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The evolution of a linearly polarized, long-wavelength Alfvén wave propagating in a
collisionless magnetized plasma with a sheared parallel-directed velocity flow is here
studied by means of two-dimensional hybrid Vlasov–Maxwell (HVM) simulations.
The unperturbed sheared flow has been represented by an exact solution of the
HVM set of equations of (Malara et al., Phys. Rev. E, vol. 97, 2018, 053212), thus
avoiding spurious oscillations that would arise from the non-stationary initial state
and inevitably affect the dynamics of the system. We have considered the evolution
of both a small and a moderate amplitude Alfvén wave, in order to separate linear
wave–shear flow couplings from kinetic effects, the latter being more relevant for
larger wave amplitudes. The phase mixing generated by the shear flow modifies the
initial perturbation, leading to the formation of small-scale transverse fluctuations at
scales comparable with the proton inertial length/Larmor radius. By analysing both
the polarization and group velocity of perturbations in the shear regions, we identify
them as kinetic Alfvén waves (KAWs). In the moderate amplitude run, kinetic effects
distort the proton distribution function in the shear region. This leads to the formation
of a proton beam, at the Alfvén speed and parallel to the magnetic field. Such a
feature, due to the parallel electric field associated with KAWs, positively compares
with solar wind observations of suprathermal ion populations, suggesting that it may
be related to the presence of ion-scale KAW-like fluctuations.

Key words: plasma simulation, plasma waves, space plasma physics

1. Introduction
In several natural contexts low-frequency fluctuations display properties which are

typical of an Alfvénic state: velocity and magnetic field perturbations are highly
correlated (positively or negatively), while density and magnetic field intensity are
affected by much less intense fluctuations. This situation is typically found in solar
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wind turbulence, mainly in low-latitude fast-speed streams, or in the high-latitude
wind (e.g. Belcher & Davis 1971; Bruno & Carbone 2013). Recently, measures
performed by the Parker Solar Probe spacecraft at small heliocentric distances have
shown fluctuations in the solar wind emanating from an equatorial coronal hole with
strong Alfvénic correlation, even in cases of very large amplitudes (the so-called
switchbacks) (Bale et al. 2019). Another example is that of velocity fluctuations
propagating along the magnetic field at the Alfvén speed detected in the solar corona
(Tomczyk et al. 2007; Tomczyk & McIntosh 2009), which have been interpreted as
Alfvén waves.

In the framework of the magnetohydrodynamic (MHD) turbulence, such perturba-
tions interact nonlinearly producing a cascade which moves fluctuating energy at
increasingly smaller scales. In the presence of a background magnetic field B0,
nonlinear interactions preferentially take place in the directions transverse to B0
(Shebalin, Matthaeus & Montgomery 1983; Carbone & Veltri 1990; Oughton, Priest
& Matthaeus 1994). Therefore, an anisotropy develops in the spectral space, with
perpendicular wavevectors dominating over parallel ones at small scales. Indeed,
solar wind observations have shown the presence of a significant population of
quasi-perpendicular wavevectors (Matthaeus, Goldstein & King 1986; Matthaeus,
Goldstein & Roberts 1990; Carbone, Malara & Veltri 1995; Milano et al. 2001;
Dasso et al. 2005; Matthaeus et al. 2012; Oughton et al. 2015). A further element,
which can play a role in the turbulent dynamics, is given by the interaction of
fluctuations with inhomogeneities associated with large-scale structures, such as
pressure-balanced structures or velocity shears. A detailed discussion about the role
played by both magnetic and velocity shears in the evolution of slab fluctuations in
the incompressible case is found in Ghosh et al. (1998a). The spectral evolution when
both quasi-two-dimensional and slab fluctuations are present is discussed in Ghosh
et al. (1998b). These phenomena happen in the solar wind around the heliospheric
current sheet (Malara, Primavera & Veltri 1996a) or at the interface between fast- and
slow-speed streams (Roberts et al. 1991, 1992). Finally, fluctuations in the turbulent
spectrum at scales of the order or lower than ion scales (ion inertial length and/or ion
Larmor radius) are affected by dispersive and kinetic phenomena. In a collisionless
plasma, these kinetic processes generate out-of-equilibrium features in the particle
distribution function: ion temperature anisotropy has been routinely observed in the
solar wind (e.g. Hellinger et al. 2006); the proton distribution function in the solar
wind and in the Earth’s magnetosphere can include a beam directed parallel to
the local magnetic field (Goodrich & Lazarus 1976; Marsch et al. 1982; Marsch
2006; Sorriso-Valvo et al. 2019), with a drift speed of the order of the local Alfvén
velocity (Goldstein et al. 2000; Tu, Marsch & Qin 2004). Physical processes which
can lead to the formation of this beam have also been considered (Araneda, Marsch
& Viñas 2008; Valentini et al. 2008; Matteini et al. 2010; Valentini, Perrone &
Veltri 2011a; Valentini et al. 2011b; Nariyuki et al. 2014a). More recently, a further
level of velocity–space complexity, namely the presence of an enstrophy cascade
towards smaller velocity–space scales, has been pointed out either in magnetosheath
observations (Servidio et al. 2017) or in numerical simulations (Cerri, Kunz &
Califano 2018; Pezzi et al. 2018), which are also useful to investigate the nature of
cross-scale correlations between the inertial-range turbulent energy cascade and the
small-scale kinetic processes in collisionless plasmas (Sorriso-Valvo et al. 2018).

A full description which takes into account the above features, namely, Alfvénic
correlations, spectral anisotropy, the role of background inhomogeneities and kinetic
effects at ion scales, is a complex task. However, some insight can be gained by
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means of simplified approaches. In particular, in this paper we will focus on a
specific aspect: the interaction between an Alfvénic perturbation and a bulk velocity
inhomogeneity transverse to the background magnetic field, which produces small
scales of the order of the ion inertial length/Larmor radius in the transverse direction.
This effect somehow mimics the anisotropic small-scale generation taking place in a
turbulence, where large scales evolve on characteristic times which are larger than
that of smaller scales.

Such a problem has been already analysed in detail within the MHD description,
where two distinct mechanisms are at work: phase mixing, in which differences in
phase speed produce a progressive de-phasing that bends wavefronts and increases
the transverse component of the wavevector; and resonant absorption, in which the
wave energy progressively concentrates in thin layers where a resonance condition
is satisfied. These processes have been studied both by normal mode approaches
(Kappraff & Tataronis 1977; Mok & Einaudi 1985; Steinolfson 1985; Davila 1987;
Hollweg 1987; Califano, Chiuderi & Einaudi 1990, 1992) and by considering the
evolution of an initial disturbance (Lee & Roberts 1986; Malara et al. 1992; Malara,
Primavera & Veltri 1996b). Localized pulses (Kaghashvili 1999; Tsiklauri, Nakariakov
& Rowlands 2002; Tsiklauri & Nakariakov 2003) have also been considered. The
propagation of MHD waves in inhomogeneous magnetic fields containing null points
has also been studied (Landi, Velli & Einaudi 2005; McLaughlin et al. 2011; Pucci,
Onofri & Malara 2014), finding a fast formation of small scales perpendicular to
the ambient magnetic field. In three-dimensional (3-D) inhomogeneous equilibria
this process has been considered in the small wavelength limit (Similon & Sudan
1989; Petkaki, Malara & Veltri 1998; Malara, Petkaki & Veltri 2000), also within the
problem of coronal heating (Malara, De Franceschis & Veltri 2003, 2005, 2007).

When the wavelength of the perturbation has decreased until reaching values
comparable with the ion inertial length and/or Larmor radius, both dispersive and
kinetic effects, which are neglected in the MHD approach, become important. In
particular, an Alfvén wave with a wavevector which is (i) quasi-perpendicular
to the background magnetic field, and (ii) of the order of the inverse of the ion
Larmor radius, is generally indicated as a ‘kinetic Alfvén wave’ (KAW). KAWs have
received considerable attention because observations have shown that the polarization
of fluctuations at kinetic scale in the solar wind is consistent with the presence of
KAW-like fluctuations (Chen et al. 2013). Since the MHD cascade favours nearly
perpendicular wavevectors, the expectation within a wave perspective would be that
fluctuations having a character resembling KAWs were naturally present at scales
of the order of the ion Larmor radius. An extensive analysis of the KAW physics
can be found in Hollweg (1999) (see also references therein for a more complete
view on the subject). Many solar wind observational analyses (Bale et al. 2005;
Sahraoui et al. 2009; Podesta & TenBarge 2012; Salem et al. 2012; Chen et al.
2013; Kiyani et al. 2013), theoretical works (Howes et al. 2008a; Schekochihin et al.
2009; Sahraoui et al. 2012) as well as numerical simulations (Gary & Nishimura
2004; Howes et al. 2008b; Tenbarge & Howes 2012) have suggested that fluctuations
near the end of the MHD inertial cascade range may consist primarily of KAWs
and that such fluctuations can play an important role in the dissipation of turbulent
energy. Formation of KAW-like small-amplitude fluctuations has also been observed
in numerical simulations of collisions between two counter-propagating Alfvénic
wavepackets (Pezzi et al. 2017a,b,c), a process which mimics nonlinear interactions
among localized eddies in turbulence. Moreover, Landau damping and wave–particle
resonant interactions can take place in KAWs (Vásconez et al. 2014). Due to a
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non-vanishing electric field parallel component associated with KAWs, these waves
have also been considered in the problem of particle acceleration (Voitenko &
Goossens 2004; Décamp & Malara 2006). Particle acceleration in phase mixing of
Alfvén waves in a dispersive regime has been studied both in 2-D (Tsiklauri, Sakai &
Saito 2005; Tsiklauri 2011) and in 3-D (Tsiklauri 2012) configurations. Finally,
instabilities generating KAWs in a plasma with transverse density modulations
have been considered by Wu & Chen (2013). Similar ideas involving dissipative
mechanisms related to interaction of Alfvén waves or KAWs and phase mixing
have been examined in the context of the magnetospheric plasma sheet (Lysak &
Song 2011) and in coronal loops (Ofman & Aschwanden 2002). It has been shown
that ion-scale shear Alfvén waves can be excited by ion beams in the solar wind
(Hellinger & Trávníček 2011, 2013), and these can contribute to the formation of
KAWs (Nariyuki, Hada & Tsubouchi 2014b). The possible role played by KAW-like
fluctuations in heating electrons in coronal turbulence has been considered (Malara
et al. 2019).

Recently, the phase mixing of Alfvénic perturbations propagating in a pressure-
balanced magnetic field transverse inhomogeneity has been numerically studied,
by comparing the results of Hall-MHD and kinetic simulations (Vásconez et al.
2015; Pucci et al. 2016; Valentini et al. 2017). In these simulations the perturbation
wavelength decreases, due to the interaction with the inhomogeneous background,
until it reaches values of the order of the ion inertial length; the properties of the
initial perturbation gradually change, eventually leading to an efficient generation of
KAWs inside the inhomogeneity region. Moreover, it has been observed that such
KAWs sensibly modify the initially Maxwellian ion distribution function (Vásconez
et al. 2015; Valentini et al. 2017), producing temperature anisotropy, as well as
localized ion beams which move along the magnetic field with a speed close to the
local Alfvén velocity.

In the present paper we study a similar problem, namely, the evolution of a
large-scale Alfvénic perturbation propagating in a collisionless plasma with a sheared
velocity field and a uniform magnetic field parallel to the velocity. Shearing flows
in plasmas with a quasi-parallel magnetic field can be found, for instance, in the
interaction region between fast and slow streams of the solar wind (Bruno &
Carbone 2013), or in astrophysical jets (Hamlin & Newman 2013). We consider
an unperturbed configuration where the width of the velocity shear is of the order of
few ion inertial lengths and we use a hybrid Vlasov–Maxwell approach to describe
the system evolution. Our numerical simulations show that, also in the present
case, phase mixing acting on the Alfvénic perturbation increases the perpendicular
wavenumber, until KAWs develop inside the velocity shear regions. For sufficiently
large amplitudes, such waves modify the ion distribution function, locally generating
a particle beam propagating along the magnetic field at the Alfvén velocity.

The plan of the paper is the following: in § 2 we present the equations describing
our model, including the form of the stationary solution and of the perturbation; in
§ 3 we describe the results of the simulations; and in § 4 we give the conclusions.

2. The model

We consider a collisionless, fully ionized, magnetized plasma composed of protons
and electrons. We want to describe phenomena taking place at spatial scales
larger than or of the order of the proton inertial length dp = cA/Ωp and/or of
the proton Larmor radius ρp = vth,p/Ωp. In previous definitions, cA = B/(4πmpn)1/2

https://doi.org/10.1017/S002237782000032X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000032X


Kinetic Alfvén waves and velocity shear 5

and vth,p = (κBTp/mp)
1/2 are respectively the Alfvén and the proton thermal speeds,

related through the proton βp = 2v2
th,p/c

2
A; while Ωp = eB/mpc is the proton cyclotron

frequency. Moreover, B is the magnetic field; n is the density (assumed to be equal
for protons and electrons); Tp, mp and e are the proton temperature, mass and charge,
respectively; κB is the Boltzmann constant and c is the speed of light.

2.1. Equations of the model
We employ the Hybrid Vlasov–Maxwell (HVM) model, where protons are kinetically
described by the Vlasov equation, while electrons are treated as a massless fluid.
As usual in the HVM approach, we assume that the electron fluid is isothermal:
Te= const. The equations describing the HVM model, in dimensionless units, are the
following:

∂f
∂t
+ v · ∇f + (E+ v×B) ·

∂f
∂v
= 0, (2.1)

E=−u×B+
1
n
( j×B)−

1
n
∇pe, (2.2)

∂B
∂t
=−∇×E; j=∇×B; pe = nTe, (2.3)

where, f = f (x, v, t) is the proton distribution function (DF), n= n(x, t) and u=u(x, t)
are the density and proton bulk velocity, respectively,

n(x, t)=
∫

f (x, v, t) d3v; u(x, t)=
1

n(x, t)

∫
vf (x, v, t) d3v. (2.4a,b)

In the above equations the magnetic field B is normalized to a typical value B̃; the
density n is normalized to a typical value ñ; velocities v and u are normalized to
the typical Alfvén speed c̃A = B̃(4πmpñ)−1/2; the electric field E is normalized to
Ẽ = (c̃A/c)B̃; the time t is normalized to the typical proton gyration time Ω̃−1

p , with
Ω̃p = eB̃/(mpc); space variables are normalized to the typical proton inertial length
d̃p = c̃A/Ω̃p; the current density j is normalized to the value j̃ = cB̃/(4πd̃p); and the
electron temperature Te is normalized to the typical temperature T̃ = B̃2/(4πκBñ).
In what follows, all the results will be expressed in terms of the above-defined
dimensionless variables.

The system of equations (2.1)–(2.4) is solved by means of the HVM numerical
algorithm (Valentini et al. 2007). The spatial domain is two-dimensional and is defined
by Dx={(x, y)}= [0,L]× [0,L], L=16π being the domain size, while the 3-D domain
in the velocity space is defined by Dv = {(vx, vy, vz),−7vth,p 6 vi 6 7vth,p, i= x, y, z},
where vth,p is a typical dimensionless proton thermal speed, defined in the next section.
Periodic boundary conditions are imposed on the boundaries of the spatial domain
Dx for all quantities, while the DF is imposed to vanish at the boundaries of the
velocity–space domain Dv. More details on the numerical method can be found in
Valentini et al. (2007).

2.2. Stationary configuration
The stationary configuration corresponds to a magnetized plasma with a shearing
flow, where the magnetic field B0 is uniform and directed parallel to the sheared
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bulk velocity u0. Building such kind of configuration is straightforward in the case of
MHD, but it is more complex within a kinetic approach. Explicit solutions have been
found by Roytershteyn & Daughton (2008) in the fully kinetic case, and by Malara,
Pezzi & Valentini (2018) within the HVM approach. Here, we will use the solution
of the HVM case, which is briefly described in the following; more details can be
found in Malara et al. (2018).

We consider a Cartesian reference frame, where the uniform magnetic field is
directed along the y axis: B0 = B0ey (B0 = 1 in code units), while the bulk velocity
is directed along y as well, but varies in the x direction: u0 = u0(x)ey, ex and ey

being the unit vectors in the x and y directions, respectively. The electric field is
vanishing: E0 = 0, therefore protons move along helical trajectories, with the helix
axis parallel to the y direction. In this configuration, the motion invariants are: the
particle kinetic energy E , the parallel velocity component vy and the x-position of
the particle guiding centre xc = x− vz/Ωp, (Ωp = 1 in code units). We build a proton
DF f0 in terms of the above constants of motion, which is similar to a Maxwellian,
shifted in the vy direction by a quantity U(xc), where U(·) is an arbitrary function
which contributes to determine the profile u0(x) of the bulk velocity. The explicit
form of the DF is given by the following combination of the motion constants:

f0(x, vx, vy.vz)=
n0

(2π)3/2v3
th0,p

exp

[
−

1
2v2

th0,p

{
v2

x +

[
vy −U

(
x−

vz

Ωp

)]2

+ v2
z

}]
,

(2.5)
where the meaning of the constants n0 and vth0,p is specified below. Since f0 is
expressed only in terms of single-particle motion constants, it is an exact stationary
solution of the Vlasov equation (2.1), provided that both B and E remain stationary.
Calculating the moments of the DF, we find that the associated density is uniform:
n≡

∫
f0 d3v= n0 = const., and the bulk velocity is directed along y: u0x = u0z = 0. As

a consequence, since Te = const., we have ∇pe = 0 (third equation (2.3)). Moreover,
with u0 parallel to B, and B uniform, the generalized Ohm’s law (2.2) implies that
E = 0. In turn, this gives a vanishing time derivative of B (Faraday’s law (2.3)).
In summary, both the electric and magnetic fields are stationary and the considered
configuration represents a stationary solution for the entire set of HVM equations.

In the particular case where the function U(·) is constant, the expression (2.5)
reduces to a shifted Maxwellian; therefore, the constant vth0,p can be interpreted as
the thermal velocity of protons in regions far from the velocity shear, where the
distribution function (2.5) approaches a shifted Maxwellian. The only non-vanishing
bulk velocity component u0y depends on the function U(·) through the expression
(Malara et al. 2018)

u0y(x)=
1

(2π)1/2vth0,p

∫
∞

−∞

U
(

x−
v

Ωp

)
exp

(
−

v2

2v2
th0,p

)
dv. (2.6)

Therefore, the bulk velocity profile u0y(x) does not coincide with U(x), except in the
case U(x)=U0 = const., when u0y(x)=U0. In general, denoting with ∆ the scale of
variation of the function U(·), it can be shown that u0y(x)'U(x), if ∆�Rp, where Rp

is the dimensionless proton Larmor radius. Considering the opposite limit ∆< Rp, it
can also be shown that, in the considered configuration, the actual width of a velocity
shear cannot be smaller than the proton Larmor radius (Malara et al. 2018).
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FIGURE 1. Profile of the stationary-state bulk velocity u0y as a function of x.

In our case, we used the following form for the function U(x):

U(x)=U0

[
tanh

(
x− L/4
∆

)
− tanh

(
x− 3L/4

∆

)
− 1
]
, (2.7)

which gives a profile for u0y(x) with two shears localized at x = L/4 and x = 3L/4.
The bulk velocity is u0y ' U0 in the centre x = L/2 of the spatial domain, while it
is u0y '−U0 on the two sides x= 0 and x= L. In particular, we used the following
values for the above parameters: U0= 0.8, ∆= 2.5. The corresponding profile for the
bulk velocity u0y(x) is shown in figure 1. The value of U0 has been chosen relatively
large to reduce the phase-mixing time, and, consequently, the computation time. On
the other hand, a large jump ∆uy in the bulk velocity across the shear layers can lead
to the development of the Kelvin–Helmholtz (KH) instability which would superpose
on the wave dynamics. In order to prevent the KH instability developing in our
simulations, we have chosen U0 sufficiently low to fulfil the condition ∆uy < 2cA.
This choice stabilizes the system against the KH instability, at least in the MHD case.
In particular, we have chosen ∆uy ' 1.6cA (cA = 1 in code units).

We notice that in the two shear regions the DF (2.5) departs from a shifted
Maxwellian. In particular, the proton temperature is anisotropic: T|| > T⊥, where T||
and T⊥ are the parallel and perpendicular temperature with respect to the magnetic
field direction, respectively, and agyrotropy features are also present (Malara et al.
2018). Far from the velocity shears the proton temperature becomes isotropic and
reaches the value T0p, corresponding to the asymptotic thermal speed vth0,p.

2.3. Alfvénic perturbation
At the initial time t = 0 a perturbation is superposed on the above stationary
configuration, with properties similar to a linearly polarized large-scale Alfvén wave.
Within MHD theory, an Alfvén wave is polarized in the direction perpendicular both
to the background magnetic field B0 and to the wavevector k. In our case, B0 is
in the y direction, while k varies in time due to phase mixing, but remains in the
x− y plane. Therefore, we selected a perturbation polarized along the z direction. We
considered a proton DF in the form: f = f0+ f1, where the perturbed DF has the form
of a Maxwellian shifted in the vz direction

f1(y, vx, vy, vz)=
n1

(2π)3/2v3
th0,p

exp

{
−
v2

x + v
2
y +
[
vz −Uz(y)

]2

2v2
th0,p

}
, (2.8)
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Run L n0 vth,p βp ∆ U0 k0 n1 A1 tmax

1 16π 1 1 2 2.5 0.8 2π/L 0.01 0.0099 80.0
2 16π 1 1 2 2.5 0.8 2π/L 0.1 0.091 100.0

TABLE 1. Values of parameters used in the runs.

where Uz(y) = cos(k0y), with k0 = 2π/L corresponding to a wavelength λy equal to
the domain size L, and n1 constant. We notice that λy� dp= 1. Therefore, the initial
perturbation can be considered to be in an MHD regime. The total density is uniform
and is given by

n=
∫

f0(x, v) d3v +

∫
f1(y, v) d3v = n0 + n1 = const. (2.9)

This is coherent with the fact that an Alfvén wave does not involve density
perturbations. The bulk velocity is given by a weighted average between the
stationary-state bulk velocity u0 and the bulk velocity associated with the perturbation

u(x, y)=
1
n

∫
vf (x, v) d3v =

n0u0y(x)ey + n1Uz(y)ez

n0 + n1
. (2.10)

We have fixed the value n0 = 1, while the parameter n1 has been used to determine
the amplitude A1 = n1/(n0 + n1) of the initial Alfvénic perturbation.

In the MHD regime, velocity u1 and magnetic field B1 fluctuations are related
by the expression B1 =∓(B0/cA)u1, where cA = 1 is the normalized Alfvén velocity
associated with the equilibrium structure and the upper (lower) sign corresponds to
waves propagating in the direction of B0 (opposite to B0). Therefore, we have chosen
the magnetic field initial perturbation as

B1(y)=−
n1

n0 + n1
Uz(y)ez =−A1Uz(y)ez. (2.11)

Finally, the initial electric field E is determined by the generalized Ohm’s law (2.2).

3. Numerical results

We have performed numerical simulations using the HVM numerical code with
the initial conditions specified in the previous section. Two simulations have been
run, with two different amplitudes of the initial Alfvén wave: a low-amplitude case
A1 = 9.9 × 10−3 (corresponding to n1 = 0.01, Run 1) and a moderate-amplitude
case A1 = 9.1 × 10−2 (corresponding to n1 = 0.1, Run 2). In both runs the electron
temperature is equal to the proton temperature of the stationary state far from the
shear layers: Te = T0p. The proton βp is βp = 2v2

th,p/c
2
A = 2 (i.e. vth,p = cA = 1 in code

units) and the typical thermal speed is the one evaluated far from the shear regions
vth,p = vth0,p. In this configuration the ion inertial length and Larmor radius are equal.
We used a grid in the physical space of Nx ×Ny points, with Nx = 512 and Ny= 128,
while the grid in the velocity space has 713 points. The maximum simulation time is
indicated by tmax for both runs. Other parameters have been specified in the previous
section and are listed in table 1.
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(a)

(d)

(b)

(e)

(c)

(f)

FIGURE 2. Two-dimensional plots in the x − y plane of fluctuating magnetic field
components δBz (a–c) and δBy (d–f ) at three different times: t = 20 (a,d); t = 60 (b,e);
and t= 80 (c, f ). All plots refer to the low-amplitude run (Run 1).

3.1. Run 1: small-amplitude perturbation
We start by describing the results obtained in the small-amplitude run (Run 1, A1 '

0.01). Due to the low value of the wave amplitude, nonlinear effects are negligible
and the dynamics is completely dominated by the interaction of the wave with the
inhomogeneity determined by the background velocity shear. Therefore, the purpose of
this run is to clearly single out inhomogeneity linear effects, such as phase mixing. In
the following, the fluctuating part of any quantity F(x, t) is defined as δF=F−〈F〉Dx ,
where angular parentheses indicate an average over the spatial domain Dx.

In figure 2 the fluctuating magnetic field component δBz is plotted for three
different times during the simulation (a–c). At the initial time (not shown), only the
δBz component, corresponding to the initial Alfvénic perturbation, is non-vanishing.
The effects of phase mixing on the time evolution of δBz, due to space variations
of the bulk velocity uy, are clearly visible. The wave propagation velocity vW in the
simulation reference frame is the sum of the Alfvén velocity plus the bulk velocity
vW(x)= [cA + uy(x)]ey. Accordingly, vW is larger in the centre of the spatial domain
than on the two sides. As a consequence, initially plane wavefronts are progressively
bent in the two velocity shear regions, where the wavevector perpendicular component
kx locally increases, while the wavelength decreases. Dispersive effects become
effective for wavevectors of the order of kdisp' d−1

p = 1, corresponding to a wavelength
λdisp' 2π. At later times in the simulation (t& 60), the wavelength of the perturbation
in the shear regions has decreased to λ ∼ λdisp. After that time, dispersive effects
becomes relevant, at least within the velocity shear regions. In these regions, we
observe that the magnetic fluctuation parallel component δBy (shown in figure 2d–f )
increases in time, until reaching values of the same order of δBz for times t > 60.
In the MHD case, where dispersive effects are neglected, the same phase-mixing
problem would give a null δBy for all times, implying that the generation of δBy is
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(a) (b) (c)

FIGURE 3. Hodograms in the δBy–δBz plane, relative to Run 1, at time t= t1 = 20 along
the line L/2 6 x 6 L, y = y1 = 10 (a); at time t = t2 = 40 along the line L/2 6 x 6 L,
y = y2 = 45 (b); and at time t3 = 80 along the line L/2 6 x 6 L, y = y3 = 15 (c). Black,
orange and blue sections are relative to the intervals L/2 6 x < 31, 31 6 x < 44.5 and
44.5 6 x 6 L, respectively. The red diamonds indicate the point at x= L/2.

only caused by non-MHD dispersive effects. In fact, δBy grows only in the two shear
regions, where the wavelength is small enough to make dispersive effects relevant.
In summary, in the velocity shear regions perturbations change their properties: the
initial linear Alfvénic polarization is modified by the growth of a parallel component
δBy, the wavevector becomes nearly perpendicular (k|| � k⊥) and of the order of
the inverse proton Larmor radius. These evidences suggest that the initial Alfvénic
perturbation has been locally converted into a KAW.

In order to have a clear identification of the perturbations generated in the velocity
shear regions, we have first considered the group velocity vg of the waves. Vásconez
et al. (2015) have shown that in the dispersive MHD all wave modes have a non-
vanishing component of vg⊥ in the direction perpendicular to B0. In particular, for fast
magnetosonic waves it is vg⊥& cA, while for slow magnetosonic and Alfvén waves it
is vg⊥ � cA (Vásconez et al. 2015). In our simulation, we noticed that fluctuations
generated in the shear regions propagate also perpendicularly to B0, in the direction
from the centre to the lateral parts of the spatial domain. However, we verified that the
transverse propagation speed is one order of magnitude lower than the Alfvén speed.
We conclude that such fluctuations cannot belong to the fast magnetosonic branch.

To further discriminate among slow and Alfvénic fluctuations, we have examined
how the orientation of δB varies along segments parallel to the x axis. In the
velocity shear regions these segments are quasi-parallel to the wavevector direction.
An example is given in figure 3, where three hodograms are plotted: δBz versus
δBy. These are calculated at three different times: panel (a) refers to the segment
defined by L/2 6 x 6 L, y = y1 = 10 at time t1 = 20, panel (b) to the segment
L/2 6 x 6 L, y = y2 = 45 at time t1 = 40 and panel (c) to the segment L/2 6 x 6 L,
y = y3 = 15 at time t3 = 80. The values y1, y2 and y3 have been chosen such that
δBz(x= L/2, y1,2,3, t1,2,3)'max{δBz(x= L/2, y, t1,2,3), 0 6 y 6 L}. Different sections of
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the segments are indicated by different colours: black corresponds to the central
homogeneous region (L/2 6 x < 31); orange corresponds to the shear region
(31 6 x < 44.5); blue corresponds to the lateral homogeneous region (44.5 6 x 6 L).
The diamond indicates the values of δBy and δBz at the position x= L/2.

Figure 3 can be used to determine the polarization of the magnetic perturbation in
the δBy–δBz plane, which is nearly perpendicular to the wavevector in the shear region.
Figure 3(a) refers to an early stage of time evolution. At that time, in the shear region
(orange section of the curve) the wave polarization is still essentially linear, z-aligned,
as the initial Alfvén wave. In fact, since the perturbation wavelength in the shear
region is still larger than dp (see figure 2a,d), dispersive effects are not large enough
to sensibly modify the initial polarization. In the same hodogram we also notice very
small variations of the perturbation in the two homogeneous regions (black and blue
sections of the curve); this is due to the fact that the hodogram is drawn along a
segment that, in the homogeneous regions, is quasi-parallel to wavefronts.

This latter feature is present also at the time t = 40 (figure 3b), but now the
polarization in the shear region (orange section) has turned into clockwise elliptical.
This polarization change is due to dispersive effects: they are now more relevant
in consequence of the wavelength decrease induced by phase mixing. The same
polarization is also found in the shear region at t = 80 (panel c); the orange section
of the curve has a large number of turns with respect to t = 40 because phase
mixing has further decreased the perturbation wavelength. Hodograms calculated
along other parallel segments, which are not shown here, display a same behaviour.
Considering wave modes within the dispersive MHD (Vásconez et al. 2015), Alfvén
and fast magnetosonic waves are both clockwise-elliptically polarized, while slow
magnetosonic waves are counter-clockwise polarized. We can therefore exclude that
fluctuations generated in the shear regions during system evolution belong to the slow
magnetosonic branch.

On the base of the above considerations about polarization and group velocity, the
perturbations generated in the velocity shear regions belong to the Alfvén branch, i.e.
they are KAWs. Therefore, the phase-mixing mechanism acting in the shear regions
gradually triggers a modification from the initial Alfvén wave to KAW fluctuations.
Such a transformation takes place gradually in time as the wavevector locally increases
and turns, since KAWs belong to the same branch as long-wavelength Alfvén waves.
Finally, we notice that a small-amplitude clockwise-elliptically polarized fluctuation is
also present in the lateral homogeneous region at time t= 80 (figure 3c, blue section);
due to the non-vanishing vg⊥, KAWs do not remain confined in the shear regions but
tend to move to the side homogeneous regions.

3.2. Run 2: moderate-amplitude perturbation
When increasing the initial perturbation amplitude, the effects of fluctuating fields on
the proton DF become more relevant. In order to study such kinetic effects, and at
the same time able to identify the characteristics of the propagation of KAWs during
the system evolution, in Run 2 we have chosen a moderately larger amplitude of the
initial perturbation n1 = 0.1, corresponding to A1 = 0.091. A larger amplitude would
produce significant deformations of the initial equilibrium configuration, making it
hard to clearly identify the nature of the transverse fluctuations produced by phase
mixing.

The time evolution of magnetic and velocity fields in Run 2 is qualitatively
similar to that observed in Run 1 (see figure 2). In particular, the initial Alfvén
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FIGURE 4. The quantity ηmax is plotted as a function of time t, for the
moderate-amplitude run (Run 2).

wave undergoes phase mixing in the two velocity shear regions, locally generating
small-scale perturbations with a quasi-perpendicular wavevector. Such perturbations
are elliptically polarized in the sense of the Alfvén dispersive branch and slowly
expand in the transverse direction, moving outside of the shear regions. Therefore,
also in this moderate-amplitude case we can conclude that the initial Alfvén wave
is converted into a KAW-like fluctuation by the interaction with the background
inhomogeneity due to the velocity shear.

The main differences between the small- and moderate-amplitude cases consist in
the modifications of the proton distribution function induced by fluctuations, which
are more relevant for Run 2. In order to give a quantitative measure for such a
phenomenon, we define the quantity η

η(x, t)=
1

n(x, t)

√∫
Dv

[ f (x, v, t)− f0(x, v)]2 d3v, (3.1)

which represents the L2 norm of the departure (in velocity space) between the proton
DF f , at a position x and time t, and the unperturbed DF f0 at the same position,
normalized to the density. Since η is a positive–definite quantity, it is useful to
consider also its maximum value calculated over the spatial domain, at a given
time t: ηmax(t) = maxDx{η(x, t)}. The corresponding position is indicated by xM(t):
η(xM(t), t)= ηmax(t).

In figure 4 the quantity ηmax(t) is plotted as a function of time, for Run 2. At
the initial time it is η 6= 0, due to the DF initial perturbation f1 which is superposed
on the stationary DF f0. We can see that the departure of the DF f from f0 slightly
increases in time, indicating a progressive modification of the DF due to the effects
of the perturbation. The growth of ηmax(t) saturates at the time t ' 40, remaining
roughly constant after that time. The saturation value is ηmax,sat' 1.8× 10−2, which is
' 1.3 ηmax(t= 0). The relatively low increase of ηmax is partially due to the moderate
amplitude of the perturbation and partially to the large value of βp. In fact, larger
values of βp corresponds to larger thermal energy in the proton population, when
compared to the energy associated with the perturbation. We expect to find an increase
of ηmax more relevant than in the present case, when larger perturbation amplitudes
and/or lower βp are considered.

In figure 5, 2-D plots of η(x, t) in the x − y plane are shown at times t = 40
and t = 100. Asterisks indicate the location xM where η attains the maximum value
ηmax for the given time. From this figure we see that the largest departures from the
background DF f0 are mainly localized within the velocity shear regions, where the

https://doi.org/10.1017/S002237782000032X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000032X


Kinetic Alfvén waves and velocity shear 13

(a) (b)

FIGURE 5. Two-dimensional plots of the quantity η(x, t) in the x− y plane, at time t=
40 (a) and t = 100 (b), for the moderate-amplitude run (Run 2). Asterisks indicate the
positions where η is maximum at the given time.

smallest wavelengths form in the perturbation. The spatial structure of η(x, t) appears
to be influenced by phase mixing, indicating that the DF is also spatially modulated
on a small transverse scale. Therefore, departures from the unperturbed proton DF are
strictly related to the generation of small scales, of the order of dp.

Three-dimensional iso-surface plots of the proton DF f (xM(t), v, t) in velocity space
are shown in figure 6 for t = 40 and t = 100, at the position xM(t). For comparison,
the unperturbed DF f0(xM(t), v) is plotted at the same position (figure 6a,c). The
DF modifications become evident by comparing f and f0. At time t = 40, such
variations appear as a modulation in form of rings on the considered isosurface
(figure 6b), which are co-axial with the direction y of the background magnetic field
B0, indicated by a blue arrow. We can also notice that the unperturbed DF f0 departs
from a Maxwellian, the parallel temperature Tp|| being larger than the perpendicular
one Tp⊥ (Malara et al. 2018). At time t = 100, the DF f shows a peculiar feature
where η = ηmax; namely, a ‘bulge’ is present in the isosurface (figure 6d), indicating
the presence of a sub-population of protons moving along B0 faster than the core
particles. The existence of this beam of accelerated protons can also be seen in
figure 7, where a ‘cut’ of the DF shown in figure 6 for t= 100 is plotted in velocity
space as a function of vy, for vx = vz = 0 (black line). In the same figure, the
corresponding profile of the unperturbed DF f0 is plotted for comparison (orange
line), along with the difference f − f0 of the two profiles (blue line). The proton beam
is evident also in figure 7; in particular, the difference in velocity between the beam
and core population along the B0 direction is 1vy ' cA = 1.

Concerning the origin of the beam, we observe that KAWs are characterized by a
component of the electric field Ey parallel to the background magnetic field B0 (e.g.
Hollweg 1999). Such a component is vanishing in the limit of ideal MHD and can
be responsible for particle energization. In figure 8 a 2-D plot of the parallel electric
field component Ey at the time t= 100 is shown. Figure 8 shows that Ey is localized
in the region where the smallest spatial scales are present in the perturbation, while
it is negligible outside. Moreover, the spatial pattern of Ey is similar to that of other
perturbed quantities, and the wavelength in the parallel y direction is λ|| = 2π/k0 = L.
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(a) (b)

(c) (d)

FIGURE 6. Isosurfaces of the 3-D proton velocity DF f (xM(t), v, t) (b,d), and of the
stationary DF f0(xM(t), v) (a,c), at time t = 40 (a,b) and t = 100 (c,d), calculated in the
spatial position xM(t) where η = ηmax at the given time. Isosurfaces are relative to the
values f = f0 = 0.008. Plots refer to the moderate-amplitude run (Run 2).

As a consequence, we can define a sort of electric potential φ, such as Ey=−∂φ/∂y.
Of course, the dependence of φ on y is also periodic, with a period equal to L.
Protons, in their motion, feel this periodic potential and can interact with it. In
particular, part of the ion population can remain trapped into the potential well
associated with the spatially modulated Ey component. For a given particle kinetic
energy, this trapping is more probable for protons which move quasi-parallel to B0,
i.e. with vx, vz � vy; this latter condition corresponds to the cut in figure 7. The
potential well co-moves with the wave along the magnetic field with a velocity ' cA
in the plasma bulk reference frame, which explains why trapped protons have an
average velocity of uy(x)+ cA. This process can account for the formation of the DF
features observed in figure 7.

Indeed, in previous simulations of Alfvén wave phase mixing generated by magnetic
field inhomogeneities, the presence of ion beams moving along the magnetic field at
the local Alfvén speed has been observed by Vásconez et al. (2015) and Valentini
et al. (2017). These authors have shown that the origin of such beams is the parallel
electric field associated with KAW-like fluctuations, generated in the inhomogeneity
regions by the phase-mixing mechanism. It is likely that the same physical process is
responsible for the creation of suprathermal ion beams also in the case considered in
the present paper.
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FIGURE 7. Profiles of the proton distribution functions f (black line), f0 (orange line) and
of the difference f − f0 (blue line) are plotted as functions of vy, for vx = vz = 0, at the
space position xM(t) at time t= 100. Plots refer to the moderate-amplitude run (Run 2).

FIGURE 8. Two-dimensional plot of the electric field parallel component Ey in the x− y
plane, calculated at time t= 100 for the moderate-amplitude run (Run 2).

4. Conclusions
In this paper we have studied the evolution of an Alfvén wave in a collisionless

plasma, propagating in a stationary configuration characterized by a sheared flow with
a uniform magnetic field parallel to the velocity field. The present paper follows many
previous investigations, starting from those in incompressible MHD configurations
by Ghosh et al. (1998a,b). Our study has been carried out numerically, by means
of the HVM code. We considered a width of the shear layers of the order of the
proton inertial length/Larmor radius. In order to properly describe the unperturbed
configuration, we used an exact analytical solution suitable for the HVM approach
(Malara et al. 2018). The physical mechanism acting on the time evolution of the
perturbation is phase mixing, induced by transverse variations of the plasma bulk
velocity, which bends wavefronts and generates increasingly small scales in the
transverse direction. Though the initial perturbation is in a MHD regime, i.e. the
wavelength λ is initially much larger than proton scales, later in time λ locally
becomes of the order of dp. Once this stage is reached, both dispersive and kinetic
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effects come into play and the initial Alfvén wave is converted into a KAW. The
identification of the perturbation within the shear region as a KAW has been done
considering both its polarization, which is turned from linear into clockwise elliptical,
and the transverse group velocity, which is non-vanishing but much less than the
Alfvén speed.

In the moderate-amplitude run, properly kinetic effects have been observed, such
as modifications of the initial stationary distribution function. In the considered case,
variations of the DF are not particularly large, due both to the moderate perturbation
amplitude and to the large value of the proton beta parameter (βp= 2); in fact, larger
values of βp correspond to a lower ratio of the perturbation energy to the bulk thermal
energy. We decided not to increase further the amplitude of the initial perturbation as
for larger amplitudes the wave features of the KAW are no longer easily identified.

Nevertheless, an interesting feature has been observed, namely, the generation of a
beam of suprathermal protons moving along the magnetic field with a speed given by
the sum of the Alfvén velocity and the local bulk velocity. The existence of such a
beam can be related to an electric field component δE|| parallel to the magnetic field,
which characterizes KAWs, and which has been indeed observed in our simulations in
the velocity shears regions, where KAWs are generated. We notice that the presence
of magnetic-field-aligned proton beams, is often observed in the solar wind plasma
(Marsch 2006). Therefore, our results suggest that such a feature could be related to
the presence of KAW-like fluctuations in the solar wind.

Most of the behaviour and features observed in the present simulations have been
also found in another situation in which an Alfvén wave propagate in a background
configuration where the magnetic field B0 is inhomogeneous, with spatial variations
perpendicular to B0, at scales comparable with the proton Larmor radius (Vásconez
et al. 2015; Pucci et al. 2016; Valentini et al. 2017). In that case, phase mixing acting
on the Alfvén wave is due to spatial variations of the Alfvén velocity. The results
found in the latter studies and these obtained in the present investigation can be
considered to be complementary. We can conclude that the observed phenomenology
is due to phase mixing at proton scales, regardless of the origin of such a process
(magnetic field and/or bulk velocity inhomogeneities); in other words, as long
as the propagation velocity of Alfvén waves is spatially inhomogeneous in the
direction perpendicular to the background field, these can be successfully converted
into KAWs.

As a final remark, we observe that the present results have been derived within a
simplified configuration, where it is possible to distinguish a single well-defined wave
from the inhomogeneous background. Nevertheless, our results give some indications
on the possibility of generating KAWs in more complex contexts, like in a turbulent
setting. In fact, the wave–inhomogeneity coupling considered in this investigation is
of a similar nature as the nonlinear coupling between fluctuations which generate the
turbulent cascade in MHD: in a turbulent regime fluctuations with two different k
values couple to produce a third one at higher k, while in the configuration here
considered a fluctuation with a well-defined k couples with the k coming from the
inhomogeneity.

We therefore conclude that the phenomenon we studied is closely related to the
mechanism that favours perpendicular spectral transfer in the nonlinear cascade
(e.g. Shebalin et al. 1983). Moreover, our results give a positive indication about the
possibility of generating KAW-like fluctuations at proton scales within a turbulent
cascade, as suggested by solar wind observations (Bale et al. 2005; Sahraoui et al.
2012).
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