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Solutions in Constructive Field Theory
Leif Hancox-Li*y

Constructive field theory aims to rigorously construct concrete, nontrivial solutions to
Lagrangians used in particle physics. I examine the relationship of solutions in construc-
tive field theory to both axiomatic and Lagrangian quantum field theory (QFT). I argue
that Lagrangian QFT provides conditions for what counts as a successful constructive
solution and other information that guides constructive field theorists to solutions. So-
lutions matter because they describe the behavior of QFT systems and thus what QFT
says the world is like. Constructive field theory clarifies existing disputes about which
parts of QFT are philosophically relevant and how rigor relates to these disputes.
1. Introduction. To date, philosophers of quantum field theory (QFT) have
paid much attention to roughly two kinds of QFT: axiomatic approaches to
algebraic QFT (Halvorson and Müger 2006) and Lagrangian-based QFT as
used by particle physicists (Wallace 2006). Comparatively less attention,
however, has been paid to constructive QFT, an approach that aims to rigor-
ously construct nontrivial solutions of QFT for Lagrangians and Hamiltoni-
ans that are important in particle physics, ensuring that such solutions satisfy
certain axioms. In doing so, constructive QFT mediates between axiomatic
approaches toQFTand physicists’Lagrangian-basedQFT. It ensures that the
various axiom systems have a physically meaningful correspondence with
the world. Since we usually take solutions in physical theories to describe
the behavior of systems falling under the theory and constructive QFT aims
to produce these solutions, constructive QFT deserves some philosophical
attention.
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ConstructiveQFTis rather different in approach and aims fromwhat I call,
borrowing terminology that stems fromWightman (1973), axiomatic QFT.1

Following Wightman and modern practitioners like Summers (2012), I de-
fine constructive QFT to be the attempt to rigorously construct interacting
models of QFT that correspond to the repertoire of Lagrangians of interest
to particle physics. In contrast, axiomatic QFT in this terminology aims to
derive results about the structure of QFT independently of any particular La-
grangian. In this article I examine two aspects of constructive QFT in the
functional integral tradition that are relevant to our understanding of the the-
oretical structure of QFT. The first is the question of what counts as a solu-
tion to a specific Lagrangian in constructive QFT. I argue that the criteria for
what counts as a solution include some kind of correspondence with pertur-
bation series derived in Lagrangian QFT. This correspondence relation is not
part of any of the standard axioms of QFT. Thus, the constructed solutions
may satisfy “physical criteria” that are not present in axiomatic QFT taken
by itself.

The second aspect of constructive QFT in the functional integral tradi-
tion that I examine concerns the information that constructive field theorists
use to construct solutions. Methods of construction rely heavily on perturba-
tive Lagrangian QFT. The specifics of the regularization methods, coun-
terterms, multiscale expansions, and so on, that are used affect the success
of the construction. This suggests that a successful construction of physi-
cally interesting solutions relies on information that may not be just in the
axioms of axiomatic QFT. This information, often derived from Lagrangian
QFT, may thus be of philosophical interest.

The article proceeds as follows. In section 2, I clarify what I mean by
perturbative Lagrangian QFT, constructive QFT, axiomatic QFT, and other
key terms. In section 3, I provide a quick primer to perturbative Lagrangian
QFT, which will help us understand some aspects of constructive QFT. In
section 4, I make the two main points described above, then discuss their
philosophical implications in section 5. I conclude with some reflections
on general implications for the philosophy of applied mathematics.

2. Approaches toward Quantum Field Theory: A Primer. This primer
is necessary for two reasons. First, there is a gulf between the methods that
physicists take to constitute QFT and the mathematical structures that phi-
losophers of QFT have often taken to constitute QFT. In the philosophy of
QFT debate this has become simplified into a contrast between “Lagrang-
1. See sec. 2 for a fuller explanation of this terminology. As I also explain in that section,
my more precise terminology does not always line up with the more casual labels of
physicists or the distinctions drawn in the philosophy literature so far.
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ian”QFTand “algebraic” or “axiomatic”QFT (Fraser 2011; Wallace 2011),
but more nuanced categories are required for my purposes.2 Second, the
dominance of this terminology has led philosophers to gloss over a distinc-
tion, long recognized in mathematical physics, between what I will call ax-
iomatic QFT and constructive QFT. This has led to much confusion about
the role of perturbative Lagrangian methods in the foundations of QFT. Here,
I lay out some terminology that will help clear up such confusions.

Most of the methods described in a standard QFT textbook for physicists
involve calculations in perturbative Lagrangian QFT. To remain consistent
with previous terminology used by Wallace (2006), I will simply refer to
this approach to QFT as Lagrangian QFT, even though physicists also use
some methods that are Lagrangian but not perturbative. In Lagrangian QFT,
one takes as a baseline an exactly solvable model of QFT in which there are
no interactions. Having no interactions, this model is not of direct physical
interest. But to solve models in which there are interactions, one can con-
sider the interactions as small perturbations to the exactly solvable noninter-
acting model. This allows one to apply the apparatus of perturbation theory
to obtain what are known as renormalized perturbation series. If we had a
justification for the validity of perturbation theory in QFT, then these would
be good approximate solutions for the interacting model.3 However, pertur-
bation theory is valid only under certain conditions, and it is hard to verify
whether these conditions apply in the case of QFT. Furthermore, Lagrangian
QFT uses mathematical tools known as Feynman path integrals. While the
exact definition of path integrals is still in flux, physicists have devised ways
to compute them without adhering to mathematical standards of rigor.

In the interests of clarity, it is worth noting that there are perturbative
treatments of QFT that do not coincide with Lagrangian QFT as practiced
by particle physicists. For example, there are programs to “rigorously” ana-
2. To keep things clear, I will use quote marks, as in the previous sentence, to indicate
that I am referring to terms used by philosophers so far, without necessarily endorsing
those terms. Since I intend to make more fine-grained distinctions than these terms alone
allow for, I will mark terms that I endorse using italics.

3. Throughout this article, I use the term “model” the way physicists do, as referring to a
specific instance of a system falling under a theory. I do not use it in the logicians’ sense.
The distinction between “solution” and “model” is that “solution” is a kind of success
term, whereas it is common for physicists to call something a “model” even if they have
not obtained an adequate description of the model that would count as a “solution.” For
example, Rivasseau (1991, 11) uses the term “ɸ4

4 model” even though there is as yet no
such successful construction of such a model, i.e., there is as yet no solution to the model.
Gawedzki and Kupiainen (1985, 197) speak of models existing “on the level of the for-
mal renormalized perturbation series,” although no constructive solution has been found
yet for these models. The fact that “solution” is a success term while “model” is not ex-
plains language likeWightman’s (1973, 2) when he writes: “the models under discussion
are ones for which it seems very unlikely that an explicit solution will ever be found.”
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lyze perturbative Lagrangian QFT (Steinmann 2000; Salmhofer 2007), but
these form a very small proportion of the work on Lagrangian QFT. The
“rigor” in these works concerns manipulating perturbative formalisms ac-
cording to strict, clearly delineated syntactic rules, which may nonetheless
lack nonperturbative justification. This lack means that the formalisms have
an indeterminate semantics, since, roughlyspeaking,wedonotknowwhether
the perturbative expressions “refer” to anything.4 The use of “rigor” to de-
scribe such programs is meant to contrast with the more common practice
among physicists of using approximations and cancellations that may not
even be syntactically consistent.

Apart from these syntactically rigorous perturbative approaches starting
from Lagrangians, there are also perturbative approaches within algebraic
QFT, which uses a different mathematical framework from Lagrangian QFT
(Brunetti, Duetsch, and Fredenhagen 2009). Lagrangian QFT has been help-
ful in providing what physicists regard as approximate solutions to prob-
lems in QFT. However, the lack of rigor has driven philosophers to turn their
attention primarily to algebraic QFT. “Algebraic” here refers to the mathe-
matics used, namely, the use of C* algebras to model local observables. The
algebraic approach is based on axioms like the Haag-Kastler axioms. Al-
gebraic QFT is not the only strain of QFT that philosophers regard as suffi-
ciently rigorous. There are other sets of axioms that one can work with, such
as the Wightman axioms and the Osterwalder-Schrader (OS) axioms. The
former work in Minkowski space, while the latter work in Euclidean space.
They are related to each other by the Osterwalder-Schrader Reconstruction
Theorem, as I explain below. The Wightman axioms use a mixture of func-
tional analysis and operator algebras. The OS axioms are the basis of rigor-
ous functional integral approaches to QFT. As with the term “algebraic,”
this term refers to the mathematics used—in the OS framework, Feynman
path integrals used by physicists are reinterpreted in terms of rigorous func-
tional integrals in Euclidean space.
4. In a simpler mathematical setting, a syntactic rule could be something like Euler’s
custom of expanding a function out as a “Taylor series” without checking for conver-
gence. Thus, 1=(1 2 x) could be expanded as 1 1 x 1 x2 1 . . . even outside its con-
ventional radius of convergence (Kline 1983). This is an instance of using a syntactic
rule without semantic justification because one is mechanically applying rules for ma-
nipulating symbols without checking that the symbols refer to anything. To provide a
semantic justification, one has to then show that the series actually corresponds to some
well-defined quantity. Applying perturbation theory without a nonperturbative justifica-
tion is similar—one can derive “perturbative expressions” by pure symbolic manipula-
tion, but the resultant expressions may not refer to anything. My use of “syntactic” and
“semantic” in this context is consonant with that found in discussions of formalism and
other competing philosophies of mathematics, such as Detlefsen (2005, 250) andWilson
(2008, 541–43).
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Within both the Wightman and functional integral approaches to QFT,
we can discern two broad ways of investigating QFT. The first way is what
has often been called axiomatic QFT, where the idea is to investigate the
consequences of the axioms without relying on the properties of any partic-
ular Lagrangians or Hamiltonians. The second way is a constructive ap-
proach, which has a very specific aim: to construct concrete, nontrivial ex-
amples of models of QFT that satisfy the relevant set of axioms.5 Figure 1
displays the taxonomy I am describing. For example, one can take a con-
structive approach in the Wightman framework that aims to construct a ɸ4

2

model and prove that it satisfies the Wightman axioms. This is done by de-
fining a Hamiltonian and showing that it has the requisite algebraic proper-
ties (Glimm and Jaffe 1968). One could also have a corresponding project
in the functional integral approach that aims to construct the same ɸ4

2 model
using Euclidean functional integrals (Glimm, Jaffe, and Spencer 1974). Both
these projects have the very specific aim of showing that specificmodels that
are used in particle physics are consistent with axiomatic systems and are to
be distinguished from methods that aim to derive general conclusions from
axioms without reference to particular Hamiltonians or Lagrangians.

Finally, there is a different kind of constructive project in the algebraic
framework, where one constructs models that, in contrast with theWightman
and functional integral constructions, are not guided by Lagrangian QFT
(Summers 2012, 38). I will not discuss this kind of constructive work in this
article, as I am focusing on the significance of constructive field theory as a
mediator between Lagrangian QFT and axiom systems. While algebraic ap-
proaches may one day hope to play such a mediating role, constructive field
theory in the functional integral tradition is at present much more in contact
with Lagrangian QFT.6 The lack of this mediating role for such purely alge-
braic constructions makes their philosophical significance potentially very
different from that of Wightman and functional integral constructions.

I call the project of constructing nontrivial solutions to models of QFT,
where such models are derived from the usual repertoire of Lagrangian QFT
as practiced by physicists, constructive QFT. In doing so I am merely using
terminology that dates from Wightman and is still used by contemporary
mathematical physicists. In an introductory article on constructive field the-
ory, Wightman writes: “Constructive quantum field theory differs from ax-
iomatic field theory in that it attempts to construct the solutions of specific
concrete model theories, typically simplified analogues of self-coupled me-
5. In QFT, both physicists and mathematicians use “nontrivial” to refer to models con-
taining interactions, ruling out those that contain only free fields.

6. Thus, Jaffe and Witten’s (2005) description of the Clay Institute’s Millennium Prob-
lem of constructing a four-dimensional interacting Yang-Mills theory with a mass gap,
e.g., focuses on attempts at the problem from the functional integral point of view.
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son theories or Yukawa theories of meson-baryon couplings. But, axiomatic
field theory customarily attempts to make statements about all theories sat-
isfying certain quite general assumptions” (1973, 1). Wightman reiterates
this distinction in other articles (1969, 1976), emphasizing each time that
the concrete models chosen are those from the repertoire of Lagrangian QFT.
Figure 1. Rough taxonomy of rigorous approaches to QFT, which does not aim to
be complete, leaving out perturbative algebraic QFT (Brunetti et al. 2009) and “rig-
orous” perturbative Lagrangian QFT (Steinmann 2000; Salmhofer 2007), for exam-
ple. Embellished bubbles indicate those constructive approaches of central interest
to this article, namely, those that seek to rigorously construct models of QFT cor-
responding to Lagrangians within the usual repertoire of particle physics. Construc-
tive approaches using algebraic methods are as yet not obviously related to the
Lagrangians of particle physics.
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Amore modern review of QFTconfirms that Wightman’s distinction still
exists. Fredenhagen, Rehren, and Seiler (2006, 64) write that “the power of
the axiomatic approach resides not least in the ability to derive structural
relations among elements of the theory without the need to actually com-
pute them in a model.” They then continue in the section on constructive
QFT: “The axiomatic approach, on the other hand, does not answer the ques-
tion whether the axioms are not empty, i.e., whether any nontrivial QFTs sat-
isfy them. The constructive approach is in principle addressing both of these
problems. On the one hand it attempts to show that the axiomatic frame-
work of QFT is not empty, by mathematically constructing concrete non-
trivial examples satisfying these axioms, and on the other hand it provides
non-perturbative approximation schemes that are intimately related to the at-
tempted mathematical constructions; the prime example [sic] are the lattice
approximations to QFTs” (14). Constructive QFT is thus very different from
axiomatic QFT in its aims and methodology. Philosophers have for the most
part focused only on axiomatic QFTor perturbative Lagrangian QFT.7 Look-
ing at the rigorous approaches, when philosophers do consider models of
QFT at all, these have been noninteracting models, which are not the focus
of constructive QFT.8 Constructive QFT contains the best attempts so far to
construct rigorous solutions to Lagrangian models, having done this suc-
cessfully for several systems with dimensions other than four.9 Since the
actual world is four-dimensional, the main aim is to extend these successes
to the case of four dimensions, but this has not been achieved yet for La-
grangians resembling those used by particle physicists.

One can think of constructive QFT as performing the important task of
ensuring that our axiom systems have a physically meaningful correspon-
dence with the world. That is, since the confirmation of QFT proceeds via
deriving the consequences of specific Lagrangian models, we need to show
7. For examples of the former, see Halvorson and Clifton (2002) and Baker and Hal-
vorson (2010). For examples of the latter, see Teller (1997) and Wallace (2006). There
are one or two exceptions that perhaps fall in a middle ground, such as Fraser (2008).

8. See Clifton and Halvorson (2001) and Ruetsche (2011) for philosophical work on
noninteracting models. To some extent, whether one includes noninteracting models
in the category of “constructive QFT” is a terminological issue. I am merely following
one (sensible) convention, adopted by Fredenhagen et al. (2006) in the quote above, who
specify that the models have to be nontrivial. Insofar as the main purpose of constructive
QFT is to mediate between empirical data and axioms, it makes sense to consider its
main focus to be on interacting models.

9. The construction can also be done with Hamiltonians, but in either case, constructive
QFT is about constructing models of QFT containing specific interactions, whereas the
whole point of axiomatic QFT is to avoid reference to specific interactions. To avoid tex-
tual unwieldiness, I will just say “Lagrangian models” from now on, with the under-
standing that Hamiltonian models are also allowed.
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that our axiomatic systems can accommodate such models. That is why con-
structive QFT does not just attempt to construct models of random Lagrang-
ians but focuses on specific ones, such as those in four dimensions, those of
Yang-Mills theory, the Higgs interaction, and so on.10 In philosophy of lan-
guage terms, we can think of constructive QFT as attempting to show that
our axiomatic systems are not just games of symbols played according to
fixed syntactic rules, that they have external validity in addition to the inter-
nal consistency that their syntax provides. External validity lies in the con-
nection to empirical success, which is why Wightman emphasizes the con-
nection to heuristic Lagrangian QFT.11

A few caveats ought to be made at this point. First, my categorization of
different approaches to QFT does not rule out borderline cases. There are
constructive projects combining functional integral methods with Wightman-
oriented methods and others combining algebraic and Wightman methods
(Summers 2012, 4, 8, 12). Second, there is some variation in terminology
within the mathematical physics community. While I follow Wightman and
others in classifying under “axiomatic QFT” those approaches that do not
rely on the properties of specific Lagrangians or Hamiltonians, Jaffe (1969)
has written an article titled “Whither Axiomatic Field Theory?” in which he
discusses what I here call constructive field theory. Similarly, Araki (1972)
discusses constructive QFTas an “area” of axiomatic field theory. However,
both Jaffe and Araki are in agreement that constructive field theory involves
constructing models of QFT, these models being concrete realizations of
particular Lagrangians or Hamiltonians. Jaffe (1969, 576) writes: “Con-
structive field theorists have approached this problem with Lagrangian field
theories and attempted to solve particular model Lagrangians.”Araki (1972,
1) writes: “[Constructive field theory] is an attempt to construct a quantum
field theory for a given interaction such as ɸ4 and wwɸ in a mathematically
satisfactory manner.” Thus, there is a consensus in the literature that con-
structive field theory, whether one classifies it under the axiomatic program
or not, is an approach that is defined by its attempt to construct models of
particular interactions, represented by Lagrangians or Hamiltonians.

In short, we can clearly recognize, and the community does recognize, a
distinction between approaches that proceed from the axioms alone and ap-
proaches that workwith concrete models, where thesemodels are taken from
10. Later, we will see that one of the main problems in constructive QFT is figuring out
in what sense the “Lagrangians” used in constructive QFT correspond to the semiformal
“Lagrangians” used in Lagrangian QFT.

11. In an applied math context like QFT, external validity lies in ensuring that our lan-
guage latches on to the world in some sense. I leave it open what this “latching on to”
relation is in the details. The simplest account of it would be some kind of isomorphism
to mathematical objects (Pincock 2004), but more complex views are possible (Bat-
terman 2010).
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Lagrangian QFT. I have, following one convention, chosen to call the former
axiomatic and the latter constructive. Terminological disputes aside, it still
remains a fact that philosophers have paid little attention to the latter and that
the latter affords many interesting connections with Lagrangian QFT that
are easy to ignore if one concentrates on the former as the paradigm example
of rigorous QFT.

Now that we have a clear terminology, I will move on to provide more
details about the general approach of Lagrangian QFT. This is necessary to
explain later how solutions in constructive QFT relate to Lagrangian QFT.

3. Perturbative Solutions in Lagrangian Quantum Field Theory. For
physicists, the dynamics of QFT are derived from a quantity known as the
action

S ɸ½ � 5
ð
d4xL ɸ xð Þ, ∂ɸ xð Þ

∂xm

� �
,

where L is the Lagrangian of the quantum field ɸ. The square brackets indi-
cate that S[ɸ] is a functional, not a function. It depends on the values of ɸ
everywhere, not just at some particular point of space-time. The form of
the Lagrangian is based on considerations of the kind of interactions we ex-
pect in the system of interest, and on the symmetries we expect the system to
obey. The action is closely related to the classical field equations by way of a
variational principle. Essentially, postulating that S[ɸ] has to be at an extre-
mum will lead us to the classical field equations. Thus, the action can be re-
garded as representing the dynamics of the theory.

From the action we get the partition function, which is defined as fol-
lows:

Z 5

ð
DɸeS ɸ½ �: (1)

Here, the integral is a functional integral, meaning that we are integrating
over all possible combinations of ɸ’s values over space-time.12 Once we
know Z, we can typically calculate all the empirical quantities associated
with that particular Lagrangian, such as the scattering cross-sections found
in particle physics experiments. Thus, finding an expression for Z is a pri-
mary goal of much of QFT. A successful evaluation of Z is considered to be
a solution of Lagrangian QFT.
12. Later, we will see that the difficulty of defining a measure for this integral is one
reason why Lagrangian QFT is commonly thought to be unrigorous. Constructive field
theory is distinguished from Lagrangian QFT in part because it attempts to define a mea-
sure rigorously.
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Equation (1) can be given a straightforward finite, analytic expression
when the action involved is that of a free scalar fieldwith no interactions, also
known as a “Gaussian” field. In this case, L 5 (1=2)((∂ɸ)2 2 m2ɸ2). For in-
teracting fields, physicists typically use perturbation theory to evaluate the
path integrals. Since the path integral for the free field has a known analytic
expression, the perturbations are applied using the free field case as a refer-
ence—we consider the interaction as a small perturbation to the free field La-
grangian. The following example illustrates how this is done in a simple
case.

Suppose a small interaction 2(l=4 !)ɸ4 is added to the free field La-
grangian, so that L 5 (1=2)((∂ɸ)2 2 m2ɸ2) 2 (l=4 !)ɸ4.13 This is the La-
grangian of the so-called ɸ4 theory, which describes a self-interacting scalar
field. The partition function is

Z 5

ð
Dɸe

ð
d4x ∂ɸð Þ2 2 m2ɸ2

� �
2 l=4 !ð Þɸ4

� �
:

Assuming l to be small, we then convert the e2(l=4 !)ɸ4

factor into a Taylor
series in l:

Z 5

ð
Dɸ 1 2

l

4 !

ð
x1

ɸ2 x1ð Þdx1 1
1

2

l

4 !

� �2ð
x1 , x2

ɸ4 x1ð Þɸ4 x2ð Þdx1dx2 1 ⋯
� �

e

ð
d 4x ∂ɸð Þ2 2 m2ɸ2

� �
,

(2)

where I have included only the first two terms of the Taylor series to illus-
trate the general rule.

Unlike in the free field case, when evaluating path integrals such as the
above, several mathematical problems arise. One is how to define the mea-
sure Dɸ. Physicists calculate Z without a precise definition of the measure.
Constructive field theorists attempt to define it rigorously. The second class
of problems surrounds infinities known as divergences that arise in one’s
calculations. These divergences occur in two forms. First, individual terms
in the perturbation series might diverge. Second, the perturbation series it-
self may not be a convergent series, although it may be an asymptotic series
that can be summed by special summation methods.

To deal with the first type of divergence, physicists perform the follow-
ing procedures:

1. Regularization, which is the reduction of the number of degrees of
freedom in the problem by adding momentum cutoffs, dimensional
regularization, or moving to a lattice formulation;

2. Addition of counterterms to compensate for the regularization.
13. In the perturbative context, a small interaction is one for which the coupling con-
stant, when expressed in dimensionless units, is less than 1.
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A theory is said to be perturbatively renormalizable if after regularization
and the adding of counterterms, the number of coupling parameters in the
theory is finite and constant at each order in perturbation theory. Another
way of putting this is that renormalization occurs when the effects of regu-
larization and the adding of counterterms are absorbed entirely by chang-
ing only the values of a finite number of coupling parameters. For example,
in the ɸ4 model, the Lagrangian we start with before regularization and
renormalization is L 5 (1=2)(∂ɸ)2 2 (1=2)m2ɸ2 2 (l=4 !)ɸ4. In carrying
out dimensional regularization, we first go from four dimensions to 4 2 ε
dimensions. This introduces a new scale m and an ε exponent into the La-
grangian, so thatL 5 (1=2)(∂ɸ)2 2 (1=2)m2ɸ2 2 m2ε(l=4 !)ɸ4 after regular-
ization. After both dimensional regularization and renormalization, we ob-
tain a renormalized Lagrangian Lren with counterterms Lct (Ramond 1981,
132):

Lren 5 L 1 Lct,

where

Lren 5
1

2
∂ɸ0ð Þ22 1

2
m2

0ɸ
2
0 2

l0

4 !
ɸ4
0,

L 5
1

2
∂ɸð Þ22 1

2
m2ɸ2 2 m2ε l

4 !
ɸ4,

and

Lct 5
1

2
A ∂ɸð Þ22 1

2
m2Bɸ2 2 m2ε l

4 !
ɸ4:

The coupling parameters ɸ, m, and l have been renormalized as follows:

ɸ0 5 1 1 Að Þ1=2ɸ,
m2

0 5 m2 1 1 B
1 1 A ,

l0 5 lm2ε 1 1 C
1 1 Að Þ2 ,
where A, B, and C are constants that determine how the coupling parameters

are renormalized. As one can see, the counterterms that are added preserve
the form of the interactions in the original Lagrangian, so that one has to
change only the existing finitely many coupling parameters in L in order
to obtain Lren. This is why the ɸ4 theory is said to be perturbatively renor-
malizable.

The perturbation series with the new coupling parameters is known as
the renormalized perturbative series, which has the same terms as the orig-
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inal one but with the renormalized coupling parameters instead of “bare”
coupling parameters. This series is the basis of many, if not most, successful
empirical predictions in QFT. However, because it is unclear whether the
series converges or whether it is asymptotic to some function we can derive
in constructive field theory, the series is purely “formal,” in the sense of be-
ing a mere string of symbols that may have no mathematical referent.14 We
will see next that the renormalized perturbation series also plays an impor-
tant role in constructive QFT, forming part of the success conditions for a
constructive solution.

4. Constructive Solutions in Quantum Field Theory. Constructive QFT
is the effort to construct, according to the usual standards of mathematical
rigor, solutions to Lagrangian models in QFT and to prove that these solu-
tions satisfy certain axioms that we expect to apply to all Lagrangian mod-
els. In the functional integral tradition, the usual method is to shift from
Minkowski space-time to Euclidean space-time. This is done by a Wick ro-
tation, where one replaces the time parameter in Minkowski space-time
with an imaginary time variable 2it. This turns out to be extremely helpful
for constructing the functional integral measures needed for equation (1)—
many constructions that are possible in Euclidean space-time have not been
accomplished directly in Minkowski space-time.

In Euclidean field theory, the relevant axioms to be satisfied are the OS
axioms. These axioms state the properties that the Schwinger functions of
the model must satisfy. The Schwinger functions are as follows:

SN z1,… , zNð Þ 5 Z21

ðYN
j51

ɸ zj
� �

e
2

ð
V ɸ xð Þð Þdx

dm0 ɸð Þ, (3)

where

Z 5

ð
e
2

ð
V ɸ xð Þð Þdx

dm0 ɸð Þ: (4)

The interaction part of the Lagrangian is V. The measure dm0(ɸ) is a Gauss-
ian measure on the Schwartz space of rapidly decreasing functions. This
measure accounts for the free field part of the Lagrangian, so that equation
(4) is a translation of equation (1), even though the former does not contain
the free-field portion in the exponential (Sénéor 1988, 23).
14. It is not an entirely unmotivated string of symbols, since it is derived by an extension
of the syntax of perturbation theory to a case in which perturbation theory might apply.
However, without a proof that perturbation theory is valid in this context, we do not
know whether this syntactic expression has a mathematical referent.
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The OS axioms are related to the Wightman axioms by the Osterwalder-
Schrader Reconstruction Theorem, which states that any set of functions
satisfying the OS axioms determines a unique Wightman model whose
Schwinger functions form that set (Rivasseau 1991, 22). This theorem al-
lows constructive field theorists in the functional integral tradition to work
in Euclidean space-time, knowing that any successful construction satisfy-
ing the OS axioms can be translated into a successful construction satisfy-
ing the Wightman axioms. This way, they can exploit the advantages of Eu-
clidean space-time when it comes to defining a measure for equation (1),
while ensuring that they are still effectively constructing models that can
live in Minkowski space-time.

A solution in constructive QFT would be a construction of Schwinger
functions that satisfy the OS axioms and some other conditions (to be de-
scribed below). Before evaluating equation (3), however, we have to pro-
vide a meaning to it. We have to define what the integral over function space
could possibly mean. This is not a straightforward task because for interact-
ing fields, we encounter the same problems as in Lagrangian QFTwith reg-
ularization and counterterms.15 These questions of defining the functional
integral will be discussed in section 4.2. Additionally, to make sure that
the construction is indeed a solution that corresponds to an interaction of
interest in Lagrangian QFT, we have to show that the construction has some
kind of correspondence to the renormalized perturbation series that physi-
cists derive for the corresponding Lagrangian in Lagrangian QFT.16 Cru-
cially, this latter property, which I will discuss next in section 4.1, is not part
of the OS axioms.

4.1. Correspondence with Physicists’ Perturbative Methods. A large
part of the motivation of constructive QFT is to show that the Lagrangian
models that physicists have used with such empirical success do in fact
have solutions that are rigorously defined. Physicists have long used their
own “solutions” in the form of renormalized perturbation series, but, as ex-
plained above, these are obtained in mathematically dubious ways. None-
theless, the empirical success of these series suggests that they are like so-
15. There are also nonperturbative issues in defining the functional integral, which I will
not discuss in this article, such as trying to put bounds on regions in which ɸ is large
(otherwise known as the large field problem). These are usually dealt with by multiscale
expansions (Rivasseau 1999, 6–7).

16. This correspondence is a kind of “ultimate” success condition. Much of constructive
field theory consists of constructing toy models that resemble Lagrangians used in par-
ticle physics but are not necessarily identical to them, such as “wrong sign” planar four-
dimensional ɸ4 (Rivasseau 1991, chap. 2.5). These toy models serve as a useful test
ground for techniques that may help us to construct solutions that do correspond to
Lagrangians used in four-dimensional particle physics.
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lutions. We want the rigorously constructed solutions of constructive QFT
to be connected, somehow, with this empirical success and thus with the
renormalized perturbation series. We also want to make sure that the La-
grangian we construct a solution for is “the same” Lagrangian that the phys-
icists use. This is more involved than it appears because the physicists’ La-
grangian is not mathematically well defined as it stands. While physicists
can write down the formal identity L 5 (1=2)((∂ɸ)2 2 m2ɸ2) 2 (l=4 !)ɸ4,
say, this is not enough to constitute defining L rigorously, because the rules
with which they manipulate L are not well defined.

Suppose, then, that I show that for a particular L, the right-hand side of
equation (3) can be rigorously constructed. Wightman asks: “How can you
answer the question, ‘What problem did you solve?’ The answer would be
‘I solved the problem of showing that certain limits existed and that they had
certain properties.’ But you never write down any condition which fixed
the theory you were talking about. We argue, of course, that conventional
renormalized theories are fixed by choosing coupling constants and masses”
(1986, 226).17 The choice of coupling constants and masses is fixed by the
renormalized perturbation series of the Lagrangian. In other words, to make
sure that we have solved a Lagrangian that “is” the ɸ4 Lagrangian, say, we
have to make sure that our construction somehow reproduces the same cou-
pling constants and masses that the renormalized perturbation series for the
ɸ4 interaction has.

Wightman makes a similar point in an earlier paper, when he asks what it
means to “solve” a theory: “Of course, one can answer by saying one wants
to construct a field satisfying the usual axioms of quantum field theory that
somehow solves the equations of the model, but in fact, one wants much
more than that” (1973, 3). The first of the “much more than that” objectives
is as follows:
17. W

2 Publ
1. Renormalized Hamiltonian: Hren in the space of physical states. How
one recognizes that it is the renormalized Hamiltonian for the somewhat
illdefined [sic] model one starts out from is a question about which much
will be said later. (Wightman 1973, 3, underlining in original, emphasis
mine)
On a similar note, Glimm asks: “How does one recognize a solution to the
problem? In general terms a solution should possess as far as possible the
expected properties. For example the Taylor coefficients [of the perturba-
tion series] should agree with the standard formulae” (1969, 103). For a
more modern source, we can look to Gallavotti and Rivasseau (1984,
ightman is using “theory” where I would use “model.”
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209), who point out that a ɸ4
4 theory cannot be just something that satisfies

certain axioms, is four-dimensional, and is scalar but must also “correspond
at least in some sense to a ɸ4

4 lagrangian [sic].”18 They then add that given
the historical success of perturbation theory in other field theories, this no-
tion of correspondence should include at least some notion of being asymp-
totic to the renormalized perturbation series.

Much work in constructive QFT revolves around defining this corre-
spondence relation. One option is to say that the correspondence exists if
the rigorously constructed Z is asymptotic to the renormalized perturbation
series. A function is asymptotic to a series expansion if, roughly speaking,
the successive terms of the series provide an increasingly accurate descrip-
tion of how quickly the function grows. Asymptotic series need not be con-
vergent.19 However, as we come up with new ways to sum series, we also
find new ways to prove asymptoticity. Constructive QFT is engaged in find-
ing new ways to sum physicists’ perturbation series so as to relate them to
the nonperturbative constructions of Z. This means that the notion of “cor-
respondence” is expanding as we find new ways to sum perturbative series
and possibly prove asymptoticity. There is also the possibility that the no-
tion of correspondence that would work is one that is weaker than conver-
gence (of a series to a function) but stronger than asymptoticity. Simon
(1982, 6), for example, proposes the notion of a strong asymptotic series
for this purpose. This latter kind of series has the advantage that at most
one function f has a given series as a strong asymptotic series, whereas mul-
tiple functions may have the same series as an asymptotic series (Strocchi
2013, 1).

In constructive field theory, the most commonly used variety of strong
asymptotic summability is that of Borel summability. This has been used
in many important constructions, such as that of Magnen and Sénéor
(1977). Consider an asymptotic series o∞

k fkg
k , associated with a function

f (g), of zero radius of convergence. If the divergence is caused by the coef-
ficients fk growing factorially, then we can obtain a series with nonzero ra-
dius of convergence by dividing each term in the expansion by k. This gives
us the Borel transform of the function, B(g) 5 o∞

k Bkg
k , where Bk 5 fk=k !,

and f (g) is Borel summable if the Borel transform can be summed and ana-
lytically continued over the entire positive real axis. We can then recover the
original function f(g) via the integral f (g) 5

Ð ∞
0 dte2tB(gt). The f (g) thus

recovered is the Borel sum of the Borel summable series o∞
k fkg

k . In this way,
we can associate an analytic function f with the asymptotic series o∞

k fkg
k ,
18. Following standard practice in QFT, adding a subscript n to an interaction, as in ɸ4
n,

indicates that we are working in n-dimensional space-time.

19. See Erdelyi (2010) for a technical definition of an asymptotic expansion.
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just as a convergent Taylor series can be associated with an analytic func-
tion. Part of the task of constructive field theory is to try to do this for renor-
malized perturbation series.

There are ways to modify or generalize this notion of Borel summability.
For example, there is the Borel-Leroy transform (Kleinert and Schulte-
Frohlinde 2001, 293) and distributional Borel summability (Caliceti, Grec-
chi, and Maioli 1986). It has been suggested that modified notions of Borel
summability may be required to deal with certain divergences, known as
“renormalons,” of the ɸ4

4 model (Caliceti et al. 1986, 163). The crucial goal
is to find a way of associating a unique function with the renormalized per-
turbation series, and some version of Borel summability is the main candi-
date so far.

4.2. Assigning a Meaning to the Functional Integral. Having de-
scribed how the generating functional Z, which appears in the Schwinger
functions, needs to correspond to physicists’ renormalized perturbation se-
ries, I now highlight more ways in which a successful construction requires
information that is not in the OS axioms. As I have emphasized, equation
(3) by itself is a mere formalism because we have not yet assigned a mean-
ing to the functional integral. Because it is a mere formalism, there are mul-
tiple ways through which we may try to define it, although not all of them
might work.

One major barrier to defining the functional integral is that many of the
more naive attempts to define it imply that the integral is divergent and
therefore apparently not meaningful. Because of this, one has to regularize
the integral with both infrared (low-momentum) and ultraviolet (high-
momentum) cutoffs and then make sure that the integral has a well-defined
limit when the cutoffs are removed. If the limit exists, then the functional
integral is meaningful. In constructive QFT the regularization methods used
include lattice regularization and Pauli-Villars regularization (Gallavotti and
Rivasseau 1984, 187).While different regularizationsmight seem like just dif-
ferent means to get the same product (i.e., the Schwinger functions), this is not
the case. Sometimes one method of construction can work where others fail.
The debate about whether the ɸ4

4 model is trivial is instructive about this fea-
ture of constructive QFT. There are some heuristic arguments from Lagrang-
ian QFT that ɸ4

4 is trivial (Callaway 1988). Constructive field theorists have
attempted more rigorous proofs of triviality, but the multitude of possible
methods of constructing ɸ4

4 is proving to be an obstacle. Gallavotti and
Rivasseau (1984, 210) argue that to prove that ɸ4

4 theory is trivial, one has
to prove that all possible ways of taking the continuum limit, regularizations,
bare Lagrangians, and so on, do not work, but to prove that a solution exists,
one needs to showonly that a particular way of constructionworks. Similarly,
Wightman (1986, 221) downplays the significance of failed constructions on
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the basis that other approximation methods could converge to a nontrivial so-
lution. Douglas (2011, slide 18) points out that the proof by Aizenman (1981)
of the triviality of ɸ4 in more than four dimensions is not a complete proof
of triviality, because it is possible that alternative methods of construction
may produce nontrivial solutions. This is corroborated by Gallavotti (1985,
sec. 22), who thinks that there are clues that Aizenman’s lattice regularization
is inadequate.

Sénéor (1988) describes another example in which the choice of regular-
ization affects the success of the construction. He considers the problem of
constructing a finite volume Yang-Mills Euclidean theory. He argues that a
method of regularization that preserves gauge invariance fails, while one
that initially breaks gauge invariance succeeds—the gauge invariance being
recovered when the continuum limit is taken.

Apart from regularization methods, there are other dimensions on which
constructions of Z can differ. One such dimension is the counterterms that we
add to the “bare Lagrangian.” In QFT, the Lagrangian is a scale-dependent
entity. That is, the form of the Lagrangian changes depending on the mo-
mentum scale at which the phenomenon of interest occurs. In evaluating
the right-hand side of equation (3), one initially takes L to be some “bare
Lagrangian” of a certain form, which will however have to be modified in
the process of the construction, due to the presence of multiple scales in
the functional integral. In four dimensions, this modification takes the form
of “counterterms” that one adds to the bare Lagrangian. The nature of these
counterterms is generally determined by studying the calculational methods
that physicists have found to work in Lagrangian QFT (Rosen 1973, 87;
Summers 2012, 8, 17, 21, 22). Neither the axioms nor equation (3) tells
us which counterterms to use. This is yet another dimension on which equa-
tion (3) is really just a bare formalism to be filled in with further information,
rather than something mathematically unambiguous.20

To complicate matters further, what we really want from a solution is for
the continuum Lagrangian, that is, the one we get after taking the relevant
limits on the cutoff integral or the lattice, to correspond to the Lagrangian
that is used by physicists in Lagrangian QFT. This can happen even if the
bare Lagrangian one starts with in constructive QFT contains terms differ-
ent from those in the bare Lagrangian that physicists use. The attempts to
20. It is important to note that even though the choice of counterterms is determined us-
ing information from nonrigorous perturbation theory, the construction itself is still rig-
orous. In perturbation theory the unrigorous part is not the addition of counterterms per
se but rather the taking of limits on perturbation series, the assumption that perturbation
series have a meaning without checking conditions of validity, the failure to define func-
tional integrals properly, and various other things. Constructive field theory patches
these gaps but does not eschew the use of counterterms.

86/690722 Published online by Cambridge University Press

https://doi.org/10.1086/690722


352 LEIF HANCOX-LI

https://doi.org/10.1086/69072
prove the triviality of ɸ4
4 provide possible examples of this. Gallavotti and

Rivasseau (1984, 186) find that cutoff ɸ4
4 models which have a negative

coupling constant could converge, after removal of the cutoff, to the usual
renormalized perturbation series with positive coupling constant. They fur-
ther argue that even if one fails to construct the ɸ4

4 model, say, using an ini-
tial Lagrangian L 5 (1=2)((∂ɸ)2 2 m2ɸ2) 2 (l=4 !)ɸ4, which is the expres-
sion that physicists use in perturbation theory, this does not rule out the
possibility of constructing the same model using an initial Lagrangian L 5
(1=2)((∂ɸ)2 2 m2ɸ2) 2 (l=4 !)ɸ4 2 mɸ6 in a lattice context (211–12).21

Both these lattice Lagrangians could give rise to Zs that are asymptotic to
the renormalized perturbation series that physicists calculate from the bare
Lagrangian L using perturbation theory. Thus, they could both be possible
starting points for a construction of ɸ4

4. This creates further ambiguities in
the construction process, since it is not even clear what form of Lagrangian
should be the input for the right-hand side of (3). There is a kind of under-
determination problem here: the formalism of equation (3) and the criterion
of correspondence to renormalized perturbation series are insufficient to de-
termine the raw materials with which the solution is to be constructed.

In short, the success of a construction in constructive QFT depends on
obtaining for Z some kind of correspondence with the renormalized pertur-
bation series, finding a suitable regularization, incorporating counterterms
suggested by perturbation theory, and possibly even figuring out what La-
grangian to put into equation (3). All these factors influence the nature of
the solution even though they are external to the OS axioms. Indeed, the
contribution of perturbation theory to defining what it means to be a solu-
tion is particularly interesting, since part of the prior philosophical debate
on QFT concerned whether “Lagrangian QFT” is relevant to the philosophy
of QFT (Fraser 2011). If we accept the solutions of constructive QFT as rel-
evant to philosophers, then the importance of perturbative methods to these
solutions suggests that “Lagrangian QFT” is indeed relevant.
5. Philosophical Implications. The features of constructive QFT I have
discussed are of philosophical interest for the following reasons. First, while
some philosophers attach little interpretive significance to perturbative solu-
tions in Lagrangian QFT due to their lack of rigor, constructive QFT at-
tempts to remedy this by providing rigorous nonperturbative analogues of
21. Note that this is separate from the counterterms issue. Counterterms are the differ-
ence between the “bare” Lagrangian and the renormalized Lagrangian, whereas this is a
question of what happens when we move from the lattice to the continuum, not what
happens with renormalization.
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these perturbative solutions.22 Generally speaking, these solutions describe
the behavior of QFT systems and thus are of interpretive interest to philos-
ophers of QFT.

Second, the solutions of constructive QFT are a way to provide the ax-
ioms of QFT with physical content. Perturbative Lagrangian QFT is con-
firmed by its empirical success, but axiomatic QFT cannot be confirmed
in as direct a manner. Constructive QFT attempts to ensure that axiomatic
QFTcan be linked to Lagrangian QFTand thus indirectly confirmed. It does
this by trying to show that we can construct solutions that satisfy the rele-
vant axioms and that these solutions are in some sense “the same” solutions
as the perturbative solutions of Lagrangian QFT. Constructive QFT is thus
important to those who are interested in confirming or improving extant ax-
iom systems.

Third, critics of Lagrangian QFT, like Fraser (2011), have dismissed the
relevance of Lagrangian QFT to the “theoretical content” of QFT on the ba-
sis of Lagrangian QFT’s lack of rigor. Furthermore, Fraser marshals the suc-
cesses of constructive QFT to defend rigorous approaches to QFT against
Lagrangian QFT. Against this, I have argued that information from La-
grangian QFT is key to the success of constructive QFT. With the example
of constructive QFT in the functional integral tradition, we can see that
unrigorous Lagrangian QFT is extremely relevant to the rigorous program
of constructive QFT, providing essential guidance to a correct construction.
By Fraser’s own lights, constructive QFT might illuminate the theoretical
content of QFT. But given how constructive QFT relies on information
from Lagrangian QFT, perhaps Lagrangian QFT itself might contribute to
theoretical content.

Fraser acknowledges that constructive QFT attempts to implement ana-
logues of renormalization group (RG) methods that are used in Lagrangian
QFT. However, she interprets this fact as showing that RG methods “con-
cern the empirical structure of the theory rather than the theoretical content”
(Fraser 2011, 132). In my view, it is unclear that the elements of Lagrangian
QFT borrowed by constructive QFT fall on the “empirical” rather than “the-
oretical” side of the divide—even supposing there is such a dichotomy. The
implementation of the RG concerns scaling properties of fields, which is not
something that is merely empirical since it concerns more than just scatter-
22. I use the term “analogues” here, rather than saying that perturbative solutions are
approximations to constructive solutions, for the following reason. As emphasized in
secs. 3 and 4.1, from a mathematical point of view, perturbation series are formal expres-
sions that, in the absence of the right kind of correspondence to a constructive solution,
do not have a mathematical referent. It seems inappropriate to call an expression with no
meaning an approximation. Of course, should the constructive project succeed, then we
will have some way to assign meaning to perturbative expressions, and it may then be
appropriate to call them approximations.
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ingmatrices.Without further argument, it is also hard to seewhy issues of reg-
ularization, counterterms, sign of the coupling constant, and other issues men-
tioned in section 4.2 are merely empirical. The other main contribution of La-
grangianQFT to constructiveQFT is the requirement of correspondence to the
renormalized perturbation series.While this has some connection to empirical
success, it is also something that goes beyond mere empirical success. If we
wanted to capture only the empirical content of LagrangianQFT, all wewould
ask for is equivalent scattering matrices. In addition, we saw that the require-
ment of correspondence is not merely an “adding” of content to constructive
QFT but is constitutive of its success. It is not that constructive QFT on its
own already has theoretical content without Lagrangian QFT, but to decide
even what its theoretical content is, namely, its solutions, we need Lagrang-
ian QFT for guidance. In other words, even if one insists on interpreting the
contribution of Lagrangian QFT as merely “empirical,” it is still the case that
the empirical content is guiding what counts as acceptable theoretical content.
This should be unsurprising given the role of constructive QFT as essentially
mediating between empirical success and as-yet-unconfirmed axiom systems.

Fourth, constructive QFT contributes some conceptual clarity to what is
going on in Lagrangian QFT. The Wightman axioms, for example, have a
clear conceptual content. They describe a Hilbert space, and they incorpo-
rate straightforward physical principles like microcausality. This kind of
physical content may be somewhat obscured in the complicated techniques
of Lagrangian QFT. Constructive QFT thus serves as a bridge between the
physical content of theWightman axioms and the empirically successful tech-
niques of Lagrangian QFT.23 Admittedly, this picture is complicated by the
fact that this bridge proceeds via a detour through the OS axioms, an issue that
may deserve further philosophical attention.

Finally, given the crucial role of Lagrangian QFT in setting the success
conditions for a solution in constructive QFT and in guiding us as to the de-
tails of the construction, it is possible that Lagrangian QFT adds physical
content to QFT, over and above what the various axiomatic systems say.
This might serve as guidance to future, better axiomatic systems. One par-
ticular source of physical content might be the contributions of the RG. The
scaling properties of fields that the RG reveals are not something that can be
obviously read off the axioms. There is also an open question whether the di-
agrammatic methods used to manage expansions in constructive QFT have
any physical content.24 This is related to ongoing debates about whether
Feynman diagrams in Lagrangian QFT are merely a convenient calcula-
tional tool or have real physical content (Wüthrich 2012). The lack of math-
23. I thank an anonymous referee for suggesting this point.

24. This question has not, to my knowledge, being tackled by philosophers yet. Dia-
grammatic methods are used in, e.g., Rivasseau (1984) and Mack and Pordt (1985).
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ematical rigor of Lagrangian QFT may be a reason to dismiss the founda-
tional importance of techniques associated with Lagrangian QFT, such as
the RG and Feynman diagrams, but their continued importance even in rig-
orous enterprises like constructive QFT removes this reason.

6. Conclusion. In this article, I highlighted two aspects of constructive
QFT that have been neglected by philosophers. The first is that a solution
in constructive QFT must have some kind of correspondence relation to
the renormalized perturbation series of Lagrangian QFT, even though the
latter is not mathematically well defined. The second is that a successful
construction depends on various choices of regularizations, counterterms,
and so on, and these choices depend at least partly on information from La-
grangian QFT.

One perspective from which to view this situation is that the empirically
successful formalism of Lagrangian QFT and its distance from axiomatic
QFTcreates a problem that constructive field theory tries to solve. The prob-
lem is to show that the “solutions” of Lagrangian QFT, which are not well
defined, can be reproduced in some sense by something that is consistent
with the axioms. However, the fact that we are trying to use mathematics
to reproduce something that is not mathematically well defined suggests that
the problem is not one of mathematics alone. Rather, it also concerns howwe
can best translate a semiformal language (i.e., Lagrangian QFT) into rigor-
ous mathematics. A good translation ought to reproduce the important ef-
fects of the original language, and in this case, constructive field theorists
have judged that the renormalized perturbation series are worth recovering.
But this is a judgment that considers extramathematical values concerning
what the “important effects” that the translation must reproduce are. There
is an analogous situation in the case of partial differential equations (PDEs)
in appliedmathematics. Often, theremight not be a strong solution to a given
PDE—a solution that is a function that is sufficiently smooth to have all the
derivatives that appear in the PDE. In such cases, we often look for gener-
alized solutions, where we expand our search for solutions to include more
discontinuous options. There are many ways to expand this search. Includ-
ing distributions—entities of the same kind as delta functions—is only one
option. Crucially, the PDE by itself does not tell us what kind of generalized
solution is appropriate. Instead, the physical situation suggests how we
should define a generalized solution.25 The formalism of the PDE can be
25. Thus, Tao (2016, 1) writes of one possible definition of generalized solutions that in
some situations it fails to exclude “physically implausible” solutions, so we should turn
to another definition in those cases. In another example, Tao writes that in cases in which
we expect there to be no actual physical singularities, then we should deal with mathe-
matical singularities in the PDE by using a regularizing parameter to define generalized
solutions (2).
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conceived as applying to different types of solution spaces depending on the
physical problem of interest. There is an extramathematical judgment of
which solution space would best capture the effects of interest in that phys-
ical situation.

The point I am making has been noted elsewhere in the philosophy of
mathematics. Davis (2009) has argued that in mathematics generally, it is
not clear that there is a homogeneous conception of what it means to solve
a problem. One could also view the issue as one in which the initial problem
setting, as a mere formalism, contains multiple possible mathematical inter-
pretations. Often, finding the correct solution involves first figuring out what
the correct mathematical translation of the problem setting is. Thus, in PDEs
one must first figure out which function space the derivative operators are
acting on, and in QFTone must figure out what the functional integral means
and how it should relate to perturbative series. Rivasseau, one of the leading
figures in constructive QFT, endorses this view of the flexibility of mathe-
matical interpretations: “in mathematics non-existence theorems, although
quite common, rarely remain the last word on a subject. Often a problem
with no solution is simply badly formulated and has to wait until the proper
formalism in which it does have a solution is found” (1991, 271).

Constructive QFT, as the best attempt to obtain solutions modeling par-
ticular interactions in QFT, tells us the possible behavior of QFT systems
with those interactions. It thus ought to be interesting to philosophers
who care about what QFT says the world is like. Yet the mathematical struc-
ture of solutions in constructive QFT is not simply given by the axioms they
satisfy. These solutions also have to satisfy some kind of correspondence to
perturbative solutions, and they can only be defined as limits of very spe-
cific kinds of approximations which appear to be indispensable. Thus, La-
grangian QFT might add constraints to the kinds of QFT systems of interest
to philosophers, constraints not to be found in the axioms. Constructive
QFT also offers an interesting example of the interaction between unrigor-
ous and rigorous mathematics, complicating the debate about whether phi-
losophers should take Lagrangian QFT seriously. For all these reasons, con-
structive QFT deserves more philosophical attention.
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