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Abstract
This research presents an upper limb cable-driven rehabilitating robot with one degree of redundancy to improve
the movements of the injured. A spatial trajectory is planned through the joint limit avoidance approach to apply the
limits of the joint angles, which is a new method for trajectory planning of joints with an allowed definite interval.
Firstly, a Lyapunov-based control is applied to the robot with taking uncertainty and disturbances into consideration.
To derive the best responses of the system with considering uncertainty and disturbances, a novel robust tracking
controller, namely a computed-torque-like with independent-joint compensation, is introduced. The mentioned new
robust controller has not been applied to any cable robot which is the novelty of this paper to derive a superior output
and the robustness of the given approach. Stability analysis of both controllers is demonstrated and the outputs of the
controllers are compared for an exact three-dimensional motion planning and desirable cable forces. Eventually, the
proposed novel controller revealed a better function in the presence of uncertainties and disturbances with about
28.21% improvement in tracking errors and 69.22% improvement in the required cable forces as control inputs,
which is a considerable figure.

1. Introduction
Conventional treatments in rehabilitation depend on the existence of the number of therapists to help
the patients, which consume time and energy and do not sound economical [1]. Robotic rehabilitation
systems bring a wide range of merits and can improve accuracy and efficiency, as well as make the
system controllable and reduce the necessity of the assistance of physiotherapists [1]. In the last decades,
the majority of rehabilitation exoskeletons were made of rigid links, which have a high weight and
inflexibility [2]. MIT-MANUS is one of the first rehabilitation robots, which was first time launched by
MIT University, and consists of a five-link robot with two degrees of freedom (DOFs) in the plane [2].
MIME at Stanford University has six DOFs and is able to lead the injured arm to pursue the predefined
trajectory [2]. The CADEN-7, an upper limb rehabilitation system, can produce motion with seven
DOFs in the shoulder, elbow, and wrist [2]. The REPERT, an arm motion-aided training system by
Arizona State University, consumes pneumatic artificial muscles to guide a five-DOF motion of the arm
[2]. Since rehabilitation systems have some demerits, such as smaller workspace, inflexibility, higher
expenses of construction, and higher inertia [1], many essays in cable-driven upper limb robots have been
undertaken [3–5]. A three-DOF exoskeleton cable-driven rehabilitation robot (CDRR) has been made
to boost the arm movement of the patients [6]. Zanotto et al. [7] studied Sophia-3, an end-effector-based
cable-actuated rehabilitation system to help motions in the plane. Besides, a lightweight wire-driven
rehabilitation system has been studied to help the movements of shoulder and elbow joints [8]. A CDRR
was made of a frame, cables, and an end-effector in which cables were driven through motors [9]. A
planar 4-CDRR was also made in 2014 [9].
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The control method is one of the most vital subjects that impact the function of the robots and
the accuracy of the trajectory tracking with the least error. Some of them with various controllers are
presented below.

An adaptive admittance control was studied on a manipulator with task space constraints to prepare
compliance with external forces [10]. Mao and Agrawal [11] designed a force control of a cable-driven
upper limb rehabilitating system. Similarly, in 2011, impedance control was applied to a rehabilita-
tion system through a Lyapunov approach [12]. In a different work, taking advantage of an admittance
control for a guide control was confirmed to be capable to move the human upper limb through vir-
tual guidelines in a rehabilitation system [13]. Furthermore, a novel method was designed for upper
limb exoskeleton robot through Muscle Circumference Sensor with the force sensors to estimate the
human interactive force through an adaptive impedance controller [14]. A new torque-field controller
was applied to a cable-driven wrist rehabilitation system to provide motion training [15]. In another
research, an admittance control was used for an upper limb cable-driven rehabilitating system with three
DOFs in three-dimensional (3D) motion to track the desirable trajectory without any reference trajectory
[16]. A neurological rehabilitation device was presented to provide patients to perform different motions
using an impedance-based control [17]. As can be seen, force, impedance, and admittance controllers
are widely consumed in different CDRRs, and a minority of researchers have worked on robust motion
controls with considering uncertainty and disturbance. Some of the papers have studied motion controls
in cable rehabilitation systems but have not worked on the robustness of the system with considering
uncertainty and disturbance, which are mentioned below.

In ref. [18], motion and force controls are studied in a seven-DOF cable-driven rehabilitation train-
ing robot, and both active and passive rehabilitation training modes are suggested for enhancement
of the movements of the patients. Xiong and Diao [19] worked on motion control for the safety of a
cable-driven parallel manipulator in rehabilitation devices with large deformation cables and position-
controlling actuators. Consequently, ref. [2] proposed the tracking control of a four-DOF cable-driven
upper limb robot to move the whole upper limb along desired trajectories. Moreover, inverse dynamics
modeling was designed for a new rehabilitating system with a parallel joint for tracking the reference
trajectory [20]. In 2020, a new four-DOF robotic cable-driven upper limb robot with pneumatic artificial
muscle actuators was studied and motion control was applied for the trajectory control [21]. Also, ref.
[22] suggested a hybrid active force and position controller of an upper limb cable-driven rehabilitating
system with human movement intention detection, which has been considered as the desired position
and velocity.

To prove the effectiveness of applying a robust controller in a similar system, a polynomial-based
robust adaptive impedance control method for electrically driven robots is introduced in ref. [23].
Polynomials of degree N as an approximator for uncertainties, unmodeled dynamics, and external dis-
turbances indicated superior performance in position control due to the robustness of the given control
algorithm. Since a robust controller such as an optimal robust voltage control presented in ref. [24]
showed its efficiency in tracking errors for electrically driven robot manipulators in the presence of
uncertainty, this paper introduces a novel robust motion control, namely computed-torque-like control
with independent-joint compensation while taking uncertainty and disturbance into consideration, which
is the novelty of this paper to reveal the robustness of the given approach.

One of the concerns of this paper is to improve the lower limb movements by a rehabilitation system
on spatial trajectories, in which the path is planned through a new method, called joint limit avoidance
(JLA). Furthermore, since few numbers of papers have worked on robust motion control of cable reha-
bilitation systems in a 3D path planning in front of uncertainties and disturbances, the main goal of this
research is the presentation of this new robust controller.

The kinematic formulation of cables has been exploited in Section 2. The dynamic formulation has
been derived through the Lagrangian method in Section 3. The unilateral cable force, which is one of
the challenging parts of cable robots, is obtained in Section 4. Section 5 is allocated to a new path
planning approach to keep the joints in their allowed interval. In Section 6, a Lyapunov-based control
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Figure 1. The proposed upper limb cable-driven rehabilitation robot scheme.

and a computed-torque-like control with an independent-joint compensator are designed and compared
with considering uncertainties and disturbances. At last, the conclusion has been written in Section 9.

2. Kinematic formulation of the upper limb CDRR
In this upper limb cable-driven rehabilitation system, {0} and {1} are local coordinate systems on the
shoulder joint and {2} on the elbow, and {3} is located on the mass center of the palm, as can be seen in
Fig. 1. These formulations, Li are indicators of cable lengths and ti are related to unit vectors. Besides,
Ei show motors’ positions connected to the reference frame {C} and Ri is the vector that indicates the
distance from the points of cable connection to the joints. Jacobian matrix Jc connects joint velocity to
the L̇ cable velocity. ma introduces arm mass; mf and mh are also forearm and hand masses, respectively.
Robot parameters are written in Table I.

Cable length, Li, can be calculated geometrically as

Ei − Ri = Liti . i = 1 → 5 (1)

where ti represents unit vectors of the cables. Derivation of Eq. (1) to time results in

∂Li

∂t
ti = ∂Ei

∂t
− ∂Ri

∂φ

∂φ

∂t
(2)
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Table I. Figures for the upper limb cable-driven rehabilitating system
and human upper limb.

Parameter Value Unit Parameter Value Unit
E1 0.6 m R1 0.1 m
E2 0.9 m R2 0.2 m
E3 1.4 m R3 0.2 m
E4 0.5 m R4 0.38 m
E5 1 m ma 3.25 kg
la 0.323 m mf 1.87 kg
lf 0.29 m mh 0.65 kg
lh 0.2 m

where Ei is the constant and thus ∂Ei
∂φ

= 0. Multiplying Eq. (2) in tT
i yields

L̇itit
T
i = −tT

i

∂Ri

∂φ
φ̇ (3)

where ∂Ri
∂φ

defines a Jacobian matrix of the cables Jc, therefore

L̇i = −tT
i Jcφ̇ (4)

where φ̇ = [
φ̇1 φ̇2 φ̇3

]T shows joint velocities, φ = [
φ1 φ2 φ3

]T introduces generalized coordi-
nates, and Fi are cable forces. φ1 represents abduction/adduction of the shoulder joint in the frontal plane,
while φ2 and φ3 are flexion/extension of the shoulder and elbow joints, respectively, in the sagittal plane.
The proposed upper limb rehabilitation system is depicted in Fig. 1.

The mentioned CDRR has three DOFs. It works through five cables run by five motors attached to
the system frame, and cables have been connected to the orthosis with cuffs.

3. Dynamic equations
The system has three DOFs with flexion/extension of shoulder and elbow joints in the sagittal plane
and abduction/adduction of the shoulder joint in the frontal plane, while the wrist is considered to be
constant. The dynamic formulation of the system is obtained through the Lagrange formulation. The
general dynamic formulation is written as

M(φ)φ̈ + B(φ, φ̇)φ̇ + G(φ) = T (5)

where M(φ) represents the positive-definite mass matrix, and B(φ, φ̇) illustrates centrifugal and Coriolis
forces vector. G(φ) entails gravitational forces, while T in Eq. (6) is an indicator of the system joint
torques.

T = JT
c (F +�) (6)

where � indicates system external disturbances and cable forces are considered as F =[
F1 F2 F3 F4 F5

]T. Jc shows the Jacobian matrix, which maps cable tensions to the joint torques.
Thus,

M(φ)φ̈ + B(φ, φ̇)φ̇ + G(φ) = JT
c (F +�) (7)
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where

Jci =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Rix

∂φ1

∂Rix

∂φ2

∂Rix

∂φ3

∂Riy

∂φ1

∂Riy

∂φ2

∂Riy

∂φ3

∂Riz

∂φ1

∂Riz

∂φ2

∂Riz

∂φ3

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 1 → 5 (8)

And the vector JT
c is defined as

JT
c = [

JT
c1t1J

T
c2t2J

T
c3t3J

T
c4t4JT

c5t5

]
(9)

4. Unilateral cable tension
Since only positive forces are feasible for controlling the cable systems, one of the tough issues in cable
systems is applying unilateral cable tension. This challenge can be resolved through the null space of a
Jacobian matrix in a redundant cable robot. A redundant cable robot is a system in which at least one
cable is more than the DOF. Control input vector can be defined as ref. [25]

F = Fp + Fh (10)

where Fp is the particular solution and can be derived from the dynamic Eq. (7) as

Fp = (
JT

c

)# {
M(φ)φ̈ + B(φ, φ̇)φ̇ + G(φ)

}
(11)

JT
c is a nonquadratic matrix; as a result, the pseudo-inverse of JT

c is chosen as(
JT

c

)# = Jc(J
T
c Jc)

−1 (12)

If JT
c is a full-rank matrix, Eq. (7) would have a large number of solutions. Fh in Eq. (10) is an indicator

of the homogenous solution which is calculated as

Fh = ξJTλ (13)

where ξJT introduces the null space of JT
c , which is an (v × q) matrix. Also, v is the number of inputs.

q = v − p defines the degree of redundancy, p indicates the DOF, and λ shows a random (q×1) vector.
The positive condition of control inputs is ensured when λ is placed in a possible region (Pr). Wherever
the whole null-space arrays get a similar sign, λ arrays would be placed in the mentioned possible region.
Eventually, F ≥ 0 is obtained:

F = Fp + ξJTλ≥ 0 (14)

In this upper limb cable-driven rehabilitating system, one redundant cable yields a λ and four linear
inequalities in Eq. (15). ⎡

⎢⎢⎢⎢⎣
Fp1

Fp2

Fp3

Fp4

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣
ξ11

ξ21

ξ31

ξ41

⎤
⎥⎥⎥⎥⎦ λ≥ 0 (15)

By transformation of inequalities to equalities in six pairs of linear equations and finding intersections
in every pair of equations, possible region (Pr) and a suitable λ for a positive cable force can be found.
The resulted area, between solution points, is the possible area where if the resulting points satisfy all
the remained equations, the appropriate λ is calculated, which can result in positive cable tensions in
Eq. (14).
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Table II. Allowed movement interval of hand joints.

Joint angles Movement interval of each joint
φ1 (−40, 100)◦

φ2 (0, 200)◦

φ3 (210, 360)◦

5. Joint limit avoidance
To control the systems which have a definite interval for the joints to move, the desired trajectories are
planned through a new approach, the JLA. The upper and lower bounds of the human upper limb are
written in Table II.

Generally, robots require higher joint velocities nearby a singular area, and providing these high joint
rates is not possible for the motors.

Redundant manipulators can take advantage of the extra DOFs to keep their joints in the allowed inter-
vals and away from singular areas of the end-effector, namely the main task. For redundancy resolution,
a cost function is considered, which is based on minimization [25].

N = (
JEφ̇ − Ẋd

)T
LE

(
JEφ̇ − Ẋd

)+ (
JAφ̇ − ν̇d

)T
LA

(
JAφ̇ − ν̇d

)+ φ̇TLSφ̇ (16)

The mentioned cost function, X, represents the end-effector position vector and Ẋ illustrates its velocity.
ν̇ is an indicator of the additional tasks. Mainly, the reference path of the end-effector (Xd) is represen-
tative of the main task, and desirable velocities of main and additional tasks are Ẋd and ν̇d, respectively.
Moreover, Ẋ is derived using the forward kinematic equations as

Ẋ = JEφ̇ (17)

JE represents the end-effector Jacobian; besides

ν̇ = JAφ̇ (18)

Due to the existence of limits on hand joints, the additional task has been defined as the joint position
vector.

ν = φ (19)

The Jacobian matrix JA for the additional task is shown as:

JA = ∂ν

∂φ
=

⎡
⎢⎢⎣

1 0 0

0
. . . 0

0 0 1

⎤
⎥⎥⎦ (20)

Near the joint intervals the JLA becomes active, and joint rates get zero. Afterward, joints’ velocities
move to the center of their allowed interval. Thus, the desired joints’ rates ν̇d vanish, as soon as the JLA
works.

ν̇d = 0 (21)

Then, φ̇ is defined to decline the errors and the additional task rates. In the cost function in Eq. (16), the
first term decreases the velocity errors of the main task, while the second term declines the additional
task respectively. The third term decreases high joint rates and results in singularity avoidance. Besides,
LE, LA, and LS in Eq. (16) introduce diagonal positive-definite weight matrices, which represent the
velocity of the end-effector, the velocity of the additional task, and singularity avoidance, respectively.
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Figure 2. Path planning of hand joints in the absence and the presence of the JLA approach.

The JLA approach is activated and inactivated using the weight matrix, LA. A desirable joint path is
derived by the definition of the weight matrix LA as a continuous function presented below

LA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 φi <φi min

b0

2

{
1 + cos

(
π

(
φi − φi min

ρi

))}
φi min ≤ φi ≤ φi min + ρi

0 φ + ρi <φi <φi max − ρi

b0

2

{
1 + cos

(
π

(
φi max − φi

ρi

))}
φi max − ρi ≤ φi ≤ φi max

b0 φi >φi max

(22)

where b0 shows a constant coefficient. Clearly, LA vanishes in the center of the bounds. At the moment
the joint angle is placed in ρi, the weight matrix LA rises from the center of the interval to the maximum
value at the bounds. Joint rates would be derived through minimization of the cost function as

∂N

∂φ̇T
= 2

(
JE

TLEJE + JA
TLAJA + LS

)
φ̇ + 2

(
JE

TLEẊd + JA
TLAν̇d

)= 0 (23)

Thus,

φ̇ = (
JE

TLEJE + JA
TLAJA + LS

)−1 (
JT

E LEẊd + JA
TLAν̇d

)
(24)

Equation (24) is exploited in the recursive form as

φd = φd−1 + (
JT

E LEJE + JT
A LAJA + LS

)−1
(JT

E LE(X − X1)) (25)

X illustrates the end-effector’s position in a previous moment.
Path planning of a Lyapunov-based control is revealed in Fig. 2 to highlight the differences of joint

angles in the presence and absence of the JLA approach.
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Gain differential and proportional matrices are KD = diag{90, 90, 90} and KP = diag{90, 90, 90}, and
initial condition is defined as φ0 = [−10 150 280

]T, which are all the same in both conditions.
Taking advantage of the JLA method leads to the movements of the joints in their allowed upper and

lower bounds and prevents their deviation.

6. Motion control schemes
In this upper limb cable-driven rehabilitating system, a Lyapunov-based controller and a novel robust
motion controller, called computed-torque-like control with independent-joint compensation, are pre-
sented. A motion control utilizes actuator torques to follow the desired trajectory and minimization of
the end-effector errors.

6.1. Lyapunov-based control
This Lyapunov-based control is a tracking control, which is predicted to have superior and robust
performance concerning the other tracking controllers. The dynamic equation is written in Eq. (26)
ref. [26].

T = M(φ)φ̈ + B(φ, φ̇)φ̇ + G(φ) (26)

The control input is defined as ref. [26]

T = M(φ)φ̈s + B(φ, φ̇)φ̇s + G(φ) − KDė − KPe (27)

where e is

e = φ − φd (28)

Where φ̇s in Eq. (27) is presented as

φ̇s = φ̇d − εe, ε > 0 (29)

where ε is a positive constant. By taking the time derivative of Eq. (29) and replacing φ̇s and φ̈s in
Eq. (27), T is calculated

T = M(φ)φ̈d − εM(φ)ė + B(φ, φ̇)φ̇d − εB(φ, φ̇)e + G(φ) − KDė − KPe (30)

By replacing the control input Eq. (27) in the dynamic equation Eq. (26), the plant or system dynamic
model is

φ̈ = M(φ)−T
(
T − B(φ, φ̇)φ̇ − G(φ)

)
(31)

Also, after replacing the control input in Eq. (26) the given equation is exploited

M(φ)ë + εM(φ)ė + B(φ, φ̇)ė + εB(φ, φ̇)e + G(φ) + KDė + KPe = 0 (32)

Now ë can be derived as

ë = −εė − M(φ)−1
(
B(φ, φ̇)ė − εB(φ, φ̇)e − G(φ) − KDė − KPe

)
(33)

The Lyapunov function is considered as

H = 1

2

[
eT ėT

] [ εKD + KP + ε2M(φ) εM(φ)

εM(φ) M(φ)

] [
e

ė

]
= 1

2
DTWD (34)
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Figure 3. The diagram of the Lyapunov-based control for the upper limb cable rehabilitating robot.

which D = [
eT ėT

]T, and W is a positive-definite matrix. Using some properties such as
[

e ėT
]T =[

ėT e
]T, MM−1 = I and OT

(
Ṁ − 2B

)
O = 0, where O is an arbitarary vector, Ḣ can be obtained as

Ḣ = εKDėTe + KPėTe + 1

2
ε2ėTM(φ)e + 1

2
ε2eTM(φ)ė + 1

2
ε2eTṀ(φ)e + εeTM(φ)ë + εeTṀ(φ)ė

+ εėTM(φ)ė + ėTM(φ)ë + 1

2
ėTṀ(φ)ė (35)

By replacement of Eq. (33) in Eq. (35) and some simplifications, the resulting Ḣ would be

Ḣ = −εeTKpe − ėTKDė (36)

As can be seen, a positive-definite Lyapunov function leads to a negative Ḣ and guarantees the stability
of the given approach. The diagram of the mentioned control algorithm has been illustrated in Fig. 3.

In the next section, the outputs of the Lyapunov-based control have been derived and compared in
the lack of uncertainty and disturbance and with considering them.

6.1.1 Lyapunov-based control results in the lack of the disturbances and uncertainties
Firstly, the desired trajectory is designed for the end-effector, which is written in Eq. (36).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xd = − 1

10
sin

t

3
− 1

10

Yd = − 1

10
sin

t

7

Zd = 1

10
cos

t

2
+ 1

10

(37)

As mentioned above, desirable joint angles have been obtained using the JLA path planning
method as

φd = φd−1 + (
JT

E LEJE + JT
A LAJA + LS

)−1
(JT

E LE(X − X1)) (38)

KD = diag{90, 90, 90} and KP = diag{90, 90, 90} represent proportional and derivative gain matrices,
respectively; besides, they are diagonal positive-definite matrices. Joint angles’ initial positions are
considered as φ0 = [−10 150 280

]T.
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Figure 4. The Lyapunov-based control in the lack of uncertainty and disturbance. (a) Desired and
actual joint angles of hand motion. (b) Trajectory tracking of a spatial reference path.

Figure 5. Control inputs of the system in the Lyapunov-based control in the lack of uncertainties and
disturbances.

In Fig. 4, joint angles’ convergence to the desired angles and path planning of the end-effector in the
lack of uncertainties and disturbances are shown.

As can be seen, the whole actual joint angles shift toward the desired joint angles smoothly and in a
short time. Similarly, the end-effector tracks the desired 3D path without any deviations. Cable forces as
control inputs, which only accept the positive forces for this cable-driven robot, are depicted in Fig. 5.
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Figure 6. The Lyapunov-based control with considering uncertainty and disturbance. (a) Desired and
actual joint angles of hand motion. (b) Trajectory tracking of a spatial reference path.

Obviously, due to the low mass of the links, cables take lower positive values. In Section 6.1.2, the
effects of the uncertainties and disturbances are presented on the joints’ angles, tracking, and control
inputs.

6.1.2. Lyapunov-based control results with considering uncertainty and disturbance
For analysis of the robustness and efficiency of the Lyapunov-based control on this upper limb cable-
driven rehabilitating system, the previous plots are derived while taking uncertainty and disturbance
into consideration. Uncertainties have been exerted in the mass of the links with 1.1 times more in the
interval [23] sec, and disturbances have been used in control inputs with �= 6

[
1 1 1 1

]T
cos t

2

in [89] sec. KD and KP exist as proportional and derivative gain matrices. Also, the initial conditions
have been considered as the same in both conditions, with and without uncertainties and disturbances.

Clearly, the Lyapunov-based control does not show robustness with considering uncertainty and dis-
turbance. Besides, considerable tracking errors are occurred and illustrated in Fig. 6. Since uncertainties
and disturbances have arrived in the robot, the end-effector goes out of the way, and the position errors
increase.

In Fig. 7, cable forces are presented, while it is clear that in the arrival of the uncertainties and
disturbances the values have a jump, and more control inputs are needed to control this cable-driven
rehabilitating robot.

The results of the Lyapunov-based control with considering uncertainties and disturbances confirm
the requirement for a more robust and effective controller due to the tracking errors and higher control
efforts; as a result, a new robust controller is introduced in Section 6.2 in comparison with mentioned
Lyapunov-based controller.

6.2. Computed-torque-like control with independent-joint compensation
Since a computed-torque control depends on exact dynamic parameters being predefined and cable
forces being estimated in real-time to tackle this issue, computed-torque-like control has been
introduced. In the presence of uncertainties, a compensator should be considered to minimize their
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Figure 7. Cable forces in the Lyapunov-based control with considering uncertainty and disturbance.

effects and track errors through its compensation part and robustness to make the end-effector track the
reference trajectory precisely. Thus, a computed-torque-like control with independent-joint compensa-
tion has been applied to the system, which this new robust controller does not need expensive hardware
to take the experimental results in comparison with other robust controllers, and it has indicated its
superiorities in tracking in the presence of uncertainties and disturbances.

The general form of the dynamic equation is ref. [26]

M(φ)φ̈ + B(φ, φ̇)φ̇ + G(φ) = T (39)

And a computed-torque-like control input is

T = M̂(φ)μ+ B̂(φ, φ̇)φ̇ + Ĝ(φ) (40)

ˆindicates nominal parameters. After replacement of Eq. (40) in Eq. (39), and applying some assump-
tions such as M̂ = I, B̂ = 0 and Ĝ = 0, the resulting formulation would be

M(φ)φ̈ + B(φ, φ̇)φ̇ + G(φ) = u (41)

To compensate for the consequences of the uncertainties, u is designed as an unknown model uncertainty
in the controller.

u = −KDė − KPe +�μ (42)

kP and kD present large positive constants. By replacing Eq. (42) in Eq. (41), φ̈ is derived as

φ̈ = M−1
(−KDė − KPe +�μ− Bφ̇ − G

)
(43)

The error dynamics can be calculated by adding −φ̈d to both sides of Eq. (43).

ë = M−1
(−KDė − KPe +�μ− Bφ̇ − G

)− φ̈d (44)

According to some characteristics of robot manipulators and dynamical systems such as
‖M (φ)‖≤σ1,‖G(φ)‖≤σ2, ‖B(φ, φ̇) ‖≤ σ3 ‖ φ̇ ‖, φd <α1, φ̇d <α2, and φ̈d <α3, ‖ u ‖ yields as

‖ u ‖=‖ Mφ̈d + Bφ̇d + G ‖≤ δ1 + δ2 ‖ φ ‖ +δ3 ‖ φ̇ ‖= δTθ (45)
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Figure 8. Block diagram of the computed-torque-like control with independent-joint compensation for
the upper limb cable-driven rehabilitating system.

where δ1, δ2, and δ3 are positive constants, δ= [
δ1 δ2 δ3

]T and θ (φ, φ̇) = [
1 φ φ̇

]T. It is
noticeable that θ (φ, φ̇) is considered as the desired compensation. Then, φ̈d yields from Eq. (45) as

φ̈d = M−1
(
μ− Bφ̇d − G

)
(46)

Therefore, the final form of the error dynamics after replacing Eq. (46) would be

ë = M−1 (−KDė − KPe +�μ− Bė − u) (47)

Or [
ė

ë

]
=
[

0 I

−M−1kP − M−1(kD + B)

] [
e

ė

]
+
[

0

M−1

]
(�μ− u) (48)

The general form of the error dynamics in state space is shown as

ė = Ae + C (�μ− u) (49)

where A =
[

0 I

−M−1kP − M−1(kD + B)

]
and C =

[
0

M−1

]
, and also e = [

eT
φ

ėT
φ

]T is the vector of errors

and their velocities. To demonstrate the stability of error dynamics, matrix P can be derived through
Eq. (50).

PA + ATP = −Q (50)
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Figure 9. Compared hand joint angles in the computed-torque-like control with independent-joint
compensation with considering uncertainty and disturbance.

where A =
[

0 I

−M−1kP − M−1(kD + B)

]
and Q represents a positive-definite symmetric matrix. By

choice of a P as a positive-definite matrix in Eq. (50), Q can be calculated. A positive-definite Lyapunov
function is considered as ref. [26]

V = 1

2
eTPe +

n∑
i=1

ψ−1
i βi (51)

And the βi, i ∈ {1, . . . , n} indicates the variable length of the boundary layer

β̇i = −ψ−1
i βi, β (0) > 0,ψi > 0 (52)

Making use of Eq. (52) and lower figures of βi, the tracking error would enter in a smaller residual set.
Also, matrix P is defined as

P =
[
ϕkP M

M ϕM

]
(53)

Taking the derivative of V yields [26]

V̇ = 1

2

(
eTPė + ėTPe

)−
n∑

i=1

βi (54)

By replacement of Eq. (49) in V̇ it can be concluded that

V̇ = 1

2
(Ae + C(�μ− u))TPe + eTP(Ae + C(�μ− u)) −

n∑
i=1

βi (55)
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Figure 10. Tracking errors in x, y, and z coordinate in computed-torque-like control with and without
the independent-joint compensation with considering uncertainty and disturbance.

Figure 11. The control inputs in the computed-torque-like control with and without independent-joint
compensation with considering uncertainty and disturbance.
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Table III. The tracking errors and control inputs in computed-torque-like control in the presence
and absence of independent-joint compensation.

In the absence of the In the presence of the
independent-joint compensation independent-joint compensation∫ 10

3
(E2

x + E2
y + E2

z )dt 0.0222 0.0140∫ 10

0
F2dt 3.8862 × 103 3.7241 × 103

Figure 12. Compared hand joint angles between the Lyapunov-based control and the computed-torque–
like control with independent-joint compensation with considering uncertainty and disturbance.

A compensator with independent joint defines the following equation:

�μ=

⎧⎪⎪⎨
⎪⎪⎩

−(δTθ )2
τi

βi

|τi| ≤ βi

δTθ

− (
δTθ

) τi

|τi| |τi|> βi

δTθ

(56)

where

τi = ei + ϕiėi (57)

ϕi are positive constant coefficients. Making use of Eq. (50) and some properties such as
[

e ėT
]T =[

ėT e
]T and MM−1 = I, V̇ turns into

V̇ = −1

2
eTQe + eTPC (�μ− u)−

n∑
i=1

βi (58)
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Figure 13. The tracking in the upper limb between the computed-torque-like control with independen-
t-joint compensation and the Lyapunov-based control with considering uncertainty and disturbance.

By taking advantage of Eq. (57), the second term of Eq. (58) would be

eTPC (�μ− u)= [
eT ėT

] [ϕkP M

M ϕM

] [
0

M−1

]
(�μ− u)= (

eT + ϕėT
)
(�μ− u)= τ T (�μ− u)

(59)
Then, V̇ yields the following equation:

V̇ = −1

2
eTQe + τ T (�μ− u)−

n∑
i=1

βi (60)

Making use of Cauchy–Schwartz inequalities, V̇ is obtained as

V̇ ≤ − ‖ Q ‖‖ e ‖2 + ‖ τ T
i ‖‖ (�μ− u) ‖ −

∥∥∥∥∥
n∑

i=1

βi

∥∥∥∥∥ (61)

μ and �μ are derived from Eq. (45) and Eq. (56), respectively, and are put into V̇.

V̇ ≤ −‖ Q ‖‖ e ‖2 −‖ τ T
i ‖2‖ (δTθ ) ‖2

‖ βi ‖ − ∥∥τ T
i

∥∥ ‖ (δTθ ) ‖ −
∥∥∥∥∥

n∑
i=1

βi

∥∥∥∥∥ (62)

According to the definition of the compensator function in Eq. (56), ‖ τi ‖=‖ τ T
i ‖≤ βi

δTθ
is considered

and placed in V̇.

V̇ ≤ − ‖ Q ‖‖ e ‖2 − ‖ βi ‖ − ‖ βi ‖ −
∥∥∥∥∥

n∑
i=1

βi

∥∥∥∥∥ (63)
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Figure 14. Tracking errors in x, y, and z coordinate in the computed-torque-like control with
independent-joint compensation and the Lyapunov-based control with considering uncertainty and
disturbance.

Since βi is an indicator of the variable length of the boundary layer, it is a positive constant. Also,∑n
i=1βi results in a positive constant; as a result, if −2 ‖ βi ‖= −2α1 and −∑n

i=1βi = −α2, the final
∣∣V̇∣∣

would be

V̇ ≤ − ‖ Q ‖‖ e ‖2 −2α1 − α2 ≤ 0 (64)

where α1 and α2 show positive constants.
As can be seen, a positive-definite Lyapunov function V leads to a negative definite V̇ and ensures

the stability of the system. The diagram of the given controller is shown in Fig. 8.

6.2.1 The computed-torque-like control in the presence and absence of the independent-joint compensation
Comparisons between the results of the computed-torque-like control in the presence and absence of
the independent-joint compensation are presented, and the efficiency of the proposed compensation is
illustrated to guarantee the robustness of this novel method. Similarly, uncertainties are considered in
the mass of the links with 1.1 times more in the interval [23] sec, and also, disturbances are exerted to
control inputs with �= 6

[
1 1 1 1

]T
cos t

2
in [89] sec. KD and KP define proportional and derivative

gain matrices, respectively, as diag {90, 90, 90}, and the initial conditions are the same in both conditions,
with and without compensator as φ0 = [−10 150 280

]T.
The joint angles in the computed-torque-like control in the presence and absence of the independent-

joint compensation are shown in Fig. 9, and the positive results of applying independent-joint compen-
sation are sensible. The performance of joints’ tracking depicts the importance of the compensation
existence.
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Figure 15. The control inputs in the computed-torque-like control with independent-joint compensation
and the Lyapunov-based control with considering uncertainty and disturbance.

Large values of tracking errors in the absence of the independent-joint compensation show the lack
of robustness of the system while taking uncertainties and disturbances into consideration.

Furthermore, in Fig. 11, cable forces witnessed larger control efforts in the absence of independent-
joint compensation.

Table III represents the tracking errors and control inputs in both conditions.
According to the numerical figures, consideration of the independent-joint compensation improves

the tracking error and the total control inputs with about 36.94% and 4.18%, respectively, and this novel
controller properly acts as a robust controller. We keep this robust control in the next section to compare
it with the Lyapunov-based control.

6.3. A comparison of the computed-torque-like control with independent-joint compensation and
the lyapunov-based control with considering the uncertainty and disturbance

For demonstrating the robustness of the proposed control method with considering the uncertainties
and disturbances, uncertainties have arrived in the mass of the links with 1.1 times more in the interval
[23] sec, and disturbances are considered in control inputs with �= 6

[
1 1 1 1

]T
cos t

2
in [89] sec.

Besides, KD and KP are indicators of proportional and derivative gain matrices as diag {90, 90, 90}
and diag {90, 90, 90}, respectively, and the same initial conditions in both controllers are as φ0 =[−10 150 280

]T
. The results are all derived and compared thoroughly in the same conditions.

Initially, as can be seen in Fig. 12, actual joint angles in computed-torque-like control with
independent-joint compensation converged to the desired ones in a short time and a smooth way. Besides,
none of the actual generalized coordinates have deviated from the desired signals, while in the Lyapunov-
based control all of the actual joint angles do not show a proper function and move away at the moments
of uncertainties and disturbances existence.
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Table IV. The tracking errors and the control inputs in the Lyapunov-based control and
the computed-torque-like control with independent-joint compensator.

Computed-torque-like control Lyapunov-based
with independent-joint compensation control∫ 10

3
(E2

x + E2
y + E2

z )dt 0.0140 0.0195∫ 10

0
F2dt 3.4184 × 103 1.1103 × 104

A desirable trajectory tracking of the computed-torque-like control with independent-joint compen-
sation is representative of the robustness of this control algorithm with considering uncertainties and
disturbances and depicts a better performance, which is shown in Fig. 13.

According to Fig. 14, in the proposed controller the tracking errors converge to zero in a short time
and guarantee the stability of the robot, while in the Lyapunov-based control, errors in x coordinate
illustrate the deviation in the moments of uncertainties and disturbances.

In Fig. 15, cables experience higher forces in the Lyapunov-based control against uncertainties and
disturbances, especially in cable 2; furthermore, motors need larger energy used to maintain the tracking,
and also, higher cable tensions are needed.

Numerical figures regarding the overall tracking errors and the control inputs for both control
algorithms are calculated in Table IV.

The numerical figures in Table IV demonstrate a 28.21% and 69.22% improvement in overall tracking
errors and the control inputs in the computed-torque-like control with independent-joint compensation.
As a result, the proposed robust control algorithm has an acceptable performance in tracking and needs
less control input against uncertainties and disturbances.

7. Conclusion
This research represented a three-DOF upper limb cable-driven rehabilitating robot containing four
motors in spatial path planning. Dynamic equations were exploited through the Lagrangian method.
Afterward, positive cable tensions were obtained through null space. Since one of the vital constraints
in this CDRR was holding joint angles in a definite lower and upper limit, the path planning was derived
through the new joint limit-avoidance approach, and the results’ improvements were revealed.

A novel robust control scheme of the proposed upper limb CDRR in a 3D path and its functionality
with considering uncertainties and disturbances were the chief goals of this research. Consequently, the
comparative outputs between the Lyapunov-based control and the computed-torque-like control with
independent-joint compensation in the presence of uncertainties and disturbances were compared. The
efficiency of the proposed robust control method was demonstrated by a 28.21% improvement in track-
ing. Furthermore, cable tensions as control inputs experienced an improvement with about 69.22%, and
motors required less power to move and control the robot.

Finally, one of the potential research plans about this cable-driven rehabilitation system can be the
consideration of the elasticity of the cables in dynamic modeling. Different optimization algorithms can
be also applied to the robot to extract the least and more efficient positive control inputs. Moreover, to
validate the theoretical results, the system can be tested in real time and a comparison can be drawn
between the results.
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Appendix
Mass matrix M(φ), centrifugal and Coriolis forces vector B(φ, φ̇), and gravitational forces G(φ) in the
dynamic formulation in Eq. (A5) are defined below. Mass matrix is presented as

M =
⎡
⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎦ (A1)
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The arrays of the mass matrix are defined below.

M11 = I2z

2
+ I3z

2
+ I3z cos (2φ2 + 2φ3)

2
+ la

2mf

8
+ la

2mh

2
+ lf

2mh

8
+ I2z cos (2φ2)

2
+ la

2mf cos (2φ2)

8

+ la
2mh cos (2φ2)

2
+ la

2mh cos (2φ2 + 2φ3)

8
+ lalf mh cos (φ3)

2
+ lalf mh cos (2φ2 + φ3)

2
(A2)

M12 = 0 (A3)

M13 = 0 (A4)

M21 = 0 (A5)

M22 = I2z + I3z + la
2mf

4
+ la

2mh + lf
2mh

4
+ lalf mh cos (φ3) (A6)

M23 = lf
2mh

4
+ lalf mh cos (φ3)

2
I3z (A7)

M31 = 0 (A8)

M32 = lf
2mh

4
+ lalf mh cos (φ3)

2
+ I3z (A9)

M33 = lf
2mh

4
+ I3z (A10)

Here centrifugal and Coriolis forces vector is shown in Eq. (A11).

B =
⎡
⎢⎣

B1

B2

B3

⎤
⎥⎦ (A11)

Each array of matrix B(φ, φ̇) is explained as

B1 = −φ̇1φ̇2

(
I3z sin (2φ2 + 2φ3)+ I2z sin (2φ2)+ lf

2mh sin (2φ2 + 2φ3)

4
+ la

2mf sin (2φ2)

4

+ la
2mh sin (2φ2)+ lalf mh sin (2φ2 + φ3)

)
− φ̇1φ̇2

(
I3z sin (2φ2 + 2φ3)+ lf

2mh sin (2φ2 + 2φ3)

4
+ lalf mh sin (φ3)

2
+ lalf mh sin (2φ2 + φ3)

2

)
(A12)

B2 = I2zφ̇
2
1 sin (2φ2)

2
+ I3zφ̇

2
1 sin (2φ2 + 2φ3)

2
+ φ̇2

1 la
2mf sin (2φ2)

8
+ φ̇2

1 la
2mh sin (2φ2)

2

+ φ̇2
1 lf

2mh sin (2φ2 + 2φ3)

8
− lalf mhφ̇

2
3 sin (φ3)

2
+ lalf mhφ̇

2
1 sin (2φ2 + φ3)

2
− lalf mhφ̇2φ̇3 sin (φ3)

(A13)

B3 =
(

I3z sin (2φ2 + 2φ3)

2
+ lf

2mh sin (2φ2 + 2φ3)

8
+ lalf mh sin (φ3)

4

+ lalf mhφ̇
2
1 sin (2φ2 + φ3)

4
+ φ̇2

2 lalf mh sin (φ3)

2

)
(A14)
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The gravitational forces vector G(φ) and its arrays are shown as

G =
⎡
⎢⎣

G1

G2

G3

⎤
⎥⎦ (A15)

G1 = −g sin (φ1)
(
lamf cos (φ2)+ 2lamh cos (φ2)+ lf mh cos (φ2 + φ3)

)
2

(A16)

G2 = −g cos (φ1)
(
lamf sin (φ2)+ 2lamh sin (φ2)+ lf mh sin (φ2 + φ3)

)
2

(A17)

G3 = −glf mh sin (φ2 + φ3) cos (φ1)

2
(A18)
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