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AN AXIOMATIC APPROACH TO FORCING IN A GENERAL SETTING

RODRIGO A. FREIRE AND PETER HOLY

Abstract. The technique of forcing is almost ubiquitous in set theory, and it seems to be
based on technicalities like the concepts of genericity, forcing names and their evaluations, and
on the recursively defined forcing predicates, the definition of which is particularly intricate
for the basic case of atomic first order formulas. In his [3], the first author has provided
an axiomatic framework for set forcing over models of ZFC that is a collection of guiding
principles for extensions over which one still has control from the ground model, and has
shown that these axiomatics necessarily lead to the usual concepts of genericity and of
forcing extensions, and also that one can infer from them the usual recursive definition
of forcing predicates. In this paper, we present a more general such approach, covering both
class forcing and set forcing, over various base theories, and we provide additional details
regarding the formal setting that was outlined in [3].

§1. Introduction. In this paper, we introduce an axiomatic framework for
class forcing over models of second order set theory, that avoids the usual
technicalities connected with any usual standard setup for (class) forcing, in
particular the concepts of genericity, forcing names and their evaluations,
and the recursively defined forcing predicates. Instead, we provide a natural
collection of axioms, and show that they induce the common standard
concepts: that is, they allow us to derive the usual concept of genericity, the
usual recursive definitions of forcing predicates, an analogue of the structure
of names for elements of generic extensions and their evaluations, thus
exactly the same forcing extensions, and also the preservation of the axioms
of set theory to our extensions. The aim of this paper is essentially twofold.
First, it is to provide an interesting new viewpoint on what is probably the
most important technical tool in modern set theory. Second, it is supposed
to provide a self-contained way of introducing (class) forcing axiomatically.
The only point in the paper where it is strictly necessary to refer to some sort
of standard (class) forcing setup is when we briefly argue for our axioms to
actually be consistent (modulo the axioms of set theory) in Section 7, after
we introduce our final axiom (8). We will consider various base theories
(Gödel–Bernays set theory GB, Kelley–Morse set theory KM, and some
of their variants), and also deduce the somewhat simpler axioms for the
special case of set forcing over ZFC and some of its weakenings in Section 8.
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428 RODRIGO A. FREIRE AND PETER HOLY

In this introductory section, we want to provide a rough description of
our axiomatic framework, which will be followed with formal definitions in
Sections 2–7.

We require forcing extensions to be based on preorders1 in a ground
model—let us fix such a transitive ground model M ∈ V for this discussion,
and a class preorder P from M. We require M to satisfy the axioms of some
axiom system T for set theory that is suitable for class forcing (either Gödel–
Bernays set theory GB, Kelley–Morse set theory KM, or some variants of
those). We think of conditions (elements) of P as having partial information
on properties of our extensions. We require that stronger conditions have
more such information, and that any particular forcing extension is based
on a choice of filter on P. We think of such a filter as a selection of conditions
which have correct information about our extension, and we will refer to such
conditions as being correct. The motivation for using a filter of conditions
could be explained as follows.

• If we consider the information that a condition q has to be correct,
then any weaker condition p has less information than q, and this
information should therefore also be correct. This corresponds to the
upwards closure property of filters.

• If p and q are correct conditions, we consider the information that is
jointly collected by p and q to be correct. We require that there is a
condition that collects this joint information and that we consider to
be correct. This corresponds to the property of a filter that any two of
its elements are compatible, as witnessed by yet another element of the
filter.

We require that for any condition p ∈ P, there exists a filter G of correct
conditions of which p is an element, so that no condition is a priori incorrect.
Given any particular such filter G, we require the generic extension M[G ]
to contain M as a subset and G as an element. There are a number of
natural axioms which make sure that we have ground model control over our
generic extensions, in a sufficiently simple way. One necessary requirement
for this is that elements of M[G ] are connected to elements of the ground
model so that the latter serve as a sort of name for the former. We require
the existence of a definable relation on our ground model, which, following
[3], we call the P-membership relation. It is supposed to relate to partial
knowledge about the membership relation in forcing extensions. If a and b
are elements of M and p ∈ P, we say that a is an element of b according
to p, and write a ∈p b in case the triple 〈p, a, b〉 stands in this relation.2 We
want to define a membership relation for M[G ], letting the object denoted
by a be an element of the object denoted by b in case a is an element of b
according to some correct condition (that is, ∃p ∈ G a ∈p b). In order to be
able to obtain a transitive model as our forcing extension, we thus require

1A preorder is a reflexive and transitive binary relation.
2This relation corresponds to the relation that 〈a, p〉 ∈ b in a standard forcing setup, given

that a, b are usual forcing names.
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the relation ∃p ∈ P a ∈p b to be well-founded. The relation ∃p ∈ G a ∈p
b will usually not be extensional, but we nevertheless obtain a transitive
∈-structure (which will serve as our generic extension M[G ]) as the image
of the homomorphism that is our evaluation map FG , recursively defined by
setting FG(b) = {FG(a) | a ∈G b} for every b ∈ M.

In order to be able to show that M[G ] is well-defined and satisfies the
axioms of T, we will need to require the following:

• A strong form of set-likeness: for any b ∈ M, {〈a, p〉 | a ∈p b} is a set
in M.

• High degrees of freedom for the P-membership relation: for any relation
S on M× P in M, we find b ∈ M for which {〈a, p〉 | a ∈p b} = S.

Furthermore, we also require the existence of forcing predicates in M,
individually for each first order formula, and also for each second order
formula in the case of KM. We do not require any particular defining
instances for these predicates, we only require them to be connected to
truth in generic extensions by the following two axioms (these requirements
correspond to what is usually known as the forcing theorem in a standard
class forcing setup):

• Whatever holds in M[G ] is forced by some condition in G.
• Whatever is forced by some condition p ∈ G holds true in M[G ].

Finally, we will have to assume that our class forcing notion P is pretame
or tame, which are technical conditions on P that are equivalent to the
preservation of the axioms from T in a standard class forcing setup.

§2. The basic setup. We want to verify our results for models of the base
theory that is Gödel–Bernays set theory GB, and also for some of its variants.
In Section 9, we will also consider the stronger theory KM, and we will
consider yet another strengthening of it in Section 10. These theories are
usually presented as theories in a two-sorted language, with variables for
sets and for classes, and their models will be of the form M = 〈M, C〉, where
M denotes the domain of sets, and C denotes the domain of classes of M.

Let L(∈) denote the collection of first order formulas in the language with
the ∈-predicate in which we additionally allow for second order variables,
and atomic formulas of the form x ∈ X , where x is a first order variable
and X is a second order variable. We consider equality between first or
second order elements to abbreviate the statement that they have the same
elements. The axioms of GB are given by the axioms of ZF for sets, allowing
class parameters in the axiom schemes of separation and replacement (that
is, allowing for formulas from L(∈) in which second order variables are
replaced by second order parameters from C), together with the class axiom
of first order class comprehension, that is comprehension for classes using
L(∈)-formulas with second order parameters from C. If M |= GB (or any of
its variants), we usually use lowercase letters to denote first order elements
of M, that is elements of M, and uppercase letters to denote second order
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elements of M, that is elements of C. Note that by the separation axiom, we
haveM ⊆ C.

We will also consider the strengthenings of GB that are obtained by adding
the axiom of choice (GBc) in the form of the statement that every set can
be well-ordered, or (GBC) the axiom that there is a well-order of all sets in
order-type Ord (or equivalently, a set-like global well-order), as well as the
axiom systems GB–, GBc–, and GBC–, which are obtained from GB, GBc,
or GBC respectively by removing the powerset axiom and using the axiom
scheme of collection rather than replacement. We fix a base theory T to be
one of the above theories.

We next provide the definition of a class forcing generic framework, which
will be the basic formal concept in our approach. As in [7], we will use the
more general notion of preorders rather than (the perhaps more common
restriction to) partial orders, dropping the requirement of antisymmetry.
If �A is a finite sequence, we will use the statement �A ∈ C to abbreviate the
property that all sequents of �A are elements of C.

Definition 2.1. A class forcing generic framework is a tuple of the form〈
M,P, R,

(
� �A
ϕ

)
ϕ∈L(∈), �A∈C

,G

〉
with the following properties.

• M is a transitive set-size model of T :M is transitive,
⋃

C ⊆M , and
M is a set such that M |= T .

• P = 〈P,≤〉 is a preorder with weakest element 1P (that is p ≤ 1P for
every p ∈ P) such that both P and ≤ are in C.

• TheP-membership relation R is a relation onP ×M × C that is definable
over M by an L(∈)-formula ϕ(p, a, B) with first order variables p and
a, and a second order variable B, so that for p ∈ P, a ∈M , and B ∈ C
we have R(p, a, B) if and only if ϕ(p, a, B).3 We denote the property
R(p, a, B) as a ∈p B .4

• G is a second order unary predicate on P, i.e., a unary predicate onP(P),
and we require that G(G) implies that G ⊆ P is a filter. If G(G) holds,
we say that G is a generic filter, or a P-generic filter on M. Whenever we
quantify over G in the following, we assume that we quantify over G’s
such that G(G) holds.

• For every �A ∈ C and ϕ ∈ L(∈) for which the number of second order
variables corresponds to the length of �A, � �A

ϕ ∈ C is a predicate (which
we also call a forcing relation for ϕ) on P ×Mm, where m denotes the
number of free first order variables of ϕ. If 〈q, a0, ... , am–1〉 ∈ � �A

ϕ , we
also write q �ϕ(a0, ... , am–1, �A).

3Note that by our choice of the domain of R, only sets from M can stand in P-membership
relation to sets or classes from C.

4In a standard forcing setup, this would correspond to the property that 〈a, p〉 ∈ B .
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§3. The basic axioms. In this section, we present our basic axioms for
class forcing generic frameworks.

(1) Existence of generic filters: ∀p ∈ P ∃G p ∈ G .5

(2) Well-Foundedness: The binary relation ∃p ∈ P a ∈p b on M is well-
founded.

(3) Growth of Information: For all �A ∈ C and ϕ ∈ L(∈), for all �a ∈M ,
and p, q ∈ P, if p�ϕ(�a, �A) and q ≤ p, then q �ϕ(�a, �A).

Assume that G is such that G(G) holds. Define a relation ∈G on C by
letting a ∈G B if ∃p ∈ G a ∈p B . Using axiom (2), this relation on C is well-
founded, and sinceM ∈ V , it is clearly set-like in V. We may thus recursively
define our evaluation function FG along the relation ∈G , letting FG(B) =
{FG(a) | a ∈G B} for each B ∈ C.6 Let M[G ] denote the ∈-structure on
the transitive set FG [C]:7 That is, let M[G ] = 〈M [G ], C[G ]〉, whereM [G ] =
FG [M ], and C[G ] = FG [C].

The next two axioms state that a natural form of the forcing theorem
holds, that is based on our forcing relations. Given a finite tuple �A = 〈Ai |
i < n〉 ∈ C, let FG( �A) = 〈FG(Ai) | i < n〉.

(4) Truth Lemma: For all �A ∈ C and ϕ ∈ L(∈) for which the number of
second order variables corresponds to the length of �A, all �a ∈M , and
all G,

M[G ] |= ϕ(FG (�a), FG ( �A)) iff ∃p ∈ G p�ϕ(�a, �A).

(5) Definability Lemma: For all �A ∈ C andϕ ∈ L(∈) for which the number
of second order variables corresponds to the length of �A, all �a ∈M ,
and p ∈ P,

p�ϕ(�a, �A) iff ∀G 	 pM[G ] |= ϕ(FG (�a), FG ( �A)).8

Our next axiom (6̄) states that within M, a weak form of set-likeness
holds for the P-membership relation. We will later replace it by the stronger
axiom (6).9

(6̄) Weak Set-Likeness: If b ∈M , then {a | ∃p ∈ P a ∈p b} ∈M .

5By our above convention, we tacitly require here that G(G) holds, i.e., that G is generic.
6It may seem like we are taking some sort of transitive collapse of the structure 〈M[G ],∈G 〉;

however note that there is no reason to assume that ∈G is extensional, or that ∈G can be
factorized in order to obtain an extensional relation.

7For the moment, this notation is somewhat ambiguous, for M[G ] may not only depend
on M and on G, but also on the P-membership relation. In Theorem 5.1, we will however
show that under additional assumptions, M[G ] is uniquely determined.

8Note that we already required the forcing relations to be predicates of our model in our
basic setup; however this axiom connects them with their intended meaning, and it thus
seems justified to consider it to be our version of the definability lemma.

9We provide this weaker form here in order to be able to show that this form suffices for
the results of Section 5.
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We will also introduce two additional axioms, axioms (7) and (8), later on
in our paper. For the moment, we introduce two other additional axioms,
stating that all elements of M have a name in M, and that there is a (class)
name for our generic filters. They will later be replaced by the stronger axiom
(7) which will imply both these axioms. Since those are only temporary
axioms, we will not provide them with a number.

(∗) Names for ground model objects:
• ∀a ∈M ∃ǎ ∈M ∀G FG (ǎ) = a, and
• ∀A ∈ C ∃Ǎ ∈ C ∀G FG (Ǎ) = A.

(∗∗) Name for generic filters: ∃Ġ ∈ C ∀G FG (Ġ) = G .

Given a ∈M andA ∈ C, we will use ǎ and Ǎ to denote names for a and A
as provided by axiom (∗) above, and we will use Ġ to denote a (class) name
for G as provided by axiom (∗∗) above.

§4. Forcing predicates and density. Our axioms (1)–(5) together with
the axioms (∗) and (∗∗) suffice to verify some of the basic properties of
forcing, and in particular to verify that the forcing predicates satisfy their
usual defining clauses, by arguments that are similar to the arguments of
[3, Section 4]. For the sake of completeness, and for the benefit of our
readers, we would nevertheless like to present some of these arguments here.
The first step will be to verify an auxiliary result on the forcing of negated
statements.

Lemma 4.1. For all ϕ ∈ L(∈), p ∈ P, �a ∈M , and �A ∈ C, we have that

p�¬ϕ(�a, �A) iff ∀q ≤ p q � �ϕ(�a, �A).

Proof. Let us assume that

(i) p�¬ϕ(�a, �A).

By axiom (5), equivalently

(ii) ∀G 	 pM[G ] |= ¬ϕ(FG (�a), FG ( �A)).

By axiom (4), this is equivalent to

(iii) ∀G 	 p ∀q ∈ G q � �ϕ(�a, �A).

We want to argue that this in turn is equivalent to our desired statement
that

(iv) ∀q ≤ p q � �ϕ(�a, �A).

Thus, assume first that (iii) holds, and let q ≤ p. By axiom (1), we may pick
a generic filter G 	 q, which will thus also contain p as an element. By (iii),
we thus have that q � �ϕ(�a, �A), as desired.

Conversely, assume that (iv) holds. Let G be a generic filter that contains
p as an element, and assume for a contradiction that there is r ∈ G such that
r �ϕ(�a, �A). Since G is a filter, we may pick q below both p and r. By axiom
(3), it follows that q �ϕ(�a, �A), contradicting (iv). �
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We are now ready to show that our axioms imply generic filters to intersect
all dense classes in C.

Lemma 4.2. Let D ∈ C be such that D is dense in P. If G is a generic filter,
then G intersects D.

Proof. Let G be a generic filter and assume for a contradiction that
G ∩D = ∅. Making use of axioms (∗) and (∗∗), it follows that

M[G ] |= ¬∃x x ∈ FG(Ď) ∩ FG(Ġ).

By axiom (4), we may thus find p ∈ G such that

p�¬∃x x ∈ Ď ∩ Ġ.

By Lemma 4.1, equivalently

∀q ≤ p q � � ∃x x ∈ Ď ∩ Ġ.

Since D is dense, we may fix q ≤ p in D. But then,

q � q̌ ∈ Ď ∩ Ġ,

contradicting the above. �

We next need another auxiliary result on open dense sets (which could
easily be extended to arbitrary dense sets, but the current version is sufficient
for our purposes). We say that a subset A of a preorder P is open if it is
downward closed, that is if p ∈ A and q ≤ p, then also q ∈ A.

Lemma 4.3. IfD ⊆ P is open,D ∈ C, then D is dense below p if and only if

(†) ∀G 	 pD ∩G �= ∅.

Proof. Assume first that (†) holds. Let r ≤ p, and using axiom (1), let G
be a generic filter with r ∈ G . It follows that also p ∈ G , and thus using (†),
we obtain s ∈ D ∩G . Since D is open and G is a filter, we obtain q below
both r and s that is an element of D ∩G , showing that D is dense below p.

On the other hand, assume that D is dense below p, and let G be a generic
filter containing p as an element. Let E be the dense set of conditions which
are either below p and in D, or incompatible to p. By Lemma 4.2, it follows
thatG ∩ E �= ∅. Since p ∈ G and G is a filter, it thus follows thatG ∩D �= ∅,
as desired. �

It is now possible to show, as in [3], that the usual defining clauses for the
forcing relation can be recovered from our basic axioms. The only additional
clause that we need is the one for the elementhood relation with respect to
classes. Its proof is very similar to the one for the elementhood relation with
respect to sets; however we would like to provide one sample argument here
in this paper for the benefit of our readers, and we will refer them to [3]
for the other clauses below (note that since M ⊆ C, the below lemma also
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covers the case of the elementhood relation with respect to sets). Let a ∈p B
if and only if ∃q ≥ p a ∈q B .10

Lemma 4.4. p� a ∈ A iff ∀r ≤ p ∃s ≤ r ∃x [x ∈s A ∧ s � a = x].

Proof. Let us assume that

(i) p� a ∈ A.

By axiom (5), this is equivalent to

(ii) ∀G 	 p FG (a) ∈ FG(A).

By the definition of FG and of ∈G , this in turn is equivalent to

(iii) ∀G 	 p ∃x ∈M [FG(a) = FG (x) ∧ ∃q ∈ G x ∈q A].

Using axiom (4), we obtain the following equivalence:

(iv) ∀G 	 p ∃x ∈M [∃r ∈ G r � a = x ∧ ∃q ∈ G x ∈q A].

Now we make use of axiom (3), equivalently obtaining that

(v) ∀G 	 p ∃s ∈ G ∃x ∈M [s � a = x ∧ x ∈s A].

Using Lemma 4.3 yields our final desired equivalence:

(vi) ∀r ≤ p ∃s ≤ r ∃x ∈M [x ∈s A ∧ s � a = x]. �

In the next lemma, we list the remaining results with respect to the forcing
predicates obeying their usual defining clauses, which are shown exactly as
in [3, Section 5], simply carrying along additional second order predicates
(in case there are any). For the detailed arguments to verify these properties,
we refer the interested reader to [3]. We consider the relations ∈ and �= as our
atomic relations in the below; however a �= b could be seen as abbreviating
¬(a = b), and a �∈ b should be seen as abbreviating ¬(a ∈ b).

Lemma 4.5. Let ϕ ∈ L(∈), p ∈ P, and let �a and �A be finite tuples from M
and from C respectively. Then the following hold true.

• p�ϕ(�a, �A) iff ∀q ≤ p ∃r ≤ q r �ϕ(�a, �A).
• p�[ϕ ∨ �](�a, �A) iff ∀r ≤ p ∃q ≤ r [q �ϕ(�a, �A) ∨ q ��(�a, �A)].
• p�∃xϕ(�a, �A) iff ∀r ≤ p ∃q ≤ r ∃x ∈M q �ϕ(x, �a, �A).
• p�[ϕ ∧ �](�a, �A) iff p�ϕ(�a, �A) ∧ p��(�a, �A).
• p� a �= b iff ∀r ≤ p ∃q ≤ r ∃c

(c ∈q a ∧ q � c �∈ b) ∨ (c ∈q b ∧ q � c �∈ a).

10For the readers who want to look up the results from [3] at this point, we should remark
that in [3], one of the axioms requires that if q ≤ p and a ∈p b, then also a ∈q b. We did not
include this axiom into our axiom system for the sake of a more elegant presentation. Note
that the predicates ∈p clearly do satisfy this axiom however, and can be seen to correspond
to the predicates ∈p from [3].
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The existence of forcing relations for atomic formulas is usually a
problematic aspect in the case of class forcing (for a detailed account of
this see [7]). The fundamental difference in our setup is that the definability
of forcing predicates is already an integral assumption. In the above, we only
show that any single step, reducing forcing statements about atomic formulas
to ones for names of lower rank, proceeds as usual. We thus avoid the usual
problem of having to obtain the definability of the forcing predicates for
atomic formulas by recursion (which a priori is a recursion on classes, and
is thus not guaranteed by the axioms of GBC, see [7], or also [6]). The
existence of such recursions is an axiom of KM on the other hand, and this
is the reason why every notion of class forcing satisfies the forcing theorem
in KM (see [7], [6], or [1]).

§5. An axiomatization that assumes the preservation of the axioms of set
theory. In this section, we introduce two further temporary axioms.

(∗∗∗) Preservation of axioms: ∀GM[G ] |= T 11 and
(∗∗∗∗) Absoluteness of P-membership: The formula ϕ defining the P-

membership relation R is absolute for transitive models of T
containing C.

Building on the terminology from [3, Section 3], let us say that a class
forcing generic extension is a class forcing generic framework together with
a particular choice of generic filter G. Our next theorem shows that under a
suitable set of axioms, this notion corresponds to the usual notion of a class
forcing extension, and in particular it shows that M[G ] is well-defined, in
the sense that it only depends on M and on G.

Theorem 5.1. Given a particular class forcing generic extension, assuming
axioms (2), (6̄), (∗), (∗∗), (∗∗∗), and (∗∗∗∗) to hold, M[G ] is the ⊆-smallest
model of T that contains C ∪ {G} as a subset of its collection of classes.

Proof. If N = 〈N,D〉 |= T is transitive such that C ∪ {G} ⊆ D, then we
can constructM [G ] within N : Working in N , define the relation ∈G on M
by letting a ∈G b if ∃p ∈ G a ∈p b. By axiom (∗∗∗∗), this definition of ∈G
is absolute between N and V. This relation on M is well-founded by axiom
(2), and set-like by axiom (6̄). We thus may define the restriction of FG to
M in N : Let Q(f, b) be the formula asserting that f is a function whose
domain d includes b as an element and is closed under ∈G -predecessors,
and for every a ∈ d we have f(a) = {f(c) | c ∈G a}. Now FG is defined
by letting FG(b) = f(b) if there is an f ∈ N such that Q(f, b) holds, and
is ∅ otherwise. By axioms (2) and (6̄), for any b ∈M , such function f ∈ N
actually exists. We thus haveM [G ] ⊆ N .

11Let us remark that due to axiom (5), this axiom could equivalently be replaced by a
scheme of axioms, consisting of statements of the form 1P �ϕ for every ϕ ∈ T . While this
would increase the number of axioms, it would decrease the number of axioms that quantify
over generic filters and are thus external to the model M.
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If A ∈ C, we obtain FG(A) = {FG(a) | a ∈G A} ∈ D by using first order
class comprehension in N , and thus we also have C[G ] = FG [C] ⊆ D. It thus
follows thatM[G ] ⊆ N , and by axioms (∗), (∗∗), and (∗∗∗),M[G ] therefore
is the ⊆-smallest model of T that contains all classes from C and the generic
filter G as one of its classes, if any such model exists, as desired. �

§6. On the notion of tameness. One of the classical results about set forcing
is that it preserves the axioms of ZF–, ZF, and ZFC, and this easily extends
to any of the second order theories that we consider in this paper. However
the situation is completely different for class forcing, for any of the second
order theories that we consider in this paper may easily be destroyed by class
forcing. For example, simply consider the notion of forcing which adds a
function from � to Ord using finite conditions. This notion of class forcing
will provide us with a class function mapping � surjectively onto Ord in
any of its generic extensions, clearly yielding GB– to fail. A key notion in
this context is that of pretameness, which was implicit in earlier work of A.
Zarach and of M. Stanley, and which was isolated by Friedman in [5]. In
the following, when we talk about sequences of classes, we will assume some
suitable coding so that these sequences can themselves be viewed as classes.

Definition 6.1. P is pretame (for M = 〈M, C〉) if for every p ∈ P and
every sequence 〈Di | i ∈ I 〉 ∈ C of dense subclasses of P with I ∈M , there
is q ≤ p and 〈di | i ∈ I 〉 ∈M such that for every i ∈ I , di ⊆ Di is predense
below q in P.

M. Stanley showed that pretameness is actually equivalent to the property
that forcing with P preserves the axioms of GB– in a standard class forcing
setup (see [8, Theorem 3.1]), and it is shown in [8, Theorem 1.12] that
pretameness is equivalent to a large number of desirable niceness features of
forcing notions. It therefore seems very natural to restrict ones attention to
pretame notions of forcing in the context of class forcing. Pretame notions
of forcing also preserve the axiom of choice, and the existence of a global
well-order in order type Ord: regarding the axiom of choice, if x is a set in a
generic extension M[G ] by a pretame forcing notion P, we pick a P-name ẋ
for x, and a well-order ≺ ofX = {� | ∃p ∈ P 〈�, p〉 ∈ ẋ}. We then construct
a well-order of x as follows: given two of its elements y and z, we let y � z
if the ≺-least P-name for y in X (that is, the ≺-least � ∈ X so that �G = y)
is ≺-below any P-name for z in X. The argument for the preservation of the
existence of a global well-order in order type Ord is essentially the same,
and presented within [8, Theorem 3.1].

However, pretame notions of forcing need not preserve the powerset
axiom. This can easily be observed by considering the pretame notion of
forcing that adds a proper class of Cohen subsets of �. Since in any of its
extensions, the powerset of� would have to be a proper class, it cannot exist
as a set. For the preservation of the powerset axiom, we need the notion of
tameness. In his [4], Friedman introduces tameness of a class forcing notion
P as the axiom requiring that P is pretame and that the weakest condition
of P forces the powerset axiom to hold (in the generic extension). Since
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pretameness of P implies the P-forcing relation to be definable, forcing the
powerset axiom to hold is a first order property of P. Previously, in his [5],
a more combinatorial definition of tameness was provided, which however
seems potentially problematic to us (we do not see how a crucial step in
the argument of [5, Theorem 2.21] proceeds, which is supposed to show
that this combinatorial version of tameness implies the preservation of the
powerset axiom), but this issue can easily be fixed by slightly strengthening
the original property of tameness from [5] (we will let tameness denote
this strengthened property in the below)—we will show that (our version
of) tameness is equivalent to the preservation of the powerset axiom under
certain additional axioms (which all hold in any standard setup for class
forcing) in Section 7.12

Definition 6.2. Let M = 〈M, C〉 |= GB and let P ∈ C be a notion of
forcing.

• If p ∈ P, a predense ≤ p partition (of P) is a pair 〈D0, D1〉 of classes
such thatD0 ∪D1 is predense below p and such thatp0 ∈ D0 ∧ p1 ∈ D1
implies that p0 ⊥ p1.

• Suppose that 〈〈Di0, Di1〉 | i ∈ a〉 and 〈〈Ei0, Ei1〉 | i ∈ a〉 are sequences of
predense ≤ p partitions of P. We say that they are equivalent ≤ p if for
each i ∈ a,

{q ∈ P | Di0 is predense below q ⇐⇒ Ei0 is predense below q}
is dense below p in P.

• P is tame (for M) if P is pretame (for M) and for each a ∈M and
p ∈ P, there is q ≤ p and α ∈ Ord(M ) s.t. whenever r ≤ q and

�d = 〈〈d i0 , d i1〉 | i ∈ a〉 ∈M
is a sequence of predense ≤ r partitions of P, then there is s ≤ r such
that �d is equivalent ≤s to some

�e = 〈〈ei0, ei1〉 | i ∈ a〉 ∈ VMα .13

Note that if 〈D0, D1〉 is a predense ≤ p partition of P for some p ∈ P, and
q ≤ p, then 〈D0, D1〉 is also a predense ≤ q partition of P. We will tacitly
make use of this in the below.

§7. An axiomatization that does not assume the preservation of the axioms
of set theory. Alternatively, we can replace (6̄), (∗), (∗∗), (∗∗∗), and (∗∗∗∗)
by the following axioms, and in particular we can derive the preservation
of the axioms of set theory from natural axioms rather than requiring it.

12It may well be the case that Friedman’s original definition of tameness from [5] is
equivalent to the below though, for we were not able to produce a counterexample to this
being the case.

13The subtle difference to Friedman’s original definition of tameness is that he requires �d
to be a sequence of predense ≤ q partitions of P.
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Axiom (6) below is a strengthening of axiom (6̄), which seems to be a natural
requirement in the context of class forcing, and could be seen to essentially
say that the objects that are our version of names for sets correspond to
set-sized objects in a standard class forcing setup. Axiom (7) essentially says
that we can freely (from the perspective of M) construct our version of
names in M. Axiom (8) is (pre)tameness, and is only required in the case
of class forcing (for it is trivial in the case of set forcing).

(6) Strong Set-Likeness: If b ∈M , then {〈a, p〉 | a ∈p b} ∈M .
(7) Universality: If S ∈ C is a relation onM × P, then there exists B ∈ C

such that

S(a, p) if and only if a ∈p B.
Moreover, if S ∈M , then we obtain the above B to be in M, and there
is a map Γ that is first order definable over M which on input S ∈M
yields one such witnessing B ∈M .14

(8) • Pretameness: P is pretame (for M).
• Tameness: If T contains the power set axiom, then we make the

stronger requirement that P is tame (for M).

Let us make the important remark that our axioms (1)–(8), as well as
the axioms (∗), (∗∗), (∗∗∗), and (∗∗∗∗), hold in the standard setup for class
forcing, as described for example in [7]. Given a transitive modelM = 〈M, C〉
of T, and a pretame, or tame (in case T contains the powerset axiom) notion
of class forcing P ∈ C such that for every condition p from P, there is a P-
generic filter over M that contains p as an element (this is the case in
particular if M is countable15), interpreting a ∈p B as 〈a, p〉 ∈ B , we arrive
at such a standard setup, and it is well-known how to verify axioms (1)–(8),
(∗), (∗∗), (∗∗∗), and (∗∗∗∗) with respect to M and P in this context—for the
forcing theorem, as described in our axioms (4) and (5), see [7, 8].

Lemma 7.1. The axioms (∗) and (∗∗) can be derived from axiom (7).

Proof. Essentially, axiom (7) allows us to construct analogues of the
usual canonical names for ground model objects and for the generic filter.
That is, using axiom (7), by recursion on rank, for b ∈M , we define b̌ to be
such that x ∈p b̌ if and only if p = 1 and x is of the form ǎ for some a ∈ b,
and we do this in a definable way, making use of the map Γ. Note that using
Γ, we in fact obtain a strong form of axiom (∗): we have the extra property
that the map from b to b̌ described above is definable over M. We then use
this to define Ġ to be such that x ∈p Ġ if and only if p ∈ P and x = p̌. �

14This additional definability assumption is of course redundant when T yields the
existence of a global well-order. In fact, it could also be omitted if T includes the powerset
axiom: in that case, instead of a single object B witnessing an instance of axiom (7), we would
obtain a set of rank-minimal objects witnessing such an instance, and this would suffice to
verify Lemma 7.1, Theorem 7.3, and Proposition 7.4.

15This is supposed to mean that both M and C are countable.
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Making heavy use of axioms (6) and (7), our next lemma shows that
standard forcing names and their evaluations essentially coincide with
elements of our ground model M and their images under our evaluation
function FG .

Lemma 7.2. (i) If � is a (class) P-name in M (or in C) in the standard
sense, then there is a ∈M (or a ∈ C ) such that FG (a) = �G , where
�G denotes the standard evaluation of the name � by the generic
filter G.

(ii) If a ∈M (or a ∈ C), then there is a (class) P-name � in M (or in C)
such that �G = FG (a).

Thus, in particular, M[G ] is the standard generic extension of the model M
by the generic filter G.

Proof. Let us first verify (i). Let � be a P-name in M. Making use of the
map Γ that was introduced in axiom (7), we recursively define a translation
function h, letting

h(�) = Γ({〈h(	), p〉 | 〈	, p〉 ∈ �}) ∈M.

It follows that FG(h(�)) = {FG(a) | ∃p ∈ G a ∈p h(�)}
= {FG(a) | a = h(�) and ∃p ∈ G 〈�, p〉 ∈ �} = {�G | ∃p ∈ G 〈�, p〉 ∈ �} = �G.

Now if � ∈ C, using axiom (7), we can define h(�) to be such that for all
P-names � ∈M and p ∈ P,

h(�) ∈p h(�) if and only if 〈�, p〉 ∈ �.
We thus obtain h(�) ∈ C, and then the same argument as above shows that
FG(h(�)) = �G .

Now let us verify (ii), in a similar way. Let b ∈M , and making use
of axiom (6), we obtain a map E ∈ C with domain M such that for
every a ∈M , E(a) = {〈x, p〉 | x ∈p a} ∈M . Making use of this map, we
recursively define another translation function g, letting g(b) = {〈g(a), p〉 |
a ∈ E(b), a ∈p b} for b ∈M . Similar to before, it now follows that

g(b)G = {g(a)G | ∃p ∈ G 〈g(a), p〉 ∈ g(b)} = {FG (a) | ∃p ∈ G a ∈p b} = FG (b).

If B ∈ C, we can define g(B) = {〈g(a), p〉 | a ∈p B}, and then the same
argument as above shows that g(b)G = FG(b). �

Our next goal is to show that we can derive axiom (∗∗∗) as well as the
consequences of Theorem 5.1 from axioms (1)–(8). There are two somewhat
different ways to do this. The first possibility is to make use of Lemma 7.2,
and then invoke the relevant standard results about the preservation of the
axioms of set theory in standard generic extensions,16 and also about their
minimality. The second possibility is to directly verify the individual axioms
of set theory in our generic extensionM[G ] from our axioms. The advantage

16For the case of the powerset axiom, using our new definition of tameness, such a
proof can easily be isolated from our proof of the powerset axiom in the second proof of
Theorem 7.3.
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of this second option is that we do not make use of any standard results in
this case (but of course, the arguments to verify the individual axioms in our
generic extension are essentially analogous to the corresponding classical
arguments). We can then infer minimality of M[G ] by invoking Theorem
5.1 with respect to the standard setup for class forcing.17 We would like to
present both approaches in the below.

Theorem 7.3. Axioms (1)–(8) imply that M[G ] is the ⊆-smallest model of
T that contains C ∪ {G} as a subset of its collection of classes. In particular
thus, axiom (∗∗∗) holds.

First Proof. Lemma 7.2 shows that our extension M[G ] is exactly the
standard class forcing extension of M by G, and thus one can apply the
standard arguments to show that M[G ] is the ⊆-smallest model N of T that
contains C ∪ {G} as a subset of its collection of classes. �

Second Proof. We directly verify the individual axioms in our generic
extension. This argument mostly proceeds similar to the proof of [8,
Theorem 3.1(1)]. The verification of the powerset axiom in M[G ] proceeds
somewhat similar to the proof of [5, Theorem 2.21], however making use of
our modified definition of tameness.

Since M[G ] is a transitive ∈-structure, it clearly satisfies Regularity and
Extensionality. Using axiom (7), it is easy to see thatM [G ] satisfies Pairing,
and by axiom (∗), it satisfies Infinity.

Let us treat the union axiom: Let a ∈M [G ] be given; we need to show
that for some b ∈M [G ],

⋃
a ⊆ b. Let X = {c | ∃p c ∈p a} ∈M by axiom

(6̄). Let Y = {d | ∃c ∈ X ∃q d ∈q c} ∈M by axiom (6̄). Using axiom (7),
let ḃ ∈M be such that d ∈r ḃ if and only if d ∈ Y and r = 1. Using the
definition of FG , it is straightforward to check that b = FG(ḃ) is as desired.

Let us verify first order class comprehension in M[G ]. If ϕ ∈ L(∈)
and B ∈ C, using axiom (7), let A ∈ C be such that a ∈p A if and
only if p�ϕ(a, B). It then follows that FG(A) = {x ∈M [G ] | M[G ] |=
ϕ(x, FG(B))}.

We now show that M[G ] satisfies collection. Let a ∈M , A ∈ C, and
assume that M[G ] |= ∀x ∈ FG(a)∃y 〈x, y〉 ∈ FG(A). We need to find b ∈
M such that M[G ] |= ∀x ∈ FG(a)∃y ∈ FG(b) 〈x, y〉 ∈ FG(A).

By axiom (4), we may pick some p ∈ G such that p� ∀x ∈ a ∃y 〈x, y〉 ∈
A. By axiom (6), X = {〈c, r〉 | c ∈r a} ∈M . For each 〈c, r〉 ∈ X , let

D〈c,r〉 = {s ∈ P | [s ≤ p, r ∧ ∃d ∈M s �〈c, d 〉 ∈ A] ∨ s ⊥ r} ∈ C.
By Lemma 4.5, it follows that each D〈c,r〉 is dense below p in P. Using that
P is pretame by axiom (8), there is q ∈ G below p and there is a sequence
〈d〈c,r〉 | 〈c, r〉 ∈ X 〉 ∈M such that d〈c,r〉 ⊆ D〈c,r〉 and d〈c,r〉 is predense below
q in P for each 〈c, r〉 ∈ X .

17Let us remark that axiom (∗∗∗∗) is not a consequence of axioms (1)–(8). If we
additionally assumed axiom (∗∗∗∗), this use of the standard setup for class forcing could as
well be avoided, for we could then directly invoke Theorem 5.1 at this point.
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Using collection in M, there is a set Y ∈M such that for each 〈c, r〉 ∈ X
and for each s ∈ d〈c,r〉 that is compatible with r, there is d ∈ Y such that
s �ϕ(c, d, A). Using axiom (7), let b ∈M be such that d ∈s b if and only if
d ∈ Y and there is 〈c, r〉 ∈ X such that s ∈ d〈c,r〉 and s �ϕ(c, d, A). Then, by
construction, M[G ] |= ∀x ∈ FG(a)∃y ∈ FG(b) 〈x, y〉 ∈ FG(A), as desired.

Let us next show thatM[G ] satisfies separation. Let a ∈M andA ∈ C. We
need to find b ∈M such that M[G ] |= FG(b) = FG(a) ∩ FG(A). By axiom
(6), X = {〈c, r〉 | c ∈r a} ∈M . For each 〈c, r〉 ∈ X , let D〈c,r〉 = {q ∈ P |
q ≤ r decides c ∈ A ∨ q ⊥ r} ∈ C. By an easy application of Lemma 4.1,
it follows that each D〈c,r〉 is dense in P. Using that P is pretame by axiom
(8), we may pick p ∈ G and a sequence 〈d〈c,r〉 | 〈c, r〉 ∈ X 〉 ∈M such that
d〈c,r〉 ⊆ D〈c,r〉 and d〈c,r〉 is predense below p in P for each 〈c, r〉 ∈ X . Using
axiom (7), let b ∈M be such that c ∈q b if and only if there is r ∈ P such
that q ≤ r, 〈c, r〉 ∈ X , q ∈ d〈c,r〉, and q � c ∈ A. It clearly follows that b is
as desired.

Let us observe at this point that we have by now verified the axioms of GB–

in M[G ]. By our absoluteness assumptions on the P-membership relation,
this allows us to perform the relevant recursion to obtain FG ∈ C[G ].

Let us argue that the axiom of choice is preserved. Let a ∈M . We have to
find a well-order � of FG(a) inM [G ]. Using axiom (6̄), let X = {c | ∃r ∈
P c ∈r a} ∈M , and let ≺ be a well-order of X, using the axiom of choice in
M. Now given x and y in FG(a), making use of our above observation, we
simply let x � y if and only if there is ẋ ∈ X such that x = FG(ẋ) and for
all ẏ ∈ X such that y = FG(ẏ), we have ẋ ≺ ẏ. Using that separation holds
in M[G ], we thus obtain � ∈M [G ].

Let’s argue that if M has a set-like global well-order ≺∈ C, then we
can find a set-like global well-order � of M [G ] in C[G ]. Using our above
observation, we simply let x � y if and only if there is ẋ ∈M such that x =
FG(ẋ) and for all ẏ ∈M such that y = FG(ẏ), we have ẋ ≺ ẏ. Using that
first order class comprehension holds in M[G ], we thus obtain � ∈ C[G ].

Finally, we argue that assuming P to be tame, the powerset axiom is
preserved. Working in M[G ], it suffices to show that P(a) exists in M [G ]
for every a ∈M : If b ∈M [G ], b = FG(�), using axiom (6̄), let X = {c |
∃r ∈ P c ∈r �} ∈M . Using that FG ∈ C[G ], and using that replacement
holds in M[G ], there is a surjection from X onto b in M [G ], and this
surjection naturally induces a surjection from P(X ) onto P(b) in C[G ].
Using replacement in M[G ] once again, if P(X ) ∈M [G ], it follows that
P(b) ∈M [G ].

Therefore, leta ∈M . By Lemma 4.2, we may pick q ∈ G andα ∈ Ord(M )
witnessing the tameness of P with respect to a. Now for any � ∈M such that
q � � ⊆ ǎ, consider the sequence of classes �D = 〈〈Di0, Di1〉 | i ∈ a〉 defined
by lettingDi0 = {r ≤ q | r � ǐ �∈ �} andDi1 = {r ≤ q | r � ǐ ∈ �}. For every
i ∈ a and j ∈ {0, 1}, let Eij be the dense set obtained as the downward
closure of Dij . By pretameness, for every r ≤ q, we obtain s ≤ r and a

predense ≤ s partition �d = 〈〈d i0 , d i1〉 | i ∈ a〉 such that d i0 ⊆ Ei0 and d i1 ⊆ Ei1
for every i ∈ a. By our choice of q and α, we find �e ∈ VMα and t ≤ s such
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that �d and �e are equivalent ≤ s .18 Since this yields a dense set of conditions
t, we may pick such t ∈ G . Thus,

i ∈ FG(�) ⇐⇒ G ∩ ei1 �= ∅,
and therefore using axiom (7), letting�0 ∈M be such that c ∈s �0 if and only
if c = ǐ for some i ∈ a and s ∈ ei1, it follows that FG(�) = FG(�0). Making
use of the map Γ described in axiom (7), we have a definable choice of such
�0’s in M given a predense ≤ r partition �e ∈ VMα , and using replacement in
M, we thus obtain a set Σ ∈M containing a suitable �0 for every predense
≤ r partition �e ∈ VMα . Using axiom (7) once again, let 
 ∈M be such that
c ∈s 
 if and only if c ∈ Σ and s = 1. Using separation in M[G ], this clearly
yields {x ∈ FG(
) | x ⊆ a} ∈M [G ] to be the powerset of a in M[G ], as
desired.

Having verified all axioms of T in M[G ], there are two ways to end the
proof: In case axiom (∗∗∗∗) holds, the statement of our theorem is a direct
consequence of Theorem 5.1, and we have not made any use of the standard
setup for class forcing in this case. Without axiom (∗∗∗∗), we use that all
of our axioms hold in the standard setup for class forcing with P over M,
and that M[G ] is just the standard class forcing extension of M by G by
Lemma 7.2, and therefore M[G ] is the ⊆-smallest model of T that contains
C ∪ {G} as a subset of its collection of classes by Theorem 5.1 used within
the standard setup. �

Our next proposition shows in particular that notions of forcing that
preserve GB need to be tame (in the sense of Definition 6.2), thus
strengthening [5, Proposition 2.20]. Its proof is similar to the proof that
is provided for [5, Proposition 2.20].

Proposition 7.4. Axioms (1)–(7) together with axiom (∗∗∗) imply
axiom (8).

Proof. If P is not pretame, then there is a sequence �D = 〈Di | i ∈ I 〉 ∈ C
of dense subclasses of P with I ∈M and a condition p ∈ P witnessing
that pretameness fails with respect to �D. Using axiom (1), let G be a P-
generic filter over M with p ∈ G . In the extension M[G ], consider the
(class) function F : I → OrdM defined by letting

F (i) = min{α ∈ OrdM | G ∩Di ∩ VMα �= ∅},
which is an element of C[G ] by first order class comprehension in M[G ].
Since replacement holds in M[G ], there is some x ∈M [G ] with ranF ⊆ x.
Let � = x. Using axiom (4), let q ≤ p be a condition in G that forces this
property of �̌. Using our assumption on p and on �D however,

∃i ∈ I ∀r ∈ Di ∩ VM� q ⊥ r,

yielding G ∩Di ∩ VM� = ∅, a contradiction.

18This step of the argument does not seem possible with the original definition of tameness
from [5], for we were only able to apply its instances to predense ≤ q partitions; however �d
is a predense ≤ s partition and s ≤ q.
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If T contains the powerset axiom however P is not tame, we may thus
choose a ∈M and p ∈ P such that for every α ∈ Ord(M ) and q ≤ p, there
is r ≤ q and a sequence �d ∈M of predense ≤ r partitions of P with domain
a such that whenever s ≤ r, then �d is not equivalent ≤ s to any �e in VMα .
Using axiom (1), let G be a P-generic filter over M with p ∈ G . Since the
above yields a dense set of such conditions r for every α ∈ Ord(M ), by
Lemma 4.2, there are rα ∈ G and a sequence of predense ≤ rα partitions
�dα = 〈〈d iα,0, d iα,1〉 | i ∈ a〉 ∈M for every α ∈ Ord(M ), witnessing that P is

not tame.19 Whenever �d = 〈〈d i0 , d i1〉 | i ∈ a〉 ∈M is a sequence of predense
≤ t partitions for some t ∈ G , we use axiom (7) to define ḟ �d ∈M , letting
x ∈u ḟ �d if and only if[

x = ˇ〈i, 0〉 ∧ u ∈ d i0
]
∨

[
x = ˇ〈i, 1〉 ∧ u ∈ d i1

]
.

That is, ḟ �d can be seen as a canonical name for the function f �d ∈M [G ],
f �d : a → 2 that is defined by letting f �d (i) = 0 ⇐⇒ G ∩ d i0 �= ∅ for every
i ∈ a. Note that, using axioms (4) and (5), two sequences �d and �d ′ of
predense ≤ t partitions with domain a of P in C are equivalent ≤ t if and
only if t � ḟ �d = ḟ �d ′ . Thus, for any α ∈ OrdM , rα forces that ḟ �dα �= ḟ�e for
any predense ≤ rα partition �e ∈ VMα with domain a. This implies that in
M[G ], we obtain a cofinal partial function F from {f ∈M [G ] | f : a → 2}
to Ord, by letting F (f) be the least α such that there is a condition r ∈ G
and a predense ≤ r partition �e ∈ VMα with domain a such that f = f�e . By
replacement in M[G ] thus, the powerset of a cannot exist as a set inM [G ],
and hence M[G ] does not satisfy the powerset axiom. �

§8. Set forcing. The axioms for set forcing, which are essentially as in [3],
can easily be derived from the case of class forcing over models of GBc that
was treated in this paper. In addition, we will also consider the base theories
ZF–, ZFC–, and ZF, which correspond to the second order theories GB–,
GBc–, and GB. Let T thus denote our base theory, which will either be ZF–,
ZFC–, ZF, or ZFC. Our terminology will be slightly different from that of
[3]. In this section, let L(∈) denote the collection of first order formulas.

Definition 8.1. A set forcing generic framework is a tuple of the form〈
M,P, R, (�ϕ)ϕ∈L(∈) ,G

〉
with the following properties.

• M is a transitive set-size model of T.
• P = 〈P,≤〉 ∈M is a preorder.
• The P-membership relation R is a relation on P ×M 2 that is definable

over M by an L(∈)-formula. We denote the property R(p, a, b) as
a ∈p b.20

19Making a cautious remark here, we do not claim that the sequences of rα ’s or �Dα ’s are
in any way internal to M.

20In a standard forcing setup, this would correspond to the property that 〈a, p〉 ∈ b.
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• G is a second order unary predicate on P, i.e., a unary predicate onP(P),
and we require that G(G) implies that G ⊆ P is a filter. If G(G) holds,
we say that G is a generic filter, or a P-generic filter on M. Whenever we
quantify over G in the following, we assume that we quantify over G’s
such that G(G) holds.

• For every ϕ ∈ L(∈), �ϕ ∈ C is a predicate (which we also call a forcing
relation for ϕ) on P ×Mm, where m denotes the number of free vari-
ables of ϕ. If 〈q, a0, ... , am–1〉 ∈ �ϕ , we also write q �ϕ(a0, ... , am–1).

Let us briefly provide the list of corresponding axioms for set forcing.

(S1) Existence of generic filters: ∀p ∈ P ∃G p ∈ G .
(S2) Well-Foundedness: The binary relation ∃p ∈ P a ∈p b on M is well-

founded.
(S3) Growth of Information: For all ϕ ∈ L(∈), for all �a ∈M , and p, q ∈

P, if p�ϕ(�a) and q ≤ p, then q �ϕ(�a).

Define the relation ∈G on M by letting a ∈G b if ∃p ∈ G a ∈p b.
Recursively define our evaluation function FG along the relation ∈G , letting
FG(a) = {FG(b) | b ∈G a} for each a ∈M . Let M [G ] denote the ∈-
structure on the transitive set FG [M ].

(S4) Truth Lemma: For all ϕ ∈ L(∈), all �a ∈M , and all G,

M [G ] |= ϕ(FG (�a)) iff ∃p ∈ G p�ϕ(�a).

(S5) Definability Lemma: For all ϕ ∈ L(∈), all �a ∈M , and p ∈ P,

p�ϕ(�a) iff ∀G 	 p M [G ] |= ϕ(FG (�a)).

(S6) Set-Likeness: If b ∈M , then {a | ∃p ∈ P a ∈p b} ∈M .
(S∗) Names for ground model objects:∀a ∈M ∃ǎ ∈M ∀G FG(ǎ) = a.
(S∗∗) Name for generic filters: ∃Ġ ∈M ∀G FG (Ġ) = G .
(S∗∗∗) Preservation of axioms: ∀G M [G ] |= T .
(S∗∗∗∗) Absoluteness of P-membership: The formula ϕ defining the P-

membership relation R is absolute for transitive models of T
containing M.

We can use these axioms to deduce the following version of Theorem 5.1
(by essentially using the same argument). A set forcing generic extension is
a set forcing generic framework together with a particular choice of generic
filter G.

Theorem 8.2. Given a particular set forcing generic extension, assuming
axioms (S1)–(S6), and also axioms (S∗), (S∗∗), (S∗∗∗), and (S∗∗∗∗), to
hold,M [G ] is actually well-defined in the sense that it depends only on M and
on G, and is in fact the ⊆-smallest model N of T that containsM ∪ {G} as a
subset.

Proceeding toward a set forcing analogue of the results of Section 7, we
introduce one further axiom.
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(S7) Universality: If s ∈M is a relation on M × P, then there exists
b ∈ M such that

s(a, p) if and only if a ∈p b.
We additionally assume that there is a map Γ that is first order
definable over M which on input s yields one such witnessing
b ∈M .21

The arguments from Section 7 then also yield the following.

Theorem 8.3. Axioms (S1)–(S7) imply axioms (S∗), (S∗∗), and (S∗∗∗),
and also thatM [G ] is the ⊆-smallest model of T that containsM ∪ {G} as a
subset.

Another way of verifying Theorem 8.3 is to observe that a set forcing
generic framework satisfying axioms (S1)–(S7) corresponds exactly to a
class forcing generic framework over a model M = 〈M, C〉 satisfying axioms
(1)–(8) for which C is just the collection of subsets of M that are first order
definable over M, and to then apply Theorem 7.3:22

In one direction, it should be pretty clear that starting from a class forcing
generic framework in this setting, when P ∈M however is a set-sized partial
order, we can easily isolate a corresponding set forcing generic framework
with respect to P and verify our set forcing axioms for that framework from
their class forcing counterparts.

Let us provide a few more details on the other direction, which is relevant
for verifying Theorem 8.3. We start with a set forcing generic framework〈

M,P, R, (�ϕ)ϕ∈L(∈) ,G
〉
.

We first have to extend our P-membership relation R. Using the same letter
R also for its extension, we simply do so by letting R(p, a, B) if and only if
〈a, p〉 ∈ B in case B ∈ C \M . That is, at the top level, when B is a proper
class, we define our P-membership relation to behave analogous to the
relation 〈a, p〉 ∈ B from the classical setting. For every nonzero length �A ∈ C
andϕ ∈ L(∈), we have to define relations� �A

ϕ ; however we simply define them
to equal the corresponding first order forcing relations from our set forcing
generic framework for the formulas obtained by replacing the elements
of �A by their defining formulas. Using our extended P-membership relation,
we can now define a ∈G B if ∃p ∈ G a ∈p B in case B is a proper class, and
we can thus also define FG(B) for B ∈ C \M , letting FG(B) = {FG(a) |
∃p ∈ G〈a, p〉 ∈ B}. We then let M[G ] = 〈FG [M ], FG [C]〉, as we did in
Section 3. It is then easy to see that each of axioms (S1)–(S6) implies

21As in the case of axiom (7), this additional definability assumption seems not to be
strictly necessary for our present purposes when our theory T contains the powerset axiom.

22Let us remark however that an analogous result with respect to Theorem 8.2 should not
hold—there seems to be no reason to expect that starting from axioms (S1)–(S6) together
with (S∗), (S∗∗), (S∗∗∗), and (S∗∗∗∗), the P-membership relation on sets could be extended
to definable classes so that it satisfies the absoluteness requirement from axiom (∗∗∗∗).
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its corresponding axiom from (1)–(6). In order to verify axiom (7), assume
that S ∈ C \M is a relation onM × P. LetB ∈ C be such that S(a, p) holds
if and only if 〈a, p〉 ∈ B . Then B witnesses the relevant instance of axiom
(7). Finally, it is well-known and easy to check that any notion of set forcing
is pretame for models of GB–, and tame for models of GB, thus yielding
axiom (8).

§9. Kelley–Morse set theory. Kelley–Morse set theory KM extends the
axioms of GBC by the scheme of second order class comprehension. Let
L2(∈) denote the collection of all second order formulas in the language
with the ∈-predicate.

Definition 9.1. A class forcing generic framework for KM is a tuple of the
form 〈

M,P, R,
(
� �A
ϕ

)
ϕ∈L2(∈), �A∈C

,G

〉

with the same properties as those of a class forcing generic framework in
Definition 2.1, except that the last item from that definition has to be changed
to the following.

• For every �A ∈ C and ϕ ∈ L2(∈) for which the number of free second
order variables corresponds to the length of �A, � �A

ϕ ∈ C is a predicate
(which we also call a forcing relation for ϕ) on P ×Mm, where m
denotes the number of free first order variables of ϕ.

If 〈q, a0, ... , am–1〉 ∈ � �A
ϕ , we also write q �ϕ(a0, ... , am–1, �A).

Axioms (1)–(5) are the same as in Section 3, except that L(∈) has to
be replaced by L2(∈) throughout, and that in axioms (4) and (5), we have
to refer to the number of free second order variables, rather than just the
number of second order variables. Axioms (6̄), (∗), and (∗∗) are exactly as
in Section 3.

We can then use the above axioms to show that the forcing predicates obey
their usual defining clauses as in Section 4, except that we have to consider
additional types of formulas. As in the case of GBC we can avoid atomic
formulas expressing (in)equality for classes, for we may consider those to
be defined in terms of the ∈-relation. But we need to treat second order
quantification, extending Lemma 4.5 by the following clause. It is verified
essentially by the same argument as for first order quantification in [3];
however we would like to provide the argument for the benefit of our readers.

Lemma 9.2. p� ∃Xϕ(�a, �A) iff ∀r ≤ p ∃q ≤ r ∃X ∈ C q �ϕ(�a, �A).

Proof. Let us assume that

(i) p�∃Xϕ(X, �a, �A).

By axiom (5), this is equivalent to

(ii) ∀G 	 pM[G ] |= ∃Xϕ(X,FG (�a), FG ( �A)).
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By the definition of M[G ], this is in turn equivalent to

(iii) ∀G 	 p ∃Ẋ ∈ C M[G ] |= ϕ(FG (Ẋ ), FG (�a), FG ( �A)).

Making use of axiom (4), we equivalently obtain

(iv) ∀G 	 p ∃Ẋ ∈ C ∃q ∈ G q �ϕ(Ẋ , �a, �A).

Applying Lemma 4.3 yields equivalence to

(v) ∀r ≤ p ∃q ≤ r ∃Ẋ ∈ C q �ϕ(Ẋ , �a, �A),

as desired. �
We can now let axioms (∗∗∗) and (∗∗∗∗) be as in Section 5, and verify the

analogue of Theorem 5.1 when T = KM exactly as in that section, showing
that M[G ] is the least model of KM that contains C ∪ {G} as a subset of its
collection of classes.

Let axiom (6) be exactly as in Section 7. Let axiom (7) be exactly as in
Section 7, except that we can ignore its additional definability assumption,
for the axioms of KM include the existence of a global well-order. Let axiom
(8) be the assumption that P is tame (for M), as in Section 7, noting that
the axioms of KM include the power set axiom.

As in Section 7, we would like to show that our axioms (1)–(8) imply
axioms (∗), (∗∗), and (∗∗∗), and that M[G ] is the ⊆-smallest model of T
that contains C ∪ {G} as a subset of its collection of classes. For (∗) and
(∗∗), this is shown exactly as in Lemma 7.1. The verification of (∗∗∗) and
the minimality of M[G ] proceeds exactly as in the proofs of Theorem 7.3;
however we have to additionally verify second order class comprehension in
M[G ] in the second proof. This is done by essentially the same argument as
for first order class comprehension from the second proof of Theorem 7.3.

Proposition 9.3. M[G ] satisfies second order class comprehension.

Proof. If ϕ ∈ L2(∈) and B ∈ C, using axiom (7), let A ∈ C be such that
a ∈p A if and only if p�ϕ(a, B). It then follows thatFG(A) = {x ∈M [G ] |
M[G ] |= ϕ(x, FG(B))}. �

§10. Extensions of KM. The results of the previous section can also be
extended to base theories beyond KM. As a sample result, let us finally
investigate the case of the base theory T that is KM together with the axiom
of class choice (CC), which was first studied by Mostowski and Marek in [9].

Definition 10.1. • Given Y ∈ C and α ∈ Ord, we let Yα = {x |
〈α, x〉 ∈ Y}.

• CC is the statement that whenever ϕ ∈ L2(∈), A ∈ C, and for every
ordinal α there is some X ∈ C such that ϕ(α,X,A) holds, then there is
Y ∈ C such that for every ordinal α, we have ϕ(α,Yα,A).

Note that in the above, we could equivalently use arbitrary sets rather than
just ordinals as indices, for our base theory KM provides us with a global
well-order in order-type Ord. We will tacitly make use of this in the below.
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It is shown in [2] that tame forcing preserves KM + CC. All results from
the previous section thus apply to the stronger base theory T = KM + CC
as well—we only need to verify that axioms (1)–(8) from Section 9 imply
the preservation of CC. Our proof of this is based on the argument from
[2]. Given x, y ∈M , let ˇ{x, y} be defined by letting a ∈p ˇ{x, y} if and only
if a ∈ {x, y} and p = 1. Let ˇ〈x, y〉 be defined by letting a ∈p ˇ〈x, y〉 if and
only if a ∈ { ˇ{x, x}, ˇ{x, y}} and p = 1. Thus, ˇ〈x, y〉 is a canonical name for
the ordered pair 〈FG(x), FG(y)〉 in our setup.

Proposition 10.2. M[G ] |= CC.

Proof. Let A ∈ C. As a first step, we will argue that a strong form of
Lemma 9.2 holds, namely whenever p� ∃Xϕ(X,A), then there is X ∈ C
such that p�ϕ(X,A). Using (second order) class comprehension in M, let
D ∈ C be the dense class of all q ≤ p for which there is some Xq ∈ C such
that q �ϕ(Xq,A). Let A be a maximal antichain in D. Using CC in M,
for every q ∈ A, we may pick some Xq ∈ C such that q �ϕ(Xq,A). Now we
obtain our desired X ∈ C making use of axiom (7), letting a ∈r X if and
only if

r ≤ q ∧ a ∈ dom(Xq) ∧ r � a ∈ Xq.

Now suppose that M[G ] |= ∀α ∃X ϕ(α,X, FG(A)). By axiom (4), there
is p ∈ G such that p� ∀α ∃X ϕ(α,X,A). For any α ∈ OrdM, by the above,
we find some Xα ∈ C such that p�ϕ(α,Xα,A). Using that our forcing
relations are in C, and using CC in M, we may obtain X ∈ C such that
∀α p�ϕ(α,Xα,A). Making use of axiom (7), define Y ∈ C by letting a ∈r
Y if and only if for someα ∈ OrdM, a = ˇ〈α, x〉 and r is such that x ∈r Xα. It
follows that for all α ∈ Ord, M[G ] |= ϕ(α, FG(X )α, FG(A)), as desired. �

§11. Open questions and possible future directions. One obvious question
is whether our axiom system can be simplified, or whether some of its
axioms could be weakened or even omitted. We have already remarked that
the definability of the map Γ provided by axiom (7) is not necessary in
many cases, and it is not hard to see that for any of the axiom systems we
consider, it would instead suffice, in the terminology of axiom (7), to have a
map Γ which provides a set of witnesses for each S ∈M . Moreover, axiom
(7) could in fact be replaced by the weaker Item (i) from Lemma 7.2, or
some equivalent form of that item, which however seems less desirable as
an axiom due to its reference to generic filters. All other requirements made
by our axioms seem to be necessary as far as we know. Let us remark that
Proposition 7.4 shows that axiom (8) cannot be omitted.

Question 11.1. Are there possible improvements to our axiomatization
of forcing, either by using a proper subset of our axioms, or perhaps by
replacing some of our axioms by weaker or, in some other sense, better
axioms?
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In the present paper, we considered base theories containing at least the
axioms of GB–, or the corresponding first order theory ZF–. The following
question was posed to us by Ali Enayat.

Question 11.2. Is there a similar axiom system for forcing over suitable
base theories that are strictly weaker than ZF– (and perhaps also their
corresponding second order theories, when such exist), over which it is
possible to develop a suitable machinery of forcing?

One such weaker base theory would be Kripke–Platek set theory; however
in his [10], Mathias developed a weaker axiom system of provident set theory,
and shows that models of this theory support a smooth theory of set forcing.
It seems plausible that a careful adaption of our axioms could make them
work in the context of such weaker models of set theory as well.

A topic that is somewhat implicit in our paper is touched by the following.

Question 11.3. To what extent does our axiomatization shed light on the
uniqueness of the forcing method as a means to extending models of set
theory without giving up (ground model) control over the extension?

Another future direction of research would be the following.

Question 11.4. Is it possible to provide natural and interesting axiom-
atizations for other technical concepts in set theory? For example, for
symmetric submodels of forcing extensions, for (generic) ultrapowers or
for (certain) canonical inner models of set theory?
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