstrap case, this avoids
the problem of fluctuating withdrawal amounts which are driven just by the
bootstrap resampling methods. It is also a conservative approach since u” >~ 0.
Note that the actual bond return in the investment portfolio is driven by the
stochastic bond model (3.4).

Table 2 summarizes the base case investment scenario. Note that monetary
units here and in the following tables and plots are expressed in thousands of
(real) dollars.

Since the investor uses a risky portfolio to fund minimum cash flows annu-
ally, there is clearly no guarantee that he will not run out of savings if he has
survived to the age of 95 years. As outlined above, we seek an investment strat-
egy that minimizes risk as measured by expected shortfall (ES), as defined by
Equation (5.2). We use a = 5%, so we are trying to minimize the adverse conse-
quences measured by the average outcome in the worst 5% of the distribution.
As indicated in Table 2, when W, < 0 we assume that debt accumulates at the
rate given by the current return on 30-day T-bills plus a spread of u’ = 2%.

We focus solely on measured outcomes for the investment account, but it
is easy to imagine that our retiree also owns real estate such as a home. In this
case, the ES risk could be hedged using a reverse mortgage with the home as
collateral. However, we assume that the investor wants to avoid using a reverse
mortgage if at all possible, so we seek an investment strategy that minimizes
the magnitude of ES risk on its own. Our scenario shares some features with
the behavioral life cycle approach originally described in Shefrin and Thaler
(1988). In this framework, investors divide their wealth into separate “men-
tal accounts” containing funds intended for different purposes such as current
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spending or future needs. The standard life cycle approach assumes that wealth
is completely fungible across any such accounts, so that the same increase in
wealth from any source (e.g., positive returns for a financial market portfolio,
an increase in the value of one’s house, lottery winnings, etc.) has the same
effect on consumption. In contrast, in the behavioral approach, wealth is not
completely fungible, so the effects of increased wealth depend on the source of
the increase. In our case, even if the investor’s wealth rises because the value of
his real estate has increased, there will be no impact on the amount withdrawn
from the retirement portfolio. The real estate account will only be accessed as
a last resort. It is assumed to be there in the background if needed, but it is
ignored in our analysis.

10. NUMERICAL RESULTS: SYNTHETIC MARKET

We evaluate the performance of three alternative strategies based on the sce-
nario described by Table 2: (i) constant withdrawals and investment portfolio
rebalanced to maintain constant asset allocation weights (in particular, we set
Gmin = max = 40 instead of the values given in Table 2 so that this strategy cor-
responds to the 4% rule of Bengen (1994)); (ii)) ARVA withdrawals as indicated
in Table 2 and investment portfolio rebalanced to maintain constant asset
allocation weights; and (iii) ARVA withdrawals as indicated in Table 2 and
investment portfolio rebalanced to optimal asset allocation weights, in accor-
dance with solving the pre-commitment EW-ES problem (6.2) by the methods
described in Section 7. In each case, the performance evaluation is based on
Monte Carlo simulated paths of market returns based on the parametric model
(3.3)—(3.4), with statistics of interest calculated across all paths. We refer to this
as a synthetic market, since the data used are generated by the simulation of
the parametric model rather than taken directly from actual historical market
returns.'®

We begin with the first strategy described above: constant withdrawals
based on the 4% rule (¢max = ¢min =40) and constant weights, that is, p, =
constant in Equation (6.3). The results for the equity index weight p, =
0.0,0.1,0.2,..., 1.0 are shown in Table 3. This table also displays the results
for p, = 0.15, since this is approximately the equity weight which results in the
maximum ES. We conjecture that this low equity weight is due to our use of
ES to measure risk, compared to the more typical standard deviation. As p,
increases past 0.15, the magnitude of ES increases strongly. Taking on more
equity market risk results obviously leads to higher ES. Of course reward also
rises, as shown by the median value of terminal wealth Wy."

To see the benefit of the ARVA withdrawal strategy, we repeat the Monte
Carlo simulations from above, except that here the ARVA spending strategy
(2.3) is used with the constraints ¢, = 30 and ¢y.x = 80. The results are shown
in Table 4, which has an additional column compared to Table 3. This extra
column shows the expected average withdrawals over the decumulation period,
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TABLE 3

SYNTHETIC MARKET RESULTS FOR CONSTANT WITHDRAWALS WITH CONSTANT WEIGHTS, THAT IS
ASSUMING THE SCENARIO FROM TABLE 2 EXCEPT THAT ¢max = ¢min = 40 AND p, = constant IN
EQUATION (6.3). UNITS: THOUSANDS OF DOLLARS. STATISTICS ARE BASED ON 2.56 x 10° MONTE
CARLO SIMULATED PATHS.

Equity weight p, ES (o =5%) Median[ W]

0.00 —344.95 —192.14
0.10 —284.46 —55.17
0.15 —284.28 22.29
0.20 —294.32 108.70
0.30 —332.05 310.12
0.40 —384.62 550.25
0.50 —447.55 828.81
0.60 —518.24 1143.18
0.70 —594.67 1490.44
0.80 —675.08 1862.64
0.90 —758.57 2249.94
1.00 —844.37 2637.77
TABLE 4

SYNTHETIC MARKET RESULTS FOR ARVA WITHDRAWALS WITH CONSTANT WEIGHTS, THAT IS
ASSUMING THE SCENARIO FROM TABLE 2 EXCEPT THAT p, = constant IN EQUATION (6.3). THERE ARE
M =30 REBALANCING DATES AND M + 1 WITHDRAWALS. UNITS: THOUSANDS OF DOLLARS.
STATISTICS ARE BASED ON 2.56 x 10° MONTE CARLO SIMULATED PATHS.

Equity weight p, ES (¢ =5%) EW/(M +1) Median[Wr]

0.00 —78.89 34.80 —12.36
0.10 —39.60 37.85 31.48
0.15 —36.39 39.83 48.91
0.20 —38.43 42.07 64.31
0.30 —54.01 46.95 90.01
0.40 —82.92 51.46 111.32
0.50 —124.19 54.95 138.11
0.60 —176.92 57.42 179.68
0.70 —239.69 59.13 275.02
0.80 —310.78 60.30 486.56
0.90 —387.96 61.07 739.74
1.00 —469.67 61.56 1013.85

EW/(M +1)=3",¢;/M.*° In Table 4, the largest ES is —36.39 for p, =0.15.
This equity weight gives an expected annual withdrawal of 39.83. Recall that
the largest ES from Table 3 was —284, with constant annual withdrawals of
40. There is a dramatic improvement in ES, with similar average withdrawals.
As another observation, in Table 4, the strategy with p, = 0.7 has the better
ES than the best result in Table 3, while the average EW is 59.13, again com-
pared to the constant withdrawal of ¢ =40. Overall, our comparison between
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TABLE 5

CONVERGENCE TEST FOR THE ALGORITHM FROM SECTION 7 USED TO DETERMINE THE OPTIMAL
ASSET ALLOCATION STRATEGY TO SOLVE THE PRE-COMMITMENT EW-ES PROBLEM (6.2) WITH
k =2.5 FOR THE SCENARIO FROM TABLE 2. THE MONTE CARLO METHOD USED 2.56 x 10°
SIMULATED PATHS. THE GRID IS REPORTED AS 7, X 1,, WHERE 7, IS THE NUMBER OF NODES IN THE
log s DIRECTION AND 7, IS THE NUMBER OF NODES IN THE log 5 DIRECTION. THERE ARE M =30
REBALANCING DATES AND M + 1 WITHDRAWALS. UNITS: THOUSANDS OF DOLLARS. THE VALUE OF
W* IN EQUATION (6.2) 1S 4.13 ON THE FINEST GRID.

Algorithm in Section 7 Monte Carlo
Value
Grid ES(@=5%) EW/(M+1) function ES(a=5%) EW/(M+1)
512 x 512 —64.633 54.8128 1537.6144 —59.326 54.779
1024 x 1024 —61.305 54.8377 1546.5833 —59.381 54.802
2048 x 2048 —60.196 54.8230 1549.0359 —59.469 54.812

strategies with constant asset weights and constant versus variable spending
(the ARVA rule augmented with a floor and a cap) is consistent with the results
in studies such as Pfau (2015), albeit with different measures of risk and reward:
a variable spending rule allows for both higher average withdrawals and lower
risk as measured by ES.

We next consider our third strategy of ARVA withdrawals with optimal
asset allocation. In particular, we consider the scenario described in Table 2
and solve for the optimal control p(W,¢) for the pre-commitment EW-ES
problem given by Equation (6.2) using the methods discussed in Section 7.
We store the optimal control and then carry out Monte Carlo simulations to
calculate statistical properties as above but with applying p(W, t) along each
path rather than rebalancing to constant weights. We reiterate that for all
times ¢z > 0, this corresponds to the induced time-consistent strategy that solves
Equation (6.6).

Before presenting the main results, we first verify the convergence of the
algorithm given in Section 7 that is used to solve the optimal control problem
given by Equation (6.2). Table 5 shows a test with various levels of grid refine-
ment for a fixed value of x = 2.5 in Equation (6.2). At each grid refinement, we
compute and store the optimal controls which are then used in Monte Carlo
simulations. The algorithm in Section 7 and the Monte Carlo simulations are
in good agreement. As expected, the value function appears to be converging
at almost a quadratic rate. The other quantities ES and expected average with-
drawals which are derived from the algorithm in Section 7 converge a bit more
erratically. Results reported below for all cases with optimal asset allocation
are calculated using the finest grid from Table 5.

Table 6 shows the results for the ARVA spending rule with optimal asset
allocation from solving the pre-commitment EW-ES problem (6.2) for vari-
ous values of «. In addition to ES, expected average withdrawals EW /(M + 1),
and median Wy, Table 6 shows the average throughout the investment horizon
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TABLE 6

SYNTHETIC MARKET RESULTS FOR ARVA WITHDRAWALS WITH OPTIMAL ASSET ALLOCATION
BASED ON THE SCENARIO FROM TABLE 2 FOR VARIOUS VALUES OF k. THE OPTIMAL CONTROL THAT
SOLVES THE PRE-COMMITMENT EW-ES PROBLEM (6.2) IS COMPUTED USING THE ALGORITHM GIVEN

IN SECTION 7, STORED, AND THEN APPLIED IN THE MONTE CARLO SIMULATIONS. THERE ARE

M =30 REBALANCING DATES AND M + 1 WITHDRAWALS. UNITS: THOUSANDS OF DOLLARS.

STATISTICS ARE BASED ON 2.56 x 10° MONTE CARLO SIMULATED PATHS. THE STABILIZATION

PARAMETER IN EQUATION (7.9) 1S € = —107%.

K ES(@=5%) EW/(M+1) Median[W;] Y, Median(p;)/M
0.1 —459.93 63.01 266.43 455
0.3 —308.26 61.67 258.64 458
0.5 —209.63 60.15 250.59 451
1.0 ~119.10 57.91 237.06 416
1.75 ~77.02 56.04 208.67 390
2.5 —59.47 54.81 180.36 375
5.0 ~37.91 52.35 129.97 340
10.0 —25.90 49.59 93.19 291
20.0 ~19.78 46.82 66.53 243
100.0 ~15.98 42.35 44.77 173
1000.0  —15.74 40.30 39.52 139

of the median value of the fraction of the portfolio invested in equities in the
furthest right column. This gives a rough indication of the equity market risk
taken on over the period. As indicated by Equation (6.1), increasing « places
more emphasis on risk relative to reward. As a result, the optimal equity allo-
cation tends to decrease with «. This is also reflected in reduced median Wy
and expected average withdrawals. The benefit from higher « is a lower mag-
nitude of ES. Consider the case here with k = 5 which results in ES of —37.91,
expected average withdrawals of 52.35, and median Wy of 129.97. This strat-
egy has an average median equity allocation of 0.34. Contrast this with the
result reported in Table 4 for p, = 0.2, which had about the same ES (—38.43),
but expected average withdrawals of just 42.07 and median terminal wealth of
64.31. In this case, using an optimal asset allocation strategy compared to a
constant weight strategy results in about the same ES but significantly higher
average withdrawals and about twice as much median W7y. This attests to the
benefits of optimizing the asset allocation strategy, in addition to allowing for
variable withdrawals.

To further investigate the benefits of using an optimal asset allocation strat-
egy, we plot the efficient frontiers of expected average withdrawals EW /(M +
1) versus ES in Figure 1. We show these frontiers for (i) the ARVA spending
rule with optimal asset allocation as computed by solving the pre-commitment
EW-ES problem (6.2), with results provided in Table 6; (ii) the ARVA spend-
ing rule with a constant weight asset allocation strategy, with results shown
in Table 4; and (iii) a constant withdrawal of ¢ =40 with a constant weight
strategy, with just the best result (i.e., highest ES) from Table 3.2! Note that
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constant weight asset allocation. For this point,  strategy with ¢ = 40 and constant weight asset al-
pe = 0.15. location. For this point, p, = 0.15.

FIGURE 1: Efficient frontiers in the synthetic market for the scenario from Table 2. All non-Pareto points
have been removed. Units: thousands of dollars.

we have removed all non-Pareto points from these frontiers for plotting pur-
poses. Figure 1(a) shows that even with constant asset allocation weights, the
ARVA spending rule is much more efficient than a constant withdrawal strat-
egy which also has constant asset allocation weights. In fact, ARVA alone
provides about 50% higher expected average withdrawals for the same ES
achieved by a constant withdrawal strategy by allowing for a higher stock allo-
cation and limited income variability. The case with optimal asset allocation
with the AR VA spending rule plots above the corresponding case with constant
asset allocation, with a larger gap between them for higher values of ES.

To see the impact of the minimum required withdrawals, Figure 1(b)
displays efficient frontiers for the ARVA spending rule with optimal asset
allocation for various values of ¢, keeping ¢m., = 80. As a point of com-
parison, we also show the point corresponding to the constant weight strategy
with p, =0.15, which gives the highest ES for constant withdrawals of ¢ = 40.
AS gumin 1ises, the efficient frontiers move down and to the left, as expected.
However, even for ¢, =40, the efficient frontier plots well above the best
point for constant withdrawals of ¢ = 40 with constant asset weights. This indi-
cates that much larger expected average withdrawals can be attained at no
cost in terms of higher ES through the use of the ARVA spending rule and
optimal asset allocation. Surprisingly, Figure 1(b) shows that the combination
of ARVA and optimal control increases EW by 25%, even when income is
constrained to be no less than for the constant withdrawal case.

Additional insight into the properties of the ARVA spending rule in
conjunction with an optimal asset allocation strategy can be gleaned from
Figure 2 showing the 5th, 50th, and 95th percentiles of the fraction of
the retiree’s portfolio invested in the stock index, withdrawals, and wealth

https://doi.org/10.1017/asb.2021.19 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2021.19

OPTIMAL CONTROL OF THE DECUMULATION OF A RETIREMENT PORTFOLIO 927

95th
percentile

0.9 95th

percentile @ gof 95th
@ 08 2 @ 1500 .~ percentile
207 8 7of T
3 06 3 6ofF g
e £ Median H )
=05 @ 50F < 1000§ Median
= @ £
2 04 S 40 5th i =2
g0 H /percen!lle £
s =
€ 03 5 so0f 5
w £ = 500
H

5th

percentile
h L . L L L L L . 0 L L L L L .

20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

L L L
0 5 10 15

Time (years) Time (years) Time (years)
Percentiles of the fraction Percentiles of with- Percentiles of wealth.
invested in the stock index. drawals.

FIGURE 2: Percentiles in the synthetic market of the fraction invested in the stock index, withdrawals, and
wealth for the scenario from Table 2 with ARVA withdrawals and optimal asset allocation. Based on
2.56 x 10° Monte Carlo simulated paths. Units: thousands of dollars.

throughout the 30-year decumulation period. The optimal controls are com-
puted by solving the pre-commitment EW-ES problem (6.2) with « = 2.5 and
then used in Monte Carlo simulations to generate these plots. The general
trend is for the equity index weight to decline over time, but there are cases
where it rises significantly instead. Median withdrawals increase for the first 25
years, before falling off a bit. The 5th percentile of withdrawals quickly drops
tO ¢min = 30 and remains there. On the other hand, the 95th percentile of with-
drawals rises sharply for about the first 5 years and then stays at gma, = 80.
Median wealth trends downward consistently over time, as does the 5th per-
centile of wealth. The 95th percentile of wealth rises over the first several years,
before also falling off fairly sharply.

Recall that Proposition 6.1 states that the solution of the pre-commitment
EW-ES problem (6.2) has the same controls at time zero as the induced
time-consistent problem (6.6). Given any point in (W, , ) space (¢, are the
rebalancing times), maximizing

=M .

- 4ot min (Wy — W*, 0

J(s,b,t,)= sup E;g” o Z qi+ £ Wz ) +eWr
PueA ! 1 o

‘X(t;): (s, b)“ (10.1)

leads to the optimal strategy depicted in the heat map contained in Figure 3.
For this example, if we set x = 2.5 in problem (6.2), then W* =4.13. Recall that
W* is set to be the value such that Prob[W; < W*] =« as determined at time
zero.?

The structure of the heat map can be understood as follows. As t — T, there
are multiply-connected regions of all bond and all stock portfolios. For small
values of wealth, the optimal strategy is to be fully invested in stocks, thus
attempting to maximize ES. As wealth increases, Prob[ W < W*] is small, and
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FIGURE 3: Heat map of controls computed from solving the pre-commitment EW-ES problem (6.2) for
k =2.5 with ARVA withdrawals based on the scenario from Table 2. The stabilization parameter in
Equation (7.9) is e = —10~*.

the investor switches to a portfolio that is heavily weighted toward the bond
index to protect against the ES risk. If wealth increases further, the investor
moves to investing more in stocks, in order to maximize withdrawals. Finally,
for large values of wealth, there is little chance that W7 < W*. Since the with-
drawals are capped at 80 per year, there is no incentive to take on any more
risk. In this case, the stabilization term € Wr in Equation (10.1) comes into
effect. Since € = —10~* < 0, this forces the strategy back into bonds.

It is useful to examine Figure 3 with reference to the median wealth shown
in Figure 2(c). The initial wealth of 1000 is in the green region, with equity
weight >~ 0.50. As t — T, the optimal control attempts to guide real wealth into
the sweet spot between the lower blue zone and the upper red zone. The lower
blue zone then acts as a barrier to lower wealth (i.e., running out of cash), since
the portfolio becomes very stable with a large fraction of bonds. Above the
lower blue zone, the allocation can vary considerably in an effort to maximize
the total withdrawals, especially with a short time remaining.

Figure 3 also shows the effect of different starting values of wealth W),
keeping a minimum withdrawal of g,;, = 30. For example, with W, =400, the
investor has no choice but to start with an investment of 100% in stocks and
hope for the best. This is essentially a “Hail Mary” strategy, with little chance
of success. On the other hand, if W, = 2000, the investor will start off being
completely invested in bonds with very high probability of success.

Although we have discussed the results for k = 2.5 in some detail, the reader
can obtain an idea of the effect of varying « by consulting Table 6. Increasing
Kk to k = 5.0 causes a significant increase in ES (i.e., lower risk), while reducing
EW slightly. This also causes a large decrease in Median[Wr]. On the other
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hand, decreasing « to k = 1.75 causes a decrease in ES (larger risk) as well as
an increase in Median|Wr]. The average median allocation to stocks is quite a
bit larger for k = 1.75 compared with k¥ = 5.0.

11. NUMERICAL RESULTS: HISTORICAL MARKET

We continue to compute and store the optimal controls based on the para-
metric model (3.3)-(3.4) as in the synthetic market case. As a robustness test,
we now calculate statistics using these stored controls, but with bootstrapped
historical real return data rather than Monte Carlo simulations following the
parametric model. We employ the stationary block bootstrap method (Politis
and Romano, 1994; Politis and White, 2004) to generate many bootstrap sim-
ulated paths. A single path entails sampling randomly sized blocks from the
historical data with replacement and pasting them together to cover the entire
decumulation period of 7 =30 years.”® The blocksize is generated randomly
according to a geometric distribution with expected blocksize b, which helps to
mitigate the effects of a fixed blocksize.

We implement an algorithm from Patton et al. (2009) to determine the
optimal expected blocksize b for the bond and stock indexes separately. This
indicates that the optimal expected blocksizes are 0.25 and 4.2 years for the
stock and bond indexes, respectively. However, to allow for possible contem-
poraneous dependence between the two indexes, we use paired sampling to
simultaneously draw returns from both series. Given the large difference in
optimal expected blocksize for the two indexes, it is not obvious what should
be done for paired sampling. One possibility is to use an average of the two
estimates, suggesting about 2 years. We do this, but we also give results for a
range of expected blocksizes as a robustness check.?*

We first explore the effect of the expected blocksize b. Table 7 shows the
results computed by solving the pre-commitment EW-EW problem (6.2) in
the synthetic market with ¥ = 2.5 and then using this control with block boot-
strap resampling having various expected blocksizes b. For ease of comparison,
the table also provides the results for x =2.5 in the synthetic market that
were previously shown in Table 6. The historical market results in Table 7
are generally similar to the corresponding synthetic market result, at least for
values of b between 0.5 and 2 years. The reported ES values for the histor-
ical market are consistently a bit better than in the synthetic market, while
expected average withdrawals and median terminal wealth are quite compa-
rable. However, the average of the median value of the equity weight is a
bit higher, clustering at or above 0.4 for the historical market compared to
0.375 for the synthetic market. Results reported below use h=2 years, as this
is (approximately) the average of the optimal expected blocksizes for the two
indexes.

Figure 4 shows the percentiles of the optimal controls, withdrawals, and
wealth throughout the decumulation period in the historical market with h=2
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TABLE 7

HISTORICAL MARKET RESULTS FOR ARVA WITHDRAWALS WITH OPTIMAL ASSET ALLOCATION

BASED ON THE SCENARIO FROM TABLE 2 FOR VARIOUS EXPECTED BLOCKSIZES b. THE OPTIMAL

CONTROL THAT SOLVES THE PRE-COMMITMENT EW-ES PROBLEM (6.2) IS COMPUTED USING THE
ALGORITHM GIVEN IN SECTION 7, STORED, AND THEN APPLIED TO BOOTSTRAP RESAMPLES OF THE

MONTHLY DATA FROM 1926:1 TO 2018:12. STATISTICS ARE BASED ON 10° BOOTSTRAPPED PATHS.

THERE ARE M =30 REBALANCING DATES AND M + 1 WITHDRAWALS. THE SCALARIZATION

PARAMETER IN EQUATION (6.2) IS k = 2.5 AND THE STABILIZATION PARAMETER IN EQUATION (7.9)
IS € = —10*. UNITS: THOUSANDS OF DOLLARS.

percentile

o
=}
S

b ES («=5%) EW/(M+1) Median[Wy] 3 ,Median(p;)/M
Synthetic market (from Table 6)
N/A —59.47 54.81 180.36 375
Historical market
0.25 years —43.93 54.66 169.98 398
0.5 years —53.47 54.88 174.49 .400
1 year —50.83 55.07 178.59 407
2 years —40.80 55.15 180.32 416
5 years —-26.53 55.14 182.19 420
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FIGURE 4: Percentiles over time in the historical market of the fraction invested in the stock index,
withdrawals, and wealth for the scenario from Table 2 with ARVA withdrawals and optimal asset allocation.
The scalarization parameter in Equation (6.2) is k = 2.5 and the stabilization parameter in Equation (7.9) is
€ =—10"* Based on 10° bootstrap resamples of the monthly data from 1926:1 to 2018:12. Units: thousands
of dollars.

years. Figure 4 is very similar to the corresponding Figure 2 for the synthetic
market. The median fraction invested in the stock index increases a little more
sharply in Figure 4, and the 5th percentile of this fraction reaches zero a little
later, but these are almost the only discernible differences. Overall, the close
correspondence between the various panels of these two figures suggests that
the parametric model used when solving for the optimal control is fairly robust
as the historical market makes no assumptions about the processes followed by
the stock and bond indexes.?
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We now compare in the historical market the same three strategies that were
considered previously in the synthetic market of Section 10, that is, constant
withdrawals of ¢ =40 with constant asset allocation weights, ARVA with-
drawals with constant asset allocation weights, and ARVA withdrawals with
optimal asset allocation. Appendix B provides tables of results for these strate-

gies in the historical market with b =2 years; here, we present plots based on
those results.

The efficient frontiers of expected average withdrawals versus ES in the his-
torical market are plotted in Figure 5(a), which is analogous to Figure 1(a) for
the synthetic market. As in Figure 1(a), Figure 5(a) shows that the ARVA with-
drawal with constant weight asset allocation is a major improvement over the
constant withdrawal with constant asset allocation weights. As expected, the
optimal ARVA withdrawal strategy with optimal asset allocation continues
to plot above the ARVA withdrawal strategy with constant weight asset allo-
cation, indicating that optimal asset allocation can provide further significant
enhancements. Although the general picture is the same here in the historical
market as it was in the synthetic market, it is worth pointing out a couple of spe-
cific differences. First, consider the constant withdrawal strategy with constant
asset allocation. In the synthetic market, the highest ES of about —284 for an
equity weight of 0.15 (see Table 3). This is the best available point, since with-
drawals are constant. In the historical market, the corresponding ES is about
—355 for an equity weight of 0.40 (see Table B.1). However, Figure 1(a) indi-
cates that in the synthetic market, an ES of —200 can be attained with expected
average withdrawals of about 58 for the constant weight case and about 60 for
the optimal asset allocation case. The corresponding values for the historical
market in Figure 5(a) with an ES of —200 are a little higher, about 61 for the
constant weight case and around 63 for optimal asset allocation. These val-
ues do not constitute the largest gap between these two frontiers, but they do
indicate that ARVA withdrawals (with either constant weight or optimal asset
allocation) perform a bit better in the historical market relative to the synthetic
market, at least for this level of ES. On the other hand, the performance of the
constant withdrawal strategy is notably worse in the historical market.

A more direct comparison between the synthetic and historical markets is
given in Figure 5(b) which plots the efficient frontiers of expected average with-
drawals versus ES for ARVA withdrawals with optimal asset allocation in both
markets, with the optimal controls having of course been determined in the
synthetic market. The frontier for the historical market plots above the fron-
tier for the synthetic market if ES < —40. However, the situation is reversed
for ES > —40. This suggests that it is unreliable to try to achieve very low ES
risk in the actual market. This is not unreasonable, since in order to obtain ES
values close to zero the optimal strategy will depend greatly on the stochastic
market structure. Consequently, it appears that the synthetic market controls
are not robust to parameter uncertainty for ES > —40, although the controls
do appear to be robust otherwise.
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FIGURE 5: Efficient frontiers in the historical market for the scenario from Table 2. All non-Pareto points
have been removed. Units: thousands of dollars.

12. CONCLUSIONS

For both parametric model simulations and bootstrap resampling of the histor-
ical data, the ARVA withdrawal strategy with constant asset weights and min-
imum/maximum withdrawal constraints outperforms a constant withdrawal
strategy with constant asset weights based on expected average withdrawals
and expected shortfall criteria. This is consistent with results from the practi-
tioner literature (e.g., Pfau, 2015) which show that withdrawal variability can
significantly improve performance in cases with constant weight asset allo-
cation. However, we also show that the ARVA withdrawal strategy can be
further improved by dynamically choosing the equity weight. This strategy is
determined by maximizing an expected total withdrawals/ES objective func-
tion using dynamic programming, assuming a parametric model of historical
asset returns. As long as the desired ES is not unrealistically large, this strategy
is robust to parameter misspecification, as verified by tests using bootstrapped
resampled historical data.

Remarkably, the optimal dynamic AR VA strategy continues to outperform
the constant withdrawal/constant weight strategy, even if the minimum ARVA
withdrawal is set equal to the constant withdrawal in the latter strategy. These
results indicate that if an investor in the decumulation stage of a DC plan is
prepared to allow some variability in withdrawals, significant improvements
can be obtained in both expected total withdrawals and expected shortfall.
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NOTES

1. MacDonald et al. (2013) also discuss hybrid strategies, combining some level of annuitiza-
tion with a (fixed or variable) decumulation scheme. We ignore hybrid cases here, concentrating
on cases without any annuitization.

2. There are other reasons to think that Bengen (1994) understated the risk of the 4% rule.
One is that data past 1992 was extrapolated using historical averages for financial market returns
each year. For example, the 30-year performance of the rule given a retirement date of 1976
was assessed using 16 years of actual market data, followed by 14 years in which the returns
for stocks and bonds and the inflation rate were constant each year at their long-term averages.
This clearly understates the strategy’s risk for cases with several years in retirement after 1992. A
more fundamental issue from today’s perspective is the reliability of the 4% rule during a lengthy
period of very low interest rates. Finke et al. (2013) considered bond market conditions early in
2013 and estimated that the failure rate for the 4% rule assuming 10 years of below-average bond
returns and a 50% stock allocation was 32%, strongly suggesting that 4% is too high a withdrawal
rate. Given that interest rates have continued to trend downward more recently, there are solid
grounds for pessimism about the viability of the 4% rule today.

3. The ES at level x% is the mean of the worst x% of outcomes and is thus a measure of tail
risk.

4. Forsyth et al. (2020) use the same measure of reward but minimize the downside variability
of withdrawals for an ARVA-type spending rule, that is the risk measure is downward with-
drawal variability. There are some other noteworthy differences between this work and that of
Forsyth et al. (2020). First, we impose upper and lower bounds on annual withdrawals. Second,
the assumed underlying financial model is more complex here, as it incorporates stochastic bond
market returns. Also, note that Forsyth (2021) uses a similar measure of risk and reward to ours.
However, Forsyth uses the withdrawal amount as a control, rather than an ARVA spending rule.
Forsyth shows that the withdrawal control is essentially of bang-bang type, with minimum with-
drawals during early years of retirement. Our use of the ARVA spending rule with constraints
gives more control over the timing of withdrawals.

5. Projection  Assumption  Guidelines, https://www.fpcanada.ca/docs/default-source/
standards/2019-projection-assumption-guidelines.pdf.

6. www.cia-ica.ca/docs/default-source/2014/214013e.pdf.

7. Appendix A documents evidence of leptokurtic behavior for both of the indexes that we
use in our tests.

8. See Forsyth (2020b) for a discussion of the evidence for stock and bond price jump
independence.

9. It is possible to include transaction costs, but this will increase computational cost
(Van Staden et al., 2018).

10. The negative of ES is often called conditional value at risk (CVAR), which has been used
as a risk measure in several prior asset allocation studies (e.g., Gao et al., 2016; Cui et al., 2019;
Forsyth, 20204).

11. See Strub et al. (2019) for a discussion of induced time-consistent strategies.

12. See Forsyth (2020a) for discussion of a similar problem.

13. Since the problem is not guaranteed to be convex, we cannot be sure that we converge to
the global maximum. Additional testing based on a search over the finest grid suggests that we do
indeed have the globally optimal solution.
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14. This is a total return index of the broad US stock market, reflecting both distributions
such as dividends and capital gains/losses due to price changes.

15. The CRSP data used in this study were obtained through Wharton Research Data Services
(WRDS). This service and the data available thereon constitute valuable intellectual property
and trade secrets of WRDS and/or its third-party suppliers. More specifically, the CRSP NYSE/
NYSE MKT/NASDAQ/Arca Value-Weighted Market Index (INDNO 1000200), the CRSP 30-
Day Bill Returns Index (INDNO 1000708), and the Consumer Price Index (INDNO 1000709)
were used.

16. The GBM parameter estimates are calculated using maximum likelihood estimation.

17. Itis also worth noting that Canadian government benefits are reduced when total income
exceeds about $80,000 per year, providing further incentive to not withdraw more than the
specified cap.

18. We provide results based on historical market returns below in Section 11 and Appendix B.

19. In general, our measure of reward is total expected withdrawals. However, in this case,
the withdrawals are fixed, so wealth is drawn down slowly given a sufficiently high p, and decent
equity market returns, resulting in relatively high values for Wr.

20. This column was excluded from Table 3 because in that case the annual withdrawals were
constant at 40.

21. This last case leads to just a single point in our plot since withdrawals are fixed at 40
regardless of the asset allocation and all other constant equity weights lead to lower ES.

22. In all of our examples, we maximize ES at the « = 0.05 level.

23. Sampling in blocks helps to incorporate any serial correlation that is present in the data.

24. Detailed pseudo-code for block bootstrap resampling can be found in Forsyth and Vetzal
(2019).

25. However, this is not always true. In this case, ES (see Table 7 with h=2 years) is about
—41. As we will see below, if we try to increase ES to higher values than this, then the controls do
not appear to be robust.

REFERENCES

BENGEN, W. (1994) Determining withdrawal rates using historical data. Journal of Financial
Planning, 7, 171-180.

BENGEN, W.P. (2001) Conserving client portfolios during retirement, part IV. Journal of
Financial Planning, 14(5), 110-119.

CONT, R. and MANCINI, C. (2011) Nonparametric tests for pathwise properties of semimartin-
gales. Bernoulli, 17, 781-813.

Cul, X., GAO, J., SHI, Y. and ZHU, S. (2019) Time-consistent and self-coordination strate-
gies for multi-period mean-conditional-value-at-risk portfolio selection. European Journal of
Operational Research, 276, 781-789.

DANG, D.-M. and FORSYTH, P.A. (2016) Better than pre-commitment mean-variance portfo-
lio allocation strategies: A semi-self-financing Hamilton-Jacobi-Bellman equation approach.
European Journal of Operational Research, 250, 827-841.

DANG, D.-M., FORSYTH, P.A. and VETZAL, K.R. (2017) The 4% strategy revisited: A
pre-commitment optimal mean-variance approach to wealth management. Quantitative
Finance, 17, 335-351.

FINKE, M., PFAU, W.D. and BLANCHETT, D.M. (2013) The 4 percent rule is not safe in a
low-yield world. Journal of Financial Planning, 26(6), 46-55.

FORSYTH, P.A. (2020a) Multi-period mean CVAR asset allocation: Is it advantageous to be time
consistent? STAM Journal on Financial Mathematics, 11(2), 358-384.

FoOrSYTH, P.A. (2020b) Optimal dynamic asset allocation for DC plan accumula-
tion/decumulation: Ambition-CVAR. Insurance: Mathematics and Economics, 93, 230-245.
FORSYTH, P.A. (2021) A stochastic control approach to defined contribution plan decumu-
lation: “The nastiest, hardest problem in finance”. North American Actuarial Journal. doi:

10.1080/10920277.2021.1878043.

FORrRSYTH, P.A. and LABAHN, G. (2019) e—Monotone Fourier methods for optimal stochastic
control in finance. Journal of Computational Finance, 22(4), 25-71.

https://doi.org/10.1017/asb.2021.19 Published online by Cambridge University Press


http://doi.org/10.1080/10920277.2021.1878043
https://doi.org/10.1017/asb.2021.19

OPTIMAL CONTROL OF THE DECUMULATION OF A RETIREMENT PORTFOLIO 935

FORrRSYTH, P.A. and VETZAL, K.R. (2017) Dynamic mean variance asset allocation: Tests
for robustness. International Journal of Financial Engineering, 4, 1750021:1-1750021:37.
doi:10.1142/S2424786317500219.

FORrRSYTH, P.A. and VETZAL, K.R. (2019) Optimal asset allocation for retirement savings:
Deterministic vs. time consistent adaptive strategies. Applied Mathematical Finance, 26:1,
1-37.

FORSYTH, P.A., VETZAL, K.R. and WESTMACOTT, G. (2020) Optimal asset allocation for DC
pension decumulation with a variable spending rule. ASTIN Bulletin, 50, 419-447.

GAO, J., XIONG, Y. and L1, D. (2016) Dynamic mean-risk portfolio selection with multiple risk
measures in continuous-time. European Journal of Operational Research, 249, 647-656.

GUYTON, J.T. and KLINGER, W.J. (2006) Decision rules and maximum initial withdrawal rates.
Journal of Financial Planning, 19(3), 48-58.

IRLAM, G. (2014) Portfolio size matters. Journal of Personal Finance, 13(2), 9-16.

Kou, S.G. and WANG, H. (2004) Option pricing under a double exponential jump diffusion
model. Management Science, 50, 1178-1192.

LIN, Y., MACMINN, R. and Tian, R. (2015) De-risking defined benefit plans. Insurance:
Mathematics and Economics, 63, 52-65.

Ma, K. and FORSYTH, P.A. (2016) Numerical solution of the Hamilton-Jacobi-Bellman formu-
lation for continuous time mean variance asset allocation under stochastic volatility. Journal
of Computational Finance, 20(1), 1-37.

MACDONALD, B.-J., JONES, B., MORRISON, R.J., BROWN, R.L. and HARDY, M. (2013)
Research and reality: A literature review on drawing down retirement financial savings. North
American Actuarial Journal, 17, 181-215.

MACMINN, R., BROCKETT, P., WANG, J., LIN, Y. and TIAN, R. (2014) The securitization of
longevity risk and its implications for retirement security. In Recreating Sustainable Retirement
(eds. O.S. Mitchell, R. Maurer and P.B. Hammond), pp. 134-160. Oxford: Oxford University
Press.

MANCINI, C. (2009) Non-parametric threshold estimation models with stochastic diffusion
coefficient and jumps. Scandinavian Journal of Statistics, 36, 270-296.

MEEUWIS, M. (2020) Wealth fluctations and risk preferences: Evidence from U.S. investor
portfolios. Washington University in St. Louis working paper.

MERTON, R.C. (2014) The crisis in retirement planning. Harvard Business Review, 3-10.

PATTON, A., POLITIS, D. and WHITE, H. (2009) Correction to: Automatic block-length selection
for the dependent bootstrap. Econometric Reviews, 28, 372-375.

Prau, W.D. (2015) Making sense out of variable spending strategies for retirees. Journal of
Financial Planning, 28(10), 42-51.

PoLiTis, D. and ROMANO, J. (1994) The stationary bootstrap. Journal of the American
Statistical Association, 89, 1303-1313.

PoLiTIS, D. and WHITE, H. (2004) Automatic block-length selection for the dependent boot-
strap. Econometric Reviews, 23, 53-70.

ROCKAFELLAR, R.T. and URYASEV, S. (2000) Optimization of conditional value-at-risk.
Journal of Risk, 2, 21-42.

SHEFRIN, H.M. and THALER, R.H. (1988) The behavioral life-cycle hypothesis. Economic
Inquiry, 26, 609-643.

SHIMIZU, Y. (2013) Threshold estimation for stochastic differential equations with jumps.
Proceedings of the 59th ISI World Statistics Conference, Hong Kong.

STRUB, M., LI, D. and Cul, X. (2019) An enhanced mean-variance framework for robo-advising
applications. SSRN 3302111.

THALER, R.H. (1990) Anomalies: Savings, fungibility, and mental accounts. Journal of Economic
Perspectives, 4(1), 193-205.

TRETIAKOVA, I.and YAMADA, M.S. (2017) Autonomous portfolio: A decumulation investment
strategy that will get you there. Journal of Retirement, 5(2), 83-95.

VAN STADEN, P., DANG, D.-M. and FORSYTH, P. (2018) Time-consistent mean-variance
portfolio optimization: A numerical impulse control approach. Insurance: Mathematics and
Economics, 83, 9-28.

https://doi.org/10.1017/asb.2021.19 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2021.19

936 P. A. FORSYTH, K. R. VETZAL AND G. WESTMACOTT

WARING, M.B. and SIEGEL, L.B. (2015) The only spending rule article you will ever need.
Financial Analysts Journal, 71(1), 91-107.

WESTMACOTT, G. (2017) The retiree’s dilemma: The Deckards. PWL Capital White Paper,
http://www.pwlcapital.com/retirees-dilemmma-deckards/.

PETER A. FORSYTH (Corresponding author)
David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON N2L 3Gl, Canada

E-Mail: paforsyt@uwaterloo.ca

KENNETH R. VETZAL

School of Accounting and Finance
University of Waterloo

Waterloo, ON N2L 3Gl, Canada
E-Mail: kvetzal@uwaterloo.ca

GRAHAM WESTMACOTT

PWL Capital

20 Erb Street W., Suite 506

Waterloo, ON N2L 172, Canada
E-Mail: gwestmacott@pwlcapital.com

APPENDIX

APPENDIX A. CALIBRATION OF MODEL
PARAMETERS

This appendix discusses the estimation of the parameters of the jump diffusion processes for
the stock and bond indexes given by Equations (3.1), (3.3), (3.4), and (3.5). Recall that the
equity index is the CRSP Value-Weighted Stock Index while the bond index is the CRSP
30-D1ay T-Bill Index, and that both of these indexes are adjusted for inflation by using the
CPLD

Jumps in the data are identified using the thresholding technique described in Mancini
(2009) and Cont and Mancini (2011). Let AX; be the detrended log return in period 7, with
period time interval Az. Suppose we have an estimate for the diffusive volatility component
6. Then we detect a jump in period i if ‘ Af(,‘ > B 6+/At. We choose B = 3 in this paper (note
that At is fixed). For justification for this parameter selection, see (Shimizu, 2013; Dang and
Forsyth, 2016; Forsyth and Vetzal, 2017). For details describing the recursive algorithm
used to determine &, see Forsyth and Vetzal (2017).

Figure A.1(a) shows a histogram of the monthly log returns from the value-weighted
CRSP stock index, scaled to zero mean and unit standard deviation. We superimpose a
standard normal density onto this histogram, as well as the fitted density for the double
exponential jump diffusion model. Figure A.1(b) shows the equivalent plot for the 30-day
T-bill index.
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TABLE B.1

HISTORICAL MARKET RESULTS FOR CONSTANT WITHDRAWALS WITH CONSTANT WEIGHTS, THAT IS
ASSUMING THE SCENARIO GIVEN IN TABLE 2 EXCEPT THAT ¢max = ¢min = 40, AND p, = constant IN
EQUATION (6.3). UNITS: THOUSANDS OF DOLLARS. STATISTICS BASED ON 10° BOOTSTRAP
RESAMPLES OF THE MONTHLY DATA FROM 1926:1 TO 2018:12 WITH EXPECTED BLOCKSIZE b =2
YEARS.

Equity weight p, ES (¢ =5%) Median[ 7]

0.0 —550.33 —191.87
0.1 —461.16 —52.68
0.2 —394.73 113.56
0.3 —358.56 317.35
0.4 —354.67 562.04
0.5 —378.58 850.23
0.6 —425.71 1177.31
0.7 —490.42 1548.45
0.8 —568.29 1956.86
0.9 —655.39 2381.87
1.0 —750.09 2823.11
(b) Probability Density: T-Bills
1 . .
1 o9}
] oo
| osl
] o5l
1 04l
| 03}
| ozl

-4 -2 0 2 4
Return scaled to zero mean, unit standard deviation

Log returns and densities, stock index.

1 0.1t

-4 — 0 2 4
Return scaled to zero mean, unit standard deviation

Log returns and densities, T-bill index.

FIGURE A.l1: Actual and fitted log returns for the CRSP value-weighted equity index and 30-day T-bill
indexes. Monthly data from 1926:1 to 2018:12, scaled to zero mean and unit standard deviation. A standard
normal density and the fitted double exponential jump diffusion density (threshold, 8 = 3) are also shown.

During the sample period of 1926:1-2018:12 (monthly), the filtering algorithm identi-
fied 30 stock index jumps and 48 T-bill index jumps. Of these cases, just 5 were identified
as occurring in the same month for both stocks and bonds, all in the 1930s. This supports
our modeling assumption of no dependence between the jump intensities or jump distribu-
tions of the two indexes, though we do allow for correlated Brownian motion terms in the

parametric model.

APPENDIX B. HISTORICAL MARKET: DETAILED
RESULTS

This appendix presents detailed results for the historical market bootstrap resampling tests
with expected blocksize b = 2 years. Table B.1 shows the results for a constant withdrawal
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TABLE B.2

HISTORICAL MARKET RESULTS FOR ARVA WITHDRAWALS WITH CONSTANT WEIGHTS, THAT IS
ASSUMING THE SCENARIO GIVEN IN TABLE 2 EXCEPT THAT p, = constant IN EQUATION (6.3). THERE
ARE M =30 REBALANCING DATES AND M + 1 WITHDRAWALS. UNITS: THOUSANDS OF DOLLARS.
STATISTICS BASED ON 10° BOOTSTRAP RESAMPLES OF THE MONTHLY DATA FROM 1926:1 TO 2018:12
WITH EXPECTED BLOCKSIZE b =2 YEARS.

Equity weight p, ES (a = 5%) EW/(M +1) Median[Wr]
0.0 —227.41 35.79 —13.79
0.1 —151.74 38.53 31.44
0.2 —98.37 42.27 64.71
0.3 —69.44 46.79 90.45
0.4 —61.86 51.37 111.55
0.5 —72.20 55.20 137.97
0.6 -99.58 58.02 170.37
0.7 —143.23 59.93 269.27
0.8 -202.74 61.34 493.52
0.9 —277.09 62.23 766.16
1.0 —362.60 62.80 1069.33
TABLE B.3

HISTORICAL MARKET RESULTS FOR ARVA WITHDRAWALS WITH OPTIMAL ASSET ALLOCATION
BASED ON THE SCENARIO GIVEN IN TABLE 2 FOR VARIOUS VALUES OF k. THE OPTIMAL CONTROL
THAT SOLVES THE PRE-COMMITMENT EW-ES PROBLEM (6.2) IS COMPUTED IN THE SYNTHETIC
MARKET USING THE ALGORITHM GIVEN IN SECTION 7, STORED, AND THEN APPLIED TO BOOTSTRAP
RESAMPLES OF THE HISTORICAL DATA. THERE ARE M =30 REBALANCING DATES AND M + 1
WITHDRAWALS. UNITS: THOUSANDS OF DOLLARS. STATISTICS BASED ON 10° BOOTSTRAP
RESAMPLES OF THE MONTHLY DATA FROM 1926:1 TO 2018:12 WITH EXPECTED BLOCKSIZE b =2
YEARS. THE STABILIZATION PARAMETER IN EQUATION (7.9) IS € = —107*,

K ES (@ =5%) EW/(M+1) Median[W;] Y, Median(p;)/M
0.1 —349.50 64.05 258.80 466
0.25 —222.76 63.09 253.57 473
0.4 —136.43 61.74 247.42 482
0.7 —78.02 59.81 239.01 464
1.0 —61.23 58.86 230.46 452
1.75 —45.17 56.48 204.19 432
2.5 —40.80 55.15 180.32 416
5.0 —37.96 52.26 135.64 382
10.0 —37.34 49.77 101.99 .335
100.0 —42.87 43.22 53.70 214

(g =40) strategy with constant equity weight asset allocation, analogous to Table 3 in the
synthetic market. Table B.2 gives results for ARVA withdrawals with constant equity weight
asset allocation, analogous to Table 4 in the synthetic market. Finally, Table B.3 presents
results in the historical market for ARVA withdrawals and optimal asset allocation (the
optimal control is computed by solving the pre-commitment EW-ES problem (6.2) in the
synthetic market). This table is analogous to Table 6 for the synthetic market.
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