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Abstract. Nonclassical theories of truth that take truth to be transparent have some obvious
advantages over any classical theory of truth (which must take it as nontransparent on pain
of inconsistency). But several authors have recently argued that there’s also a big disadvantage
of nonclassical theories as compared to their “external” classical counterparts: proof-theoretic
strength. While conceding the relevance of this, the paper argues that there is a natural way
to beef up extant internal theories so as to remove their proof-theoretic disadvantage. It is
suggested that the resulting internal theories are preferable to their external counterparts.

As is well known, Kripke’s (1975) fixed point construction for truth based on the
Strong Kleene semantics suggests a number of different axiomatized truth theories.
A prominent division among them is between the external theories and the internal
theories. Internal theories are, roughly, those whose only theorems are members of
(some or all) fixed points of Kripke’s construction; whereas external theories provide
a certain kind of external commentary on the fixed points. The internal theories based
on the Kleene semantics respect the naivety of truth: roughly, the equivalence between
any sentence and the attribution of truth to it. (Also known as transparency.) The
external theories don’t respect naivety. Related to this, the internal theories seem more
faithful to the intuitions behind the Kripke construction: as Halbach and Horsten put
it (2006), the external theories are “not sound with respect to Kripke’s semantics in
the straightforward sense” (p. 677). Prima facie, these seem like strong points in favor
of the internal theories.

But as Halbach and Horsten argue in that paper, the standard internal theories
are substantially weaker than their external counterparts in their nontruth-theoretic
consequences. Halbach (2011) spells this out further, and while conceding the prima
facie advantages of the internal theories over the external, says that the extra strength
of the external theories (as regards nontruth-theoretic consequences) is a factor that
far outweighs that. The same conclusion, on the same basis, is reached in Feferman
(2012).1

I concede to these authors that the extra strength of the external theories is highly
desirable. My aim in this paper is to show that this extra strength can be attained
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226 HARTRY FIELD

(and in a natural way) in an internal framework which still respects the naivety of
truth. (That means that its logic must be nonclassical; more on this in a moment.)
I first show how to achieve this in connection with the external theory KF+ (“extended
Kripke-Feferman”), which has first order Peano arithmetic as its basis: my strategy is
to provide an internal theory INT, also based on first order PA, in which KF+ can be
interpreted. I then turn to Feferman’s (1991) schematic extension of KF+, which I’ll
call S-KF+; I provide an analogous schematic internal theory, S-INT, in which S-KF+

can be interpreted.
Feferman showed that classical predicative analysis can be interpreted in S-KF+, so

when that deep result is combined with the (shallower) result to be presented we get a
striking conclusion:

(∗) One can do all of classical predicative analysis within a nonclassical internal
theory based on arithmetic.

The situation is analogous for theories that add a truth predicate to richer theories
such as ZFC (Zermelo-Fraenkel set theory with choice): the method I’ll be advocating
would yield a rather strong predicative theory of self-applicative properties over the
ZFC sets, which I think is a natural version of what Feferman (1991) calls the “reflective
closure” of ZFC. But I’ll confine my attention here to the arithmetic case, where it’s
clearer what the target is (viz., predicative analysis).

Feferman also repeatedly made a somewhat separate complaint against internal
theories: one cannot carry out “sustained ordinary reasoning” within the logics they
employ.2 The results of this paper also undercut much of the force of this. For my
conclusion is really stronger than (∗): since S-INT allows us to interpret S-KF+ (and
by a very simple translation, as we’ll see), and that in turn allows us to interpret
predicative analysis, we get

(∗∗) One can carry out what is essentially the same reasoning as employed in the
classical theory S-KF+ within a nonclassical internal theory.

The trick is that S-INT allows us to carve out a substantial “classical core”; within that
substantial core it is possible to carry out whatever sustained ordinary reasoning we can
carry out classically. Feferman’s point about sustained ordinary reasoning outside the
core remains; but the core is so substantial that I think much of the worry is undercut.

§1. What is to be done? The basic idea will be to extend the usual internal theories
by adding an extra predicate “Scl ,” read “strongly classical.” This predicate itself is to
behave classically (in particular, it is to obey excluded middle).3 The “truth predicate”

2 It’s easy to ascertain meta-theoretically what inferences they validate, but the need to go
meta-theoretic is unattractive.

3 It is this requirement that leads me to speak of strong classicality. In a truth theory within the
internal logic I prefer, it’s natural to regard a sentence x as “classical” ifTrue(x) ∨ ¬True(x).
But then we can never prove (or even legitimately assert) of a sentence B that it isn’t classical:
that would amount to asserting ¬[True(〈B〉) ∨ ¬True(〈B〉)], which in the logic in question
entails the contradiction ¬True(〈B〉) ∧ True(〈B〉), which in turn entails any absurdity one
chooses. (We can’t even prove or legitimately assert that there are nonclassical sentences, on
this definition of classicality.) To get around this, we want a notion of strong classicality for
which the strong classicality of x entails True(x) ∨ ¬True(x), but not conversely; and for
which we can prove of many sentences that they are strongly classical and of many others
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THE POWER OF NAIVE TRUTH 227

of the external theory is then to be interpreted within the corresponding internal theory,
roughly as “strongly classically true,” that is, “both true and strongly classical,” which
I will abbreviate as “Strue.” The laws governing “Scl” will be such that the defined
predicate “Strue” also behaves classically (in particular, obeys excluded middle). As a
result, classical logic applies fully among sentences that only contain “true” in contexts
of form “strongly classical and true.” Under basically this translation, all the laws of
the external theory will be validated. This means that the proof-theoretic strength of
the external theory is attained within the internal theory.

I don’t claim a lot of pretheoretic clarity for the notion of strong classicality: indeed,
it is a notion that can be filled out in various incompatible ways, and I will build into
it only those features needed for the purpose of interpreting the external theories. For
instance, the theory will be neutral as to whether truth-teller sentences, or sentences
asserting that they are either true or not true, are strongly classical. But it is compatible
with the theory to be presented to read “strongly classical” as “grounded” in the sense
of (the Strong Kleene version of) Kripke (1975).4

How will the paradoxes be treated? Let’s consider both a “genuine Liar sentence”
(which I’ll abbreviate as) Q, which asserts its own untruth, and an “external Liar
sentence” Q∗, which asserts that it itself isn’t both true and strongly classical (in
whatever way that notion of strong classicality is filled out). Regarding the latter:

(A) The internal theories INT and S-INT will diagnoseQ∗ as true but not strongly
classical.5

This is reminiscent of, but seems far more attractive than, the treatment of the Liar
sentence in external theories like KF+. In KF+ (because “true” amounts to what
the internal theory calls “strongly classically true”) the Liar sentence is asserted but
simultaneously declared untrue. (As Halbach and Horsten say, KF+ “disproves its own
soundness” (2006, p. 682).)

The internal theories will treat Q very differently from Q∗. INT and S-INT will
employ the Strong Kleene logic K3, to be described shortly; it restricts excluded middle
while keeping modus ponens for ⊃ (where ⊃ is defined in terms of ¬ and ∨ in the usual
way). With this logic,

(B) “True(〈Q〉) ∨ ¬True(〈Q〉)” is not a theorem: indeed it is an anti-theorem,
in the sense that it entails everything including absurdities like “0 = 1.” The
disjuncts are likewise anti-theorems; so one must reject them.

Whereas the external theories declare a sentence stating its own “untruth” as “not
true,” but assert it nonetheless, the internal theories reject the sentence and also reject
its untruth, since its untruth is equivalent to the sentence itself. (They also reject its
truth, which they take to likewise be equivalent.) I think this a much more appealing
way to use “true”: as many have argued, the equivalence of a sentence to the claim that
it is true seems quite central to the uses to which a truth predicate is put.

Be that as it may, the point will be to construct theories INT and S-INT that take such
a naive truth predicate as basic, but define (from it together with a predicate “Scl”) a

that they aren’t. And to allow for the interpretation of the external theories, we want strong
classicality to be a classical predicate.

4 Or rather: to read it this way when it is applied to sentences that don’t themselves contain
‘strongly classical’.

5 At least, as not strongly classical in the same sense as used in Q∗: see note 35.
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228 HARTRY FIELD

notion of strongly classical truth that works entirely in accord with the external theory,
and thus preserves the deductive power of the external theory.

The view is somewhat reminiscent of Feferman (2008), which involves a theory
of truth together with a separate predicate “Determinate” applicable to sentences
for which “things work nicely.” The difference is that his truth theory is classical
throughout, and “things work nicely for determinate sentences” means that truth is
naive for them; whereas for me it’s the reverse, we have naive truth everywhere and
“things work nicely” means that instances of the formula obey excluded middle and
hence are fully classical. I believe this latter view is preferable: on it, we get the full
deductive power of the external theory within a philosophically attractive naive theory
of truth.6

I think the view to be presented is one that should have been appealing to a slightly
later time-slice of Feferman. For he says in 2012 (p. 189) that the notion of truth
employed in KF(+) and S-KF(+) is not the philosophically significant notion: he
says that it doesn’t really stand for truth, but for grounded truth in Kripke’s sense.7

(Obviously he intended a qualification analogous to that in note 4 above.) But he
provides no axiomatization of the philosophically significant notion. The present
paper can be viewed as filling out his suggestion, by simultaneously axiomatizing
the philosophically significant notion of truth and a notion of strong classicality that
can but needn’t be read as groundedness, so that something akin to grounded truth
can be defined in a way that validates his axioms.

That basically is the paper. The next section contains an explanation of the
internal/external distinction and some details about the Halbach–Horsten–Feferman
argument; the rest of the paper gives the details of the response.

§2. Internal and external theories. There are three main logics based on the Strong
Kleene three-valued evaluation rules.8 (I’ll call the three Kleene values 0, 1

2 and 1, where
1 is the value we give to classical truths and 0 the value we give to classical falsehoods.)

6 See also Halbach and Fujimoto (in preparation): their theory, like Feferman (2008), is a
classical truth theory with a separate determinateness predicate, in whose scope truth behaves
naively. Interestingly, their axioms for determinateness are quite similar to mine for strong
classicality. (We developed them independently, so I take this as a sign of their intuitive
appeal.) Their system strikes me as rather more natural than Feferman (2008), both in its
determinateness axioms and in its underlying truth theory. (Theirs, unlike Feferman’s but
like mine, contains all standard composition principles for truth; and it doesn’t have the
defect of declaring itself unsound, though it does fail to declare some of its theorems true.)
The proof-theoretic strength of their system exceeds that of KF but is still far short of S-KF;
presumably a schematic variant matches that of S-KF, and hence of the theory S-INT to be
presented below. Seeing their system does not change my verdict that it’s best to attain that
proof theoretic strength in a fully naive theory.

7 By contrast, Halbach & Nicolai (2018) insist (p. 241 among other places) that the concept
of truth employed in KF(+) is the same as that employed in the internal theories. Presumably
this means that when the internal theory rejects the sentences that the external theory accepts,
the dispute is genuine; which is what Feferman appears to have been denying.

8 I focus on Strong as opposed to Weak Kleene, both because the connectives and quantifiers
of the latter seem unnatural, and because as Saul Kripke pointed out to me, Weak Kleene is
just a sublogic of Strong Kleene (one with quite limited expressive power). More specifically,
its disjunction is definable in Strong Kleene as (A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ B), and its
existential quantification (Kripke credits this to Brian Porter) as ∃xAx ∧ ∀x(Ax ∨ ¬Ax).
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My favorite is the logic K3, that declares an inference valid when in every model where
the premises have value 1, so does the conclusion. It is the dual to Priest’s “Logic of
Paradox” LP (Priest, 1998), which declares an inference valid iff in every model where
the premises have nonzero value, so does the conclusion. S3 is the “symmetric” logic,
whose valid inferences are those that are valid both in K3 and in LP: in other words,
those where in every model the value of the conclusion is at least the minimum of the
values of the premises. In K3, the law of excluded middle isn’t valid, but the rule of
explosion is. (That’s the rule that contradictions imply anything; it’s equivalent in the
current context to the rule of disjunctive syllogism, A ∨ B,¬A � B ; which in turn is
equivalent to Modus Ponens for ⊃.) In LP it’s the other way around: excluded middle
is valid, explosion (and Modus Ponens for ⊃) isn’t. In S3 neither is valid; but their
common content, the ruleA ∧ ¬A � B ∨ ¬B , is valid. I favor K3, but little will turn on
this. Still, it’s nice not to have to conduct the discussion in a general way, so I’ll assume
it for purposes of this paper.9

Whichever of these three logics one prefers, there are serious issues of expressive
inadequacy: the logic does not contain conditionals adequate to our needs, or a
satisfactory restricted universal quantifier (for saying “All A are B” when A and B
are nonclassical formulas). Much of my work in recent years has been on extending K3

to address these limitations. In the present paper I want to avoid that: I’ll work entirely
within K3. Some things would be smoother with an added conditional, but the overall
complexity would bury the basic idea. It’s possible here to avoid added conditionals
because once the strong classicality predicate is added, the task of recovering the proof-
theoretic strength of external theories is done within the strongly classical part, and
here the ordinary Kleene ⊃ suffices. The additional conditional or conditionals are
still important to the overall theory, e.g. for the theory of restricted quantification
outside the strongly classical realm, but not for the part needed to respond to Halbach,
Horsten and Feferman.

My internal theories will include a truth theory over Peano arithmetic, based on
the logic K3. (The arithmetic enables us to develop a syntactic theory for sentences,
taken to be the bearers of truth, via a Gödel numbering.) The truth theory will be
“naive,” which means in part that for each sentence B of the language (including those
containing “True”), it will include each instance of these four rules (where the “A” is
schematic for sentences, and 〈A〉 is the Gödel number of A):

T-Elim: True(〈A〉) � A
¬T-Introd: ¬A � ¬True(〈A〉)
T-Introd: A � True(〈A〉)
¬T-Elim: ¬True(〈A〉) � ¬A

More generally, naivety means that for any sentence A, and any formulaXA in which A
is a subsentence, ifXTrue(〈A〉) results fromXA by replacing one or more occurrences of A
by True(〈A〉) then XTrue(〈A〉) � XA and XA � XTrue(〈A〉). This follows inductively from

9 The problem of proof-theoretic strength that Halbach, Horsten and Feferman raise for
internal theories based on Strong Kleene logic arises also for internal theories based on
rather different logics such as Priest’s LP, due to the restrictions imposed there on modus
ponens (see Picollo, 2018) The solution that I suggest to the problem in the case of Strong
Kleene theories can easily be adapted to apply to LP-based theories.
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the four listed rules together with the laws of K3. I’ll refer to it as the intersubstitutability
of True(〈A〉) with A in inference.

Many generalizations about truth, e.g. compositional laws, will also be part of the
theory; and the arithmetical induction rule will extend to formulas containing “True.”

By standard techniques one can construct a Liar sentence, which I’ll abbreviate as
“Q”; its central feature is that it’s equivalent to “¬True(〈Q〉),” and so in particular

Q � ¬True(〈Q〉), and
¬True(〈Q〉) � Q.

Combining these with the previous, we get

Q � ¬Q, and
¬Q � Q.

Classically these are inconsistent, but using the more modest rules of S3 they lead only
to the conclusion

Q ∨ ¬Q � Q ∧ ¬Q.

In the K3 that I prefer, we get the sharper conclusion

Q ∨ ¬Q � ⊥

where ⊥ is an absurdity (say, 0=1). Thus using naive truth in K3, Q ∨ ¬Q is an
anti-theorem: it implies absurdities. Indeed the disjuncts Q and ¬Q are themselves
anti-theorems. (If I’d used only the weaker S3, Q ∨ ¬Q would not be an anti-theorem:
it would still imply the contradiction Q ∧ ¬Q, but whereas in K3 contradictions imply
absurdities, they don’t in S3.) The fact that in K3 Q ∨ ¬Q is an anti-theorem does not
mean that its negation is a theorem:¬-Introduction is not a valid rule in K3. Indeed, not
only is ¬(Q ∨ ¬Q) not a theorem, it is an anti-theorem of K3 too, since it is equivalent
to Q ∧ ¬Q.

What’s called the Kripke–Feferman theory (KF) is sort of an “external analog”
of the naive truth theory based on S3: where A1, ..., An � B in S3, KF proves
True(〈A1〉) ∧ ··· ∧ True(〈An〉) ⊃ True(〈B〉).10 For instance, KF proves True(〈Q ∨
¬Q〉) ⊃ True(〈Q ∧ ¬Q〉). KF+ adds to KF the principle

(CONSIS) ¬∃x[True(x) ∧ True(neg(x))]

(where when x is the Gödel number of a formula, neg(x) is the Gödel number of its
negation; and when x isn’t the Gödel number of a formula, neg(x) isn’t either). This
is an “external analog of” the explosion rule, so KF+ is an “external analog of” naive
truth theory based on K3. KF+ thus derives ¬True(〈Q ∨ ¬Q〉), from which it derives
¬True(〈Q〉) and ¬True(〈¬Q〉).

Feferman (1991) showed that KF+ (and even KF) is powerful enough to interpret
ramified analysis up to the ordinal �0 but no further. He also suggested a natural way
to beef up KF or KF+ with a schematic variable for the arithmetic induction schema,

10 The technical result of Halbach & Horsten 2006 shows that the converse fails. They say that
KF can be viewed as the theory of the “closed off” Kripke construction that Kripke mentions
late in his paper, though this is probably more true of the KF+ to be mentioned next.
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to yield theories I’ll call Schematic-KF and Schematic-KF+11; and he showed that
these allow the development of ramified analysis up to the much larger ordinal Γ0 (the
Feferman–Schütte ordinal), i.e. what’s called “predicative analysis.” The usual internal
theories based on arithmetic are called PKF and PKF+, and Halbach & Horsten (2006)
showed that they yield ramified analysis only up to the much smaller level�� . This has
led Halbach (2011) and Halbach & Nicolai (2018) to not only question these particular
internal theories but to strongly suggest that any theories based on nonclassical logic
are inadequate to mathematics (even if they assume excluded middle for standard
mathematical predicates and restrict it only for “True”): e.g. the latter conclude their
paper (p. 251) by saying “We shouldn’t expect that the effects of restricting classical
logic for use with the truth predicate can be contained.”

It would be possible to contest the significance of this argument from proof-theoretic
strength. While we certainly want the results of ramified analysis of these higher levels,
one might argue that this is just because we accept those results independently of the
notion of truth: e.g., because we accept a standard set theory like ZFC, from which
ramified analysis at all levels certainly follows. In that case, the real test isn’t theories
that add a truth theory to PA, but theories that add it to a much more powerful theory
such as set theory. Presumably the results about excess strength carry over: adding
truth in a KF-like (or KF+-like) way to ZFC will result in more consequences in the
language of ZFC than adding it in a way that corresponds to extant internal theories.
But it might be less obvious how important that is: if you think that ZFC already
contains all the math you need, then even a weak internal extension of it certainly
does.

While this response is worth noting, I don’t find it satisfying. It does seem to me
(along the lines of various papers by Feferman) that there is an attractive project
of “reflectively closing” theories by adding predicates for truth and related notions
(together with natural principles governing these predicates). The goal of such reflective
closures should be to capture “predicative reasoning over those theories”; and that
includes far more than one gets in extant internal theories. (Indeed, it includes far
more than one gets in the nonschematic theories KF and KF+; but showing how to
get up to �0 in an internal framework is a clue for how to go farther.) So I think that
the challenge to internal theories that these authors raise should be taken seriously.

To this end, I’ll begin (§3) by formulating a nonschematic internal theory INT,
and show (§4 and §5) that it is sufficient to interpret KF+, thus getting ramified
analysis up to �0; in §6 I’ll give a model-theoretic proof of its consistency.12 In §7–9
I’ll show that Feferman’s use of schematic variables is equally available in an internal
context, and leads to a consistent theory that interprets Schematic-KF+ and hence full
predicative analysis. §10 sketches some extensions, and contains further remarks about
the philosophical import of the results.13

11 What I’m calling Schematic-KF is his Ref∗(PA(P)).
12 The explosion rule will be used only to derive the interpretation of (CONSIS), so the

analogous internal theory based on S3 will suffice for KF; and that itself is known to
interpret ramified analysis up to the ordinal �0. That’s why my choice to use K3 rather than
S3 is inessential. (Consideration of LP would require a longer discussion.)

13 I should note that there are “cheaper” ways of adding proof-theoretic strength to PKF.
One, mentioned in Nicolai (2018), is simply to add induction up to �0 (or up to Γ0) as
a primitive principle. Another, considered in Fischer, Nicolai, & Horsten (2018), is to use
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§3. The nonschematic internal theory INT. I’ve divided the formalization of INT
into four parts: the logic, the arithmetic, the truth theory, and the theory of strong
classicality. The first three will probably contain no surprises (together they are very
similar to the theory PKF of Halbach & Horsten (2006), though with the addition of
the Explosion rule), but it is important to be explicit, and to set the framework within
which the fourth part is presented.

3.1. The logic. I start with a rather standard formalization of the logic K3. (The
formalization is similar to the one in Wang, 1961.) It is in the format of a Gentzen
sequent system with single-formula consequents. The sequent symbol “⇒” is of course
not part of the language. I assume the usual structural rules for⇒. (S3 is the same system
except with (Explosion) weakened to A,¬A⇒ B ∨ ¬B ; simply dropping (Explosion)
gives the four-valued logic FDE.)

(∧-Ea): A ∧ B ⇒ A
(∧-Eb): A ∧ B ⇒ B
(¬∧-Ia): ¬A⇒ ¬(A ∧ B)
(¬∧-Ib): ¬B ⇒ ¬(A ∧ B)
(∧-I): A,B ⇒ A ∧ B

(¬∧-E):
Γ,¬A⇒ C
Γ,¬B ⇒ C

Γ,¬(A ∧ B) ⇒ C
(¬¬-I): A⇒ ¬¬A
(¬¬-E): ¬¬A⇒ A
(Explosion): A,¬A⇒ B
(∀-E): ∀xAx ⇒ At (when the substitution of t for x is legitimate)
(¬∀-I): ¬At ⇒ ¬∀xAx (when the substitution of t for x is legitimate)

(∀-I):
Γ ⇒ Ax

Γ ⇒ ∀xAx when x not free in any member of Γ

(¬∀-E):
Γ,¬Ax ⇒ B

Γ,¬∀xAx ⇒ B when x not free in B or any member of Γ

We define ∨, ∃, ⊃ and ≡ from the others in the usual way, and we get the expected
rules for them. (This includes modus ponens, given that we’ve included (Explosion).)

It’s easy to check that we have restricted conditional proof with side formulas:

progressions of theories based on global reflection principles, rather than single theories: let
T0 be PKF, and if Tα has been defined let Tα+1 say (roughly) that everything provable in
Tα is true (with suitable union at limit ordinals if one goes into the transfinite). (That paper
proves that starting from PKF or even something weaker, two stages of iteration gets you to

ramified analysis up to ��
2
, and it conjectures that further iteration would get you all the

way up to �0. It doesn’t discuss the use of schematic induction.) This use of progressions of
theories strikes me as “less cheap” than directly building in powerful induction principles,
but still cheap in that no stage past the zeroth is a directly motivated theory, but rather results
from successively piggybacking on earlier theories. I doubt that either of these procedures
successfully answers the challenge that Halbach, Horsten, Nicolai and Feferman raised
(and would suspect that the authors of these more recent papers would agree). I hope to
do better.
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Restricted conditional proof
Γ ⇒ A ∨ ¬A

Γ, A⇒ B
Γ ⇒ A ⊃ B

By induction on complexity, we also get an intersubstitutivity result: that if XB results
from XA by substituting some or all occurrences of A in it by B, then from A⇒ B ,
¬B ⇒ ¬A,B ⇒ A and ¬A⇒ ¬B , we can deriveXA ⇒ XB (with the usual restrictions
on substituting formulas with free variables into the scope of quantifiers).

Finally for identity we need

(Refl): ⇒ x = x
(Subst of =):x = y,A(v/x) ⇒ A(v/y) when v is a variable and the substitutions
of x and y for it are legitimate.

We also need

A0: ⇒ ∀x∀y(x = y ∨ ¬(x = y)).

Instead of viewing this as a general logical axiom, we might prefer to think of a version
restricted to where x and y are natural numbers as an arithmetic axiom. But in the
context of theories built on PA, the only objects are natural numbers, so we have the
unrestricted law either way (and it will make no difference whether we regard it as
logical or arithmetic).

3.2. The arithmetic. I’ll employ this logic in connection with the standard language
of first-order Peano arithmetic, expanded to include two new one-place predicates
“True” and “Scl .” Let L be this expanded language. (For definiteness, suppose that
the arithmetic has “=” as its only predicate, and has the constant symbol “0” and the
function symbols “suc,” “+” and “·”. If we had more arithmetic predicates then we’d
need to include analogs of A0 for them.)

The axioms (beyond the instances of excluded middle) are the standard Peano
axioms, except with the induction schema formulated in rule form:

Induction Rule:
Γ, A(x) ⇒ A(suc(x))

Γ, A(0) ⇒ ∀xA(x)
when x not free in members of Γ.

All formulas of L, even those with “True” and “Scl ,” are allowed as instances of A
in this schema. (It’s the possible presence of the nonclassical “True” that forces the
retreat to rule form.)

It’s not hard to see that A0 together with the (other) logical laws implies universally
generalized excluded middle for all formulas of the language of Peano arithmetic. By
restricted conditional proof, the usual conditional form of induction is derivable for all
formulas in the language of Peano arithmetic.14 Since the other laws of PA have been
built in directly, we have full classical Peano arithmetic.

3.3. The compositional truth theory. To state the compositional rules for truth we
need some primitive recursive syntactic operations, which can of course be defined in
arithmetic as operations on Gödel numbers; so we can conservatively expand arithmetic

14 From the induction rule as formulated, derive the weaker rule form A(0) ∧ ∀x(A(x) ⊃
A(suc(x))) ⇒ ∀xA(x), by using ∀x(A(x) ⊃ A(suc(x))) as a side formula (together with (∀-
E) and modus ponens, the latter of which depends on Explosion). Apply restricted conditional
proof to that.
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to include function symbols for them. (This is all very standard, but I include it for
reference as needed, and because some of the material required in stating it is also
required for the compositional theory of strong classicality.) Let # be any specific
number that isn’t the Gödel number of anything. The function symbols we need are:
neg(x), representing the function that takes the Gödel number of a formula of L to

the Gödel number of its negation, and that takes the Gödel number of anything that
isn’t a formula of L into #;
conj(x, y), representing the function that takes the Gödel numbers of two formulas

of L to the Gödel number of their conjunction, and that takes two numbers at least
one of which isn’t a formula of L into #;
univ(v, x), representing the function that takes the Gödel numbers of a variable of

L and a formula of L to the Gödel number of the result of universally quantifying that
formula with that variable, and that takes two numbers into # unless the first is the
Gödel number of a variable of L and the second the Gödel number of a formula of L;
subst(x, v, t), representing the function that takes the Gödel numbers of a formula,

of a variable, and of a term to the Gödel number of the result of substituting the term
for the variable in the formula; and that takes other triples of numbers to #;
eq(x, y), representing the function that takes the Gödel numbers of two terms to

the Gödel number of the equation between these terms (and that takes other pairs of
numbers to #);
num(x), representing the function that takes any number to the Gödel number of

its corresponding numeral;
SC(x), representing the function that takes the Gödel number x of an expression

of L to the Gödel number of the corresponding atomic sentence “Scl(num(x))” (and
that takes other numbers to #);

TR(x), representing the function that takes the Gödel number x of an expression of
L to the Gödel number of the corresponding atomic sentence “True(num(x))” (and
that takes other numbers to #).15

These, together with the usual function symbols of PA, are to be the function symbols
of L. There is also a primitive recursive relation that holds between two numbers if
the first is the Gödel number of a closed term of L that denotes the second16; we can
conservatively extend PA to include a predicate “denotes” that represents this. (I also
include obvious predicates such as SENTL and CTerm (closed term) for the various
syntactic categories in the full language L; I include the subscript on SENT because
we’ll later consider sublanguages with some predicates omitted (but with the same
closed terms, obviating the need of a subscript on CTerm).

15 It is more common in the literature on KF to use a function symbol T. that represents the
function taking the Gödel number of a term t to the Gödel number of the corresponding
atomic formula “True(t),” so that T. (num(x)) is TR(x). The use of TR rather than T. (and
analogously for SC) simplifies many formulations that follow, especially as regarding the
function symbol H of §5.

There is no formal significance to the use of boldface and uppercase in SC and TR; I simply
wanted to make the distinction between these function symbols and the corresponding
predicates leap out to the reader.

16 A referee notes that were we to include all primitive recursive function symbols in L, the
denotation relation wouldn’t be primitive recursive but merely recursive (but that this wouldn’t
affect the rest of the argument).
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The compositional truth theory will come in six main parts: three corresponding to
the three atomic predicates of L and three corresponding to the three primitive logical
operations ¬, ∧ and ∀. (In the part for ∀ I make use of the fact that the language
contains a closed term for everything in the intended model.) The parts corresponding
to “=” and “Scl” will be single axioms; the other parts will each consist of four rules
(T-Elim, ¬T-Introd, T-Introd and ¬T-Elim), special cases of the rules presented in §2.
It would be possible (and more uniform) to present the parts corresponding to “=”
and “Scl” that way too, and then use A0 and the S0 to be introduced later for the forms
listed below17; but in the interests of ease of comprehension and use I’ve adopted the
simpler formulation below.

(Teq): ⇒ ∀s∀t∀x∀y[s denotes x ∧ t denotes y ⊃ [True(eq(s, t)) ≡ x=y]
(TSC): ⇒ ∀x[True(SC(x)) ≡ Scl(x)]
(TTR-E): True(TR(x)) ⇒ True(x)
(¬TTR-I): ¬True(x) ⇒ ¬True(TR(x))
(TTR-I): True(x) ⇒ True(TR(x))
(¬TTR-E): ¬True(TR(x)) ⇒ ¬True(x)
(Tneg -E): True(neg(x)) ⇒ SENTL(x) ∧ ¬True(x)
(¬Tneg -I): True(x) ⇒ SENTL(x) ∧ ¬True(neg(x))
(Tneg -I): ¬True(x) ∧ SENTL(x) ⇒ True(neg(x))
(¬Tneg -E): ¬True(neg(x)) ∧ SENTL(x) ⇒ True(x)
(Tconj-E): True(conj(x, y)) ⇒ True(x) ∧ True(y)
(¬Tconj-I): ¬True(x) ∨ ¬True(y) ⇒ ¬True(conj(x, y))
(Tconj-I): True(x) ∧ True(y) ⇒ True(conj(x, y))
(¬Tconj-E): ¬True(conj(x, y)) ⇒ ¬True(x) ∨ ¬True(y)
(Tuniv-E): True(univ(v, x) ⇒ ∀y[CTerm(y) ⊃ True(subst(x, v, y))]
(¬Tuniv-I): ¬True(univ(v, x) ⇒ ∃y[CTerm(y) ∧ ¬True(subst(x, v, y))]
(Tuniv-I): ∀y[CTerm(y) ⊃ True(subst(x, v, y))] ⇒ True(univ(v, x))
(¬Tuniv-E): ∃y[CTerm(y) ∧ ¬True(subst(x, v, y))] ⇒ ¬True(univ(v, x)).

I’ll also include the rather trivial

T1: ⇒ ∀x[True(x) ⊃ SENTL(x)].18

(The induction rule for formulas involving “True” has already been included.)
Though we can’t derive the analog of (TSC) for “TR,” we can use (TTR-I) and

(¬TTR-I) to derive the weaker

17 That the biconditional formulation I’ve adopted implies the rule form uses modus ponens
for ⊃. This is generally valid in K3; but the particular case involves formulas that provably
obey excluded middle, so would be unproblematic even in S3.

18 In a more general context than arithmetic it would be natural to weaken this, to allow truth
to fully parameterized formulas, in effect pairs of formulas and assignments of objects to their
variables; this would effectively absorb the notion of satisfaction into the notion of truth. In
the context of arithmetic this has less obvious point since for every parameterized formula
A(x1, ..., xn) there is a corresponding sentence A(x1, ..., , xn), where the xi are numerals for
the xi .

(There’s a slight redundancy in my formalization: given T1, the “SENTL(x)” conjuncts
are unnecessary in the two Tneg rules in which they appear on the right; and given those
rules, T1 could be restricted to atomic sentences and the results derived from the rest. Here
and also later, I won’t be concerned with eliminating such redundancies.)
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(TTR-Cor): True(x) ∨ ¬True(x) ⇒ ∀x[True(TR(x)) ≡ True(x)]

(which however does not suffice to derive the corresponding quadruple of inference
rules). Once we have the law (S-Main) for “Scl ,” given below, we’ll be able to derive
from this the generalization

⇒ ∀x(Scl(x) ⊃ [True(TR(x)) ≡ True(x)]).

But this is getting ahead of ourselves.
It is easily shown by induction on complexity that the general schemas of T-

Elim, ¬T-Introd, T-Introd and ¬T-Elim given early in §2 all hold; which together
with an intersubstitutivity result noted at the end of §3.1 implies intersubstitutivity of
True(〈A〉) with A in inference (when A is a sentence). Related to this, we have that on
the assumption that SENTL(x), True(neg(x)) is intersubstitutable in inference with
¬True(x) in all contexts. This tells us (in marked contrast to the case of KF) that
for sentences, truth of negation ( falsity) is just nontruth. This intersubstitutivity makes
¬True(〈Q〉) an anti-theorem of the K3-based theory (whereas it’s a theorem of KF+).
It’s an anti-theorem because it’s equivalent to True(〈¬Q〉), which in turn is equivalent
to True(〈True(〈Q〉)), which in turn is equivalent to True(〈Q〉); so it’s equivalent to the
contradiction True(〈Q〉) ∧ ¬True(〈Q〉), and contradictions are anti-theorems of K3.

3.4. The compositional theory of strong classicality. I complete the specification
of INT by giving the rules for the new predicate “Scl .” This will basically be a
compositional theory that makes sense independent of the truth predicate, though to
state it in full generality requires the use of the truth predicate.19 (In a classical theory,
the predicate “Scl” is redundant: every sentence satisfies it.) A central assumption will
be excluded middle for “Scl”:

S0: ⇒ ∀x(Scl(x) ∨ ¬Scl(x)).

Less central, I’ll restrict the application of “Scl” to sentences20:

S1: ⇒ Scl(x) ⊃ SENTL(x).

For atomic sentences I stipulate the following:

(Seq): CTerm(x) ∧ CTerm(y) ⇒ Scl(eq(x, y))
(STR-i): ¬SENTL(x) ⇒ Scl(TR(x))
(STR-ii): SENTL(x) ⇒ [Scl(TR(x)) ≡ Scl(x)]
(SSC-i): ¬SENTL(x)⇒Scl(SC(x))
(SSC-ii): SENTL(x)⇒[Scl(SC(x)) ≡ Scl(x)].

19 Without the truth predicate, the laws (Sconj), (Suniv) and (S-Main) must be stated sche-
matically: e.g. (S-Main) as ⇒ Scl(〈A〉) ⊃ (A ∨ ¬A). Here as elsewhere the role of the truth
predicate is as a device of generalization.

20 From it we could define a notion Scl∗ of strong classicality for formulas: a formula is Scl∗

if all closed substitution instances are Scl . (This would capture the intuitive notion even
outside the arithmetic context if we included parameterized instances, as suggested in note
18.) An alternative strategy would take Scl∗ as the primitive; that would require adding a
new axiom, that if a formula is Scl∗ then all substitution instances of it are too. All of this
(and the truth theory too) would require complications in a language with a description
operator, where the singular terms themselves can generate nonclassicality.
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(Note the contrast between S1 and (STR-i). This is no violation of Intersubstitutivity
since the discrepancy between Scl(x) and Scl(TR(x)) occurs only when x isn’t the
Gödel number of a sentence.)

The compositional axioms are as follows:

(Sneg): ⇒ Scl(neg(x)) ≡ Scl(x)
(Sconj): ⇒ Scl(conj(x, y)) ≡ [(Scl(x) ∧ Scl(y)) ∨ (Scl(x) ∧ ¬True(x)) ∨
(Scl(y) ∧ ¬True(y))]
(Suniv): ⇒ Scl(univ(v, x)) ≡ [∀y(CTerm(y) ⊃ Scl(subst(x, v, y))) ∨
∃y(Scl(subst(x, v, y)) ∧ ¬True(subst(x, v, y))].

One final law:

(S-Main): ⇒ Scl(x) ⊃ (True(x) ∨ ¬True(x)).

Some comments on these:
(STR-ii) is natural given the naivety of truth. There’s an obvious parallel

between the SSC axioms and the STR axioms.21 Regarding (SSC-ii), the direction
“Scl(x) ⊃ Scl(SC(x))” has an obvious appeal; the converse direction that ¬Scl(x) ⊃
¬Scl(SC(x)) (when SENTL(x)) might seem less obviously desirable, but will be
essential to the theory. (Sneg) encapsulates the idea that “Scl” is to be neutral between
truth and falsity. The motivating idea behind (Sconj) is that if at least one conjunct of
a conjunction is both classical and false, the conjunction is classical as well as false.
(“False” means “has a true negation” but since truth is naive, this is equivalent to “is
an untrue sentence.”) (Suniv) makes universal quantification analogous to conjunction.

The laws without (S-Main) are compatible with all sentences being strongly classical;
(S-Main) excludes that, in the K3-based system, i.e. given (Explosion). It excludes it
because for the usual Liar sentence Q, “True(〈Q〉) ∨ ¬True(〈Q〉)” is an anti-theorem
(it implies everything); so (S-Main) makes Scl(〈Q〉) also an anti-theorem; hence, given
S0, ¬Scl(〈Q〉) is a theorem. A similar result holds (though by a different argument) for
the “external Liar sentence”Q∗ that asserts that it isn’t both true and strongly classical.
For (S-Main) together with S0 entails thatQ∗ is either not Sclassical, or Sclassical and
true, or Sclassical and not true; but using naivety, the last two disjuncts are ruled out,
so ¬Scl(〈Q∗〉) is also a theorem. (The example of the external Liar sentence shows
that we cannot consistently have the converse of (S-Main). It will however hold for A
that don’t contain both “Scl” and “True.”)

§4. Strongly classical truth in INT. In §6 I will prove the consistency of INT.
Before then, the main official goal is to interpret KF+ in INT; this will involve, among

21 And two obvious disparallels between these and the corresponding T-axioms and T-rules
(i.e. TSC plus the four TTR rules). One is that for STR we can use axioms whereas for TTR
we can’t: this is because “strongly classical” will be assumed to obey excluded middle even in
application to truth attributions. The other is that for the S-axioms we separately consider
the case where x isn’t the Gödel number of a sentence, whereas we don’t for the T-rules. We
don’t need to for the T-rules because we want the results ¬True(TR(x)) and ¬True(SC(x))
when ¬SENTL(x), and these follow from T1 and S1 by (¬TTR -I). By contrast, it’s natural
to want Scl(TR(x)) and Scl(SC(x)) when ¬SENTL(x) (since given T1 and S1, excluded
middle is guaranteed for attributions of truth and strong classicality to nonsentences). This
requires the separation of cases (i) and (ii) in the SSC and the STR rules.
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other things, singling out a certain class of sentences within the language L of INT
as (translations of) KF-sentences. (I could say KF+-sentences, but KF+ and KF
have the same language.) But the notion of strongly classical truth (Struth, where
“Strue(x)” is defined as “Scl(x) ∧ True(x)”) is important even for L-sentences that
aren’t interpretations of KF-sentences: indeed it is probably ultimately more natural
to develop ramified analysis up to �0 directly in INT, using the notion of Struth, than
to go via the KF+ interpretation. So it’s worth studying the notion of Struth directly.
And besides, there are some slightly technical issues about the interpretation of KF+

that I’d rather defer until the main ideas about Struth are on the table. That said, the
laws of Struth I’ll be demonstrating are closely analogous to standard laws of KF+, as
given e.g. on p. 201 of Halbach (2011). I’ll use a numbering for mine that corresponds
to the numbers Halbach uses; there are gaps in my numbers since he has laws for ∨ and
∃ which I won’t bother with given that they follow from the others given the definitions
of these connectives.

The following will be central:

Lemma 1: ⇒ ∀x[Strue(x) ∨ ¬Strue(x)].

Proof. By (S-Main), Scl(x) obviously implies (Scl(x) ∧ True(x)) ∨ (Scl(x) ∧
¬True(x)), which implies (Scl(x) ∧ True(x)) ∨ ¬(Scl(x) ∧ True(x)), i.e. Strue(x) ∨
¬Strue(x). That conclusion also follows from ¬Scl(x), so by S0 it follows without
assumptions; and we can then use ∀-I to universally generalize.

Using Lemma 1 (and S0 again) one easily establishes

Lemma 2: ⇒ ∀x[Scl(x) ⊃ (Strue(x) ≡ True(x))].22

(So by intersubstitutivity of “True,” we have ⇒ Scl(〈A〉) ⊃ [Strue(〈A〉 ≡ A].)
I next turn to the one result in this section whose proof requires Explosion; the proofs

of the numbered Str-laws that follow would go through in the S3-based theory.23 This
is analogous to the axiom (CONSIS) of KF+ (the only axiom included in KF+ but
not in KF).

Str-CONSIS: ⇒ ¬∃x[Strue(x) ∧ Strue(neg(x))].

Proof. Strue(x) ∧ Strue(neg(x)) amounts to Scl(x) ∧ True(x) ∧ True(neg(x)),
which implies 0 = 1 by (Tneg -E) and Explosion. But Strue(x) ∧ Strue(neg(x)) obeys
excluded middle (by Lemma 1 and the fact that the conjunction of two things that obey
excluded middle itself obeys excluded middle); so we can apply restricted conditional
proof. With ¬(0=1) we get ⇒ ¬(Strue(x) ∧ Strue(neg(x))). Universally generalize
(and re-express using ∃).

22 Proof: Strue(x) ⇒ True(x) by definition of Strue, so by Lemma 1 and restricted
conditional proof, ⇒ Strue(x) ⊃ True(x); so certainly (i) Scl(x) ⇒ Strue(x) ⊃ True(x).
Also Scl(x),¬Strue(x) ⇒ ¬True(x) by definition of Strue, so by Lemma 1 and restricted
conditional proof again, (ii) Scl(x) ⇒ ¬Strue(x) ⊃ ¬True(x). By (i) and (ii), Scl(x) ⇒
Strue(x) ≡ True(x); so by S0 and another conditional proof, followed by ∀-I, we get the
result.

23 This fact would be useful in extending the results of this paper to LP-based theories, since
LP extends S3 but doesn’t extend K3.
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Next, analogs of the KF axioms. The reader who doesn’t want to wade through all
this should probably still look at the proofs of Str5 and Str13, since the key ideas arise
there. (An alternative to looking at Str5 is to look at the slightly simpler Str9.)

Str1: ⇒ ∀s∀t∀x∀y[s denotes x ∧ t denotes y ⊃ (Strue(eq(s, t)) ≡ x=y)].

Proof. Strue(eq(s, t)) implies True(eq(s, t)) by definition, and that together with
“s denotes x ∧ t denotes y” implies x = y by (Teq); so
s denotes x ∧ t denotes y, Strue(eq(s, t)) ⇒ x = y.

So using Lemma 1 and restricted conditional proof,
(i) s denotes x, t denotes y ⇒ Strue(eq(s, t)) ⊃ x = y.

For the converse, use (Seq) and the definition of “Strue” to get ¬Strue(eq(s, t)) ⇒
¬True(eq(s, t)). Then by analogous reasoning to that in (i), we get

(ii) s denotes x ∧ t denotes y ⇒ ¬Strue(eq(s, t)) ⊃ ¬(x = y).
So the denotation premise implies the biconditional, and so by another restricted
conditional proof and universal generalization we get the result.

Str2:⇒∀s∀t∀x∀y(s denotesx∧ t denotes y⊃ [Strue(neg(eq(s, t)))≡¬(x=y)]).

Proof. Strue(neg(eq(s, t))) implies True(neg(eq(s, t))) by definition, and that
together with “s denotes x ∧ t denotes y” implies ¬(x = y) by (Teq); so as with Str1
we get

(i) s denotes x ∧ t denotes y ⇒ Strue(neg(eq(s, t))) ⊃ ¬(x = y).
Conversely, ¬(x = y) plus the denotation assumptions implies True(neg(eq(s, t)) by
(Tneg) and (Teq), and they imply Scl(neg(eq(s, t))) by (Seq) and (Sneg). So

(ii) s denotes x ∧ t denotes y ⇒ ¬(x = y) ⊃ Strue(neg(eq(s, t))).
Apply restricted conditional proof and universal generalization to the conjunction of
(i) and (ii).

Str3: ⇒ ∀x[Strue(neg(neg(x))) ≡ Strue(x)]

Proof. (i) Strue(x) ⇒ Scl(x) ∧ True(x), so using two applications of (Sneg)
plus (Tneg -I) and (¬Tneg -I), Strue(x) ⇒ Scl(neg(neg(x))) ∧ True(neg(neg(x))), i.e.
Strue(x) ⇒ Strue(neg(neg(x))). By Lemma 1 and restricted conditional proof,
⇒ Strue(x) ⊃ Strue(neg(neg(x))).

(ii) Strue(neg(neg(x))) ⇒ Scl(neg(neg(x))) ∧ True(neg(neg(x))), so using two
applications of (Sneg) together with and (Tneg -E) and (¬Tneg -E),Strue(neg(neg(x))) ⇒
Scl(x) ∧ True(x), i.e. Strue(neg(neg(x))) ⇒ Strue(x). By Lemma 1 and restricted
conditional proof, ⇒ Strue(neg(neg(x))) ⊃ Strue(x).

Str4: ⇒ ∀x∀y[Strue(conj(x, y)) ≡ Strue(x) ∧ Strue(y)]

Proof. Again, we derive rule forms, then use restricted conditional proof and
universal generalization.

R to L rule: RHS implies Scl(x) ∧ Scl(y), so Scl(conj(x, y)) by (Sconj). RHS also
implies True(x) ∧ True(y), so True(conj(x, y)) by truth rules. So Strue(conj(x, y)).

L to R: LHS implies Scl(conj(x, y)), so by (Sconj), either Scl(x) ∧ Scl(y), or
Scl(x) ∧ ¬True(x), or Scl(y) ∧ ¬True(y). But LHS also implies True(conj(x, y)),
which implies True(x) and True(y), knocking out second and third disjuncts above.
So Scl(x) ∧ Scl(y) ∧ True(x) ∧ True(y); i.e. Strue(x) ∧ Strue(y).

Str5:SENTL(x) ∧ SENTL(y) ⇒ Strue(neg(conj(x, y))) ≡ Strue(neg(x)) ∨
Strue(neg(y)).
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Proof. The restriction to sentences is unnecessary for the left to right of the
biconditional, but is needed in the other direction.

First I derive the following claims:
(1a) ⇒ Strue(neg(x)) ⊃ Scl(neg(conj(x, y)))
(1b) SENTL(y) ⇒ Strue(neg(x)) ⊃ True(neg(conj(x, y)))
For (1a), note that Strue(neg(x)) implies Scl(neg(x)), which implies Scl(x); and

that Strue(neg(x)) also implies True(neg(x)), which implies ¬True(x); so by (Sconj),
Scl(conj(x, y)), and hence Scl(neg(conj(x, y))). Now use Lemma 1 and restricted
conditional proof to get (1a).

For (1b), note that Strue(neg(x)) implies True(neg(x)), hence SENTL(x) ∧
¬True(x), hence SENTL(x) ∧ ¬True(conj(x, y)). But with SENTL(y) we get
SENTL(conj(x, y)), so True(neg(conj(x, y))). Use Lemma 1 and restricted con-
ditional proof to get (1b).

Putting these together, we have SENTL(y) ⇒ Strue(neg(x)) ⊃ Strue(neg(conj(x,
y))). By a similar argument we get SENTL(x) ⇒ Strue(neg(y)) ⊃
Strue(neg(conj(x, y))). From these we derive

(1)SENTL(x) ∧ SENTL(y) ⇒ Strue(neg(x)) ∨ Strue(neg(y)) ⊃ Strue(neg(conj
(x, y))).

For the converse, I first derive
(2) ⇒ Strue(neg(conj(x, y))) ⊃ Strue(neg(x)) ∨ Strue(neg(y)).
To do this, note first that the antecedent requires that SENTL(neg(conj(x, y))),

which obviously requires both SENTL(x) and SENTL(y). Next, given S0, we have
that either (i) ¬Scl(x) ∧ ¬Scl(y), or (ii) Scl(x) ∧ ¬Scl(y), or (iii) ¬Scl(x) ∧ Scl(y),
or (iv) Scl(x) ∧ Scl(y).

If we suppose Strue(neg(conj(x, y))) we have Scl(conj(x, y)) (using (Sneg)). Using
(Sconj), this rules out case (i), and allows us to expand cases (ii) and (iii) as follows:
(ii∗) Scl(x) ∧ ¬Scl(y) ∧ ¬True(x); (iii∗) Scl(y) ∧ ¬Scl(x) ∧ ¬True(y). But since
SENTL(x), case (ii∗) yields Scl(neg(x)) ∧ True(neg(x)), so Strue(neg(x)); analo-
gously in (iii∗),Strue(neg(y)). So in both these cases,Strue(neg(x)) ∨ Strue(neg(y)).

In case (iv) we also get Strue(neg(x)) ∨ Strue(neg(y)), again under the assumption
that Strue(neg(conj(x, y))). For that assumption entails True(neg(conj(x, y))),
which by the truth rules yields True(neg(x)) ∨ True(neg(y)), and by case (iv)
assumptions this yields Strue(neg(x)) ∨ Strue(neg(y)).

So by the four cases together, we have Strue(neg(conj(x, y))) ⇒ Strue(neg(x)) ∨
Strue(neg(y)); so Lemma 1 and restricted conditional proof yield (2).

Another restricted proof followed by universal generalization give the desired
claim.

Str8: ⇒ ∀x[Strue(univ(v, x)) ≡ ∀y[CTerm(y) ⊃ Strue(subst(x, v, y))]]

Proof. Again, I derive rule forms, then use restricted conditional proof and universal
generalization.

R to L rule: RHS implies both ∀y[CTerm(y) ⊃ Scl(subst(x, v, y))] and
∀y[CTerm(y) ⊃ True(subst(x, v, y))]. The first implies Scl(univ(v, x)) by (Suniv),
and the second implies True(univ(v, x)) by (Tuniv-I), and so the two together imply
Strue(univ(v, x)).

L to R: LHS implies both (i) Scl(univ(v, x)) and (ii) True(univ(v, x)). (ii)
implies that ∀y[CTerm(y) ⊃ True(subst(x, v, y))]. By (Suniv), (i) implies that either
∀y[CTerm ⊃ Scl(subst(x, v, y))] or ∃y[Scl(subst(x, v, y)) ∧ ¬True(subst(x, v, y))];
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but the second disjunct contradicts the conclusion from (ii). Using (ii) again with
the remaining first disjunct, we have ∀y[CTerm(y) ⊃ Strue(subst(x, v, y))].

Str9: ⇒ ∀x[Strue(neg(univ(v, x))) ≡ ∃y[CTerm(y) ∧ Strue(neg(subst(x,
v, y)))]]

Proof. Again, I derive rule forms, then use restricted conditional proof and universal
generalization.

R to L rule: Suppose that for some closed term y, Strue(neg(subst(x, v, y)).
Then Scl(neg(subst(x, v, y)) and True(neg(subst(x, v, y)). So Scl(subst(x, v, y) and
¬True(subst(x, v, y)); so by (Suniv), Scl(univ(v, x)) and hence

(i) Scl(neg(univ(v, x))).
Scl(subst(x, v, y))also entailsSENTL(subst(x, v, y)), so with¬True(subst(x, v, y))

it entails True(neg(subst(x, v, y))); which then entails
(ii) True(neg(univ(x, v, y))).
By (i) and (ii) together, Strue(neg(subst(x, v, y))) entails Strue(neg(univ(v, x))).

By ∃-Elim (equivalently,¬∀-Elim), ∃y[CTerm(y) ∧ Strue(neg(subst(x, v, y)))] entails
Strue(neg(univ(v, x))).

L to R rule: Strue(neg(univ(v, x))) implies both (i) Scl(neg(univ(v, x))) and
(ii) True(neg(univ(v, x))). (i) implies Scl(univ(v, x)), which by (Suniv) implies
that either (a) ∀y[CTerm(y) ⊃ Scl(subst(x, v, y))] or else (b) ∃y[CTerm(y) ∧
[Scl(subst(x, v, y)) ∧ ¬True(subst(x, v, y)]]. (ii) implies that ∃y[CTerm(y) ∧
¬(True(subst(x, v, y)))]; given this, (a) above implies (b), so we’ve proved (b).
But (given that everything Scl is a sentence, and the closure of Scl under negation), (b)
implies that ∃y[CTerm(y) ∧ Scl(neg(subst(x, v, y))) ∧ True(neg(subst(x, v, y)))];
i.e. that ∃y[CTerm(y) ∧ Strue(neg(subst(x, v, y)))].

I now turn to laws of Struth that are analogs of Halbach’s axiom KF12 and to some
extent KF13; but I’ll divide up KF13 and its analogs into three parts. (As we’ll see, the
task of interpreting KF12 and KF13 involves a major issue that doesn’t arise for these
analogs, and because of this, the analogy in 13c may be only partial.)

Let STR represent the function taking the Gödel number of an expression x to the
Gödel number of Scl(num(x)) ∧ True(num(x)) (and taking other numbers to #).24

(So STR(y) is equivalent to conj(SC(y),TR(y)).) Then

Str12: ⇒ ∀x[Strue(STR(x)) ≡ Strue(x)]

Proof. Since both sides of biconditional are bivalent by Lemma 1, it suffices to
establish the rule forms

(1) Strue(STR(x)) ⇒ Strue(x)
(2) Strue(x) ⇒ Strue(STR(x)).25

(1): If Strue(STR(x)) then True(STR(x))), so Strue(x) by (TTR-E).
(2): The premise implies True(STR(x)) by (TTR-I), so to get the conclusion we

only need that Scl(STR(x)); which is equivalent to Scl(conj(SC(x),TR(x))). But
the premise also implies Scl(x), so by L to R of (SSC-ii) and (STR-ii) it implies both

24 If x is the Gödel number of a nonsentence, then this function takes it not to # but rather to
the sentence that falsely attributes Struth to that nonsentence.

25 Both these claims, and Str12 itself, would hold if “TR” were substituted for “STR.” Also
note that (1) would hold with the weaker premise True(STR(x)); but the stronger premise
is needed for going on to invoke conditional proof.
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Scl(SC(x)) and Scl(TR(x)). By (Sconj), this suffices for Scl(conj(SCL(x),TR(x)));
which is equivalent to Scl(STR(x)).

Str13a: ⇒ ∀x[Strue(neg(STR(x))) ∧ SENTL(x) ⊃ Strue(neg(x))]

Proof. By Lemma 1, restricted conditional proof, and universal generalization, and
the definition of Strue, it suffices to prove these:

(i) Strue(neg(STR(x))) ⇒ Scl(neg(x))
(ii) SENTL(x), Strue(neg(STR(x))) ⇒ True(neg(x)).
The premise of (i) implies Scl(neg(STR(x))), which implies Scl(STR(x)) by (Sneg),

which amounts to Scl(conj(SC(x)),TR(x)). So by (Sconj), either (I) Scl(SC(x)) or
(II) Scl(TR(x)). ((Sconj) gives more detailed information, but this is all that’s needed.)
But each of (I) and (II) imply Scl(x) (by (SSC-ii) and (STR-ii) respectively). So by
(Sneg) again, Scl(neg(x)).

As for (ii), Strue(neg(STR(x))) implies True(neg(STR(x))), which implies
¬Strue(x), i.e. ¬Scl(x) ∨ ¬True(x); and we’ve already established Scl(x), so
¬True(x). The truth rules plus SENTL(x) give True(neg(x)).

Str13b: ⇒ ∀x[Strue(neg(x)) ⊃ Strue(neg(STR(x)))].

Proof. (Again I prove the rule form, and conditionalize on the basis of Lemma
1.) Strue(neg(x)) implies both (A) True(neg(x)) and (B) Scl(neg(x)). (A) implies
¬True(x) by (¬Tneg -E); and hence ¬Strue(x) by definition of “Strue.” It also
implies SENTL(neg(x)) and hence SENTL(x) and hence EXPRESSION (x), so
SENTL(STR(x)); so (Tneg -I) yields True(neg(STR(x))).

(B) implies Scl(x) by (Sneg), hence Scl(SC(x)) by (SSC-ii) and Scl(TR(x))
by (STR-ii). By (Sconj) these entail Scl(conj(SCL(x),TR(x))), which amounts to
Scl(STR(x)). So by (Sneg) again, Scl(neg(STR(x))). This with the result of (A)
yields Strue(neg(STR(x))).

Str13c: ∀x[¬SENTL(x) ⊃ Strue(neg(STR(x)))].

Proof. If ¬SENTL(x) then ¬Strue(x), so ¬True(STR(x)). But SentL(STR(x)), so
True(neg(STR(x))).

Also¬SENTL(x) impliesScl(TR(x)) by (STR-i), and it implies¬True(x) by T1 and
hence¬True(TR(x)) by (¬Tneg -I). That is, TR(x) is both strongly classical and untrue;
so (Sconj) says that its conjunction with anything is strongly classical. In particular,
Scl(conj(SC(x),TR(x))), i.e. Scl(STR(x))). So by (Sneg), Scl(neg(STR(x))).

Finally a useful pair of lemmas:

Lemma 3A: ⇒ ∀x[Strue(STR(x)) ≡ Strue(TR(x))]

Proof. Strue(TR(x)) means Scl(TR(x)) ∧ True(TR(x)); by (STR-ii) and the
truth rules, that’s equivalent to Scl(x) ∧ True(x), i.e. to Strue(x). And by Str12,
Strue(STR(x)) is also equivalent to Strue(x). This establishes the biconditional.

Lemma 3B: ⇒ ∀x[Strue(neg(STR(x))) ≡ Strue(neg(TR(x)))]

Proof. (i) If x isn’t the Gödel number of an expression, then STR(x), TR(x),
neg(STR(x)) and neg(TR(x)) each denote #; this implies the negations of each side
of the bicondional, so the biconditional holds.

https://doi.org/10.1017/S1755020320000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000167


THE POWER OF NAIVE TRUTH 243

(ii) If x is the Gödel number of a nonsentence, then STR(x) and TR(x) each denote
strongly classical falsehoods, so neg(STR(x)) and neg(TR(x)) each denote strongly
classical truths. So the biconditional holds.

(iii) Suppose x is the Gödel number of a sentence. Strue(neg(TR(x))) means
Scl(neg(TR(x))) ∧ True(neg(TR(x))); by (Sneg) and (STR-ii) and (Sneg) again, and
the truth rules, that’s equivalent to Scl(neg(x)) ∧ True(neg(x)), i.e. to Strue(neg(x)).
By Str13a and b, Strue(neg(STR(x))) is also equivalent to Strue(neg(x)). This
establishes the biconditional.

§5. Interpreting KF+ in INT. Here I show that INT interprets KF+, and thus
by previous results (Feferman (1991)) interprets ramified analysis up to �0. (The
interpretation will leave the arithmetic and logical vocabulary fixed, including the
range of quantifiers; only the truth predicate will be reinterpreted.) Most of the work
for this was done in §4.

There is an issue here about the goal. Halbach’s axiomatization of KF includes what
amounts to

KF13c: ∀x[¬SENTk(x) ⊃ Truek(negk(TRk(x)))].

(The reader can ignore the subscript “k,” but I think it helpful to use it for nonlogical
vocabulary in the language of KF prior to the reinterpretation that validates KF+in
INT. I’ll soon introduce subscripts “KF ” for the reinterpretations that will validate
KF+.) In KF+(though not KF) the consequent of this implies¬Truek(TRk(x)), which
together with KF12 implies ¬Truek(x); so

Corollary to KF13c: ∀x[¬SENTk(x) ⊃ ¬Truek(x)].

If one accepts the Corollary (a KF analog of T1) then KF13c seems intuitively
plausible. But as Halbach suggests (p. 199), neither KF13c or its corollary are needed
for the proof-theoretic power of KF or KF+. Since the main aim here is to show
that INT has all the proof-theoretic power of KF+, I will start out with a simple
interpretation of the language of KF in INT that delivers all of KF+ except for KF13c;
it doesn’t deliver the corollary either. (It does deliver the analogs with SENTk replaced
by SENTL.26) Then I will briefly sketch a more complicated interpretation that should
yield the full KF+.

The simple interpretation interprets “Truek(x)” as “Strue(x),” as long as x isn’t
the Gödel number of a formula of the language of KF that contains the function
symbol TRk . It would be inappropriate to interpret “Truek(x)” as “Strue(x)” for
other x, because a correct interpretation also needs to shift the denotation of terms in
(the formula whose Gödel number is) x that contain TRk . So we need to introduce
a function symbol H for a function that shifts the denotation of these terms. (That
function is to be the identity except on formulas that contain TRk .) “Truek(x)” will
then be interpreted as “Strue(H (x)).” H is only applied to occurrences within the
scope of Truek .

The intuitive idea of H is that it replaces any formula containing TRk by the
corresponding formula containing STR, “to arbitrary depths of embedding”; so that
e.g. if x is a sentence not containing TRk , H maps TRk(TRk(x)) into STR(STR(x)).
But as discussed in Halbach (2011, pp. 36–38) in a more general setting, it’s tricky to

26 This formulation uses a Gödel numbering of L in KF, but that’s unproblematic.
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formalize this. (Because of self-referential uses of Truek , we can’t do it by a simple
induction on the depth of embedding.) To see the correct strategy, note that we want
not only

(i) “Truek(t)” is interpreted as “Strue(H (t)),”

but also

(ii) the arithmetic function h that H stands for is the interpretation function
induced by (i);

where this means that (a) h is the identity on any number that isn’t the Gödel number
of a formula of the language of KF that contains Truek ; (b) if n is the Gödel number of
a formula of form Truek(t) then h(n) will be the Gödel number of the corresponding
Strue(H (t)); and (c) h preserves the logical operations on formulas, e.g. if n is the Gödel
number of a formula then h(neg(n)) = neg(h(n)). Given (b), there’s an apparent
circularity in demanding both (i) and (ii), but as Halbach observes, we can get an
H satisfying these constraints via the version of Kleene’s second recursion theorem
for primitive recursive functions given in Hinman (1978, p. 41). See Halbach for the
details. One can easily check that since H satisfies (i) and (ii), we can derive

($): H (TRk(x)) = STR(H (x))).

(Both sides denote h(Truek(x)).) This guarantees that H does indeed “translate the
function symbol TRk as STR to arbitrary depths,” in the way it ought to.

Given the interpretation of “Truek(x),” there is an obvious strategy for interpreting
“SENTk(x)” in a way that might validate KF+: we define in the arithmetic language a
predicate AtFORMKF for the Gödel numbers of L-formulas that are either identities
or of form of “Scl(H (t)) ∧ True(H (t))”; we then defineFORMULAKF andSENTKF
from these in the standard way.

By an easy induction on complexity, we then establish

Lemma 4: ⇒ ∀x[SENTKF (x) ⊃ True(disj(x, neg(x))) ∧ ¬True(conj(x,
neg(x)))],

where of course disj represents disjunction. By the truth rules, this gives the schema
SENTKF (〈A〉) ⊃ A ∨ ¬A. So INT validates the application of classical logic to KF-
sentences, and also validates the KF+axiom CONSIS.

The arithmetic axioms of KF+, with the possible exception of the induction axioms,
are immediate since these are axioms of INT and the interpretation leaves arithmetic
sentences invariant. And induction is validated too: I observed at the end of §3.2 that the
induction axioms in the language of arithmetic are consequences of the induction rule
of INT, and the argument for this turned only on the classical nature of the induction
formula. Since the interpretation of Truek in INT is classical, the interpretation of the
induction formulas of KF that involve it are also classical, and so the interpretations
of these too are theorems of INT.

So we need only that the interpretation validates the truth axioms (other than
KF13c) under this simple interpretation. (By validating B under this interpretation, I
mean that INT proves ⇒ B∗ where B∗ is the interpretation of B.)

And that the KF truth axioms other than 13c are validated is almost immediate
given the corresponding Str theorems. For instance,
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• KF1 says that if s and t denotek x and y respectively, Truek(eq(s, t)) ≡ x=y).
Under the interpretation, this says that if s and t denote H (x) and H (y)
respectively, Strue(eq(s, t)) ≡ H (x)=H (y)); and this is an instance of Str1.

• KF3 is that for any sentence x of KF, Truek(negk(negk(x))) ≡ True(x).
The proper interpretation of negk is just neg restricted to things that satisfy
FORMULAKF , so the interpretation of this is in effect that ifSENTKF (x) then
Strue[H (neg(neg(x)))] ≡ Strue[H (x)]. But since H commutes with negation,
this amounts to Strue[neg(neg(H (x)))] ≡ Strue[H (x)], which is an instance
of Str3.

• KF12 is ∀x[Truek(TRk(x)) ≡ Truek(x))]],27 so the interpretation of KF12
is ∀x[Strue(H (TRk(x))) ≡ Strue(H (x))]. By ($) this is equivalent to
∀x[Strue(STR(H (x))) ≡ Strue(H (x))], and that is an instance of Str12.

The others are similar.
In the case of KF13c and its corollary (given at the start of the section), the

translation (and the fact that H preserves sentencehood and nonsentence-hood) yields
only the weak versions where ¬SENTk is replaced by ¬SENTL. For instance, if x is
(the Gödel number of) the sentence “True(〈0 = 0〉),” then ¬SENTKF (x), since ‘True’
occurs in x unconjoined with “Scl”; nonetheless TrueKF (x), i.e. Strue(H (x)), the H
here being vacuous.

As I’ve said, Halbach’s KF13c isn’t needed for the proof-theoretic power of KF+. So
what I’ve established, in conjunction with Feferman (1991), shows that INT suffices
to interpret ramified analysis up to �0.

If we want to interpret the full KF+, we can probably complicate the foregoing to
achieve this. The basic idea is to define AtFORMKF in a more complicated way than
before, define FORMULAKF and SENTKF from it in the usual way, and then interpret
“TrueKF (x)” as “SENTKF (H (x)) ∧ Scl(H (x)) ∧ True(H (x)).” (The occurrence of
H in the first conjunct is redundant.) Because of the first conjunct, the interpretation
of “All truthsk are sentencesk” come out correct, and KF13c could easily be argued as
well.

The complication is in definingAtFORMKF . The atomic formulas of KF that aren’t
equations now need to be equivalent to L-formulas of form “FORMULAKF (x) ∧
Scl(H (x)) ∧ True(H (x)),” but the first conjunct is defined in terms of AtFORMKF ,
so the procedure looks circular. So we need to recast the definition of AtFORMKF as
a more complicated kind of inductive definition. Again this will go by the recursion
theorem.

If it weren’t for the H, a fairly simple use of the recursion theorem would allow for the
definition of AtFORMKF (and hence FORMULAKF and SENTKF ), independent of
the interpretation of “Truek”. We could then introduce the H needed for interpreting
“Truek” by a separate use of the recursion theorem just as before. But given the need
for H even in the interpretation of the predicate AtFormKF , things are more difficult:
instead of two separate uses of the recursion theorem we need a single but more
complicated one. I have little doubt that it can be provided, but I will leave that to
those more expert in these matters than myself. I can take this attitude because the

27 Recall from note 15 that I’ve simplified the Halbach formulation by using TR instead of
his T. .
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simple interpretation, though it doesn’t yield KF-13c, suffices for the proof-theoretic
strength I’ve claimed.

Indeed, if I were working from scratch rather than appealing to the results of
Feferman, I’d have skipped the interpretation of KF entirely, and directly interpreted
RA<�0 in INT: mimicking Feferman’s proof rather than simply appealing to the result.
(The analog of KF13c in this setting is Str13c, which though not needed would be
available if convenient.) The Str-theorems are more general than the corresponding
KF-axioms, in that they apply to L-sentences that aren’t the interpretations of KF-
sentences, i.e. that have “True” in contexts other than “Scl(t) ∧ True(t)”; going by
way of KF would be quite unnatural if proceeding from scratch.

§6. Consistency of the nonschematic internal theory. We need to prove INT
consistent.28 Let INT0 be the part without the extra predicate “Scl .” Such a theory
was in effect shown consistent by Kripke’s well known fixed point construction on
a three-valued model theory using Strong Kleene semantics, based on the standard
model of arithmetic. Label the three values 0, 1

2 and 1, with 1 “best”, i.e. the value
assigned to theorems, and 0 “worst,” i.e. assigned to negations of theorems. Call a
sequent GOOD if it preserves value 1 at the minimal fixed point (or at all fixed points,
it won’t matter) of Kripke’s construction, for all instantiations of the variables, in
this model. The transition rules between sequents are (i) the structural rules (which
I haven’t bothered to list); (ii) the logical rules (¬∧-E), (∀-I), and (¬∀-E); and (iii)
the induction rule. These preserve GOODness. (The induction rule includes instances
with “True”: that it preserves GOODness is guaranteed since we’ve taken the model
to be standard.) And the sequents that are axioms of the logic, arithmetic and truth
theory are easily seen to be GOOD on the Kripke construction. So any sequent that is
a theorem of INT0 is GOOD.

A sequent A1, ..., An ⇒ B is naturally viewed as encoding the inference from the
Ai to B (and a sequent of the special form ⇒ B as encoding the endorsement of B
as a theorem). So another way to put this is: Kripke’s construction shows that any
inference that INT0 endorses preserves value 1 on all instantiations of the variables (at
the minimal fixed point, or at all of them); and in particular, any formula it endorses
as a theorem has value 1 on all instantiations of the variables.29 Since some sentences
don’t get value 1 in all fixed points (indeed in any nontrivial one), this shows that
INT0 is Post-consistent; and indeed it is negation-consistent since no sentence of form
A ∧ ¬A gets value 1 in any nontrivial fixed point.

But what about the full theory INT that includes the axioms for “Scl”? I will
now provide a beefed up Kripke fixed point construction, which proves the negation-
consistency of the full INT in exactly the same way that the ordinary Kripke
construction proves the consistency of its subtheory INT0.

28 Obviously this needs to be done in a stronger theory; a fairly weak classical set theory (with
no additional truth predicate) suffices.

29 This is in marked contrast to external theories like KF+ prior to their reinterpretation in
terms of strong classicality. In KF+ prior to reinterpretation, there are theorems such as
¬True(〈Q〉) where Q is an ordinary Liar sentences, and this gets value 1

2 in all Kripke fixed
points. There are also other sentences that get value 1

2 in all fixed points that are anti-theorems
of KF+: for instance, True(〈Q〉). The fixed points thus don’t adequately distinguish between
sentences that KF+ takes to be good and sentences it takes to be bad.
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The trick is to run the Kripke construction twice over.30 In the first run, we
treat “Scl(x)” as equivalent to “SENTL(x) ∧ (True(x) ∨ ¬True(x))”; so in this run,
sentences of form “Scl(t)” get only values 1

2 or 1 unless the denotation of t isn’t a
sentence. We continue to a fixed point Ω in the usual way. In the second run, we
start off by “closing off” “Scl(x)” (but not “True(x)”): at each stage we give atomic
sentences containing it value 1 if they got value 1 at the fixed point in the first run, and
0 if they got value 1

2 or 0 at the fixed point in the first run (keeping the values fixed
throughout the second run). But the values of sentences of form “True(t)” vary in the
second run, in the usual Kripkean way, until we reach a second fixed point Ω∗. Every
sentence that gets value 1 or 0 in the first run gets the same value in the second, but
some sentences that get value 1

2 in the first run get another value in the second. Because
of this, there will be sentences A such that “A ∨ ¬A” gets value 1 in the second run
even though “Scl(〈A〉)” gets value 0 in the second run.31 But the reverse can’t happen:
If “Scl(〈A〉)” gets value 1 in the second run, “A ∨ ¬A” does too.

For those who prefer a more mathematical statement, here goes. For notational
simplicity I initially state the construction for sentences only, rather than for formulas
relative to a variable-assignment, exploiting the fact that the language contains a closed
term for every object in the domain of the standard model.

The construction will proceed from the standard model of arithmetic, by assigning
to each (Gödel number of a) sentence of the language L and each ordinal � ≤ �1 · 2
a value in {0, 1

2 , 1}; where �1 is the first uncountable ordinal. (�1 is big enough to
serve as the first fixed point Ω in the sketch above, and �1 · 2 the second one Ω∗.32

If we generalized the procedure for other languages and other models, we’d go to
c+ · 2, where c is the maximum of the cardinalities of the domain of the model and the
vocabulary of the language, and c+ is the first ordinal of cardinality greater than c.) At
every stage �, |eq(s, t)|� is 1 iff s and t are Gödel numbers of closed terms for the same
number; it’s 0 otherwise. At every stage �, |neg(x)|� (when x is the Gödel number of
a sentence) is 1 – |x|� ; |conj(x, y)|� (with a similar restriction) ismin{|x|� , |y|�}; and
|univ(v, x)|� is min{|x(v/m)|� : m a numeral}. The interesting thing is the values of
the other atomic sentences.

Following Kripke, we let |True(t)|� for closed terms t be

• 1 if t denotes (the Gödel number of) a sentence A for which (∃� < �)(∀� ∈
[�, �))(|A|� = 1)

• 0 if either t denotes (the Gödel number of) a sentence A for which (∃� <
�)(∀� ∈ [�, �))(|A|� = 0), or else t doesn’t denote (the Gödel number of) a
sentence of L

• 1
2 otherwise.

30 A referee has pointed out to me that this idea was used in Gupta & Martin (1984) in the
context of adding a nonclassicality predicate to truth theory in Weak Kleene logic (on which,
see note 8).

31 A simple example is the external Liar Q∗. It and Scl(〈Q∗〉) get value 1
2 throughout the first

run. At the start of the second run, |Scl(〈Q∗〉)| is set at 0, so Q∗ and hence Q∗ ∨ ¬Q∗ get
value 1.

32 Actually �CK1 and �CK1 · 2 would suffice for the present construction, but not for the
generalized version in §9.
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I formulate the clauses this way to make the consistency of the 1 and 0 clauses obvious,
but once we’ve proved monotonicity as below, it will follow that the (∃� < �)(∀� ∈
[�, �)) in them can be simplified to (∃� < �).

In the same spirit as Kripke, we let |Scl(t)|� be:

• 1 if t denotes (the Gödel number of) a sentence A for which (∃� <
min(�,�1))(|A|� ∈ {0, 1})

• 0 if either � > �1 and ¬(∃� < �1)(|A|� ∈ {0, 1}), or else t doesn’t denote (the
Gödel number of) a sentence of L

• 1
2 otherwise.

In this case there is no initial worry of conflict between the 1 and 0 clauses, so there’s
no need to resort to the (∃� < �)(∀� ∈ [�, �)) formulation.

Generalizing Kripke, all sentences of form True(t) or Scl(t) for which t denotes the
Gödel number of a sentence get value 1

2 at stage 0. (For other t they get value 0.) Also,
and crucially, we have monotonicity: letting u ≤K v (for u and v in {0, 1

2 ,1}) mean that
either u = 1

2 , or u = v = 0, or u = v = 1, then we can easily argue that for any sentence
x of L, if � < � then |x|� ≤K |x|� .33

We can now extend Kripke’s fixed point argument to show the existence of “double
fixed points.” First, there can be only countably many changes prior to �1, so there
must be a � < �1 where for every sentence x, |x|�+1 = |x|� . So for any sentence of
form True(s) where s denotes a sentence y, |True(s)|� = |y|� . Thus at a fixed point
value, truth is naive. Any later � up through�1 will give the same values as this � gives,
so for convenience we can choose �1 as the ordinal Ω for the “first run” fixed point.
At �1 + 1 the rule for “Scl” jolts the construction, but from there on it’s basically just
another Kripke construction with a different starting point, and thus produces another
fixed point prior to �1 · 2; anything after, including �1 · 2, is another fixed point, so
for convenience we can take �1 · 2 as the ordinal Ω∗ for the “second run” fixed point.

From now on, only the values at Ω (=�1) and Ω∗ (=�1 · 2) will matter. Truth behaves
naively at both. At Ω, sentences of form Scl(t) where t denotes the Gödel number of a
sentence get only values 1

2 and 1 at Ω; since there are some 1
2 s, we do not have excluded

middle for the formula Scl(v). At Ω∗, sentences of this form get only values 0 and 1
(1 if they got 1 at Ω, 0 if they got 1

2 at Ω); so at Ω∗, ∀v(Scl(v) ∨ ¬Scl(v)) does get
value 1.

It remains to check in detail that all provable sequents of the internal theory are
GOOD in a sense analogous to the one explained before: they preserve value 1 at Ω∗

for any instantiation of the variables, in this model. I’ll write an instantiation of a
formula A(u1, ..., un) by members x1, ..., xn of the domain as A(x1, ..., xn) (a notation

33 Suppose not; then there is a smallest �, call it �0, for which there is a sentence x that is a
“failure at �” in the sense that for some � < �, |x|� is 0 or 1 and |x|� �= |x|� . But x can’t be
of form True(t), since that would require that t denotes a sentence y that is a failure prior
to �0. And it can’t be of form Scl(t), since if �0 ≤ �1 this would likewise require a failure
prior to �0, and since the only changes in valuation for Scl(t) when � > �1 are when � is
�1 + 1 and go from value 1

2 to value 0. x also can’t be an equality, since they never change
in value as � increases, so it can’t be any atomic sentence. And the valuation rules for the
Kleene connectives are such that no failure for atomic sentences implies no failure for any
sentences.
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which will only be used in the context where the instantiated formula is being evaluated
in the model).34

The proof that the transition rules preserve GOODness, and that the sequent rules
of logic, arithmetic, and truth theory are GOOD, is the same as before: here the shift
to the “second fixed point” changes nothing. Thus the only axiom-sequents that need
checking are those governing “Scl .”

Since there are no transition rules special to “Scl ,” I’ll adopt the simplified
formulation of inference rules and theorems introduced in the second paragraph of
this section: so the task is to prove that the inference rules preserve value 1 in all
instantiations, and that the theorems get value 1 in all instantiations.

• We’ve already verified S0, excluded middle for “Scl .” (And induction for “Scl”
is included in the arithmetic part.)

• S1: If |¬SENTL(x)|Ω∗ = 1, then obviously x is not (the Gödel number of) a
sentence of L. So by the valuation rule for Scl , |Scl(x)|� is 0 at every stage of
the construction and hence at Ω∗.

• (Seq), stating the strong classicality of closed equations, is likewise validated:
the rules give such equations value 0 or 1 at every stage of the construction, so
the claim of their Sclassicality gets value 1 for each � > 0 and hence at Ω∗.

• (STR-i) and (SSC-i): Suppose that |¬SENTL(x)|Ω∗ is 1, so that x is not (the
Gödel number of) a sentence of an L-sentence. By the valuation rules for “True”
and “Scl ,” |True(x)|� and |Scl(x)|� are 0 for all �; so by the valuation rules
for “Scl ,” |Scl(TR(x))|� and |Scl(SC(x))|� are 1 for all � > 0, and hence for
Ω∗.

• (STR-ii): Suppose that |SENTL(x)|Ω∗ is 1, so that x is an L-sentence. By the
fixed point property of Ω, |True(x)|Ω = |x|Ω, and indeed the same is true for
all sufficiently large � prior to Ω. So by the valuation rules for “Scl” and the
fixed point property, |Scl(TR(x))|Ω is the same as |Scl(x)|Ω (either 1 or 1

2 ).
So |Scl(TR(x))|Ω∗ is the same as |Scl(x)|Ω∗ , and in this case either 1 or 0. So
|Scl(TR(x)) ≡ Scl(x)|Ω∗ = 1. (Indeed, the biconditional has value 1 for any
� strictly greater than Ω.)

• (SSC-ii): Again, from |SENTL(x)|Ω∗ = 1 we get that x is an L-sentence. If
|x|Ω ∈ {0, 1} then |Scl(x)|Ω is 1 and hence |Scl(SC(x))|Ω is also 1; and if |x|Ω
is 1

2 then |Scl(x)|Ω is 1
2 and hence |Scl(SC(x))|Ω is also 1

2 . Moving to Ω∗, we
get that if |x|Ω ∈ {0, 1} then |Scl(x)|Ω∗ and |Scl(SC(x))|Ω∗ are both 1 and
otherwise they are both 0. So the biconditional Scl(SC(x)) ≡ Scl(x) has value
1 at Ω∗. (Indeed, it does at any � > Ω.)

34 In the current context, where every object in the domain gets a name, the value |A(x1, ..., xn)|�
of a parameterized formula at stage � of the construction can be identified with the
value |A(x1, ...,xn)|� at � of the sentence involving the corresponding numerals. In the
more general case there is no such correspondence. (In that case, a proper treatment of
quantification requires that the Kripke construction itself be done not in terms of sentences
but of parameterized formulas—or what is essentially the same, ordinary formulas relative to
an assignment function for the variables. In the parameterized formula formulation, we need
to take the Gödel number of a parameterized formula as a finite sequence of the ordinary
Gödel number of the formula from which it was composed and the parameter values.) While
what follows could be done in terms of the evaluation of the sentences A(x1, ...,xn), I find
it less confusing to think in terms of the values of parameterized formulas A(x1, ..., xn), as
would be required in the more general case.
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• (Sneg): Obvious.
• (Sconj): We show that at Ω∗, the formulas “Scl(conj(x, y))” and “(Scl(x) ∧
Scl(y)) ∨ (Scl(x) ∧ ¬True(x)) ∨ (Scl(y) ∧ ¬True(y))” have the same value,
and it’s never 1

2 . That suffices for the biconditional between them to have value 1
at Ω∗.

(i) |Scl(conj(x, y))|Ω∗ is 1 if |conj(x, y)|Ω ∈ {0, 1}, and 0 otherwise. (Note
shifts here and in rest of proof from Ω∗ to Ω.) Hence it’s 1 iff either |x|Ω and
|y|Ω are both in {0, 1} or one of them is 0; i.e. if one of them is 0 or both are 1.
And it’s 0 otherwise.

(ii) |Scl(x) ∧ Scl(y)|Ω∗ is 1 if |x|Ω and |y|Ω are both in {0, 1}; and 0
otherwise. And |Scl(x) ∧ ¬True(x)|Ω∗ is 1 iff |x|Ω = 0, and otherwise is 0;
similarly for y in place of x. So at Ω∗, the three-disjunct disjunction has value 1
iff either |x|Ω and |y|Ω are both in {0,1}, or one of them is 0; and 0 otherwise.
This is the same as the 1-condition in (i). And here too the disjunction has
value 0 in all other cases.

• (Suniv): Unless v is the Gödel number of a variable and x the Gödel number of
a formula with only that variable free then obviously (the instantiations of)
both sides have value 0 (at Ω∗ and everywhere else), so the biconditional
is trivial when the condition isn’t met. Assuming it is met, |∀y(CTerm ⊃
Scl(subst(x, v, y)))|Ω∗ is 1 iff for every closed term t, the value of subst(x, v, t)
at Ω is in {0, 1}. And |∃y(Scl(subst(x, v, y)) ∧ ¬True(subst(x, v, y))|Ω∗ is 1
iff for some closed term t, the value of subst(x, v, t) at Ω is 0. So the value of
the disjunction that’s the RHS of (Suniv) is 1 iff either for some closed term
the value of subst(x, v, t) at Ω is 0, or else for every closed term the value of
subst(x, v, t) at Ω is 1. And neither term of the disjunction can have value 1

2 ,
so the disjunction can’t either. Clearly these are exactly the values one gets
for |Scl(univ(v, x))|Ω∗ . Since the values at Ω∗ are the same and never 1

2 , the
biconditional has value 1 at Ω∗.

• (S-Main): |Scl(x)|Ω∗ is 0 or 1, and if 0 then |Scl(x) ⊃ (True(x) ∨
¬True(x))|Ω∗ is obviously 1, so we need only consider the case where |Scl(x)|Ω∗

is 1. But in that case Scl(x) gets value 1 already at Ω, so True(x) ∨ ¬True(x)
does too, and it retains this value at Ω∗.

This completes the model-theoretic proof of the consistency of INT.

§7. The schematic expansions of KF+ and INT. Since it’s known that KF+ (indeed,
KF) can interpret RA<�0 (ramified analysis up to �0), the above results show that the
internal theory we’ve been considering can consistently do so too.

It would be nice to go further: toRA<α for largerα. An obvious way to do so, though
not so attractive, is to introduce weaker and weaker strong classicality predicates. Pick
an ordinal α (say Γ0) such that for each predicate � < α we have a satisfactory ordinal
notation, and introduce a separate predicate Scl� for each such � . Then iterate the
Kripke construction through �1 · α: whenever 1 ≤ � < α we close off Scl� at �1 · � .35

But it isn’t altogether attractive to use a hierarchy of primitive predicates. (This would be
an analog of Kripke’s “ghost of the Tarski hierarchy,” though with strong classicality

35 There is then a hierarchy of external Liar sentences: for each � < α, a sentence declaring
itself not both true and Scl� . The theory would prove it true and Scl�+1 though not Scl� .
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stratified instead of KF-like truth. Presumably each level of the “ghost hierarchy”,
with an array of KF-like predicates True� , would be interpretable in a theory with a
corresponding array of predicates Scl� .)

There’s a much better approach, which is an internal analog of the classical approach
of Feferman (1991). Feferman noted that the standard presentation of induction in
Peano arithmetic (or expansions of it like KF), as simply consisting of the set of
first order instances of the schema, doesn’t really capture the intended strength. The
intended strength is better represented as a schematic axiom: something like a second
order axiom, but in a context where there are no second order quantifiers. We have
just a single unquantifiable schematic variable P, and formulate induction in a classical
setting using this variable as

(Classical Schematic Induction): [P(0) ∧ ∀x(P(x) ⊃ P(suc(x)))] ⊃ ∀xP(x).

When we introduce the schematic variable P in the context of KF or KF+, it is natural
to allow it to occur in instances of the truth rules. Feferman does this (see [Ext2]
and [Ext3] below), and also introduces a substitution rule for schematic variables in
which the legitimate substituends of a schematic formula include those that themselves
contain the schematic variable “P.” (A restriction on the schematic formula in which
the substitution is made is also required; see [Ext4] below.) He shows that when the
theory S-KF (or S-KF+) is formulated in this way, it is highly nonconservative over
KF (or KF+): instead of merely interpreting RA<�0 , it gives full predicative analysis
(RA<Γ0).

There’s no need to go through how it does this.36 As in the case of KF+, my strategy
will be to show that whatever can be done in this theory S-KF+ can be done in an
internal analog of it, which I’ll call S-INT. S-INT will simply be a schematic version of
the theory INT already presented; and I’ll extend the strategy used with unschematic
KF+, by showing that S-INT is consistent and can interpret S-KF+ within it.37

First I sketch Feferman’s theory S-KF+. Its language L(P) is the language of PA
expanded to include both “True” and a unary schematic variable (i.e. unquantifiable
second order variable) “P.” Its formalization involves

Ext 1: An arithmetic theory like that of KF, except with the Classical Schematic
Induction given above in place of the usual first order induction schema;
Ext 2: All the axioms and rules of both first order logic and KF+, understood
to apply to formulas that contain “P” as well as ones that don’t. In the case of
Axioms 5, 13a and 13c of KF+ we understand “SENTk” as “formula of KF(P)

36 Feferman’s argument is complicated, but its basic strategy is to show via schematic reasoning
that if ramified analysis holds up to α then it holds up to Φ(α, 0), where Φ is the Veblen
function; since Γ0 is the first fixed point of the function 	αΦ(α, 0), this allows us to bootstrap
our way up to RA<Γ0 .

37 There’s another extension of KF+ that yields full predicative analysis and beyond: Burgess’s
KF
 (2014), which incorporates within it a minimality axiom, expressing that the “truths”
are just the sentences that get value 1 in the minimal fixed point, i.e. what Kripke (1975) calls
the “grounded” truths. I doubt that there’s a way to find a natural internal theory in which
one can interpret this minimality axiom: that axiom seems to have a rather impredicative
character beyond the reach of my sort of internal theory. (In my consistency proof I’ve used
minimal fixed points for convenience, but others would do: the theory of strong classicality in
this paper is not commited one way or the other on the identification of the strongly classical
with the grounded.)
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with no free variables other than ‘P”’ (P-sentence, for short). [Feferman actually
uses KF instead of KF+, but the difference won’t matter.]
Ext 3: A new pair of truth axioms: Let P represent the function taking the
Gödel number of a term t to the Gödel number of the corresponding schematic
formula “P(t)” (and taking other numbers to #); then
(Tschem-i): ⇒ ∀s[¬CTerm(s) ⊃ ¬True(P(s)]
(Tschem-ii): ⇒ ∀s∀x[s denotes x ⊃ [True(P(s)) ≡ P(x)].38

Ext 4: An enhanced substitution rule. To formulate it, we need a notion of
substituting a formula B(v) for “P” in a schematic formula A(P). (B(v) may
contain free variables in addition to “v”; these may include “P.”) What this
means is basically just that whenever a formula of formP(t) appears inA(P) it is
replaced by the correspondingB(v/t). (For the usual reasons, some replacement
of bound variables in A(P) may be required if they occur free in B(v); I won’t
bother to spell this out.) We can write the result of such a substitution as
A(vB(v)). Feferman’s enhanced rule is then:

Feferman Rule:
� A(P)

� A(vB(v))
if A(P) doesn’t contain “True.”

B(v) is allowed to contain both “True” and “P”; as remarked, the allowance of “P”
in B is crucial to the proof-theoretic strength of the theory.

I now turn to S-INT, the internal analog of S-KF+. Its language will be the language
of INT expanded to include the new schematic variable; in other words, the language
of S-KF expanded to include “Scl” (though with “True” understood differently than
in S-KF).

Int 0: In line with the interpretation of schematic variables just mentioned, we
include the new axiom
(P-LEM): ⇒ ∀x(Px ∨ ¬Px).

(This will of course mean that we need new restrictions in the substitution rule.)

Int 1: We keep the Induction Rule of INT, but now allow the schematic variable
“P” in instances of the schema. From this together with (P-LEM), we easily
derive Classical Schematic Induction. (Instantiate A(x) as P(x), and reason as
in note 14.)39

Int 2: All the axioms and rules of both K3 and INT are understood to apply to
formulas that contain “P” as well as ones that don’t. In the case of T1 and some
of the S-rules, we understand “SENTL” as “P-sentence,” i.e. “formula of L(P)
with no free variables other than ‘P”’.

38 One might be surprised at the inclusion of this in a classical theory where naive truth
is impossible, but Feferman interprets it as effectively saying that for subsets X of the
natural numbers, “P(x)” is true relative to the assignment of X to “P” iff x ∈ X ; on that
interpretation, restrictions on (Tschem-ii) would be unwarranted. The restriction on A(P) in
the substitution rule below makes clear that there is no threat of paradox.

39 We must extend the INT induction rule in this way rather than simply replacing it by Classical
Schematic Induction: for the modification to be proposed below in the Feferman substitution
rule would prevent Classical Schematic Induction from entailing instances of the unschematic
induction rule with nonclassical “A(x).” (Similarly, a formulation of schematic induction in
S-INT that simply replaced the “A(x)” in the Induction Rule of INT by “P(x)” would not
have worked: substitution won’t deliver the nonclassical instances not involving “P.”)
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Int 3a: We add the truth axioms (Tschem-i) and (Tschem-ii) for the atomic “Pt.”
(Instead of the latter we could use four rules of T-E, ¬T-I, T-I and¬T-E for P,
but given (P-LEM) this is equivalent to adding (Tschem-ii).)
Int 3b: We also need a corresponding pair of axioms for “Scl”:
(Sschematicvbl -i): ⇒ ∀s[¬CTerm(s) ⊃ ¬Scl(P(s)]
(Sschematicvbl -ii): ⇒ ∀s[CTerm(s) ⊃ Scl(P(s)].
Int 4: For substitution rule I propose

Modified Feferman Rule:
⇒ A(P)

∀v(B(v) ∨ ¬B(v)) ⇒ A(vB(v))
if A(P) doesn’t

contain ‘True’ or “Scl .”

Again, there is no restriction on the substituting formula B(v) (as long as we fiddle
with the bound variables of A(P) in case of clashes): it can contain “True” and
“Scl ,” and also “P.” (A weaker version of this replaces the result below the line
by ⇒ ∀s[CTerm(s) ⊃ Scl(B(v/s))] ⊃ A(vB(v)); that would suffice for interpreting
S-KF+, but as we’ll see, the stronger version can be validated.)

§8. Interpreting S-KF+ in S-INT. The interpretation of S-KF+ in S-INT will be
just like the interpretation of KF+ in INT: interpret the “True” of S-KF+ as strong
truth, i.e. the conjunction of strong classicality and truth, for sentences not containing
the function symbol “TRUE” of KF; and generalize this to sentences that do contain
“TRUE” by the same trick as before. (And leave the interpretation of arithmetic and
logical vocabulary fixed).40 Of course, this now applies not just to ordinary sentences
but to P-sentences: i.e., formulas with no free variables other than “P.”

We need to verify that this does indeed validate the axioms and rules of S-KF+,
including its use of excluded middle across the board. But this involves little new: by
and large the discussion of §4 and §5 carries over without change when the formulas
are schematic. Besides this there are only three things that need to be checked, and one
of them, Classical Schematic Induction, has already been discussed. This leaves the
(Tschem) axioms (Ext 3) and the Feferman Substitution Rule (Ext 4).

Regarding the former, we’ve included corresponding (Tschem) axioms in S-INT, but
we need the analogs with “Strue” for “True.” But given also the (Sschem) axioms of
S-INT, this is a trivial consequence.

As for the Feferman Substitution Rule, this involvesA(P) where A is in the schematic
arithmetical language only (no additional predicates). By the analogous rule in S-INT,
� ∀v(B(v) ∨ ¬B(v)) ⇒ A(vB(v)). But for B(v) in the restricted language L∗ built up
from identities and formulas of form “Scl(t) ∧ True(t),” � ∀v(B(v) ∨ ¬B(v)); so for
such formulas, � A(vB(v)).

To summarize where we are, this result together with the powerful results of Feferman
(1991) shows that all of predicative analysis can be carried out in the internal theory
S-INT. That’s the power of naive truth (or to be more accurate, of naive truth plus, or
given the background of, a strong classicality predicate).

40 As we’ve seen there are really two interpretations, a simple one that doesn’t deliver the
inessential KF-13c and a more sophisticated one that does. For simplicity I’ve built my
remarks here around the simple one, but with more complicated wording the point would
extend to the other.
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§9. Consistency of the schematic internal theory. I turn finally to the consistency of
S-INT. Here too little needs to be changed from the “double Kripke construction” of
§5. We need to discuss how the model-theory applies to the schematic theory S-INT.
This is analogous to how Feferman (1991) applied model theory in the case of S-KF+,
but for clarity I spell this out.

Let a standard schematic modelMY,Z of the language of S-INT consist of the standard
model M of arithmetic together with two functions Y and Z, each of which takes an
arbitrary subset X of the domain of M (the natural numbers) to functions on the
domain of M with values in {0, 1

2 ,1}. For any X ⊆M , let MY,Z(X ) (equivalently,
MY (X ),Z(X )) be the three-valued model of the language of S-INT that treats “P”
as an ordinary {0, 1}-valued predicate with extension X (i.e. it’s evaluated by the
characteristic function of X) and that evaluates “Scl” by Y (X ) and “True” by Z(X ).
Then in any such MY,Z , and for any subset X of the domain of M, every sentence in
L(P) gets a value in this three-valued model. Of course this won’t be a very useful
assignment of values unless Y and Z are chosen properly.

To choose a good Y and Z, we run the double Kripke construction of §5 in
this general setting: we construct sequences Y� and Z� for ordinals � ≤ �1 · 2, by
relativizing to X the rules for “True” and “Scl” given before. (The X is held fixed in
the construction.) That is: for each such �, and subset X of the domain, and natural
number n,
[Y�(X )](n) is

• 1 iff n is the Gödel number of a sentence A such that for some � that precedes
both � and �1, A gets value 0 or 1 inMY�(X ),Z�(X ),

• 0 iff either � > �1 and n is the Gödel number of a sentence A that gets only
value 1

2 in anyMY�(X ),Z�(X ) for which � precedes both � and �1, or else n isn’t
the Gödel number of a sentence;

• 1
2 otherwise.

[Z�(X )](n) is

• 1 iff n is the Gödel number of a sentence A such that for some interval just prior
to �, A gets value 1 relative toMY�(X ),Z�(X ), for each � in the interval;

• 0 iff either n is the Gödel number of a sentence A such that for some interval
just prior to �, A gets value 0 relative toMY�(X ),Z�(X ), for each � in the interval;
or else n isn’t the Gödel number of a sentence;

• 1
2 otherwise.

The argument from before then tells us that for each X, we get a three-valued fixed
point model by assigning the extension X to “P” and evaluating “Scl” and “True”
by YΩ(X ) and ZΩ(X ), where Ω is �1; similarly if we evaluate them by YΩ∗(X ) and
ZΩ∗(X ), where Ω∗ is �1 · 2. (The ordinals at which the construction first reach the
two fixed points will depend on the X ; but since, for any X, the first fixed point is
reached prior to �1 and remains through �1, and analogously for the second, we get
the common fixed points as claimed.)

From now on the only two ordinals that will matter are Ω and Ω∗; for each X, we
will evaluate all sentences, relative to any X, at both Ω and Ω∗. As before, it’s the
values at Ω∗ that are important for evaluating inferences, but those at Ω are needed for
determining the extension of “Scl” at Ω∗ relative to X.
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We must state the good-making property that we want sequents of the schematic
theory to have. Call a sequent UNIFORMLY GOOD if for every set X of natural
numbers, the inference it encodes preserves the property of having value 1 relative to
X at Ω∗, for all instantiations of the variables, in this model.

The transition rules between sequents now include the Modified Feferman Rule, so a
main task is to verify that this rule preserves UNIFORM-GOODness. (The only other
transition rules of the system are the structural rules that I haven’t bothered to list,
and the logical rules (¬∧-E), (∀-I), and (¬∀-E); that these ones preserve UNIFORM-
GOODness is evident.)

As for the sequent axioms themselves, all the ones whose P-free versions were shown
GOOD for INT are obviously UNIFORMLY GOOD, since for sequents themselves
(as opposed to transition rules between them) the schematic variable simply functions
as a new predicate. (This handles what I earlier called Int 1 and Int 2 in my comparison
to Feferman’s schematic theory.) So besides the Modified Feferman substitution rule
(Int 4), we need only consider the new sequent axioms of this theory, which are
(P-LEM), (Sschem-i), (Sschem-ii), (Tschem-i) and (Tschem-ii) (which were Int 0, Int 3a and
Int 3b).

• That (P-LEM) is UNIFORMLY GOOD is trivial, since for any �, |P(y)|X� is
1 if y ∈ X and 0 otherwise.

• (Tschem-i) and (Sschem-i): If s isn’t (the Gödel number of) a closed term
then P(s) isn’t a P-sentence, so for any X and any � > 0, |True(P(s))|X� =
0 and |Scl(P(s))|X� = 0. So for any X and any � > 0, |∀s[¬CTerm(s) ⊃
¬True(P(s))]|X� = 1, and analogously with Scl(P(s)) for ¬True(P(s)), estab-
lishing that (Tschem-i) and (Sschem-i) are UNIFORMLY GOOD.

• (Sschem-ii): If s is (the Gödel number) of a closed term, say for x, then P(s) is
a sentence whose value for any X and � is 1 if x ∈ X and 0 otherwise. In that
case, for any X and any � > 0, |Scl(P(s))|X� = 1. So for any X and any � > 0,
|∀s[CTerm(s) ⊃ Scl(P(s))]|X� = 1. So (Sschem-ii) is UNIFORMLY GOOD.

• (Tschem-ii): If s denotes x then P(s) is a sentence; so for any X and any � > 0,
|True(P(s))|X� = |P(x)|X� . This is 1 or 0 (depending on whether x ∈ X ), so
|True(P(s)) ≡ P(x)|X� = 1. So for any X and any � > 0, |∀s∀x[s denotes x ⊃
[True(P(s)) ≡ P(x)]]|X� = 1, establishing that (Tschem-ii) is UNIFORMLY
GOOD.

• Finally the Modified Feferman Rule. Suppose (1) that⇒ A(P) is UNIFORMLY
GOOD, with A(P) in the arithmetical language, i.e. not containing “True” or
“Scl .” We need (2) that for any given B(v), ∀v(B(v) ∨ ¬B(v)) ⇒ A(vB(v)) is
UNIFORMLY GOOD; where B(v) may contain ‘P’. Fix B(v), and for any
set Y, let XY be {x : |B(x)|YΩ∗ = 1}. (If B(v) doesn’t contain ‘P’ then this is
independent of Y.) Then (1) gives that for any Y, |A(P)|XYΩ∗ = 1.

The only occurrences of “P” in A(vB(v)) are within B (since all occurrences
of “P” in A(P) are replaced in going to A(vB(v))). And since A(P) is in
the arithmetical language, its instances A(vB(v)) are classical whenever (3)
|∀v(B(v) ∨ ¬B(v))|YΩ∗ = 1. So when (3) holds, |A(vB(v))|YΩ∗ is |A(P)|XYΩ∗ ,
which we’ve seen is 1. That gives the desired (2).

That completes the proof of the consistency of the internal theory S-INT.
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§10. Concluding remarks.

10.1. Extensions. I mentioned early in the paper that for reasons independent of
the proof-theoretic considerations that have been the topic of this paper, the logic K3

seems expressively inadequate: it lacks a conditional that is well-behaved in nonclassical
contexts, and relatedly, it lacks a well-behaved way of expressing restricted universal
generalizations in nonclassical contexts. Those defects didn’t raise their heads in this
paper because the idea of this paper was to add a new predicate that allowed us to
maximize the classical contexts. But the work in the present paper does nothing to
make the problems go away when we do deal with nonclassical contexts.

There thus remains the task of combining the added strong classicality predicate
with the conditionals and the restricted quantifier. I suspect that there is no difficulty
in doing this, though there are choices to be made and there might be some issue about
which is best.

Typical approaches to adding new conditionals (not only my own, as given for
instance in Field, 2016, but also earlier approaches such as Brady, 1983) work by
a macroconstruction consisting of a series of Kripke constructions, leading up to a
privileged Kripke construction (in the case of my approach, at what are called reflection
ordinals).41 The simplest way to incorporate a strong classicality predicate would be to
simply perform the kind of double Kripke construction considered here at the privileged
stage. An alternative approach would be to substitute the double Kripke construction
for the single at each stage of the macroconstruction, not just the privileged stage,
using the second half as the basis for later stages of the macroconstruction. (If one
does that, then to avoid problems about the treatment of “Scl” at limit stages, it’s
probably best to make it behave in a Brady-like way despite the overall construction
being revision-theoretic, in the manner I advocated for property-identity in my 2020b.
This would make fewer sentences involving the new conditionals “strongly classical”,
but should improve the laws for the strong classicality predicate in this setting.)

I should mention that on my currently preferred approach (2020a), which works from
a semantics based on the unit interval [0,1] rather than on the three-valued semantics,
it is almost certainly possible to significantly expand the present approach by adding
not only a strong classicality predicate but also a weaker “strong regularity” predicate.
Call a formula B regular if (� → B) ↔ B holds of it (where → is the conditional
related to restricted quantification). A formula that obeys excluded middle is regular,
but the converse is far from the case: indeed, in the theory of my 2020a, nearly all of the
standard paradoxical sentences are regular. (The ones that can be handled with a naive
truth predicate in Łukasiewicz continuum-valued semantics are all regular.) Strong
regularity is to be a bivalent property that guarantees regularity, in the same way that
strong classicality is a bivalent property that guarantees excluded middle. Adding a
strong regularity predicate in addition to a strong classicality predicate would not only
greatly expand the domain in which classical logic holds (as done in this paper), but
also supply a wider expanded domain in which Łukasiewicz continuum-valued logic
holds. But that is a matter for another time (and, I hope, another person).

41 In earlier work I’d called them “acceptable ordinals,” but that was before Anil Gupta pointed
out to me that my work proving their existence duplicated previous work establishing them
under another name.
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10.2. Other morals. Many people, including myself in my 2008, have viewed
internal theories based on nonclassical logics and external theories like KF or KF+ or
S-KF+ as competitors: they’ve assumed that choosing one of them involves rejecting the
other. But of course this needn’t be so: one could take one to be basic, and interpret the
other within it. The task of interpreting the internal within the external is not promising,
given the classicality of the latter: one could simply piggyback on the external, by taking
A1, ..., An �∗B to mean that �KF True(〈A1〉) ∧ ··· ∧ True(〈An〉) ⊃ True(〈B〉), but any
attempt to do something similar in a more autonomous way results in a very weak
internal theory. Any such approach results in internal theories that are impoverished
and unnatural restrictions of the external theories that interpret them.

My approach in this paper has been the reverse: to interpret theories like KF+ or S-
KF+ within internal theories. This approach seems to me better on two grounds. First,
it accords with the idea (compellingly argued by many philosophers) that the most
generally useful notion of truth (or perhaps “the philosophically basic” one) is naive.
Second, the theory that this approach leads to is strictly stronger than the classical
theory, in that it contains the latter within it. (I don’t claim that it has greater proof-
theoretic strength, i.e. that it proves more arithmetic sentences: I’m quite sure that it
doesn’t.) This is very much in contrast to the strong suggestion in Halbach (2011) and
Halbach & Nicolai (2018) that nonclassical theories are inherently impoverished.

The approach here also shows that my rhetoric in my 2008 against external theories
was misplaced: they are perfectly good theories. They aren’t theories of truth in the
philosophically most important sense, but they are good theories of a notion of strongly
classical truth, which (though perhaps containing some arbitrary elements) is perfectly
intelligible.

Acknowledgments. Thanks to Leon Horsten, Lavinia Picollo, Matteo Zicchetti and
two anonymous referees for corrections and useful suggestions.
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