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Buried points of plane continua
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Abstract. Sets on the boundary of a complementary component of a continuum in the plane have been
of interest since the early 1920s. Curry and Mayer defined the buried points of a plane continuum to
be the points in the continuum which were not on the boundary of any complementary component.
Motivated by their investigations of Julia sets, they asked what happens if the set of buried points
of a plane continuum is totally disconnected and nonempty. Curry, Mayer, and Tymchatyn showed
that in that case the continuum is Suslinian, i.e., it does not contain an uncountable collection of
nondegenerate pairwise disjoint subcontinua. In an answer to a question of Curry et al., van Mill and
Tuncali constructed a plane continuum whose buried point set was totally disconnected, nonempty,
and one-dimensional at each point of a countably infinite set. In this paper, we show that the van Mill–
Tuncali example was the best possible in the sense that whenever the buried set is totally disconnected,
it is one-dimensional at each of at most countably many points. As a corollary, we find that the
buried set cannot be almost zero-dimensional unless it is zero-dimensional. We also construct locally
connected van Mill–Tuncali type examples.

1 Introduction

A continuum is a compact, connected metric space. A point x in a plane continuum
X ⊂ R2 is buried if x is not in the boundary (or frontier) of any component of R2/X.
We denote by bur(X) the set of all buried points of X. Note that bur(X) is a Gδ-set.

Motivation to study buried points comes from complex dynamics. Specifically, one
of the difficult problems in complex dynamics asks whether bur(J(R))must be zero-
dimensional in case it is punctiform, where J(R) is the Julia set of a rational function
on the sphere C∞. The Devaney–Rocha examples of Sierpiński gasket like Julia sets
have this property. Curry, Mayer, and Tymchatyn proposed to study it from a purely
topological point of view. For more details, see [1, 2, 4].

In [9, Proposition 3.1], van Mill and Tuncali prove that the set of buried points
of a plane continuum can be a Cantor set. They use this to provide in §4 of their
paper an example of a plane Suslinian continuum whose set of buried points is
totally disconnected and weakly 1-dimensional. Their example answers in the negative
Question 1 of Curry, Mayer, and Tymchatyn [2], concerning whether or not a set of
buried points is zero-dimensional provided it is totally disconnected. Note that if a
plane continuum is regular (that is, has a basis of open sets with finite boundaries),
then the set of buried points is either empty or zero-dimensional (see [2, Theorem 3]).
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Curry et al. showed that if X is a plane continuum with complementary compo-
nents whose boundaries are locally connected and bur(X) is Suslinian, then in fact X
has to be Suslinian [2, Theorem 6]. This is the case for the example in [9, Section 4] (the
buried point set in that example is even totally disconnected). However, it is not locally
connected. A plane continuum X is locally connected if and only if the boundaries of
complementary components are locally connected and form a null-sequence [13, VI
Theorem 4.4]. Using this fact, we construct in §5 a locally connected plane continuum
whose set of buried points is totally disconnected but not zero-dimensional. The set
at which the buried points are 1-dimensional is countable. This is sharp according to
the following theorem, which we prove in §3.

Theorem A Let X be a Suslinian plane continuum. If Y ⊂ X is a totally disconnected
Borel set, then Y is zero-dimensional at all but countably many points.

Corollary B Let X a plane continuum such that the boundary of each component of
R

2/X is locally connected (e.g. X is locally connected). If bur(X) is totally disconnected,
then bur(X) is zero-dimensional at all but countably many points.

Countable sets are zero-dimensional, so under the assumptions of Corollary B the
buried set is either zero-dimensional or weakly 1-dimensional. There is no almost
zero-dimensional, weakly 1-dimensional space [7, Theorem 1]. Therefore, bur(X)
cannot be almost zero-dimensional in the proper sense (cf. [1, Question 2.7]). To
summarize:

Corollary C Let X be a plane continuum such that each component of R2/X has
locally connected boundary (e.g. X is locally connected).
(i) If bur(X) is totally disconnected, then bur(X) is at most weakly 1-dimensional.
(ii) If bur(X) is almost zero-dimensional, then bur(X) is zero-dimensional.

It is still unknown whether the Julia set of a rational function may have a buried
set which is totally disconnected but not zero-dimensional (cf. [2, Question 3]).

2 Definitions

All spaces under consideration are assumed to be separable and metrizable.
A space X is Suslinian if each collection of pairwise disjoint nondegenerate

continua in X is countable.
A space X is totally disconnected if every two points of X are contained in disjoint

clopen sets, and zero-dimensional if X has a basis of clopen sets. Respectively, X is
zero-dimensional at x ∈ X if the point x has a neighborhood basis of clopen sets
(written indx X = 0, cf. [3, Problem 1.1.B]).

A space X is almost zero-dimensional if X has a basis of open sets whose closures
are intersections of clopen sets [7, 12]. Observe that every almost zero-dimensional
space is totally disconnected.
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The dimensional kernel of a 1-dimensional space X is defined to be the set of points
at which X is not zero-dimensional; Λ(X) = {x ∈ X ∶ indx X = 1}. A 1-dimensional
space X is weakly 1-dimensional if Λ(X) is zero-dimensional.

A domain is a connected open subset of the plane or topological 2-sphere. If X is
a continuum on the 2-sphere, then each complementary component of X is a simply
connected domain. Riemann’s mapping theorem implies that every simply connected
domain U ⊂ C is homeomorphic to the unit disc {z ∈ C ∶ ∣z∣ < 1}. Carathéodory’s the-
orem implies moreover that if ∂U is a simple closed curve then U is homeomorphic
to the closed unit disc {z ∈ C ∶ ∣z∣ ≤ 1}.

3 Main result

Suppose that X is a continuum and Y ⊂ X. For each y ∈ Y let Uy be the collection of
all open subsets U of X such that y ∈ U and ∂U ⊂ X/Y . For each y ∈ Y put

F(y) = ⋂
U∈Uy

U .

Lemma 1 If Y is totally disconnected and y ∈ Λ(Y), then F(y) is a nondegenerate
subcontinuum of X and F(y) ∩ Y = {y}.

Proof Suppose F(y) = {y} is degenerate. We show that Y is zero-dimensional at y.
Let V be an arbitrary relatively open subset of Y that contains y. Pick an open subset W
of X such that W ∩ Y = V . Since F(y) = {y} ⊂ V , there is by compactness an element
U ∈ Uy such that U ⊂W . But then y ∈ U ∩ Y ⊂ V , and U ∩ Y is clopen in Y.

Now suppose that y ∈ Y and z ∈ Y/{y}. Pick by total disconnectedness of Y clopen
subsets C0 and C1 = Y/C0 of Y such that y ∈ C0 and z ∈ C1. There are disjoint open
subsets V0 and V1 of X such that V0 ∩ Y = C0 and V1 ∩ Y = C1. Observe that the
boundary of V0 is contained in X/Y . Since V1 ∩ V0 = ∅, this shows that z ∉ F(y).
Hence, F(y) ∩ Y = {y}.

It remains to prove F(y) is connected. Just suppose F(y) = A∪ B where A and B
are disjoint closed sets with y ∈ A. Let U and V be disjoint open neighborhoods of A
and B in X, respectively. By compactness, there exists W ∈ Uy such that W ⊂ U ∪ V .
Then W ∩U ∈ Uy , so B = ∅. ∎

Remark 1 If X is locally connected and U ∈ Uy , then the connected component of
y in U is path-connected and belongs to Uy .

Lemma 2 Let S be a circle in the plane, and a1 , a2 , a3 , a4 four points of S in cyclic
order. Let A i , i ∈ {1, 2, 3, 4}, be pairwise disjoint arcs intersecting S only at an endpoint
a i , with opposite endpoints b i in the bounded component of R2/S, denoted int(S).

If K ⊂ R2/(A2 ∪ S ∪ A4) is a continuum containing b1 and b3, then b2 and b4 are
in different components of R2/(A1 ∪ S ∪ A3 ∪ K).

Proof We may assume that S is the unit circle in the complex plane C, and

a1 = 1, a2 = i, a3 = −1, a4 = −i.
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Let γ ⊂ C/(A1 ∪ S ∪ A3) be any arc from b2 to b4. We will show that γ intersects K.
This will imply that b2 and b4 are in different components of C/(A1 ∪ S ∪ A3 ∪ K), as
all such components are path-connected.

In γ ∪ A2 ∪ A4, there is an arc γ̂ intersecting S only at endpoints ±i. Let α and
β be the left and right halves of the circle S. By the θ-curve theorem [10, Lemma
64.1], int(S)/γ̂ is the union of two disjoint domains U and V whose boundaries are
α ∪ γ̂ and γ̂ ∪ β, respectively. Let W be an open ball centered at −1 that misses γ̂.
Then W ∩ int(S) ⊂ U ∪ V . Since W ∩ int(S) is connected and −1 ∈ ∂U , we have W ∩
int(S) ⊂ U . Thus, U ∩ A3 ≠ ∅. It follows that A3/{−1} ⊂ U . Thus, b3 ∈ U . Likewise,
b1 ∈ V . Now K is a connected subset of int(S)meeting both U and V. So K ∩ γ̂ ≠ ∅.
Therefore, K ∩ γ ≠ ∅. ∎

We can now prove Theorem A for locally connected X.

Theorem 3 Let X be a locally connected Suslinian plane continuum. If Y ⊂ X is a
totally disconnected Borel set, then Λ(Y) is countable.

Proof For a contradiction suppose that Y ⊂ X is totally disconnected and Borel,
and Z = Λ(Y) is uncountable. By Lemma 1 there exists ε > 0 such that for uncountably
many z’s, diam(F(z)) ≥ 5ε. The set of all z’s with this property is closed in Y, thus it is
Borel and contains a Cantor set. Let us just assume that Z is a Cantor set in Y with the
property diam(F(z)) ≥ 5ε for each z ∈ Z. We may further assume that Z lies inside
of an open ball of radius ε centered at one of its points. Let S and S′ be the circles of
radii ε and 2ε, respectively, centered at the point. Observe that every F(z) crosses S′.

In the claims below, all boundaries are respective to X (not R2).

Claim 4 Let U be an open subset of X intersecting Z with ∂U ⊂ (X/Y) ∪ S. Then
for every point p ∈ R2 there exists a connected open set W ⊂ U intersecting Z such that
p ∉W and ∂W ⊂ (X/Y) ∪ S.

Proof of Claim 4 For each z in the uncountable set Z ∩U/{p} there is a non-
degenerate continuum K(z) ⊂ F(z) containing z and missing S ∪ {p}. Just take
any closed neighborhood N of z missing S ∪ {p}, and let K(z) be the component
of z in F(z) ∩ N ; by the boundary bumping theorem [11, Theorem 5.4] K(z) is
nondegenerate. Note that K(z) ∩ Y = {z} by Lemma 1.

By the Suslinian property of X there exist

z1 , z2 , z3 , z4 ∈ Z ∩U/{p},

such that K(z i) ∩ K(z1) ≠ ∅ for each i ∈ {2, 3, 4}. Let U i ∈ Uz i be pairwise disjoint.
By Remark 1, we may assume that each U i is path-connected. Since F(z i) extends
beyond S′, so does U i . Thus, there is an arc A i ⊂ U i from z i to a i ∈ S′ that intersects
S′ only at a i . By a permutation of indices i ∈ {2, 3, 4}, we may assume that the a i ’s are
in cyclic order around S′. Let K = K(z1) ∪ K(z3). Note that p ∉ K.

Case 1: p ∈ U1 ∪ S′ ∪U3. Let W be the component of z2 in U2 ∩U/S. Then W
is a connected open subset of U intersecting Z, with p ∉W . Note also that W is
clopen in U2 ∩U/S, which means that ∂W ⊂ ∂(U2 ∩U/S). The boundary of any
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Figure 1: Proofs of Claim 4 (left) and Claim 5 (right).

finite intersection of open sets is contained in the union of the individual boundaries.
Therefore, ∂W ⊂ ∂U2 ∪ ∂U ∪ ∂(X/S) ⊂ (X/Y) ∪ S.

Case 2: p ∉ U1 ∪ S′ ∪U3. Then certainly p ∉ A1 ∪ S′ ∪ A3 and since p ∉ K we find
that p ∈ O = R2/(A1 ∪ S′ ∪ A3 ∪ K). By Lemma 2, z2 and z4 are in different compo-
nents of O. Of these two components, at least one does not contain p. Let’s say that V is
the component of z2 in O, and p ∉ V . The component of p in O is an open set missing
V, so p ∉ V . Let W be the component of z2 in U2 ∩U ∩ V/S. Then W is a connected
open subset of U intersecting Z, and p ∉W . It remains to show that ∂W ⊂ (X/Y) ∪ S.
Note the following:
• ∂V ⊂ A1 ∪ S′ ∪ A3 ∪ K;
• W misses A1 ∪ A3 because W ⊂ U2;
• W misses S′ because it lies in the closed disc bounded by S.
Hence, W ∩ ∂V ⊂ K/{z1 , z3} ⊂ X/Y . We conclude that

∂W ⊂W ∩ [∂U2 ∪ ∂U ∪ ∂V ∪ ∂(X/S)]
⊂ ∂U2 ∪ ∂U ∪ (W ∩ ∂V) ∪ ∂(X/S)
⊂ (X/Y) ∪ S .

This completes the proof of Claim 4. ∎

Claim 5 Let U be an open subset of X intersecting Z with ∂U ⊂ (X/Y) ∪ S. Then there
are connected open subsets W1 and W2 of U each intersecting Z, with disjoint closures,
such that ∂Wi ⊂ (X/Y) ∪ S.

Proof of Claim 5 Let z1 , z2 , z3 , z4 ∈ Z ∩U . Let U i ∈ Uz i be pairwise disjoint and
path-connected. Let A i be an arc in U i from z i to a i ∈ S′, intersecting S′ only at a i .
We may assume that the a i ’s are in cyclic order. Let Vi be the component of z i in
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U i ∩U/S. Assume that V1 and V3 have a common point p (if they are disjoint then
we’re done). Note that p ∉ U2 ∪U4, so p ∉ A2 ∪ A4 ∪ V2 ∪ V4.

By Claim 4, there exist z′2 , z′4 ∈ Z and connected open subsets W2 and W4 of V2 and
V4 whose closures miss p, such that z′i ∈Wi and ∂Wi ⊂ (X/Y) ∪ S. For each i ∈ {2, 4},
working within Vi we can modify A i to an arc A′i that ends at z′i instead of z i . The other
endpoint of A′i is still a i , and p ∉ A′i . Let V be a connected neighborhood of p with
closure missing W2 ∪W4 ∪ S′ ∪ A′2 ∪ A′4. For each i ∈ {1, 3} let B i be an arc in Vi from
z i into V. Let K = B1 ∪ B3 ∪ V . By Lemma 2, z′2 and z′4 are in different components of
R

2/(A1 ∪ S′ ∪ A3 ∪ K). The continua W2 and W4 are contained in these components,
hence they are disjoint. ∎

By Claim 5, there are two connected open sets W⟨0⟩ and W⟨1⟩ in X/S, intersecting
Z, with disjoint closures and boundaries in (X/Y) ∪ S. Assuming that α ∈ 2<N is a
finite binary sequence and Wα has been defined, apply Claim 5 to get connected
open subsets Wα⌢0 and Wα⌢1 of Wα , each intersecting Z, with disjoint closures and
boundaries in (X/Y) ∪ S. Their boundaries must meet S because each F(z)meets S′.
So for every infinite sequence α ∈ 2N,

Kα =
∞

⋂
n=1

Wα↾n ,

is a continuum in X stretching from Z to S. Clearly if α ≠ β then Kα and Kβ are
disjoint. Therefore, {Kα ∶ α ∈ 2N} is an uncountable collection of pairwise disjoint
nondegenerate subcontinua of X, a contradiction to the Suslinian property of X.
Hence, Λ(Y)must have been countable. This completes the proof of Theorem 3. ∎

Theorem A is a direct consequence of Theorem 3 and:

Theorem 6 Every Suslinian plane continuum is contained in a locally connected
Suslinian plane continuum.

Proof Let X be a Suslinian plane continuum. Let U0 , U1 , U2 , . . . be the connected
components of R2/X with U0 unbounded. In each domain Um , there is a sequence
Sm

0 , Sm
1 . . . of disjoint, concentric simple closed curves limiting to the boundary of

Um . Let A0
0 = ∅, and for each m ≥ 1 let Am

0 be the closed topological disc in Um that is
bounded by Sm

0 . For each n ≥ 1, let Am
n be the closed annulus in Um that is bounded

by Sm
n−1 and Sm

n . In Am
n there is a finite collection of arcs Im

n covering ∂Am
n such that

each component of Am
n /⋃ Im

n has diameter less than 1/(m + n). We can easily arrange
that the boundaries of these components are simple closed curves, and Xm

n = ⋃ Im
n is

connected. For the reader who’d like more details, one can assume that X is a subset
of the Riemann sphere Ĉ = C ∪ {∞}, so that all complementary components of X are
simply connected. Let D = {z ∈ C ∶ ∣z∣ < 1}. Given a component U of Ĉ/X, apply the
Riemann mapping theorem to get a continuous bijection f ∶ D→ U and transfer the
circles {z ∈ C ∶ ∣z∣ = 1 − 2−n} to U to get the curves Sn . Apply uniform continuity on
each compact annulus {z ∈ C ∶ 1 − 2−n ≤ ∣z∣ ≤ 1 − 2−n−1} to divide it further into a grid
whose cells have images with a small enough diameter. See Figure 2.

https://doi.org/10.4153/S0008439524000894 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000894


Buried points of plane continua 7

Figure 2: Dividing a domain into cells via a conformal mapping of D.

Put

X′ = X ∪
∞

⋃
m=0

∞

⋃
n=0

Xm
n .

The components of R2/X′ form a null sequence of domains whose boundaries are
simple closed curves, so the continuum X′ is locally connected [13, VI Theorem 4.4].
Moreover, X′ is Suslinian because X′/X is a countable union of arcs. ∎

4 Examples

First, we describe a locally connected extension of the continuum in [9] with the
same buried set, which is the totally disconnected and weakly 1-dimensional space
by Kuratowski [6], [3, Exercise 1.2.E].

Remark 2 Kuratowski’s space K is the graph of a particular function f ∶ C → [−1, 1]
defined on the middle-thirds Cantor set C. It has a simple algebraic formula based
on binary representations of members of C (see §4 of [9]). Clearly K is totally
disconnected, and it is weakly 1-dimensional by the following. Let C1 be the countable
set consisting of 0 and all right endpoints of the intervals

( 1
3 , 2

3), (
1
9 , 2

9), (
7
9 , 8

9), . . .

removed from [0, 1] to obtain C. For every x ∈ C1, it happens that K is 1-dimensional
at ⟨x , f (x)⟩. On the other hand, f is continuous at each point of C0 = C/C1. Hence, if
x ∈ C0, then K is zero-dimensional at ⟨x , f (x)⟩. Therefore,

Λ(K) = {⟨x , f (x)⟩ ∶ x ∈ C1},

and K is weakly 1-dimensional.
See Figure 3 for an illustration of K and its closure in C × [−1, 1].

Example 1 There exists a locally connected plane continuum whose buried set is
totally disconnected and 1-dimensional.
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Figure 3: The closure of K consists of the points of K and vertical arcs through points of Λ(K).

Proof Let Z be the plane continuum from [9] which has bur(Z) = K. By construc-
tion, R2/Z is a countable union of disjoint connected open sets with simple closed
curves as boundaries. One complementary component of Z, say W0, is unbounded
and the others, say W1 , W2 , . . ., form a sequence of bounded domains. Let In , for n ≥ 1,
be a finite set of arcs in Wn such that the collection Vn of components of Wn/⋃ In
has mesh less than 1/n. We can easily arrange that the boundary of every element of
Vn is a simple closed curve, and Zn = ∂Wn ∪⋃ In is connected. Here one can even
apply Carathéodory’s theorem to get Zn from a grid in the closed unit disc. As in
Theorem 6,

Z′ = Z ∪
∞

⋃
n=1

Zn ,

is a locally connected continuum. Clearly, bur(Z) ⊂ bur(Z′). For the other
inclusion, note that points in Z′/Z have finite graph neighborhoods in Z′, so
are not in bur(Z′). Now suppose z ∈ Z/bur(Z). Then z ∈ ∂Wn for some n,
and there exists V ∈ Vn such that z ∈ ∂V . So z ∉ bur(Z′). We conclude that
bur(Z′) = bur(Z) = K. ∎

The next example shows that Theorem A is false outside of the plane. By a
dendroid, we shall mean a hereditarily unicoherent, arcwise-connected continuum.

Example 2 There exists a Suslinian dendroid whose endpoint set is totally discon-
nected and 1-dimensional at every point.

We briefly indicate the construction of such an example below. For further details,
see [8, Section 5.3].

Proof Begin with a Lelek function φ ∶ C → [0, 1] whose positive graph

E = {⟨x , φ(x)⟩ ∶ x ∈ C and φ(x) > 0},
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is 1-dimensional at every point [5]. Let

L = ⋃
x∈C
{x} × [0, φ(x)] ⊂ C × [0, 1].

The quotient of L that is obtained by shrinking C × {0} to a point is a continuum
known as the Lelek fan. We will identify arcs in L/E to produce a Suslinian continuum
(a dendroid, in fact) that homeomorphically contains E.

For each n = 1, 2, 3, . . . let Cn be the natural partition of C into 2n pairwise disjoint
intervals of length 3−n . For each i = 1, . . . , 2n − 1 define

An , i = {x ∈ C ∶ φ(x) ≥ 2i+1
2n+1 }.

Put ⟨x , 0⟩ ∼ ⟨x′ , 0⟩ for all x , x′ ∈ C. If y > 0 then define ⟨x , y⟩ ∼ ⟨x′ , y⟩ if there exists
n, i such that x , x′ ∈ An , i belong to the same member of Cn , and y ≤ i/2n . It is possible
to see that ∼ is an equivalence relation, the equivalence classes under ∼ form an
upper semicontinuous decomposition of L, and the quotient D = L/ ∼ is a Suslinian
dendroid with endpoint set E. ∎

Remark 3 The endpoint set of a smooth dendroid is always Gδ ; therefore, E is Borel
and Polish.
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