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The effect of Reynolds number on inertial
particle dynamics in isotropic turbulence. Part 1.

Simulations without gravitational effects
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In this study, we analyse the statistics of both individual inertial particles and inertial
particle pairs in direct numerical simulations of homogeneous isotropic turbulence
in the absence of gravity. The effect of the Taylor microscale Reynolds number, Rλ,
on the particle statistics is examined over the largest range to date (from Rλ = 88
to 597), at small, intermediate and large Kolmogorov-scale Stokes numbers St. We
first explore the effect of preferential sampling on the single-particle statistics and
find that low-St inertial particles are ejected from both vortex tubes and vortex
sheets (the latter becoming increasingly prevalent at higher Reynolds numbers)
and preferentially accumulate in regions of irrotational dissipation. We use this
understanding of preferential sampling to provide a physical explanation for many
of the trends in the particle velocity gradients, kinetic energies and accelerations at
low St, which are well represented by the model of Chun et al. (J. Fluid Mech.,
vol. 536, 2005, pp. 219–251). As St increases, inertial filtering effects become
more important, causing the particle kinetic energies and accelerations to decrease.
The effect of inertial filtering on the particle kinetic energies and accelerations
diminishes with increasing Reynolds number and is well captured by the models
of Abrahamson (Chem. Engng Sci., vol. 30, 1975, pp. 1371–1379) and Zaichik &
Alipchenkov (Intl J. Multiphase Flow, vol. 34 (9), 2008, pp. 865–868), respectively.
We then consider particle-pair statistics, and focus our attention on the relative
velocities and radial distribution functions (RDFs) of the particles, with the aim of
understanding the underlying physical mechanisms contributing to particle collisions.
The relative velocity statistics indicate that preferential sampling effects are important
for St . 0.1 and that path-history/non-local effects become increasingly important for
St & 0.2. While higher-order relative velocity statistics are influenced by the increased
intermittency of the turbulence at high Reynolds numbers, the lower-order relative
velocity statistics are only weakly sensitive to changes in Reynolds number at low
St. The Reynolds-number trends in these quantities at intermediate and large St are
explained based on the influence of the available flow scales on the path-history and
inertial filtering effects. We find that the RDFs peak near St of order unity, that
they exhibit power-law scaling for low and intermediate St and that they are largely
independent of Reynolds number for low and intermediate St. We use the model of
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Zaichik & Alipchenkov (New J. Phys., vol. 11, 2009, 103018) to explain the physical
mechanisms responsible for these trends, and find that this model is able to capture the
quantitative behaviour of the RDFs extremely well when direct numerical simulation
data for the structure functions are specified, in agreement with Bragg & Collins
(New J. Phys., vol. 16, 2014a, 055013). We also observe that at large St, changes
in the RDF are related to changes in the scaling exponents of the relative velocity
variances. The particle collision kernel closely matches that computed by Rosa et al.
(New J. Phys., vol. 15, 2013, 045032) and is found to be largely insensitive to the
flow Reynolds number. This suggests that relatively low-Reynolds-number simulations
may be able to capture much of the relevant physics of droplet collisions and growth
in the adiabatic cores of atmospheric clouds.

Key words: isotropic turbulence, particle/fluid flow, turbulent flows

1. Introduction
Since the pioneering study of Orszag & Patterson (1972a) over forty years ago,

direct numerical simulation (DNS) has been widely used to study turbulent flows.
Previous DNS studies have provided a wealth of information about the underlying
turbulent flow field, much of which is very difficult to obtain experimentally, including
Lagrangian statistics (Yeung & Pope 1989), pressure fluctuations (Spalart 1988) and
velocity gradient tensors (Ashurst et al. 1987).

Only within the last ten years, however, with the advent of tera- and petascale
computing, have DNS at Reynolds numbers comparable to those in the largest
laboratory experiments become possible. The highest-Reynolds-number simulations to
date (with Taylor microscale Reynolds numbers Rλ ∼ 1000) have been of isotropic
turbulence in triperiodic domains and have considered both the Eulerian dynamics of
the turbulent flow field and the Lagrangian dynamics of inertialess tracer (i.e. fluid)
particles advected by the flow (Kaneda et al. 2003; Ishihara et al. 2007; Ishihara,
Gotoh & Kaneda 2009; Yeung, Donzis & Sreenivasan 2012).

Many industrial and environmental turbulent flows, however, are laden with dense,
inertial particles, which can display profoundly different dynamics than inertialess
fluid particles. The degree to which the dynamics of inertial particles differs from
those of fluid particles depends on their Stokes number St, a non-dimensional measure
of particle inertia, which we define based on Kolmogorov-scale turbulence. We
summarize the relevant physical mechanisms at small, intermediate and large values
of St below.

It is well known from both computational and experimental studies that inertial
particles preferentially sample certain regions of the flow (e.g. see Balachandar &
Eaton 2010). This preferential sampling is often attributed to the fact that heavy
particles are centrifuged out of vortex cores and accumulate in low vorticity and
high strain regions (Maxey 1987; Squires & Eaton 1991; Eaton & Fessler 1994),
leading to higher collision rates (Sundaram & Collins 1997). However, this centrifuge
mechanism is mainly important for small-St particles that are strongly coupled to
the underlying flow. As St is increased, the particle dynamics becomes less coupled
to the local fluid velocity field and the influence of their path-history interactions
with the turbulence becomes increasingly important (e.g. see Bragg & Collins 2014b).
Particles with sufficiently large St can therefore come together from different regions
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Reynolds-number effects on inertial particle dynamics. Part 1 619

of the flow with large relative velocities, increasing their collision rate (Wilkinson,
Mehlig & Bezuglyy 2006; Falkovich & Pumir 2007). Such a process is referred
to as ‘caustics’ (Wilkinson et al. 2006) and the ‘sling effect’ (Falkovich & Pumir
2007). At high values of St, several studies (e.g. Bec et al. 2006a; Ayyalasomayajula,
Warhaft & Collins 2008) have shown that particles have a modulated response to
the underlying turbulence as they filter out high-frequency flow features (i.e. features
with time scales significantly below the particle response time), and they therefore
have lower kinetic energies and lower accelerations.

Despite recent advances in simulating high-Reynolds-number turbulent flows,
current studies of inertial particles in turbulence are primarily at low and moderate
Reynolds numbers (Rλ . 500), and only recently have DNSs been conducted of
inertial particles in turbulence with a well-defined inertial range (Bec et al. 2010a,b;
Pan et al. 2011; Ray & Collins 2011; Pan & Padoan 2013; Rosa et al. 2013). It
is vital to understand the effect of Reynolds number on the mechanisms above
(preferential sampling, path-history interactions and inertial filtering), particularly at
higher Reynolds numbers that are more representative of those in nature. We give
two examples to emphasize the importance of developing such an understanding.

The first example, cloud formation, is the primary motivation for this work. For
reviews on this subject, see Shaw (2003), Devenish et al. (2012), Grabowski & Wang
(2013); here we provide a brief overview. It is well known that standard microphysical
cloud models overpredict the time required for the onset of precipitation in warm
cumulus clouds (e.g. see Shaw 2003). At early stages of cloud formation, particles
experience condensational growth. This process slows down quickly with increasing
droplet diameter, making condensational growth effective only for droplets with
diameters less than approximately 30 µm (Grabowski & Wang 2013). Moreover,
gravity is only able to significantly enhance collisional growth for particles with
diameters above 80 µm (Pruppacher & Klett 1997; Grabowski & Wang 2013),
leaving a ‘size gap’ where neither condensational growth nor gravitational coalescence
is very effective. For particles between these two limits, it has been proposed that
turbulence-induced collisions are primarily responsible for droplet growth.

It is unclear, however, the extent to which particle collision rates are affected by
changes in Reynolds number at conditions representative of those in cumulus clouds
(which have Rλ ∼ 10 000, see Siebert, Lehmann & Wendisch (2006)). Sundaram &
Collins (1997) showed that particle collision rates depend on both the degree of
clustering and on the relative velocities between particles, and thus many subsequent
analyses have considered the Reynolds-number dependence of both of these statistics.
While the early study of Wang, Wexler & Zhou (2000) suggested that clustering
increases with Rλ, later investigations (Collins & Keswani 2004; Bec et al. 2010a;
Ray & Collins 2011; Rosa et al. 2013) indicate that clustering saturates at higher
Reynolds numbers. Other researchers have suggested that caustics become more
prevalent at high Reynolds numbers, leading to larger relative velocities and thus more
frequent particle collisions (Falkovich, Fouxon & Stepanov 2002; Wilkinson et al.
2006). The findings of Bec et al. (2010a) and Rosa et al. (2013), however, do not
seem to support that trend. In all cases, the Reynolds-number range (Rλ. 500) leaves
open the question of whether the results apply to atmospheric conditions at much
higher Reynolds numbers. Laboratory measurements of inertial particle clustering
(Salazar et al. 2008; Saw et al. 2008; Lu, Nordsiek & Shaw 2010; Monchaux,
Bourgoin & Cartellier 2010; Saw et al. 2012) and relative velocity statistics (de Jong
et al. 2010; Saw et al. 2014) have provided reasonably good confirmation of the
DNS; however, they too have been performed over a limited range of Reynolds
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numbers, and therefore have not fully addressed the question of how the collision
kernel depends upon the Reynolds number.

The second example relates to planetesimal formation. Planetesimals begin to
form when small dust grains collide and coalesce in turbulent protoplanetary nebulae
(Pan & Padoan 2010). Cuzzi et al. (2001) estimated that the turbulence in such
nebulae is characterized by Rλ ∼ 104–106. It is unclear to what extent the rate of
coalescence depends on the Reynolds number, and studies at progressively higher
Reynolds numbers are necessary to develop scaling relations for particle collision
rates at conditions representative of nebula turbulence. Pan & Padoan (2010) noted
that the range of relevant particle sizes in the planetesimal formation process spans
approximately nine orders of magnitude, and therefore we expect that the collision
rates will be affected by preferential sampling (for small, medium and large particles),
path-history interactions (for medium and large particles) and inertial filtering (for
medium and large particles).

In this study, we use high-performance computing resources provided by the
US National Center for Atmospheric Research (Computational and Information
Systems Laboratory 2012) to simulate inertial particles in isotropic turbulence over
the range 88 6 Rλ 6 597. To our knowledge, the top value represents the highest
Reynolds-number flow with particles simulated to date. The overall goal is to improve
predictions for the collision kernel at Reynolds numbers more representative of those
in atmospheric clouds. Gravitational forces are neglected in this study, but will be
considered in detail in Part 2 of this study (Ireland, Bragg & Collins 2016).

The paper is organized as follows: § 2 provides a summary of the numerical
methods used and the relevant fluid and particle parameters. In § 3, we study
single-particle statistics (small-scale velocity gradients, large-scale velocity fluctuations
and also particle accelerations). Many of the results from this section help explain
the particle-pair statistics presented in § 4. These statistics include the particle relative
velocities, radial distribution functions and collision kernels. Finally, in § 5, we
summarize our results and suggest practical implications for the turbulence and cloud
physics communities.

2. Overview of simulations
A brief summary of the simulation parameters and numerical methods is provided

below. Refer to Ireland et al. (2013) for a more detailed description of the code,
including integration techniques, parallelization strategies and interpolation methods.

2.1. Fluid phase
We perform DNS of isotropic turbulence on a cubic, triperiodic domain of length L =
2π with N3 grid points. A pseudospectral method (Orszag & Patterson 1972b) is used
to evaluate the continuity and momentum equations for an incompressible flow,

∇ · u= 0, (2.1)
∂u
∂t
+ω× u+∇

(
p
ρf
+ u2

2

)
= ν∇2u+ f . (2.2)

Here, u is the fluid velocity, ω ≡∇ × u is the vorticity, p is the pressure, ρf is the
fluid density, ν is the kinematic viscosity and f is a large-scale forcing term that is
added to make the flow field statistically stationary. For our simulations, we added
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Reynolds-number effects on inertial particle dynamics. Part 1 621

Simulation I II III IV V

Rλ 88 140 224 398 597
ν 0.005 0.002 0.0008289 0.0003 0.00013
ε 0.270 0.267 0.253 0.223 0.228
` 1.46 1.41 1.40 1.45 1.43
`/η 55.8 107 204 436 812
u′ 0.914 0.914 0.915 0.915 0.915
u′/uη 4.77 6.01 7.60 10.1 12.4
TL 1.60 1.54 1.53 1.58 1.57
TL/τη 11.7 17.7 26.8 43.0 65.4
T/TL 15.0 10.4 11.4 11.1 5.75
kmaxη 1.59 1.59 1.66 1.60 1.70
N 128 256 512 1024 2048
Np 262 144 262 144 2 097 152 16 777 216 134 217 728
Ntracked 32 768 32 768 262 144 2 097 152 16 777 216
Nproc 16 16 64 1024 16 384

TABLE 1. Flow parameters for the DNS study. All dimensional parameters are in arbitrary
units and all statistics are averaged over time T . All quantities are defined in the text in
§§ 2.1 and 2.2.

forcing to wavenumbers with magnitude κ =√2 in Fourier space in a deterministic
fashion to compensate precisely for the energy lost to viscous dissipation (Witkowska,
Brasseur & Juvé 1997).

We perform a series of five different simulations, with Taylor microscale Reynolds
numbers Rλ ≡ 2k

√
5/(3νε) ranging from 88 to 597, where k denotes the turbulent

kinetic energy and ε the turbulent energy dissipation rate. Details of the simulations
are given in table 1. The simulations are parameterized to have similar large
scales, but different dissipation (small) scales. The small-scale resolution for the
simulations was held constant, with κmaxη ≈ 1.6–1.7, where κmax ≡

√
2N/3 is the

maximum resolved wavenumber and η ≡ (ν3/ε)1/4 is the Kolmogorov length scale.
Dealiasing is performed using a combination of spherical truncation and phase
shifting. Time-averaged energy and dissipation spectra for all five simulations are
shown in figure 1. A clear −5/3 spectral slope is evident for the three highest
Reynolds-number cases (Rλ > 224), indicating the presence of a well-defined inertial
subrange. The simulations are performed in parallel on Nproc processors, and the
P3DFFT library (Pekurovsky 2012) is used for efficient parallel computation of
three-dimensional fast Fourier transforms.

2.2. Particle phase
We simulate the motion of small (d/η� 1, where d is the particle diameter), heavy
(ρp/ρf � 1, where ρp is the particle density), spherical particles. Eighteen different
particle classes are simulated with Stokes numbers St ranging from 0 to 30. St≡ τp/τη
is a non-dimensional measure of a particle’s inertia, comparing the response time of
the particle τp ≡ ρpd2/(18ρfν) to the Kolmogorov time scale τη ≡ (ν/ε)1/2.

We assume that the particles are subjected to only linear drag forces, which is
a reasonable approximation when the particle Reynolds number Rep ≡ |u(xp(t), t) −
vp(t)|/ν <0.5 (Elghobashi & Truesdell 1992). Here, u(xp(t), t) denotes the undisturbed
fluid velocity at the particle position xp(t) and vp(t) denotes the velocity of the
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FIGURE 1. (a) Energy and (b) dissipation spectra for the different simulations described
in table 1. The diagonal dotted line in (a) has a slope of −5/3, the expected spectral
scaling in the inertial subrange. All values are in arbitrary units.

particle. (Throughout this study, we use the superscript p on x, u, and v to denote
time-dependent Lagrangian variables defined along particle trajectories. Phase-space
positions and velocities are denoted without the superscript p.) Though particles
with large St experience non-negligible nonlinear drag forces (e.g. Wang & Maxey
1993), the use of a linear drag model for large-St particles provides a useful first
approximation and facilitates comparison between several theoretical models that
make the same assumption (e.g. Chun et al. 2005; Zaichik & Alipchenkov 2009;
Gustavsson & Mehlig 2011). We have also neglected the history force in this study.
In an earlier work, Elghobashi & Truesdell (1992) showed that the Basset history
force is orders of magnitude smaller than the Stokes drag force when ρp/ρf � 1
(here our primary focus is on water droplets in air, where ρp/ρf ∼ 1000). On this
basis, most DNS of inertial particles in turbulence neglect this term, which involves
an integral and is very expensive to compute. However, Daitche (2015) showed that
the Basset history term can slightly reduce particle clustering and collision rates for
higher values of St, and thus while we expect that our particle statistics generally
have the correct leading-order behaviour, future studies are needed to systematically
assess higher-order corrections to these statistics that result from the inclusion of
the history force. The present study also neglects the influence of gravity. Part 2
of this study (Ireland et al. 2016) will address the combined effects of gravity and
turbulence on particle motion. Finally, since a primary motivation is to understand
droplet dynamics in atmospheric clouds, where the particle mass and volume loadings
are low (Shaw 2003), we assume that the particle loadings are sufficiently dilute such
that interparticle interactions and two-way coupling between the phases are negligible
(Elghobashi & Truesdell 1993; Sundaram & Collins 1999).

Under these assumptions, each inertial particle obeys a simplified Maxey–Riley
equation (Maxey & Riley 1983),

d2xp

dt2
= dvp

dt
= u(xp(t), t)− vp(t)

τp
, (2.3)

and each fluid (i.e. inertialess) particle is tracked by solving

dxp

dt
= u(xp(t), t). (2.4)
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To compute up(t) = u(xp(t), t), we need to interpolate from the Eulerian grid to
the particle location. While other studies (e.g. see Bec et al. 2010a; Durham et al.
2013) have done so using trilinear interpolation, Ireland et al. (2013) showed that
such an approach can lead to errors in the interpolated velocity that are orders of
magnitude above the local time-stepping error. In addition, van Hinsberg et al. (2013)
demonstrated that trilinear interpolation, which possesses only C0 continuity, leads
to artificial high-frequency oscillations in the computed particle accelerations. Ray &
Collins (2013) noted that the relative motion of particles at small separations will
depend strongly on the interpolation scheme. Since a main focus of this paper is
particle motion near contact and its influence on particle collisions, it is crucial to
calculate u(xp(t), t) as accurately as possible. To that end, we use an eight-point
B-spline interpolation scheme (with C6 continuity) based on the algorithm in van
Hinsberg et al. (2012).

The particles were initially placed in the flow with a uniform distribution and
velocities vp equal to the underlying fluid velocity up. We began computing particle
statistics once the particle distributions and velocities became statistically stationary,
usually approximately 5 large eddy turnover times TL ≡ `/u′ (where ` is the integral
length scale and u′≡√2k/3) after the particles were introduced into the flow. Particle
statistics were calculated at a frequency of 2–3 times per TL and were time averaged
over the duration of the run T .

For a subset Ntracked of the total number of particles in each class Np, we stored
particle positions, velocities and velocity gradients every 0.1τη for a duration of
approximately 100τη. These data are used to compute Lagrangian correlations,
accelerations and time scales of the particles.

3. Single-particle statistics

We first consider single-particle statistics from our simulations. These statistics will
provide a basis for our understanding of the two-particle statistics presented in § 4. We
explore velocity gradient (i.e. small-scale velocity) statistics in § 3.1, kinetic energy
(i.e. large-scale velocity) statistics in § 3.2 and acceleration statistics in § 3.3. In each
case, we study the effect of the underlying flow topology on these statistics.

3.1. Velocity gradient statistics
We consider the gradients of the underlying fluid velocity at the particle locations,
A(xp(t), t) ≡ ∇u(xp(t), t). These statistics provide us with information about the
small-scale velocity field experienced by the particles. (Refer to Meneveau (2011)
for a recent review on this subject.) In particular, to understand the interaction of
particles with specific topological features of the turbulence, we decompose A(xp(t), t)
into a symmetric strain rate tensor S(xp(t), t) ≡ [A(xp(t), t) + AT(xp(t), t)]/2 and an
antisymmetric rotation rate tensor R(xp(t), t)≡ [A(xp(t), t)− AT(xp(t), t)]/2.

Due to their inertia, heavy particles are ejected out of regions of high rotation rate
and accumulate in regions of high strain rate (e.g. Maxey 1987; Squires & Eaton
1991; Eaton & Fessler 1994), and this is associated with a ‘preferential sampling’ of
A(x, t). For particles with low inertia (St� 1), preferential sampling is the dominant
mechanism affecting the particle motion (e.g. see Chun et al. 2005). As the particle
inertia increases, the particle motion becomes increasingly decoupled from the local
fluid turbulence, and the effect of the preferential sampling on the particle dynamics
decreases. At the other limit (St� 1), preferential sampling vanishes and the particles
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FIGURE 2. Data for 〈S2〉p (a,c) and 〈R2〉p (b,d) sampled at inertial particle positions
as function of St for different values of Rλ. The data are shown at low St in (c,d) to
highlight the effect of preferential sampling in this regime. The solid lines in (c,d) are
the predictions from (3.3) for St� 1. DNS data are shown with symbols.

have a damped response to the underlying flow which leads them to sample the
turbulence more uniformly (e.g. see Bec et al. 2006a).

We first consider the average of the second invariants of the strain rate and rotation
rate tensors evaluated at the inertial particle positions

〈S2〉p ≡ 〈S(xp(t), t) : S(xp(t), t)〉, (3.1)

and
〈R2〉p ≡ 〈R(xp(t), t) : R(xp(t), t)〉. (3.2)

By definition, for fully mixed fluid particles (St = 0) in homogeneous turbulence,
τ 2
η 〈S2〉p = τ 2

η 〈R2〉p = 0.5.
Since small-St particles are centrifuged out of regions of high rotation, we expect

that τ 2
η 〈R2〉p will decrease with increasing St; their accumulation in high strain regions

would also lead to the expectation that τ 2
η 〈S2〉p will increase with increasing St. In

figure 2 we see that while τ 2
η 〈R2〉p is more strongly affected by changes in Rλ than is

τ 2
η 〈S2〉p, both quantities decrease with increasing St (for St� 1). This surprising result

is consistent with other DNS (Collins & Keswani 2004; Chun et al. 2005; Salazar
& Collins 2012a). Our data also show that both τ 2

η 〈S2〉p and τ 2
η 〈R2〉p decrease with

increasing Rλ for St� 1, in agreement with Collins & Keswani (2004).
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We use the formulation given in Chun et al. (2005) (and rederived in Salazar &
Collins (2012a)) to model the effect of preferential sampling on τ 2

η 〈S2〉p and τ 2
η 〈R2〉p

in limit of St � 1. Chun et al. (2005) and Salazar & Collins (2012a) showed that
for an arbitrary quantity φ, the average value of φ sampled along a particle trajectory
〈φ〉p can be reconstructed entirely from fluid particle statistics using the relation,

〈φ(St)〉p = 〈φ(St= 0)〉p + τησ p
φSt(ρp

S2φ
σ

p
S2T

p
S2φ
− ρp

R2φ
σ

p
R2T

p
R2φ
). (3.3)

Here, σ p
Y denotes the standard deviation of a variable Y along a fluid particle trajectory,

ρ
p
YZ is the correlation coefficient between Y and Z,

ρ
p
YZ ≡
〈[Y(xp(t), t)− 〈Y(xp(t), t)〉][Z(xp(t), t)− 〈Z(xp(t), t)〉]〉

σ
p
Yσ

p
Z

(3.4)

and Tp
YZ is the Lagrangian correlation time,

Tp
YZ ≡

∫ ∞
0
〈[Y(xp(0), 0)− 〈Y(xp(0), 0)〉][Z(xp(s), s)− 〈Z(xp(s), s)〉]〉 ds

〈[Y(xp(0), 0)− 〈Y(xp(0), 0)〉][Z(xp(0), 0)− 〈Z(xp(0), 0)〉]〉 . (3.5)

The predictions from (3.3) for small St are shown by the solid lines in figure 2(c,d).
The data at the highest Reynolds numbers provide the first test of the predictions from
Chun et al. (2005) for flows with a well-defined inertial range. In the limit of small
St, (3.3) is able to capture the decrease in both τ 2

η 〈S2〉p and τ 2
η 〈R2〉p with increasing St,

and also the decrease in these quantities with increasing Rλ. It is uncertain whether the
quantitative differences between the DNS data and the model are due to shortcomings
of the model or the fact that the smallest inertial particles (St = 0.05) are too large
for the model (which assumes St� 1) to hold.

An important implication of these results is that the degree of preferential sampling
(and thus indirectly, the amount of clustering) of inertial particles can be predicted
using experimental or DNS data measured along fluid particle trajectories. Such data
are generally more widely available at even higher Reynolds numbers than those
simulated here and could provide an indication of the trends in preferential sampling
at such conditions.

Despite the success of the model of Chun et al. (2005) in reproducing the trends
in the DNS, the physical explanation for the changes in the mean strain and rotation
rates remains unclear. In figure 3(a), we plot joint probability density functions (PDFs)
of the strain and rotation rates sampled by both St= 0 and St= 0.1 particles to better
understand the specific topological features of the regions of the flow contributing to
these changes. Following the designations given in Soria et al. (1994), we refer to
regions with high strain and high rotation (indicated by ‘A’ in figure 3a) as ‘vortex
sheets’, regions of low rotation and high strain (indicated by ‘B’) as ‘irrotational
dissipation’ areas, and regions of high rotation and low strain (indicated by ‘C’) as
‘vortex tubes.’

We see that the inertial particle PDFs differ from those of fluid particles in three
primary ways. First, inertial particles are less likely to occupy vortex sheets (A) and
are more likely to occupy regions of moderate rotation and moderate strain (A′). This
undersampling of vortex sheets has only recently been discussed in the literature
(Salazar & Collins 2012a). Second, inertial particles are more likely to be found in
irrotational dissipation regions, where they preferentially sample regions of higher
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FIGURE 3. (a) Joint PDFs of τ 2
ηS : S and τ 2

ηR : R for Rλ = 597 for St = 0 and St = 0.1
particles. Certain regions of the flow are labelled to aid in the discussion of the trends.
(b) Joint PDFs of τ 2

ηS : S and τ 2
ηR : R for different Rλ for St= 0 particles. In both plots,

the exponents of the decade are indicated on the contour lines.

strain (e.g. compare B and B′). Third, inertial particles are less likely to be found
in vortex tubes (C) and more likely to be found in regions of lower rotation and
higher strain (C′). Evidently, this first trend is primarily responsible for the decrease
in τ 2

η 〈S2〉p at small St, as suggested in Salazar & Collins (2012a), and the first and
third trends both contribute to the decrease in τ 2

η 〈R2〉p. We will revisit these three
trends in relation to the particle kinetic energies (§ 3.2) and the particle accelerations
(§ 3.3).

Figure 3(b) shows the PDF map for fluid particles at three values of the Reynolds
number. Notice that as Rλ increases, the probability of encountering a vortex sheet
(overlapping high strain and high rotation) increases. This finding is consistent with
the results of Yeung et al. (2012), who observed that high strain and rotation events
increasingly overlap in isotropic turbulence as the Reynolds number increases. It is
thus likely that with increasing Reynolds number, rotation and strain events become
increasingly intense and the resulting vortex sheets become increasingly efficient at
expelling particles, causing both τ 2

η 〈S2〉p and τ 2
η 〈R2〉p to decrease (cf. figure 2).

Maxey (1987) noted that at low St, the compressibility of the particle field (and
hence the degree of particle clustering) is directly related to the difference between the
rates of strain and rotation sampled by the particles, τ 2

η 〈S2〉p− τ 2
η 〈R2〉p. From figure 4,

we see that at low St, τ 2
η 〈S2〉p− τ 2

η 〈R2〉p increases with increasing Rλ, suggesting that
the degree of clustering may also increase here. We will test this hypothesis in § 4.2
when we directly measure particle clustering at different values of St and Rλ.

We finally consider the Lagrangian strain and rotation time scales, which will be
useful for understanding the trends in particle clustering in § 4.2. Since the fluid
and particle phases are isotropic, we will have nine statistically equivalent strain
time scales: Tp

S11S11
, Tp

S11S22
, Tp

S11S33
, Tp

S12S12
, Tp

S13S13
, Tp

S22S22
, Tp

S22S33
, Tp

S23S23
and Tp

S33S33
.

We take the strain time scale Tp
SS to be the average of these nine components. We

similarly take the rotation time scale Tp
RR to be the average of three statistically

equivalent components: Tp
R12R12 , Tp

R13R13 and Tp
R23R23 .
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FIGURE 4. The difference between the mean rates of strain and rotation sampled by the
particles as a function of St for different values of Rλ.
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FIGURE 5. Lagrangian time scales of a single component of the strain rate (a) and
rotation rate (b) tensors, plotted as a function of St for different values of Rλ.

We see that Tp
SS/τη is independent of Rλ for St < 10, and decreases weakly with

increasing Rλ for St> 10. On the other hand, Tp
RR/τη tends to decrease with increasing

Rλ for all values of St, and this decrease becomes more pronounced as St increases.
We also see that Tp

RR is much more sensitive to changes in St than Tp
SS, suggesting

that the dominant effect of inertia is to cause particles to spend less time in strongly
rotating regions. As a result, the particles will generally have less time to respond to
fluctuations in the rotation rate, causing 〈R2〉p to be strongly reduced with increasing
St, as was seen above.

3.2. Particle kinetic energy
We now move from small-scale velocity statistics to large-scale velocity statistics.
Figure 6 shows the average particle kinetic energy kp(St)≡〈vp(t) ·vp(t)〉/2 (normalized
by the average fluid kinetic energy k) for different values of Rλ.
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FIGURE 6. (a) The ratio between the average particle kinetic energy kp(St) and the
average fluid kinetic energy k for different values of Rλ. DNS data are shown with
symbols and the predictions of the filtering model in (3.6) are shown with solid lines.
(b) The ratio between kp(St) and k (open symbols) and the ratio between the average
fluid kinetic energy at the particle locations kfp(St) and k (filled symbols), shown at low
St to highlight the effects of preferential sampling. Also shown is the prediction from the
preferential sampling model given in (3.3) (solid lines).

We first consider the effect of inertial filtering on this statistic and then examine
the effect of preferential sampling. It is well known that filtering leads to a reduction
in the particle turbulent kinetic energy for large values of St. This reduction is
the strongest for the lowest Reynolds numbers and the weakest for the highest
Reynolds numbers, as seen in figure 6(a). These trends are captured by the model in
Abrahamson (1975), which assumes an exponential decorrelation of the Lagrangian
fluid velocity. Under this assumption, the ratio between the particle and fluid kinetic
energies can be expressed as

kp(St)
k
≈ 1

1+ τp/τ`
= 1

1+ St(τη/τ`)
, (3.6)

where τ` is the Lagrangian correlation time of the fluid, which we approximate using
the relation given in Zaichik, Simonin & Alipchenkov (2003). The model predictions
of kp(St)/k are included in figure 6(a) and are in good agreement with the DNS at
large St, where filtering is dominant. The trends with Rλ are also reproduced well.

We thus have the following physical explanation of inertial filtering on the particle
kinetic energies: for low-Reynolds-number flows, the response time of the largest
particles exceeds the time scales of many large-scale flow features. The result is a
filtered response to the large-scale turbulence and an overall reduction in the particle
kinetic energy. As the Reynolds number is increased (and the particle response time is
fixed with respect to the small-scale turbulence), more flow features are present with
time scales that exceed the particle response time, and hence the effect of inertial
filtering is diminished with increasing Rλ, as predicted by (3.6).

To highlight the effect of preferential sampling on the particle kinetic energy,
figure 6(b) shows both the average particle kinetic energy kp(St) and the average
kinetic energy of the fluid sampled along an inertial particle trajectory, kfp(St) ≡
〈u(xp(t), t) · u(xp(t), t)〉/2. As is evident in figure 6(b), the particle kinetic energy
exceeds k for low values of St. By comparing kp to kfp, we see that the increased
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FIGURE 7. (Colour online) Filled contours of the fluid kinetic energy conditioned on S2

and R2, kS2,R2 , normalized by the unconditioned mean fluid kinetic energy k at (a) the
lowest Reynolds number and (b) the highest Reynolds number. The dotted contour lines
indicate kS2,R2/k= 1. Isocontours of particle concentration for St= 0 and St= 0.1 particles
are included for reference, with the exponents of the decade indicated on the contour lines.
Certain regions of the flow are labelled to aid in the discussion of the trends.

kinetic energy of the smallest particles is due almost entirely to preferential sampling
of the flow field. While Salazar & Collins (2012b) were the first to show an increase
in kp(St)/k for low St (which they attributed to preferential sampling), this trend is
also suggested by the early study of Squires & Eaton (1991), in which the authors
observed that small inertial particles preferentially sample certain high kinetic energy
regions they referred to as ‘streaming zones.’ Figure 6(b) also shows that at small
values of St, kp(St)/k decreases with increasing Reynolds number.

The solid lines in figure 6(b) show the predictions of the particle kinetic energy
from (3.3). In the limit of small St, the model of Chun et al. (2005) is able to
capture qualitatively both the increase in kp(St)/k with increasing St and the decrease
in kp(St)/k with increasing Rλ.

To further elucidate the physical mechanisms leading to these trends, we plot
the mean kinetic energy of the fluid conditioned on S2 and R2, kS2,R2 , in figure 7.
Isocontours of the concentrations of St = 0 and St = 0.1 particles are shown for
comparison. (To reduce the statistical noise in the conditional averages and to focus
on the regions where most particles are present, we consider a narrower range of
S2 and R2 than in figure 3. The trends discussed below, however, are still evident
when we consider the same range of S2 and R2 as before.) While the data contain
considerable statistical noise, we can draw a few conclusions about the qualitative
trends.

From figure 7(a), we see that the change in kinetic energy at Rλ=88 can be divided
into the three mechanisms discussed in § 3.1. First, particles are less likely to sample
vortex sheets (A) and are more likely to sample moderate rotation and moderate strain
regions (A′). This behaviour generally tends to decrease the particle kinetic energy.
Second, as St increases, particles preferentially sample regions of higher strain (B′),
which are characterized by higher kinetic energy. Third, some inertial particles are less
likely to occupy vortex tubes (C), which are characterized by lower kinetic energies,
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FIGURE 8. (a) The acceleration variance of Lagrangian fluid particles as a function of Rλ.
The results from the present study (open circles) are compared to DNS data from Yeung
et al. (2006) (filled squares) and several theoretical predictions (lines). (b) The acceleration
variance of inertial particles as a function of St for different values of Rλ.

and are more likely to occupy lower rotation and higher strain regions (C′), which
have higher kinetic energies. The observed increase in kp(St)/k must therefore be due
to the second and third trends.

At high Reynolds numbers, however, overlapping high rotation/high strain regions
of the flow occur with a higher probability (as shown in § 3.1), and inertial particles
tend to avoid these regions. The first trend (which tends to decrease the kinetic energy)
therefore plays a larger role. Also, at Rλ = 597, high rotation and low strain regions
(e.g. see region C in figure 7b) are no longer associated with very low kinetic energies,
causing the third trend to be less effective at increasing the particle kinetic energy.
The overall result is a decrease in kp(St)/k with increasing Reynolds number at small
values of St.

3.3. Particle accelerations
In this section, we analyse fluid and inertial particle accelerations ap(t) ≡ dvp(t)/dt.
Fluid particle accelerations are known to be strongly intermittent (e.g. see Voth
et al. 2002; Ishihara et al. 2007), with the probability of intense acceleration events
increasing with the Reynolds number. Before accounting for inertial effects, we
consider the effect of Rλ on the acceleration variance 〈a2〉p ≡ 〈ap(t) · ap(t)〉/3 of
Lagrangian fluid particles in figure 8(a). To facilitate comparison between the different
Reynolds numbers, we have normalized 〈a2〉p by the Kolmogorov acceleration variance
a2
η ≡
√
ε3/ν. The DNS data from Yeung et al. (2006) and the theoretical predictions

of Hill (2002), Sawford et al. (2003) and Zaichik et al. (2003) are shown for
comparison. We see that our DNS data agrees well with Yeung et al. (2006), and
that the model of Sawford et al. (2003) best reproduces the trends in the DNS. Hill
(2002) breaks down at low Rλ while Zaichik et al. (2003) fails at high Rλ.

We turn our attention to inertial particle accelerations in figure 8(b). The observed
trend for inertial particles is analogous to that for fluid particles: at each value
of St considered, the particle acceleration variance (normalized by Kolmogorov
units) monotonically increases with Rλ (cf. Bec et al. 2006a). As St increases, the
acceleration variance decreases, presumably as a result of both preferential sampling
of the flow field and inertial filtering.
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FIGURE 9. (a) Inertial particle acceleration variances scaled by the fluid particle
acceleration variance (open symbols). The solid lines and arrows indicate the predictions
from the filtering model of Zaichik & Alipchenkov (2008). (b) The variance of the inertial
particle accelerations (open symbols) and the fluid accelerations sampled at the inertial
particle positions (filled symbols), shown at low St to highlight the effect of preferential
sampling. The solid lines indicate the predictions from the preferential sampling model
given in (3.3).

We now seek to understand and model how inertia changes the accelerations of
particles through the filtering and preferential sampling effects. To do so, we rescale
the inertial particle acceleration variance by that of fluid particles and plot the results
in figure 9. In figure 9(a), we compare the rescaled acceleration variance to the
model of Zaichik & Alipchenkov (2008), which only accounts for inertial filtering
of the underlying flow. The model of Zaichik & Alipchenkov (2008) is able to
capture all the qualitative trends in Rλ and St, and the model predictions provide
remarkably good quantitative agreement with the DNS at the largest values of St,
where filtering is the dominant mechanism. At lower values of St, the rescaled particle
acceleration variance decreases with increasing Rλ. In this case, as Rλ increases, the
underlying flow is subjected to increasingly intermittent acceleration events, and the
inertial particles filter a larger fraction of these events. At the largest values of St,
most intermittent accelerations are filtered, and a particle’s acceleration variance is
determined by its interaction with the largest turbulence scales. Since the range of
available large scales increases with Rλ, the rescaled particle acceleration variance
increases with Rλ for the largest values of St.

We now consider the effect of preferential sampling on the acceleration variances.
To do so, we also compute the acceleration of the fluid sampled by inertial particles,
defined as

afp(t)≡ ∂u(xp(t), t)
∂t

+ u(xp(t), t) · ∇u(xp(t), t). (3.7)

The variance of afp is denoted as 〈a2〉fp≡〈afp(t) · afp(t)〉/3. In figure 9(b), we plot both
〈a2〉p and 〈a2〉fp (scaled by the acceleration variance of St= 0 particles). As expected,
for St� 1, where preferential sampling is the dominant mechanism, inertial particle
accelerations are almost equivalent to the accelerations of the underlying flow sampled
at inertial particle positions. The model of Chun et al. (2005) (equation (3.3) above)
is able to reproduce all the qualitative trends correctly in the limit of small St. The
scaled variances decrease with increasing Rλ, and we expect that this trend is due
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FIGURE 10. (Colour online) Filled contours of the variance of the fluid particle
accelerations conditioned on S2 and R2, 〈a2〉p

S2,R2 , normalized by the unconditioned fluid
particle acceleration variance 〈a2〉p, at (a) Rλ = 88 and (b) Rλ = 597. The dotted contour
lines indicate 〈a2〉p

S2,R2/〈a2〉p = 1. Isocontours of particle concentration for St = 0 and
St = 0.1 particles are included for reference, with the exponents of the decade indicated
on the contour lines. Certain regions of the flow are labelled to aid in the discussion of
the trends.

to the fact that high vorticity regions are associated with high accelerations (Biferale
et al. 2005) and become increasingly efficient at ejecting particles (refer to § 3.1).

We test this expectation in figure 10 by plotting the acceleration variance for fluid
particles conditioned on S2 and R2, 〈a2〉p

S2,R2 , and normalized by the unconditioned
variance 〈a2〉p. We see that inertial particles do indeed undersample high vorticity
regions (both vortex sheets and vortex tubes) and preferentially sample lower vorticity
regions (e.g. compare A and A′ and C and C′) and that these high vorticity regions are
marked by very large accelerations. Though some inertial particles experience higher
accelerations as they preferentially sample irrotational straining regions with higher
strain rates (e.g. compare B and B′), this effect is relatively weak and the overall trend
is a decrease in the particle accelerations with increasing inertia.

To investigate the intermittency of inertial particle accelerations, we plot the
kurtosis of the particle accelerations, 〈a4〉p/(〈a2〉p)2, in figure 11, where 〈a4〉p ≡
〈ap

1(t)4 + ap
2(t)4 + ap

3(t)4〉p/3. (Note that a Gaussian distribution has a kurtosis of 3,
as indicated in figure 11 by a dotted line.) As expected, the particle accelerations
are highly intermittent, with the degree of intermittency increasing with increasing
Rλ. We note that this trend in the kurtosis with Rλ seems to be entirely due to the
fluid flow intermittency. In fact, when we divide the acceleration kurtosis values of
inertial particles by those of fluid particles (not shown), we observe the opposite trend
with Rλ, suggesting that inertial particles are affected less by intermittent events than
fluid particles are. This is consistent with our explanations for trends in the particle
acceleration variances given above, as well as with Bec et al. (2006c), who found
that inertial particles undersample the most highly intermittent turbulent events in the
fluid.

The kurtosis decreases very rapidly as St increases. Figure 11(b) indicates that
the kurtosis of very small particles (St = 0.05) at the highest value of Rλ is over a
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FIGURE 11. Particle acceleration kurtosis as a function of St for different values of Rλ.
The dotted line indicates a kurtosis of 3, the value for a Gaussian distribution. Values over
the whole range of non-zero St are shown in (a). (b) Shows only small-St results on a
linear plot to emphasize the rapid reduction in kurtosis as St increases from 0.

factor of two smaller than that of fluid particles. The largest-St particles have kurtosis
values approaching those of a Gaussian distribution. These trends can be explained by
the fact that both preferential sampling and inertial filtering decrease the probability
of high-intensity acceleration events. Standardized moments of up to order 10 (not
shown) were also analysed and found to exhibit the same trends.

We should note that the grid resolution study in Yeung et al. (2006) suggests that
the acceleration moments from our DNS may be underpredicted. Yeung et al. (2006)
showed that at Rλ ≈ 140, increasing the grid resolution kmaxη from 1.5 to 12 led to
a 10 % increase in the fluid acceleration variance and a 30 % increase in the fluid
acceleration kurtosis. It is unclear how these trends will change at higher Rλ, but it
suggests that the quantitative results reported here should be interpreted with caution.
(The velocity gradients presented earlier are likely reliable, however, since Yeung et al.
(2006) found that such statistics are less dependent on the grid resolution.)

4. Two-particle statistics
We now consider two-particle statistics relevant for predicting inertial particle

collisions. We analyse particle relative velocities in § 4.1, clustering in § 4.2 and use
these data to compute the collision kernel in § 4.3. (The mean-squared separation of
inertial particle pairs was also studied from these data and is the topic of a separate
publication (Bragg, Ireland & Collins 2016).)

4.1. Particle relative velocities
We study particle relative velocities as a function of both St and Rλ. The relative
velocities for inertial particles are defined by the relation

wp
‖,⊥(t)≡ [vp

2(t)− v
p
1(t)] · ep

‖,⊥(t). (4.1)

Here, v
p
1 and v

p
2 indicate the velocities of particles 1 and 2, respectively, which

are separated from each other by a distance rp(t) = |rp(t)|. The subscripts ‖ and ⊥
indicate directions parallel (longitudinal) to the separation vector or perpendicular
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(transverse) to the separation vector, respectively, and ep
‖,⊥ denotes the unit vector in

the corresponding direction. (We use the method discussed in Pan & Padoan (2013)
to compute the transverse components. Pan & Padoan (2013) set up a local coordinate
system for each particle pair, and choose one unit vector of the coordinate system to
align with the separation vector between the particles. They then apply two successive
rotations to this unit vector to define two transverse unit vectors, which are used to
compute two statistically equivalent transverse relative velocity components.)

We will also examine the velocity differences of the fluid at the particle locations,
defined as

1up
‖,⊥(t)≡ [up

2(t)− up
1(t)] · ep

‖,⊥(t), (4.2)

where up
1 and up

2 are the velocities of the fluid underlying particles 1 and 2,
respectively. Note that for uniformly distributed fluid (St = 0) particles, the particle
velocity statistics are equivalent to the underlying fluid velocity statistics.

Following the nomenclature in Bragg & Collins (2014a,b), we denote particle
relative velocity moments of order n as

Sp
n‖(r)≡ 〈[wp

‖(t)]n〉r, (4.3)

for the components parallel to the separation vector, and as

Sp
n⊥(r)≡ 〈[wp

⊥(t)]n〉r, (4.4)

for components perpendicular to the separation vector. In these expressions 〈·〉r
denotes an ensemble average conditioned on rp(t)= r.

For the purposes of computing the collision kernel (see § 4.3), we are also interested
in the mean inward relative velocity parallel to the separation vector, defined as

Sp
−‖(r)≡−

∫ 0

−∞
w‖p(w‖|r) dw‖, (4.5)

where p(w‖|r) = 〈δ(wp
‖(t) − w‖)〉r is the PDF for the longitudinal particle relative

velocity conditioned on rp(t)= r.
Finally, in some cases we are also interested in moments of the fluid velocity

differences. We use a superscript fp to denote the moments of fluid velocity
differences at the particle locations, and a superscript f to denote the moments
of fluid velocity differences at fixed points with separation r. We therefore have

Sfp
n‖(r)≡ 〈[1u‖(rp(t), t)]n〉r, (4.6)

and
Sf

n‖(r)≡ 〈[1u‖(r, t)]n〉. (4.7)

The components perpendicular to the separation vector are defined analogously.
In figure 12, we plot the relative velocity variances Sp

2‖ and Sp
2⊥ versus r/η at

Rλ = 597. The mean inward relative velocity (not shown) has the same qualitative
trends and will be considered later in this section. For the purposes of the following
discussion, we define the dissipation range as the region over which the fluid velocity
variances follow r2-scaling, which is seen to be 0 6 r/η . 10 in figure 12, in
agreement with Ishihara et al. (2009).

At small separations, the relative velocity variances parallel to the separation vector
(figure 12a) increase monotonically with St and deviate from r2-scaling, while the
relative velocity variances perpendicular to the separation vector decrease for St . 0.1
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FIGURE 12. The particle relative velocity variances parallel to the separation vector (a)
and perpendicular to the separation vector (b), plotted as a function of the separation
r/η for Rλ = 597. The Stokes numbers are indicated by the line labels, and the St = 0
curves are shown with dashed lines for clarity. The expected dissipation and inertial range
scalings (based on Kolmogorov 1941) are included for reference. In (c), we have included
parallel and perpendicular relative velocities at small St and small separations to highlight
the behaviour in this regime. Sp

2‖ values are plotted with solid lines, and Sp
2⊥ values with

dotted lines. The Stokes numbers are indicated by the line labels.

and then increase monotonically with St for St & 0.1 (figure 12b). We expect that the
trends at small separations and small St are primarily due to preferential sampling of
the underlying flow, which also dictates much of the single-particle dynamics for small
St (refer to § 3).

To test this expectation, we compare the particle relative velocity variances to those
of the fluid sampled by the particles in figure 13. In all cases, the velocity variances
are normalized by those of St = 0 particles. At St = 0.05 (figure 13a,b), the effect
of preferential sampling is dominant at all separations, as evidenced by the fact that
Sfp

2‖ and Sfp
2⊥ are close to Sp

2‖ and Sp
2⊥, respectively. We note that for small St and

small r/η, preferential sampling leads to an increase in Sfp
2‖ with increasing St and

to a decrease in Sfp
2⊥ with increasing St. This is consistent with the trends observed

in figure 12 and with our argument (§ 3.1) that inertia causes particles to be ejected
from high rotation regions of the flow. We expect that two particles in a high rotation
region will experience small relative velocities parallel to the particle separation
vector and large relative velocities perpendicular to the particle separation vector,
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FIGURE 13. The parallel (a,c) and perpendicular (b,d) relative velocity variances of
inertial particles (Sp

2‖ and Sp
2⊥, solid lines) and of the fluid at inertial particle positions

(Sfp
2‖ and Sfp

2⊥, dashed lines) for Rλ = 597. All quantities are normalized by the relative
velocity variances of St = 0 particles. St = 0.05 results are shown in (a,b), and St = 0.2
results are shown in (c,d).

as suggested by figure 14(a). We also expect that the parallel relative velocities
will increase as particles accumulate in straining regions of the flow as a result
of their inertia, while the perpendicular relative velocities will decrease, as shown
in figure 14(b). Interestingly, we observe an opposite trend in the parallel relative
velocities at r/η ∼ 10. We notice that Sp

2‖,St/S
fp
2‖,St=0 is slightly below 1, indicating

that inertial particles have smaller parallel relative velocities than fluid particles.
While the reason for this trend is unclear, since Sp

2‖,St/S
fp
2‖,St=0 and Sfp

2‖,St/S
fp
2‖,St=0 are

approximately equal here, it must be related in some way to preferential sampling
effects. At the largest separations, the relative velocities for inertial and fluid particles
become equivalent, as expected, indicating that preferential sampling effects vanish
in this limit.

For St = 0.2, the particle relative velocities are much larger than the underlying
fluid velocity differences at small separations, as is evident in figure 13(c,d). This
difference is due to path-history effects (see Bragg & Collins 2014a,b). That is,
as inertial particles approach each other, they retain a memory of more energetic
turbulence scales along their path histories, leading to relative velocities that exceed
the local fluid velocity difference. These path-history effects imply that inertial
particles can come together from different regions in the flow, occupy the same
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(a) (b)

FIGURE 14. An illustration of the effect of preferential sampling on the parallel relative
velocity w‖ and the perpendicular relative velocity w⊥. In (a), two particles are in a
rotating region of the flow. In this case, w‖ is small and w⊥ is large. In (b), the particles
have been ejected from the rotating region as a result of their inertia and are in a straining
region of flow. The two particles have a small value of w⊥ and a large value of w‖.

position in the flow at the same time and yet have different velocities due to their
differing path histories. This effect is referred to as ‘caustics’, ‘crossing trajectories’
or ‘the sling effect’, causes a departure from r2-scaling in the second-order structure
functions at small separations and can lead to large relative velocities (Yudine 1959;
Falkovich et al. 2002; Wilkinson & Mehlig 2005; Wilkinson et al. 2006; Falkovich
& Pumir 2007). (Also note that while caustics are instantaneous events, the statistical
manifestation of caustics is known as ‘random, uncorrelated motion’ and is discussed
in IJzermans, Meneguz & Reeks (2010).) Since the time scale over which the particles
retain a memory of their interactions with turbulence increases with increasing inertia,
caustics become more prevalent as St increases.

One effect of caustics is to make the parallel and perpendicular relative velocity
components nearly the same in the dissipation range, as can be seen in figure 12(c)
for St & 0.3. (Note that fluid particles do not experience caustics and have 2Sp

2‖= Sp
2⊥

for r/η� 1 as a result of continuity (e.g. see Pope 2000).) For St > 10, the relative
velocities are almost unaffected by the underlying turbulence in the dissipation range.
As a result, the relative velocities are nearly independent of r/η in this range.

The effect of caustics can also be clearly seen in figure 15, where we plot the
parallel relative velocities at a given separation as a function of St. From this figure, it
is evident that the particle relative velocities at the smallest separation sharply increase
as St exceeds approximately 0.2. The rapid increase in the particle relative velocities
with St is consistent with the notion that caustics take an activated form (Wilkinson
et al. 2006) and that they are negligible below a critical value of St (IJzermans et al.
2010; Salazar & Collins 2012b). Our data suggest a critical Stokes number for caustics
of approximately 0.2–0.3, in agreement with Falkovich & Pumir (2007) and Salazar
& Collins (2012b). The increase in the relative velocities occurs at higher values of
St as the separation increases. In this case, the particles are subjected to larger-scale
turbulence, and hence the particles must have more inertia for their motion to deviate
significantly from that of the underlying flow.

We now examine the Reynolds-number dependence of the relative velocities,
restricting our attention to the component parallel to the separation vector. From
figure 15, we see that the relative velocities of the largest particles (St & 10) increase
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FIGURE 15. (a) The mean inward relative velocities and (b) the relative velocity variances,
plotted as a function of St for small separations and different values of Rλ. Open symbols
denote r = 0.25η, grey filled symbols denote r = 1.75η and black filled symbols denote
r= 9.75η.

strongly with increasing Rλ. There are two reasons for this trend. The first is that the
effect of filtering on the larger turbulence scales decreases as Rλ is increased (see
§ 3.2). The second is that u′/uη increases with increasing Rλ, indicating that large-St
particles in the dissipation range carry a memory of increasingly energetic turbulence
(relative to the Kolmogorov scales) in their path history as Rλ is increased.

For smaller values of St (St 6 3), the relative velocities in figure 15 are only
weakly dependent on Rλ, in agreement with previous DNS studies (Wang et al. 2000;
Bec et al. 2010a; Onishi, Takahashi & Vassilicos 2013; Rosa et al. 2013; Onishi
& Vassilicos 2014) and the model of Pan & Padoan (2010). To highlight any small
Reynolds-number effects in this range, we therefore divide the relative velocities at
r= 0.25η and a certain Rλ by their value at Rλ= 88 and plot the results in figure 16.
We have included 95 % confidence intervals about the predicted values to provide an
indication of the statistical significance of these weak Reynolds-number effects.

For St= 0.3, the relative velocity variances increase weakly with increasing Rλ (see
figure 16b). As Rλ increases, the range of velocity scales u′/uη increases, allowing
some particle pairs in this Stokes-number range to sample more energetic turbulence
as they converge to small separations, and causing the relative velocity variances
to increase with increasing Reynolds number. Furthermore, turbulence intermittency,
which also increases with increasing Reynolds number, may also contribute to the
trend in the relative velocity statistics. We note that the mean inward velocities
(figure 16a) are less affected by changes in Reynolds number, presumably because
the mean inward velocity is a lower-order statistic that is less influenced by the
relatively rare events described above.

For St= 3, we also expect the increased scale separation, the increased intermittency
of the turbulence or both to act to increase the relative velocities. However, we observe
an overall decrease in the relative velocities with increasing Rλ here, in agreement
with Bec et al. (2010a), Rosa et al. (2013). These reduced relative velocities are likely
linked to the decrease in the Lagrangian rotation time scales Tp

RR/τη with increasing
Rλ observed in § 3.1. That is, as Tp

RR/τη decreases with increasing Rλ, the particles
have a shorter memory of fluid velocity differences along their path histories, which
in turn causes the relative velocities to decrease.
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FIGURE 16. (Colour online) (a) The mean inward relative velocities and (b) the relative
velocity variances, plotted as function of Rλ. The relative velocities are shown at r/η =
0.25, and the quantities at a given Reynolds number are divided by their corresponding
value at Rλ = 88. Shaded contours denote 95 % confidence intervals about the sample
mean.
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FIGURE 17. Dissipation range scaling exponents for Sp
−‖ (a) and Sp

2‖ (b) for various values
of St and Rλ. The exponents are computed from linear least-squares regression for 0.756
r/η6 2.75.

We now examine the behaviour of the scaling exponents of Sp
−‖ ∝ rζ

−
‖ and Sp

2‖ ∝ rζ
2
‖

at small separations. (These scaling exponents will also be used in § 4.2 to understand
and predict the trends in the particle clustering.) We compute ζ−‖ and ζ 2

‖ using a linear
least-squares regression for 0.75 6 r/η 6 2.75 at different values of St and Rλ. Note
that while using such a large range of r/η will necessarily introduce finite-separation
effects, there is generally too much noise in the data to accurately compute the scaling
exponents over smaller separations.

The scaling exponents are plotted in figure 17. We note that the scaling exponents
are below those predicted by Kolmogorov (1941) (hereafter ‘K41’) for fluid (St = 0)
particles (ζ−‖ = 1 and ζ 2

‖ = 2) and, like the relative velocities themselves, vary only
slightly as Rλ changes.

For St > 10, the scaling exponents are approximately zero, indicating that the
relative velocities are generally independent of r, as explained above. The scaling
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FIGURE 18. PDFs of the particle relative velocities wp
‖ for separations 0 6 r/η 6 2 and

Rλ= 597. The relative velocities are normalized by both uη (a) and (Sp
2‖)

1/2 (b). The solid
lines denote the relative velocity PDFs for St = 0 particles, and the dotted line in (b)
indicates a standard normal distribution.

exponents for 1 . St . 3 generally increase with increasing Rλ, since path-history
interactions (which generally decrease the scaling exponents) become less important,
as explained above. Finally, we note that ζ 2

‖ decreases with increasing Rλ for St . 1,
since intermittent path-history effects are expected to be more important here.

We next consider the PDFs of the relative velocities in the dissipation range.
Figure 18 shows the PDFs for 0 6 r/η 6 2 and Rλ = 597. In figure 18(a), we
see that as St increases, the tails of the PDF of wp

‖/uη become more pronounced,
indicating that larger relative velocities become more frequent, in agreement with our
observations above.

We show PDFs in standardized form in figure 18(b) to analyse the extent to which
they deviate from that of a Gaussian distribution. It is evident that the degree of
non-Gaussianity peaks for St ∼ 1 and becomes smaller as St increases. The physical
explanation for this intermittency at St ∼ 1 is that the motion of these particles is
affected by both the small-scale underlying turbulence and by the particles’ memory
of large-scale turbulent events in their path histories. This combination of contributions
from both large- and small-scale events leads to strong intermittency. We also see that
the underlying fluid is itself quite intermittent at this small separation, as expected (e.g.
see Gotoh, Fukayama & Nakano 2002).

We now use three statistical measures to quantify the shape of the PDFs. The first is
the ratio between the mean inward relative velocities and the standard deviation of the
relative velocities, Sp

−‖/(S
p
2‖)

1/2; the second is the skewness of the relative velocities,
Sp

3‖/(S
p
2‖)

3/2; and the third is the kurtosis of the relative velocities, Sp
4‖/(S

p
2‖)

2. (Due to
insufficient statistics, we will not consider data from these latter two quantities for
r/η < 1.75.)

We show the ratio Sp
−‖/(S

p
2‖)

1/2 in figure 19. One motivation for looking at this
ratio is that existing theories (e.g. see Zaichik et al. 2003; Pan & Padoan 2010) only
predict the relative velocity variance, and by assuming the relative velocities have a
Gaussian distribution, relate this variance to the mean inward relative velocity. For a
Gaussian distribution, this ratio is approximately 0.4. At all values of St, Rλ and r/η,
our data indicate that the ratio is below 0.4 and thus that the particle relative velocities
are intermittent (see also Wang et al. 2000; Pan & Padoan 2013). The degree of
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FIGURE 19. The ratio between mean inward relative velocities and the standard deviation
of the relative velocities as a function of St for small separations and different values of
Rλ. Open symbols denote r= 0.25η, grey filled symbols denote r= 1.75η, and black filled
symbols denote r= 9.75η. The horizontal dotted line indicates that value of this quantity
for a Gaussian distribution.

intermittency peaks for order unity St, high Rλ and small r/η, and using a Gaussian
prediction in this regime would lead to predictions of the mean inward velocity which
are in error by more than a factor of 2.

We next consider the skewness, Sp
3‖/(S

p
2‖)

3/2, to provide information about the
asymmetry of the relative velocities. Figure 20(a) indicates that the relative velocities
are negatively skewed (Wang et al. 2000; Ray & Collins 2011). This skewness is a
result of two contributions. First, the velocity derivatives of the underlying turbulence
are negatively skewed, a consequence of the energy cascade (Tavoularis, Bennett
& Corrsin 1978). Second, additional skewness arises from the path-history effect
described earlier (see also Bragg & Collins 2014b). Figure 20(a) shows by implication
that at St ∼ 1 it is the latter effect that dominates the skewness behaviour. At even
larger values of St, the effect of both mechanisms decreases because, with increasing
Stokes number, the particle velocity dynamics becomes increasingly decoupled from
the small-scale fluid velocity field and their motion becomes increasingly ballistic in
the dissipation range.

Finally, we consider the kurtosis of the relative velocities, Sp
4‖/(S

p
2‖)

2, in figure 20(b)
to quantify the contributions from intermittent events in the tails of the PDFs. The
trends are similar to those in Sp

−‖/(S
p
2‖)

1/2, as expected, indicating that contributions
from intermittent events become strongest for intermediate St, the smallest separations
and the highest Reynolds numbers. In all cases, the kurtosis is above that for a
Gaussian distribution (Sp

4‖/(S
p
2‖)

2 = 3).
Finally we close this section with two comments. We first note that the recent

study by Saw et al. (2014) that compares experimentally measured relative velocities
of inertial particles with DNS found that while the Stokes drag model is able to
capture all of the qualitative trends observed in the experiments, it is unable to provide
quantitative predictions for the tails of the relative velocity PDFs, suggesting that some
of the neglected terms in the Maxey & Riley (1983) particle equation of motion may
be required to yield quantitatively correct higher-order relative velocity statistics.
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FIGURE 20. The (a) skewness and (b) kurtosis of the relative velocities as a function of
St for separations in the dissipation range and different values of Rλ. Grey filled symbols
denote r= 1.75η, and black filled symbols denote r= 9.75η.

The second comment is related to the inertial range structure functions. It is a
common practice to report the power-law exponents of higher-order velocity structure
functions for fluid particles (e.g. see Kerr, Meneguzzi & Gotoh 2001; Gotoh et al.
2002; Shen & Warhaft 2002; Ishihara et al. 2009). Salazar & Collins (2012b) reported
the corresponding exponents for inertial particles. However, as shown by Bragg,
Ireland & Collins (2015), in a turbulent flow with infinite Reynolds number, and
r/η� St3/2, the inertial particle structure functions reduce to those of fluid particles.
Yet for those same particles in the range 1 � r/η � St3/2, inertial effects cause
systematic deviations between inertial particle and fluid particle structure functions.
The existence of two scaling regions for inertial particles in high-Reynolds-number
turbulence implies that no single exponent can capture the entire inertial range. Thus,
the results reported in Salazar & Collins (2012b) are most likely an artefact of the
relatively low Reynolds number of the study (Rλ 6 120).

4.2. Particle clustering
As discussed in § 1, inertial particles form clusters when placed in a turbulent flow.
We first consider a theoretical framework for understanding this clustering (§ 4.2.1),
and then analyse the clustering using DNS (§ 4.2.2).

4.2.1. Theoretical framework for particle clustering
A variety of measures have been proposed to study particle clustering, including

Voronoï diagrams (Monchaux et al. 2010), Lyapunov exponents (Bec et al. 2006b),
Minkowski functionals (Calzavarini et al. 2008) and radial distribution functions
(RDFs) (McQuarrie 1976). These methods provide insight into particle clustering
in a variety of different ways. As pointed out by a referee, Minkowski functionals
and Voronoï diagrams provide information about nearest-neighbour particles, while
Lyanunov exponents are capable of providing information about the entire small-scale
distribution of particles. The RDF has distinct advantages over these other methods
for our purposes. The RDF, unlike both Minkowski functionals (Calzavarini et al.
2008) and Voronoï diagrams (Tagawa et al. 2012), is not biased by the number of
particles simulated. Also, as Bec et al. (2006b) noted, the accurate computation of
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Lyapunov exponents is numerically infeasible for high-Reynolds-number simulations,
while computation of the RDF is relatively straightforward. Finally, the RDF, unlike
the other measures, has a direct relevance to particle collisions, since it precisely
corrects the collision kernel for particle clustering (Sundaram & Collins 1997) in
the limit of vanishing particle concentration. Since our simulations are performed
with very dilute particle seedings, we neglect higher-order corrections to the collision
kernel that result from particle collision histories and triple correlations.

The RDF g(r) is defined as the ratio of the number of particle pairs at a given
separation r to the expected number of particle pairs in a uniformly distributed particle
field,

g(r)≡ Ni/Vi

N/V
. (4.8)

Here, Ni is the number of particle pairs that lie within a shell with an average radius
r and a radial width 1r, Vi is the volume of the shell and N is the total number of
particle pairs located in the total volume V . An RDF of unity corresponds to uniformly
distributed particles, while an RDF in excess of one indicates a clustered particle field.

Based on the findings of Bragg & Collins (2014a), we use the model of Zaichik
& Alipchenkov (2009) as a framework for understanding the physical mechanisms
governing particle clustering. We will validate this model against DNS data in § 4.2.2.
In the following discussion, we non-dimensionalize all variables by Kolmogorov units
and use Ŷ to denote the non-dimensionalized form of a variable Y .

From Zaichik & Alipchenkov (2009), the equation describing g(r̂) at steady state
for an isotropic system is

0=−St(Ŝp
2‖ + λ̂‖)∇r̂g− Stg(∇r̂Ŝ

p
2‖ + 2r̂−1[Ŝp

2‖ − Ŝp
2⊥]), (4.9)

where λ̂‖ is a diffusion coefficient describing the effect of the turbulence on the
dispersion of the particle pairs (e.g. see Bragg & Collins 2014a). We now consider
(4.9) in different St-regimes to consider the effect of changes in Rλ within these
regimes.

In the limit St� 1, (4.9) can be reduced to (see Bragg & Collins 2014a),

0=−r̂2Bnl∇r̂g− St
3

r̂g(〈Ŝ2〉p − 〈R̂2〉p), (4.10)

where Bnl is a St-independent, non-local diffusion coefficient (see Chun et al. 2005;
Bragg & Collins 2014a). The first term on the right-hand side is associated with an
outward particle diffusion which reduces clustering, while the second term on the
right-hand side is responsible for an inward particle drift which increases clustering.

We therefore see that if Bnl is independent of Rλ, the diffusion will be independent
of Rλ. The drift is dependent on τ 2

η 〈S2〉p − τ 2
η 〈R2〉p, and we see from § 3.1 that

τ 2
η 〈S2〉p − τ 2

η 〈R2〉p increases weakly with Rλ for St � 1. We therefore expect the
degree of clustering at low St to increase weakly as Rλ increases. We will test this
expectation against DNS data in § 4.2.2.

For particles with intermediate values of St, we are generally unable to simplify
(4.9), since all terms are of comparable magnitude, and the clustering in this range is
due to both preferential sampling and path-history effects. Bragg & Collins (2014a)
showed that path-history effects induce an asymmetry in the particle inward and
outward motions, causing particles to come together more rapidly than they separate,
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generating a net inward drift and increased clustering. The precise range of St over
which path-history effects increase clustering will likely vary with Rλ, but a rough
guideline (based on Bragg & Collins 2014a) is 0.2 . St . 0.7. Below this range,
path-history effects have a negligible impact on particle clustering, and above this
range, the path-history mechanism acts to diminish clustering. For the upper end
of this St range, path-history effects are the dominant particle clustering mechanism
(Bragg & Collins 2014a).

We next simplify (4.9) when St & 1. As noted in § 4.1, at sufficiently large St and
small r/η, the relative particle velocities are dominated by path-history effects and
Sp

2‖ ≈ Sp
2⊥. Furthermore, λ‖� Sp

2‖ in this regime (see Bragg & Collins 2014b). Using
these results we can simplify (4.9) in the dissipation range to the form,

0≈−StŜp
2‖∇r̂g− Stg∇r̂Ŝ

p
2‖. (4.11)

The overall changes in the particle clustering at high St will therefore be determined
by the extent to which the drift coefficient (∇r̂Ŝ

p
2‖) and the diffusion coefficient

(Ŝp
2‖) are influenced by changes in Rλ. That is, if the ratio between the drift and

diffusion coefficients increases (decreases) with increasing Rλ, the RDFs are expected
to increase (decrease).

We therefore take the ratio between the drift and diffusion coefficients in the
dissipation range and obtain

∇r̂Ŝ
p
2‖

Ŝp
2‖
= ζ

2
‖
r̂
, (4.12)

where ζ 2
‖ is the scaling exponent of the longitudinal relative velocity variance.

Equation (4.12) implies that increases (decreases) in ζ 2
‖ are fundamentally linked

to increases (decreases) in the RDFs at high St. From § 4.1, we see that ζ 2
‖ increases

with increasing Rλ for 1 . St . 3, which suggests that g(r/η) will increase with
increasing Rλ here.

We also note that (4.12) can only be used to predict the trends in clustering for
particles with finite ζ 2

‖ . Particles with sufficiently large St have ζ 2
‖ = 0, and for such

particles the effect of Rλ on the RDFs in the dissipation range is controlled exclusively
by the boundary condition for g at the edge of the dissipation range. This boundary
condition depends upon the inertial range clustering of particles and cannot be inferred
from the behaviour of ζ 2

‖ . We will examine the RDFs for St > 3 from DNS data in
§ 4.2.2.

In summary, at small St, clustering may increase with increasing Rλ depending upon
whether Bnl varies with Rλ. Clustering at intermediate values of St will be due to both
preferential sampling and path-history effects, though it is unclear the degree to which
g(r/η) will change with Rλ. At high St, the degree of clustering is determined by the
influence of path-history effects on the scaling of the relative velocity variances, which
in turn affects the relative strengths of the drift and diffusion mechanisms. Based
on our relative velocity data in § 4.1, we expect that clustering will increase with
increasing Rλ here. We next consider DNS data to test these predictions.

4.2.2. Particle clustering results
In figure 21, we plot the RDFs for the different values of St considered at three

different Reynolds numbers. Note that as the size of the simulation (and thus Rλ)
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FIGURE 21. RDFs for (a) low-St particles and (b) high-St particles at three different
values of Rλ, plotted as a function of the radial separation r/η. The Stokes numbers are
indicated by the line labels.

increases, we are able to calculate g(r/η) statistics accurately at progressively smaller
values of r/η.

In agreement with past studies (e.g. see Wang & Maxey 1993; Sundaram & Collins
1997; Balachandar & Eaton 2010), we see that particle clustering peaks for St ∼ 1
at all Reynolds numbers shown. Figure 21 also indicates that the largest particles
(St > 10) exhibit clustering outside of the dissipation range of turbulence and that
the degree of clustering is independent of separation in the dissipation range. This
is because large-St particles are unresponsive to the dissipative range scales and so
move almost ballistically at these separations. The clustering that is observed for these
particles is due almost entirely to eddies in the inertial range with time scales similar
to the particle response time (Goto & Vassilicos 2006; Bec et al. 2010b). If we make
that assumption, along with the standard K41 approximations for the inertial range,
we expect the clustering will depend only on ε and r and will occur at length scales
of the order of ηSt3/2 (ElMaihy & Nicolleau 2005; Bec et al. 2010b). We test this
in figure 22 by plotting the RDFs for St= 20 and St= 30 particles as a function of
r/(ηSt3/2) at the three highest Reynolds numbers. (The two lower Reynolds numbers
do not have a well-defined inertial range, as noted in § 2.1, and hence the above
argument would not hold.) We see that the RDFs decrease rapidly near r/(ηSt3/2)∼ 1,
suggesting that the particles are indeed clustering due to the influence of turbulent
eddies in the inertial range with a time scale of the order of τp. Refer to Bragg et al.
(2015) for a recent theoretical and computational analysis of particle clustering in the
inertial range of turbulence.

We now discuss how the RDFs change with the Reynolds number. For St & 1,
the RDFs increase with increasing Rλ, as is clearly evident in figures 21(b) and 22.
This is in agreement with our expectations in § 4.2.1. At lower values of St, however,
the trends with Rλ are at most weak and are not obvious from figure 21(a). We
therefore plot the RDFs at r/η= 0.25 as a function of Rλ in figure 23 and normalize
the RDFs at a given Reynolds number by their corresponding value at Rλ = 88. We
have included 95 % confidence intervals for the RDFs to provide an indication of the
statistical significance of any weak Reynolds-number effects.

In § 4.2.1, we argued that g(r/η) might increase weakly with Rλ for St� 1, since
τ 2
η 〈S2〉p − τ 2

η 〈R2〉p increases with Rλ in this limit. In figure 23, however, we observe
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FIGURE 22. RDFs for St= 20 and St= 30 particles at the three highest values of Rλ. The
separations are scaled by ηSt3/2 to test for inertial range scaling. The Stokes numbers are
indicated by the line labels.
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0.8
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1.2

FIGURE 23. (Colour online) The normalized RDFs at r/η= 0.25, plotted as a function of
Rλ. The RDFs at a given Reynolds number are normalized by their corresponding value
at Rλ = 88 to highlight any slight Reynolds-number effects. Shaded contours denote 95 %
confidence intervals for the RDFs.

that g(r/η) is essentially independent of Rλ for St<1, which implies that the non-local
correction coefficient Bnl in (4.10) must increase weakly with Rλ in a compensating
way. Several authors have also found the level of particle clustering to be independent
of Rλ at small St (without gravity), including Collins & Keswani (2004) (from data at
656Rλ6152), Bec et al. (2007) (656Rλ6185), Bec et al. (2010a) (1856Rλ6400),
Ray & Collins (2011) (95 6 Rλ 6 227) and Rosa et al. (2013) (28 6 Rλ 6 304). Our
data confirms this point up to Rλ= 597. The fact that g(r/η) is independent of Rλ for
small Stokes numbers implies that the clustering mechanism is driven almost entirely
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FIGURE 24. Power-law fits for g(r/η) from (4.13): (a) shows the coefficient c0, and (b)
shows the exponent c1. DNS data are shown with symbols, and the theoretical predictions
from Zaichik & Alipchenkov (2009) (‘ZT’ and ‘ZT + DNS’), Chun et al. (2005) (‘CT1’
and ‘CT2’) and Gustavsson & Mehlig (2011) (‘GT’) at Rλ = 597 are shown with lines
and plus signs. The details of each of the theoretical models are discussed in the text.

by the small-scale turbulence, independent of any intermittency in the turbulence that
occurs at higher Reynolds numbers. From figure 23, we notice that the RDFs increase
weakly with Rλ for St & 1, with Reynolds-number effects saturating at the higher
Reynolds numbers. Our findings confirm the hypothesis of Collins & Keswani (2004)
that the degree of clustering saturates as the Reynolds number increases.

We note that two recent studies (Onishi et al. 2013; Onishi & Vassilicos 2014)
found that g(r/η) decreases weakly with increasing Rλ over the range 81 6 Rλ 6 527
at St= 0.4 and St= 0.6. Our results at St= 0.6 in figure 23 are consistent with this
trend, but it should be emphasized that the Reynolds-number dependencies here are
extremely weak (in comparison with the statistical deviations) and should be viewed
with caution.

It is important to note, however, that just because g(r/η) is almost entirely invariant
with Rλ for low-St particles does not necessarily imply that higher-order moments of
clustering are also independent of Rλ. For example, g(r/η) is related to the variance
of the particle density field (Shaw, Kostinski & Larsen 2002). Higher-order moments
or PDFs of the particle density field (e.g. see Pan et al. 2011) could also be compared
at different values of Rλ. However, we found that the number of particles in our
simulations was insufficient to compute such statistics accurately at small separations.
We would likely need about an order of magnitude more particles to test the Reynolds-
number dependence of these higher-order clustering moments. Refer to Yoshimoto &
Goto (2007) for a more complete discussion on the number of particles necessary for
accurate higher-order clustering statistics.

Following Reade & Collins (2000a), we fit the RDFs by a power law of the form

g(r/η)≈ c0

(η
r

)c1

. (4.13)

(Note that c1 is related to the correlation dimension D2 (Bec et al. 2007) by the
relation c1 = 3−D2.) This allows us to compare the DNS data to several theoretical
predictions in figure 24. For each value of Rλ, we computed c0 and c1 by fitting g(r/η)
in the range 0.75 6 r/η 6 2.75 using linear least-squares regression. For St > 10, we
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do not observe power-law scaling for the RDF, and thus no values of c0 and c1 are
plotted here.

To verify the arguments presented in § 4.2.1, we compare the DNS values of c0
and c1 to the predicted values from Zaichik & Alipchenkov (2009) at Rλ = 597.
The comparisons are performed in two ways. In the first way (which we denote as
‘ZT’), we use the model of Zaichik & Alipchenkov (2009) to compute the relative
velocities and then use these predicted relative velocities in (4.9) to solve for the
RDFs. In this manner, we can test the quantitative predictions of the model when
no additional inputs are used. In the second approach (which we denote as ‘ZT +
DNS’), we solve (4.9) with the particle velocities and the strain rate time scales
along particle trajectories specified using DNS data. (The strain rate time scales are
used in evaluating the dispersion tensor λ. To maintain consistency in the model, we
also adjusted the inertial range time scales through (18) in Zaichik & Alipchenkov
(2003).) In both cases, we used the non-local diffusion correction discussed in Bragg
& Collins (2014a), with Bnl = 0.056.

As expected, ‘ZT’ is only able to provide a reasonable prediction for c0 and c1
for St . 0.3. Above this point, inaccuracies in the predicted relative velocities lead to
inaccurate clustering predictions, as discussed in Bragg & Collins (2014a). However,
‘ZT + DNS’ predicts c1 almost perfectly, with only slight discrepancies at St∼ 1, in
agreement with the findings of Bragg & Collins (2014a) at a lower Reynolds number.
We expect that these discrepancies are due to an additional drift term that was omitted
in Zaichik & Alipchenkov (2009), as discussed in Bragg & Collins (2014a). ‘ZT +
DNS’ also provides reasonable predictions for c0, though the agreement is not as
good as that for c1, possibly because c0 is influenced by the inertial range scales,
which are generally more difficult to model. From these comparisons, we see that the
model presented in § 4.2.1 is accurate, validating its use in interpreting the physical
mechanisms responsible for particle clustering.

We next compare our results for c1 against two relations derived in Chun et al.
(2005) in the limit of small St. The first (which we denote as ‘CT1’) uses DNS data
for the strain and rotation rates sampled along inertial particle trajectories to compute
c1, giving

c1 =
Stτ 2

η

3Bnl
(〈S2〉p − 〈R2〉p). (4.14)

The second (which we denote as ‘CT2’) requires only DNS data for quantities
sampled along fluid particle trajectories and predicts,

c1 = St2

12Bnl

[
(σ

p
S2)

2

(〈S2〉p)2
Tp

S2S2

τη
−ρp

S2R2

σ
p
S2

〈S2〉p
σ

p
R2

〈R2〉p
(

Tp
S2R2

τη
+ Tp

R2S2

τη

)
+ (σ

p
R2)

2

(〈R2〉p)2
Tp

R2R2

τη

]
. (4.15)

‘CT1’ agrees well with the DNS up to St≈ 0.5, while ‘CT2’ only agrees well for
St= 0.05, in agreement with Chun et al. (2005), Bragg & Collins (2014a). At higher
values of St, both models from Chun et al. (2005) overpredict c1. As explained in
Bragg & Collins (2014a), this overprediction is because the theory of Chun et al.
(2005) fails to account for the contribution of the path-history effects on the drift and
diffusion mechanisms that govern the clustering.

Finally, we compare our DNS values for c1 against the theory from Gustavsson
& Mehlig (2011), here denoted as ‘GT.’ The theory in Gustavsson & Mehlig (2011)
predicts that in the limit of small r/η,

Sp
n‖ ∝ rc1, (4.16)
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for n> c1. (Note that the predictions of Zaichik & Alipchenkov (2009) and Gustavsson
& Mehlig (2011) are equivalent when St is large, as explained in Bragg & Collins
(2014a).) It therefore follows that for sufficiently small r/η, c1 = ζ 2

‖ , where ζ 2
‖ is the

scaling exponent of the relative velocity variance in the dissipation range, as computed
in § 4.1.

We include the prediction c1 = ζ ‖2 in figure 24, and see that while ‘GT’ is in
excellent agreement with the DNS for St= 2, 3, significant discrepancies exist at low
St, as explained in Bragg & Collins (2014a).

4.3. Collision kernel
We now consider the kinematic collision kernel K for inertial particles, which has
been shown to depend on both the radial distribution function and the radial relative
velocities,

K(d)= 4πd2Sp
−‖(r= d)g(r= d), (4.17)

where d is the particle diameter (see Sundaram & Collins 1997; Wang, Wexler &
Zhou 1998). While we simulate only point particles (refer to § 2.2), we compute d
from St by assuming a given ρp/ρf . To study the dependence of K(d) on ρp/ρf , we
consider three different values for this parameter: 250, 1000 and 4000. (Note that for
droplets in atmospheric clouds, ρp/ρf ≈ 1000.)

In general, we do not have adequate statistics to calculate g(r) or Sp
−‖(r) at r= d at

low values of St (St63 for ρp/ρf =250 and 1000 and St610 for ρp/ρf =4000) and so
we extrapolate from the power-law fits in §§ 4.1 and 4.2.2 down to these separations,
as was also done in Rosa et al. (2013). For larger St (St > 10 for ρp/ρf = 250 and
1000 and St > 20 for ρp/ρf = 4000), the particle diameters are sufficiently large such
that we can compute g(d) and Sp

−‖(d) by interpolating between data at smaller and
larger separations.

Following Voßkuhle et al. (2014), we compute the non-dimensional collision kernel
K̂(d) ≡ K(d)/(d2uη) = 4πg(d)Sp

−‖(d)/uη. Figure 25 shows K̂(d) for different values
of ρp/ρf . Results from Rosa et al. (2013) (deterministic forcing scheme, no gravity,
ρp/ρf = 1000) are included in the inset to figure 25.

For St > 10, the collision kernels increase strongly with increasing Rλ, since both
the relative velocities and the RDFs increase with Rλ here (see §§ 4.1 and 4.2.2). K̂(d)
is also independent of ρp/ρf here. The physical explanation is that while changes in
ρp/ρf lead to changes in d, Sp

−‖(d)/uη and g(d) are largely independent of d here (see
§§ 4.1 and 4.2.2).

Such particles, however, are generally above the size range of droplets in
atmospheric clouds (e.g. see Ayala et al. 2008), and thus our primary focus is
on the collision rates of smaller (St . 3) particles. K̂(d) is independent of ρp/ρf for
1 . St 6 3, in agreement with the findings of Voßkuhle et al. (2014). In this case,
while both g(d) and Sp

−‖/uη are dependent on d, these two quantities have opposite
scalings (see § 4.2.2), causing their product to be independent of d (and thus of
ρp/ρf ).

For St . 3, our data show very little effect of Rλ on the collision rates, and are in
good agreement with the collision statistics from Rosa et al. (2013) at ρp/ρf = 1000
(shown in the inset to figure 25). However, since the Reynolds numbers in clouds
(Rλ ∼ 10 000) are at least an order of magnitude larger than those in the DNS, it
is important to discern even weak trends in the collision kernel with the Reynolds
number. We therefore plot the ratio of K̂(d) at a given Reynolds number to that at
Rλ = 88 for St 6 3 in figure 26.
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FIGURE 25. The non-dimensional collision kernel K̂(d) as a function of St for different
values of Rλ. Data are shown for ρp/ρf = 250 (filled black symbols), ρp/ρf = 1000 (open
symbols) and ρp/ρf = 4000 (filled grey symbols). Legend entries marked with † indicate
data taken from Rosa et al. (2013) (deterministic forcing scheme, no gravity) at ρp/ρf =
1000. These data are only included in the inset, where they are compared with our results
at ρp/ρf = 1000.
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FIGURE 26. (Colour online) The ratio between K̂(d) at a given value of Rλ to that at
Rλ = 88, to highlight any Reynolds-number effects for St 6 3. All data correspond to
ρp/ρf = 1000.

For St 6 1, the collision statistics are almost completely independent of Rλ. This
Reynolds-number independence is expected at St= 0.1 and St= 0.3, since both Sp

−‖/uη
and g are independent of Rλ here (refer to §§ 4.1 and 4.2.2). For St = 1, Sp

−‖/uη
decreases with increasing Rλ (see § 4.1), while g increases with increasing Rλ (see
§ 4.2.2). These two trends apparently offset each other, causing the collision kernel
to be essentially independent of Reynolds number at St = 1. Finally, for St = 3, the
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collision kernel increases weakly as Rλ increases. In this case, the increase in the
RDFs with increasing Rλ (§ 4.2.2) more than compensates for the decrease in the
relative velocities (§ 4.1), causing the collision kernel to increase weakly.

These findings suggest that lower-Reynolds-number studies may in fact capture the
essential physics responsible for droplet collisions in highly turbulent clouds. However,
the results must be interpreted with caution for two reasons. First, the collision rates
for St 6 3 were computed by extrapolating power-law fits to very small separations,
and it is not known if the functional form of the relative velocities and the RDFs
remains the same at these separations. Second, even the highest Reynolds numbers in
this study are still at least an order of magnitude smaller than those in atmospheric
clouds. It is thus possible that the turbulence could exhibit different characteristics
at much higher Reynolds numbers, or that the above trends in the Reynolds number,
though weak, could lead to substantially different collision rates when Rλ is increased
by another order of magnitude.

5. Conclusions

We have studied the effect of particle inertia and the flow Reynolds number on
particle dynamics at the highest Reynolds number (Rλ ≈ 600) and largest number of
particles (∼2.5 billion) to date. These simulations have provided new insights into
both single- and two-particle statistics in homogeneous isotropic turbulence.

We first analysed the statistics of individual inertial particles. At large St, the
particle motions were seen to be influenced primarily by inertial filtering. The
theoretical models of Abrahamson (1975) and Zaichik & Alipchenkov (2008) were
able to quantify the effect of filtering on kinetic energies and particle accelerations,
respectively, in this limit, and provided us with a clear physical understanding of the
effect of Reynolds number on these quantities.

In the opposite limit (St � 1), the particle motions were influenced primarily by
preferential sampling, and we used the theoretical model of Chun et al. (2005) to
understand and predict the statistics here. For St� 1, the mean rotation rate sampled
by the particles decreased with increasing St and Rλ, since intense rotation regions
became more prevalent and more efficient at ejecting particles (see Collins & Keswani
2004). As Rλ increased, intense rotation regions tended to occur together with intense
strain regions in ‘vortex sheets’, in agreement with Yeung et al. (2012), and particles
were also ejected from these regions, decreasing the mean strain rate sampled by the
particles. In agreement with Salazar & Collins (2012b), the particle kinetic energy
increased with St for St� 1 due to preferential sampling of the flow field. However,
since ejections from vortex sheets tend to reduce the particle kinetic energy, this
trend was reduced as the Reynolds number was increased. Fluid particle accelerations
were seen to be extremely intermittent at high Rλ, and the trends in the acceleration
variance were well captured by the model of Sawford et al. (2003). The particle
acceleration variances decreased rapidly with increasing St, as inertial particles tended
to be ejected from vortex tubes and vortex sheets, which were both characterized by
very high fluid accelerations.

We then studied the relative velocity, clustering and collision statistics of inertial
particles. For St � 1, preferential sampling led to an increase in the longitudinal
relative velocities and to a decrease in the transverse relative velocities, and the
relative velocities were generally independent of Rλ for St . 0.1. At higher values of
St, the particle motions were influenced more by path-history interactions, leading to
a sharp increase in the relative velocities with increasing St. While the mean inward
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relative velocities were generally independent of Rλ for St= 0.3, the relative velocity
variances increased weakly with increasing Rλ here, a trend we attributed to either the
increased scale separation at higher Reynolds numbers, the increased intermittency
of the turbulence at higher Reynolds numbers or some combination of the two. For
St = 3, the relative velocities decreased with increasing Rλ, which we argued was
related to the decrease in the Lagrangian rotation time scales with increasing Rλ. We
observed that the relative velocities of particles with St& 10 increased with increasing
Rλ, since inertial filtering effects diminish and u′/uη increases as the Reynolds number
increases.

We also analysed the dissipation range scaling exponents of the relative velocities,
and found that particles with higher relative velocities generally had lower scaling
exponents, since the particles were more influenced by path-history effects. Relative
velocities in the dissipation range were seen to be strongly non-Gaussian, with the
degree of non-Gaussianity being largest for St∼ 1, r/η→ 0, and high Rλ, suggesting
that theories which assume a Gaussian distribution to relate the velocity variances
to the mean inward velocities provide poor predictions for the mean inward relative
velocities at particle contact. Higher-order inertial range structure functions were also
examined and were observed to follow similar trends to those reported in Salazar &
Collins (2012b).

We then used these trends in the relative velocities to predict the degree of
clustering through the model of Zaichik & Alipchenkov (2009), and compared the
results to DNS data. The trends in the RDFs at low St were tied to preferential
sampling effects, which increased the inward particle drift, as was found in Chun
et al. (2005). The RDFs were independent of Rλ here, in agreement with Collins
& Keswani (2004), Ray & Collins (2011), Rosa et al. (2013), suggesting that the
non-local coefficient Bnl (see Chun et al. 2005; Bragg & Collins 2014a) must weakly
increase as Rλ increases. (We were unable to test higher-order measures of clustering
to determine if they were affected by changes in Rλ due to the limitations in the
number of particles that could be simulated.)

At high St, the degree of clustering was tied to the influence of path-history effects
on the particle drift and diffusion, as explained in Bragg & Collins (2014a). By
simplifying the model of Zaichik & Alipchenkov (2009) in this limit, we showed that
changes in the scaling exponents of the relative velocity variances directly affected
the drift and diffusion mechanisms, which in turn altered the clustering. The scaling
exponents generally increased with increasing Rλ (suggesting that path-history effects
became less important), which in turn led to increased levels of clustering. For St> 10
and Rλ> 224, particles were seen to cluster in the inertial range of turbulence and the
separation at which clustering decreased was predicted accurately by inertial range
scaling arguments.

For St . 3, the RDFs exhibited power-law scaling, consistent with Reade & Collins
(2000a). The full model of Zaichik & Alipchenkov (2009) (without any inputs from
the DNS) was able to predict the power-law coefficient c0 and power-law exponent
c1 accurately only for St . 0.4 due to errors in the predicted relative velocities.
However, when these relative velocities (and the associated Lagrangian time scales)
were specified from the DNS, the model in Zaichik & Alipchenkov (2009) provided
excellent predictions for c1 and reasonable predictions for c0, as was also found
in Bragg & Collins (2014a) at a lower Reynolds number. We also tested the DNS
against two model predictions from Chun et al. (2005), one which required only fluid
particle statistics from the DNS and one which required strain and rotation statistics
along particle trajectories. The former prediction was in acceptable agreement with
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the DNS only for St = 0.05, while the latter prediction was in good agreement up
to St≈ 0.5, in agreement with Chun et al. (2005), Bragg & Collins (2014a). Finally,
we found that the theory of Gustavsson & Mehlig (2011) was able to predict c1 well
for St= 2 and St= 3.

We used the relative velocity and RDF data to compute the kinematic collision
kernel for inertial particles (Sundaram & Collins 1997), and found that this quantity
varied only slightly with Reynolds number (under 35 % when Rλ changed by a
factor of 7) for 0< St 6 3. Our collision kernels were in good agreement with those
computed by Rosa et al. (2013).

As mentioned in § 1, one of the primary motivations for this study was to determine
the extent to which turbulence-induced collisions are responsible to the rapid growth
rate of droplets observed in warm, cumulus clouds. Our observations indicate that the
collision rates of like particles are generally unaffected by changes in the Reynolds
number, which suggests that relatively low-Reynolds-number simulations may allow
us to study the essential physics of droplet collisions in highly turbulent atmospheric
clouds. One promising avenue of future work would be to determine the droplet
growth rates predicted by these collision kernels, either by solving an associated
kinetic equation (Xue, Wang & Grabowski 2008; Wang & Grabowski 2009) or by
simulating the particle collision and coalescence process directly (Reade & Collins
2000b).

Experimental data to support these findings would also be very useful. Experimental
data on particle clustering, relative velocity and collision statistics is not yet available
over a wide range of Reynolds number under tightly controlled experimental
conditions. Future work could be undertaken to produce such data in order to test
the validity of the conclusions drawn herein.

Finally, we note that it is unclear to what extent these conclusions would be altered
if gravity were incorporated in the particle dynamics, since the introduction of gravity
will likely cause particles to preferentially sample certain regions of the flow, and will
alter the residence time of particles around certain flow features (e.g. see Wang &
Maxey 1993; Dávila & Hunt 2001; Good et al. 2014). We will analyse the effect of
gravity on inertial particle motion in turbulence in Part 2 (Ireland et al. 2016).
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