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In this paper we prove a non-existence result for nonlinear parabolic problems with
zero lower-order terms whose model is

ut − ∆pu + |u|q−1u = λ in (0, T ) × Ω,

u(0, x) = 0 in Ω,

u(t, x) = 0 on (0, T ) × ∂Ω,

where ∆p = div(|∇u|p−2∇u) is the usual p-laplace operator, λ is measure
concentrated on a set of zero parabolic r-capacity (1 < p < r) and q is large enough.

1. Introduction

The question of whether or not a solution should exist for semilinear problems has
been largely studied in the elliptic framework; in a pioneering paper by Brézis [4],
the author proved the following.

Theorem 1.1. Let Ω be a bounded open subset of R
N , N > 2, with 0 ∈ Ω, let f

be a function in L1(Ω) and let fn be a sequence of L∞(Ω) functions such that

lim
n→+∞

∫
Ω\Bρ(0)

|fn − f | dx = 0 for all ρ > 0. (1.1)

Let un be the sequence of solutions of the following nonlinear elliptic problems:

−∆un + |un|q−1un = fn in Ω,

un = 0 on ∂Ω,

}
(1.2)

with q � N/(N − 2). Then un converges to the unique solution u of the equation
−∆u + |u|q−1u = f .

If f = 0, an example of functions fn satisfying condition (1.1) is that of a sequence
of non-negative L∞(Ω) functions converging in the weak-∗ topology of measures
to δ0, the Dirac mass concentrated at the origin. In this case, un converges to 0,
which is not a solution of the equation with δ0 as datum. The result of theorem 1.1
is strongly connected with a theorem by Bénilan and Brézis [1], which states that
the problem −∆u + |u|q−1u = δ0 has no distributional solution if q � N/(N − 2).
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On the other hand (see [2,4]), if q < N/(N −2), then there exists a unique solution
of

−∆u + |u|q−1u = δ0 in Ω,

u = 0 on ∂Ω.

The threshold N/(N − 2) essentially depends on the linearity of the Laplacian
operator and on the fact that the Dirac mass is a measure which is concentrated
on a point: a set of zero elliptic N -capacity.

In [9] this result was improved to the nonlinear framework; there the authors
actually proved that, if λ is a measure concentrated on a set of zero elliptic r-
capacity, r < q, and q is large enough, then the problem

−∆pu + |u|q−1u = λ in Ω,

u = 0 on ∂Ω,

has no solutions in a very strong sense; that is, if we approximate λ with smooth
functions in the narrow topology of measures, then the approximating solutions
un converge to 0. In [9] the result is proved for more general Leray–Lions-type
nonlinear operators (see [8]).

We will combine an idea of [9] with a suitable parabolic cut-off lemma to prove a
general non-existence result in the framework of nonlinear parabolic problems with
singular measures as data.

If Ω is an open bounded subset of R
N , N > 2, and T > 0, we denote by Q the

parabolic cylinder (0, T ) × Ω. If λ is a bounded Radon measure on Q, then we will
say that λ is concentrated on a Borel set B and write λ = λ

B
, if λ(E) = λ(B∩E),

for any measurable subset E of Q.
Our main result (see theorem 2.3, below) states the non-existence of solutions for

parabolic problems in the sense of approximating sequences; as a particular case,
we will obtain the following.

Theorem 1.2. Let fn be a sequence of functions in L∞(Q) such that

lim
n→∞

∫
Q

ϕfn dx =
∫

Q

ϕ dλ for all ϕ ∈ C(Q̄),

where λ is a bounded Radon measure on Q concentrated on a set of zero parabolic
r-capacity, and let

q >
r

r − 2
. (1.3)

Then the solutions of

(un)t − ∆un + |un|q−1un = fn in (0, T ) × Ω,

un(0, x) = 0 in Ω,

un(t, x) = 0 on (0, T ) × ∂Ω,

⎫⎪⎬
⎪⎭ (1.4)

are such that both un and |∇un| converge to 0 in L1(Q).
Moreover,

lim
n→∞

∫
Q

|un|q−1unϕ dx =
∫

Q

ϕ dλ for all ϕ ∈ C0(Q).
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Remark 1.3. Theorem 1.2 states that in fact the sets of zero r-capacity are in
some sense removable singularities for the problem

ut − ∆u + |u|q−1u = f in (0, T ) × Ω,

u(0, x) = 0 in Ω,

u(t, x) = 0 on (0, T ) × ∂Ω,

⎫⎪⎬
⎪⎭ (1.5)

with large q, since the approximation does not see these sets. In fact, the singular
measure λ turns out to be cancelled out by the zero-order terms of the approximat-
ing problems in the weakly-∗ sense of the measures.

Moreover, as we shall prove, the convergence is actually stronger than the one
stated in theorem 1.2.

Let us finally explicitly remark that the choice of the homogeneous initial datum
is not restrictive; indeed, since the result is obtained for measures on Q which do
not charge the set {0}×Ω, our argument is, as we will see, essentially independent
of the initial datum.

2. Basic assumptions and tools

Let p > 1; we recall the notion of parabolic p-capacity associated to our problem
(for further details see [7, 12]).

Definition 2.1. Let Q = QT = (0, T ) × Ω for any fixed T > 0, and let us define
V = W 1,p

0 (Ω) ∩ L2(Ω), endowed with its natural norm ‖ · ‖W 1,p
0 (Ω) + ‖ · ‖L2(Ω) and

W = {u ∈ Lp(0, T ; V ), ut ∈ Lp′
(0, T ; V ′)}, (2.1)

endowed with its natural norm ‖u‖W = ‖u‖Lp(0,T ;V ) + ‖ut‖Lp′ (0,T ;V ′). If U ⊆ Q is
an open set, we define the parabolic p-capacity of U as

capp(U) = inf{‖u‖W : u ∈ W, u � χU a.e. in Q},

where as usual we set inf ∅ = +∞; we then define for any Borel set B ⊆ Q

capp(B) = inf{capp(U), U an open set of Q, B ⊆ U}.

Let us state our basic assumptions: let Ω be a bounded, open subset of R
N , let

T be a positive number and let Q = (0, T ) × Ω. Let a : (0, T ) × Ω × R
N → R

N be
a Carathéodory function (i.e. a(·, ·, ξ) is measurable on Q for every ξ in R

N , and
a(t, x, ·) is continuous on R

N for almost every (t, x) in Q) such that the following
hold:

a(t, x, ξ) · ξ � α|ξ|p, p > 1, (2.2)

|a(t, x, ξ)| � β[b(t, x) + |ξ|p−1], (2.3)
[a(t, x, ξ) − a(t, x, η)] · (ξ − η) > 0 (2.4)

for almost every (t, x) in Q, for every ξ, η in R
N , with ξ 
= η, where α and β are

two positive constants and b is a non-negative function in Lp′
(Q).

We define the differential operator

A(u) = − div(a(t, x,∇u)), u ∈ Lp(0, T ; W 1,p
0 (Ω)).
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Under assumptions (2.2)–(2.4), A is a coercive and pseudo-monotone operator act-
ing from the space Lp(0, T ; W 1,p

0 (Ω)) into its dual Lp′
(0, T ; W−1,p′

(Ω)).
We now deal with the problem

ut − div(a(t, x,∇u)) + |u|q−1u = g + λ in (0, T ) × Ω,

u(0, x) = 0 in Ω,

u(t, x) = 0 on (0, T ) × ∂Ω,

⎫⎪⎬
⎪⎭ (2.5)

with g ∈ L1(Q), q > 1, a satisfying (2.2)–(2.4), and where λ = λ+−λ− is a bounded
measure concentrated on a set E = E+ ∪ E−, such that

⋂
r(E) = 0.

Note that the existence of renormalized solutions (which in particular turn out
to be distributional solutions for problem (2.5)) is one of the results proved in a
forthcoming paper (see [11]) in the case of diffuse measures as data, i.e. measures
which do not charge the sets of zero parabolic p-capacity.

Let us recall that a sequence of bounded measures λn on an open set D ⊂ R
N

narrowly converges to a measure λ if

lim
n→∞

∫
D

ϕ dλn =
∫

D

ϕ dλ for all ϕ ∈ C(D̄).

We approximate the data with smooth gn which converge to g in L1(Q) and
smooth fn = f⊕

n − f�
n , with f⊕

n and f�
n converging, respectively, to λ+ and λ− in

the narrow topology of measures. We consider the solutions un of

(un)t − div(a(t, x,∇un)) + |un|q−1un = gn + fn in (0, T ) × Ω,

un(0, x) = 0 in Ω,

un(t, x) = 0 on (0, T ) × ∂Ω.

⎫⎪⎬
⎪⎭ (2.6)

Let us give the notion of entropy solution for parabolic problem (2.5) with a
general g ∈ L1(Ω), recalling that

Sp = {u ∈ Lp(0, T ; W 1,p
0 (Ω)); ut ∈ Lp′

(0, T ; W−1,p′
(Ω)) + L1(Q)},

that Tk(s) = max(−k,min(k, s)) for any k > 0, and that

Θk(z) =
∫ z

0
Tk(s) ds

is the primitive of the truncation function.

Definition 2.2. Let g ∈ L1(Ω) and λ = 0. A measurable function u is an entropy
solution of (2.5) if

Tk(u − g) ∈ Lp(0, T ; W 1,p
0 (Ω)) for every k > 0, (2.7)

t ∈ [0, T ] →
∫

Ω

Θk(u − g − ϕ)(t, x) dx (2.8)
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is a continuous function for all k � 0 and all ϕ ∈ Sp ∩ L∞(Q) and, moreover,∫
Ω

Θk(u − g − ϕ)(T, x) dx −
∫

Ω

Θk(u − g − ϕ)(0, x) dx

+
∫ T

0
〈ϕt, Tk(u − g − ϕ)〉 dt +

∫
Q

a(t, x,∇u) · ∇Tk(u − g − ϕ) dxdt

�
∫

Q

gTk(u − g − ϕ) dxdt (2.9)

for all k � 0 and all ϕ ∈ Sp ∩ L∞(Q).

Recall that, by a result of [6], the unique entropy solution of problem (2.5) (with
λ = 0) coincides with the renormalized solution of the same problem in [13] (see
also [7, 10]).

Our main result, which we state as follows, concerns the non-existence of solutions
for problem (2.5) in the sense of approximating sequences.

Theorem 2.3. Let 1 < p < r and

q >
r(p − 1)
r − p

(2.10)

and let un be the unique solution of problem (2.6). Then |∇un|p−1 converges strongly
to |∇u|p−1 in Lσ(Q) with σ < pq/(q + 1)(p − 1), where u is the unique entropy
(renormalized) solution of the following problem:

ut − div(a(t, x,∇u)) + |u|q−1u = g in (0, T ) × Ω,

u(0, x) = 0 in Ω,

u(t, x) = 0 on (0, T ) × ∂Ω.

⎫⎪⎬
⎪⎭ (2.11)

Moreover,

lim
n→∞

∫
Q

|un|q−1unϕ dx =
∫

Q

|u|q−1uϕ dx +
∫

Q

ϕ dλ for all ϕ ∈ C0(Q). (2.12)

3. Proof of theorem 2.3

From here on ω will indicate any quantity that vanishes as the parameters in its
argument go to their (obvious, if not explicitly stressed) limit point with the same
order in which they appear, that is, for example,

lim
δ→0+

lim sup
m→+∞

lim sup
n→∞

|ω(n, m, δ)| = 0.

Moreover, for the sake of simplicity, in what follows, the convergences, even if
not explicitly stressed, may be understood to be taken possibly up to a suitable
subsequence extraction.

To prove theorem 2.3 we will use the following lemma, proved in [10].

Lemma 3.1. Let µ = λ+
s −λ−

s be a bounded Radon measure on Q, where λ+
s and λ−

s

are non-negative and concentrated, respectively, on two disjoint sets E+ and E− of
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zero r-capacity. Then, for every δ > 0, there exist two compact sets K+
δ ⊆ E+ and

K−
δ ⊆ E− such that

λ+
s (E+ \ K+

δ ) � δ, λ−
s (E− \ K−

δ ) � δ, (3.1)

and there exist ψ+
δ , ψ−

δ ∈ C1
0 (Q), such that

ψ+
δ , ψ−

δ ≡ 1 respectively on K+
δ , K−

δ , (3.2)

0 � ψ+
δ , ψ−

δ � 1, (3.3)

supp(ψ+
δ ) ∩ supp(ψ−

δ ) ≡ ∅. (3.4)

Moreover,
‖ψ+

δ ‖Sr � δ, ‖ψ−
δ ‖Sr � δ (3.5)

and, in particular, there exists a decomposition of (ψ+
δ )t and a decomposition of

(ψ−
δ )t such that

‖(ψ+
δ )1t ‖Lr′ (0,T ;W −1,r′ (Ω)) � δ, ‖(ψ+

δ )2t ‖L1(Q) � δ, (3.6)

‖(ψ−
δ )1t ‖Lr′ (0,T ;W −1,r′ (Ω)) � δ, ‖(ψ−

δ )2t ‖L1(Q) � δ, (3.7)

and both ψ+
δ and ψ−

δ converge to 0 weakly-∗ in L∞(Q), in L1(Q), and, up to sub-
sequences, almost everywhere as δ vanishes.

Moreover, if fn = f+
n − f−

n is as in (2.6), we have∫
Q

ψ−
δ f+

n = ω(n, δ),
∫

Q

ψ−
δ dλ+

s � δ, (3.8)∫
Q

ψ+
δ f−

n = ω(n, δ),
∫

Q

ψ+
δ dλ−

s � δ, (3.9)∫
Q

(1 − ψ+
δ )f+

n = ω(n, δ),
∫

Q

(1 − ψ+
δ ) dλ+

s � δ, (3.10)∫
Q

(1 − ψ−
δ )f−

n = ω(n, δ),
∫

Q

(1 − ψ−
δ ) dλ−

s � δ. (3.11)

For the convenience of the reader we will now split the proof of theorem 2.3 into
three steps. In the first step we prove some basic estimates on the approximating
solutions, while the second step is devoted to checking how the zero-order term
behaves far from the support of λ; in the last step we conclude the proof by showing
that the limit function u is an entropy solution of problem (2.11) and that (2.12)
holds true.

Proof of theorem 2.3.

Step 1 (basic estimates). Taking Tk(un) as a test function in the weak formulation
of (2.6), we readily have the following estimates on the approximating solutions:∫

Q

|∇Tk(un)|p � Ck, (3.12)

sup
t

∫
Ω

|un| � C (3.13)

https://doi.org/10.1017/S0308210507001163 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210507001163


Nonexistence for parabolic problems with singular measures 387

and, moreover, since

k

∫
{|un|�k}

|un|q �
∫

Q

|un|q|Tk(un)| � Ck,

so that

kq meas {|un| � k} � C

and ∫
{|un|<k}

|un|q � Ckq,

we have that
|un|q is bounded in L1(Q).

Because of this fact, using (3.12), by reasoning as in [3], one can prove that

|∇un|p−1 is bounded in Lρ(Q) for any ρ <
pq

(q + 1)(p − 1)
.

Moreover, un (up to subsequences) converges almost everywhere to a function u,
and, looking at the equation in (2.6), we have that

(un)t − div(a(t, x,∇un))

is bounded in L1(Q) and so by [3, theorem 3.3] we have that

∇un → ∇u a.e. on Q.

Therefore, owing to the growth condition on a, we have that both

|∇un|p−1 → |∇u|p−1 strongly in (Lρ(Q))N (3.14)

and

a(t, x,∇un) → a(t, x,∇u) strongly in (Lρ(Q))N (3.15)

for every ρ < pq/(q + 1)(p − 1).

Step 2 (energy estimates). Let Ψδ = ψ+
δ + ψ−

δ , as in lemma 3.1; note that the
use of these types of cut-off function to deal with, separately, the regular and the
singular part of the data was first introduced in [5] in the elliptic framework.

Then, we want to show that∫
{un>2m}

|un|q(1 − Ψδ) dx = ω(n, m, δ) (3.16)

and ∫
{un<−2m}

|un|q(1 − Ψδ) dx = ω(n, m, δ). (3.17)
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We will prove (3.16) (the proof of (3.17) is analogous). Let us define

βm(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s > 2m,

s

m
− 1 if m < s � 2m,

0 if s � m

(3.18)

and let us take βm(un)(1 − Ψδ) as a test function in (2.6); we obtain

∫ T

0
〈(un)t, βm(un)(1 − Ψδ)〉 dt (A)

+
1
m

∫
{m<un�2m}

a(t, x,∇un) · ∇un(1 − Ψδ) (B)

−
∫

Q

a(t, x,∇un) · ∇Ψδβm(un) (C)

+
∫

Q

|un|q−1unβm(un)(1 − Ψδ) (D)

=
∫

Q

f+
n βm(un)(1 − Ψδ) (E)

−
∫

Q

f−
n βm(un)(1 − Ψδ) (F)

+
∫

Q

gnβm(un)(1 − Ψδ). (G)

Let us analyse all terms one by one. Using (3.15) and assumption (2.10), by means
of the Egorov theorem we readily have

−(C) = ω(n, m)

and

(G) = ω(n, m).

On the other hand, by lemma 3.1, we can write

(E) �
∫

Q

f+
n (1 − Ψδ) dx

=
∫

Q

f+
n (1 − ψ+

δ ) dx +
∫

Q

f+
n ψ−

δ dx

=
∫

Q

(1 − ψ+
δ ) dλ+ +

∫
Q

ψ−
δ dλ− + ω(n)

= ω(n, δ).
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Moreover, we can drop both (B) and −(F) since they are non-negative, while if Bm

is the primitive function of βm, we can write

(A) =
∫

Q

Bm(un)t(1 − Ψδ)

=
∫

Q

Bm(un)(Ψδ)t +
∫

Ω

Bm(un)(T )

� ω(n, m).

Collecting together all these results, we obtain (3.16).

Step 3 (passing to the limit). Here, for technical reasons, we use the double cut-
off function Ψδ,η = ψ+

δ ψ+
η + ψ−

δ ψ−
η , where ψ+

δ , ψ−
δ , ψ+

η and ψ−
η are the functions

constructed in lemma 3.1; the same trick was also used in [10] (see also [5]).
Let us define

hm(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |s| > 2m,

2 − |s|
m

if m < |s| � 2m,

1 if |s| � m.

(3.19)

We take Tk(un − ϕ)(1 − Ψδ,η)hm(un) in the weak formulation of (2.6), and we
have

∫ T

0
〈(un)t, Tk(un − ϕ)(1 − Ψδ,η)hm(un)〉 dtt (A)

+
∫

Q

a(t, x,∇un) · ∇Tk(un − ϕ)(1 − Ψδ,η)hm(un) (B)

−
∫

Q

a(t, x,∇un) · ∇Ψδ,ηTk(un − ϕ)hm(un) (C)

+
∫

Q

|un|q−1unTk(un − ϕ)(1 − Ψδ,η)hm(un) (D)

=
∫

Q

f+
n Tk(un − ϕ)(1 − Ψδ,η)hm(un) (E)

−
∫

Q

f−
n Tk(un − ϕ)(1 − Ψδ,η)hm(un) (F)

+
∫

Q

gnTk(un − ϕ)(1 − Ψδ,η)hm(un) (G)

− 1
m

∫
{m<un�2m}

a(t, x,∇un) · ∇un(1 − Ψδ,η)Tk(un − ϕ) (H)

+
1
m

∫
{−2m�un<−m}

a(t, x,∇un) · ∇un(1 − Ψδ,η)Tk(un − ϕ). (I)
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Using lemma 3.1 and (3.15) we have (C) = ω(n, η), while

|(E)| + |(F)| � k

∫
Q

(f+
n + f−

n )(1 − Ψδ,η) dx = ω(n, η),

and we easily see that

(G) =
∫

Q

gTk(u − ϕ) dx + ω(n, η).

On the other hand, using [10, lemma 6] we deduce that |(H)|+ |(I)| = ω(n, m, η).
Now let us look at (D):

(D) =
∫

{−2m�un�2m}
|un|q−1unTk(un − ϕ)(1 − Ψδ,η)hm(un)

+
∫

{un>2m}
uq

nTk(un − ϕ)(1 − Ψδ,η)hm(un)

+
∫

{un<−2m}
|un|qTk(un − ϕ)(1 − Ψδ,η)hm(un).

Using (3.16) and (3.17) we have that the last two terms in the right-hand side are
ω(n, m, η), while∫

{−2m�un�2m}
|un|q−1unTk(un − ϕ)(1 − Ψδ,η)hm(un)

=
∫

{−2m�u�2m}
|u|q−1uTk(u − ϕ)(1 − Ψδ,η)hm(un) + ω(n)

=
∫

Q

|u|q−1uTk(u − ϕ)(1 − Ψδ,η) + ω(n, m)

=
∫

Q

|u|q−1uTk(u − ϕ) + ω(n, m, η).

So that
(D) =

∫
Q

|u|q−1uTk(u − ϕ) + ω(n, m, η).

Moreover,

(B) =
∫

Q

[a(t, x,∇un) − a(t, x,∇ϕ)] · ∇Tk(un − ϕ)(1 − Ψδ,η)hm(un)

+
∫

Q

a(t, x,∇ϕ) · ∇Tk(un − ϕ)(1 − Ψδ,η)hm(un)

and∫
Q

a(t, x,∇ϕ) · ∇Tk(un − ϕ)(1 − Ψδ,η)hm(un)

=
∫

Q

a(t, x,∇ϕ) · ∇Tk(u − ϕ) + ω(n, m, η),

https://doi.org/10.1017/S0308210507001163 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210507001163


Nonexistence for parabolic problems with singular measures 391

while the first term can be handled by Fatou’s lemma, finally obtaining∫
Q

a(t, x,∇u) · ∇Tk(u − ϕ) � lim inf
η→0+

lim inf
m→∞

lim inf
n→∞

(B).

We now deal with (A). Let us define Θk,m(s) as the primitive function of Tk(s)hm(s),
observe that Θk,m is a bounded function; so, by lemma 3.1, for any η > 0 there
exists δ small enough such that∣∣∣∣

∫
Q

Θk,m(un − ϕ)hm(un)(Ψδ)t

∣∣∣∣ =
∫

Q

Θk(u − ϕ)|(Ψδ)t| + ω(n)

� η + ω(n) = ω(n, η),

and so, finally,

(A) =
∫ T

0
〈(un − ϕ)t, Tk(un − ϕ)(1 − Ψδ,η)hm(un)〉 dt

+
∫ T

0
〈ϕt, Tk(un − ϕ)(1 − Ψδ,η)hm(un)〉 dt

=
∫

Ω

Θk,m(un − ϕ)(T ) −
∫

Ω

Θk,m(−ϕ)(0) +
∫

Q

Θk,m(un − ϕ)(Ψδ)t

+
∫ T

0
〈ϕt, Tk(un − ϕ)(1 − Ψδ,η)hm(un)〉 dt �

∫
Ω

Θk(u − ϕ)(T )

−
∫

Ω

Θk(−ϕ)(0) +
∫ T

0
〈ϕt, Tk(u − ϕ)〉 dt + ω(n, m, η),

where in the last passage we used the fact that r > p and Fatou’s lemma, which
can be applied for almost every 0 � T ′ � T . Passing to the limit and gathering
together all these facts we can conclude that u is an entropy solution of (2.11).
Actually we proved this fact for almost every 0 � T ′ � T but thanks to uniqueness
of the entropy solution one can easily show that u is the entropy solution for any
T > 0.

To prove (2.12) take ψ ∈ C∞
0 (Q) in (2.6) to obtain∫

Q

|un|q−1unψ = −
∫

Q

a(t, x,∇u) · ∇ψ +
∫

Q

gψ +
∫

Q

ψ dλ + ω(n),

which together with the fact that u is an entropy solution of problem (2.11) (and so
a distributional one) yields (2.12) for ψ smooth. Finally, an easy density argument
allows us to conclude the proof.
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