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We study the instability mechanisms leading to slug flow formation in an inclined
pipe subject to gravity forces. We use a phase-field approach, where the Cahn–Hillard
model is used to model the interface. At the inlet, a stratified flow is imposed with
a specified velocity profile. We validate our numerical results by comparing against
previous theoretical models and by predicting the various flow regimes for horizontal
and inclined pipes, including stratified flow, slug flow, dispersed bubble flow and
annular flow. Subsequently, we focus on slug formation in an inclined pipe and
connect its appearance with specific vortical dynamics. A two-dimensional channel
geometry is first considered. When the heavy fluid is injected as the top layer,
inverted vortex shedding emerges, which periodically impacts on the bottom wall, as
it develops further downstream. The accumulation of heavy fluid in the bottom wall
causes a back flow that induces rolling waves and interacts with the upstream jet.
When the heavy fluid is placed as the bottom layer, the heavy fluid accumulates and
initially forms a massive slug at the bottom region, close to the inlet. Subsequently,
the heavy fluid slug starts to break into smaller pieces, some of which translate along
the pipe. During the accumulation phase, a back flow forms also generating rolling
waves. Occasionally, a rolling wave can reach the top of the pipe and form a new
slug. To describe the generation of vorticity from the two-phase interface and pipe
walls in the slug formation, we study the circulation dynamics and connect it with
the resulting two-phase flow patterns. Finally, we conduct three-dimensional (3-D)
simulations in a circular pipe and compare the differences between the 3-D flow
patterns and its circulation dynamics against the 2-D simulation results.

Key words: gas/liquid flows, instability, multiphase and particle-laden flows

1. Introduction
Transportation of two-phase flow through pipelines is used often in industrial

applications, such as in the oil and gas industry and in offshore engineering.

† Email address for correspondence: mistetri@mit.edu
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Depending on the governing parameters of the problem, a wide range of flow
regimes may be encountered, with complex and dynamic interfacial topologies,
including bubbly flow, plug flow, slug flow, stratified flow and annular flow (Taitel &
Dukler 1976; Shoham 2006; Campbell 2015).

The slug flow is a commonly encountered flow regime in pipelines of the oil
industry (Sausen, de Campos & Sausen 2012). It is characterized by a highly
intermittent flow, in which large gas bubbles flow alternatively with liquid slugs,
with a randomly fluctuating frequency (Fabre & Liné 1992). The presence of
slugs can cause severe dynamic problems by creating pressure transients, leading
to flooding at the receiving end or increased deposits and corrosion (Bratland 2010).
Therefore, understanding the hydrodynamic properties of slug flow mechanics is
of great importance to oil and gas engineers for the design and flow assurance of
pipelines.

Although a large number of theoretical studies have been conducted investigating
the slug flow patterns and their characteristics, such as the ‘unit-cell’ approach (Dukler
& Hubbard 1975; Taitel & Barnea 1990), slug-tracking model (Bendiksen et al. 1990;
Barnea & Taitel 1993; Zheng, Brill & Taitel 1994) and slug capturing technique (Issa
& Kempf 2003), an accurate simulation under realistic flow conditions is not available
yet. Computational fluid dynamics (CFD) proves to be a very attractive alternative.
Two-phase direct numerical simulations (DNS) have been employed to study bubbly
flows (Esmaeeli & Tryggvason 1998, 1999; Bunner & Tryggvason 2002a,b; Nagrath,
Jansen & Lahey 2005). However, DNS results for other flow regimes are very rare.

Pipelines that connect wells on the seabed to production platforms are usually
installed on irregular bottom topographies, so that the pipeline system normally
contains combinations of several uphill and downhill sections, as well as curving
bends. It is found that stratified flow may appear in the downward sections, while
a slug flow could be triggered in the horizontal and upward sections with high
probability (Sanchez-Silva et al. 2013). Therefore, DNS of two-phase flow in an
inclined pipe is the focus in the current study. We start out by considering a stratified
flow under the effect of gravity; then we investigate the instability mechanisms of
two-phase flow and, especially, the slug formation principles.

Vorticity dynamics has proved useful in illustrating the physics of fluid flow
(Rosenhead 1963; Morton 1984; Batchelor 2000), including the generation and
redistribution of vorticity. For two-phase flow in an inclined pipe, the sources of
vorticity generation are the solid boundaries and the interfaces between the two
fluids. In single-phase fluid, vorticity is generated at the walls; in two-dimensional
(2-D) steady channel flow (plane Poiseuille flow) for example, vorticity generated
at the top wall is equal and of opposite sign than the vorticity generated on the
bottom wall (Morton 1984); the vorticity source can be identified by calculating the
pressure gradient. In a fluid–fluid interface, vorticity is generated mainly from its
normal motion when the interface is curved and there is non-zero tangential motion
(Brøns et al. 2014). In the present work, circulation dynamics is used to quantitatively
analyse the amount of vorticity generation at various locations, where special flow
structures might emerge.

The paper is organized as follows. In § 2, the numerical algorithm for two-phase
flow is described and a validation against previous theoretical models is carried out.
In § 3, the instability mechanisms of two-phase flow in the 2-D upward inclined pipe
are first discussed. The effect of inflow condition and inclination angle on the flow
transition, vorticity generation and circulation dynamics are investigated. In § 4, three-
dimensional simulations in a circular pipe are conducted and the results are compared
against those of 2-D simulations. Finally, in § 5 we provide the final conclusions.
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2. Problem formulation and numerical method
2.1. Numerical method

To track the interface between two fluids and capture the high-order approximations
of interfacial dynamics, a phase-field approach is applied in our study (Dong & Shen
2012).

Compared to other interface-capturing methods, such as the front tracking
(Tryggvason et al. 2001), level set (Sussman, Smereka & Osher 1994) and volume-
of-fluid (VOF) (Hirt & Nichols 1981) approaches, the phase-field approach exhibits
several advantages. First, it is a physically motivated method and the Cahn–Hillard
model describes the interface by a mixing energy formulation. Second, it can easily
handle topological changes since the formulations are performed on a fixed grid in
Eulerian framework. In addition, it can solve the moving contact line problem due to
the diffuse interface involved.

The two-phase flow with the phase-field approach (Dong & Shen 2012) is described
by the following system of coupled equations:

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+∇ · [µ(∇u+∇uT)] − λ∇ · (∇φ∇φ)+ g(x, t), (2.1a)

∇ · u= 0, (2.1b)
∂φ

∂t
+ u · ∇φ =−λγ1∇

2
[∇

2φ − h(φ)]. (2.1c)

In the above set of equations, (2.1a) is the Navier–Stokes equation, (2.1b) is the
continuity equation, while (2.1c) is the Cahn–Hilliard equation.

Here, u(x, t) is the velocity, p(x, t) is the pressure, g(x, t) is a body force (such
as gravity). φ(x, t) is the phase-field function, where −1 6 φ 6 1. The flow regions
with φ= 1 and φ=−1 represent the first fluid and the second fluid, respectively. The
iso-surface φ(x, t) = 0 marks the interface between the two fluids at time t, while
h(φ) is given by h(φ) = 1/η2φ(φ2

− 1) and η is a characteristic length scale of the
interface thickness. γ1 is the mobility of the interface, and is assumed to be constant. λ
is the mixing energy density coefficient and is related to the surface tension σ by Yue
et al. (2004). There is a diffusion term (∇2φ− h(φ)) on the right-hand side of (2.1c),
which is different from corresponding terms in the VOF or the level set function
methods. This diffusion term (∇2φ−h(φ)) is the gradient of the mixing energy density
W, where W =

∫
Ω
(λ/2|∇φ|2 + λ/4/η2(φ2

− 1)2) dΩ. The first term of the integrand
tends to mix the two fluids so that the gradient will approach zero when energy is
minimized; the second term (double-well potential) of the integrand tends to separate
the two fluids. The interplay between these two tendencies will determine the dynamic
profile of the interface, see Yue et al. (2004). One can refer to Dong & Shen (2012)
for more details of these parameters. Moreover, the non-dimensional form for the flow
variables and physical parameters can be found in Zheng et al. (2015).

The above two-phase system is solved by the parallelized code Nektar, based on the
spectral/hp element method (Karniadakis & Sherwin 2013). This version of the code
employs a splitting scheme as a decoupling strategy to efficiently solve the system
of partial differential equations (PDEs) obtained from phase-field formulation. Details
regarding time integration schemes and validation studies of the numerical method and
parameters have been reported in Dong & Shen (2012), Zheng & Karniadakis (2016).
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Inlet Outlet

Pipe wall

Pipe wall

FIGURE 1. (Colour online) Initial simulation set-up for the pipe conveying two-phase flow.
The spectral element mesh (medium resolution) is shown in the background. Red denotes
the light fluid and blue denotes the heavy fluid.

2.2. Simulation set-up
As seen from figure 1, the pipe is parameterized with length L = 10D and diameter
D = 1 m. It is initially conveying light fluid. Then, a stratified flow with two fluid
layers is imposed at the inlet. The density and dynamic viscosity of the light fluid is
ρ1 = 1 kg m−3 and µ1 = 0.005 kg m s−1. The density and dynamic viscosity ratios
between two fluids are ρ2/ρ1 = 5 and µ2/µ1 = 2, respectively. The two fluids are
immiscible. The boundary conditions are as follows: for the velocity, we assume a
Dirichlet condition on the boundary and Neumann at the outflow. A specified velocity
profile is imposed at the inlet, such as parabolic or uniform profile. On the pipe
walls, the no-slip boundary condition is used. In terms of the phase field, the contact-
angle boundary conditions are imposed on the pipe walls and outlet. The contact-angle
boundary condition is governed by:

n · ∇
[
∇

2φ
]
= 0, on ∂Ω, (2.2a)

n · ∇φ = 0, on ∂Ω, (2.2b)

where we assumed for simplicity that, if the fluid interface intersects the wall, the
contact angle θs would be 90◦. At the inlet, a Dirichlet condition is imposed for the
phase field. The void fraction αg denotes the volume of light fluid occupied when
injecting it at the inlet. We use interface thickness η= 0.005 m, λγ1 = 10−6, surface
tension σ = 0.001 kg s−2 and gravity g= 1 m s−2 pointing downwards.

2.3. Verification through convergence test
A grid convergence with four mesh resolutions was conducted for two-phase flow
simulation in an upward inclined two-dimensional conducting pipe with an inflow
condition of u= 1–4y2 and φ=− tanh((y− 0.3)/η). Results for four grids, with [60×
15], [60 × 20], [75 × 25] and [90 × 30] quad elements, were compared. Polynomial
order p = 5 is used for all meshes. Figure 2 shows the time history of ‖U‖ and
‖V‖, the L2 norm of the velocity components in the whole fluid domain, defined as
‖U‖=

√∑
Ω ui(x). Table 1 shows the corresponding statistical information. The trends

in the results are similar as we vary the mesh size. Furthermore, we also compare the
temporal evolution of two fluids inside the channel at various time instants with four
various resolutions. It is found that in all simulations, the two-phase flow transitions
are similar, where an oscillating jet accompanied by vortex street formation is found;
also a back flow develops that induces multiple rolling waves which interact with the
jet. Therefore, in the rest of the paper we employ the second mesh size and fifth-order
elements to balance computation cost and resolution accuracy.
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FIGURE 2. (Colour online) Time history of fluid velocity components ‖U‖ and ‖V‖ in the
whole domain, for four different meshes. First mesh grid with [60× 15] elements, second
mesh grid with [60× 20] elements, third mesh grid with [25× 75] elements and fourth
mesh grid with [30× 90] elements. In all simulations the polynomial order is p= 5. The
heavy fluid is placed at the top of the inlet.

Mesh Mean(‖U‖) Root mean square(‖U‖) Mean(‖V‖) Root mean square(‖V‖)

Mesh1 0.9407 0.0259 0.2423 0.0332
Mesh2 0.9431 0.0440 0.2377 0.0335
Mesh3 0.9473 0.0376 0.2424 0.0278
Mesh4 0.9483 0.0415 0.2398 0.0344

TABLE 1. Statistical information of figure 2.

2.4. Validation for different flow regimes
We validated the accuracy of phase-field approach in characterizing the two-phase flow
regimes in a pipe, by conducting four DNS for a horizontal pipe and compared the
results against the theoretical model of Taitel & Dukler (1976).

The flow regime map according to theory can be divided into four regions, including
stratified flow, slug flow, dispersed bubble flow and annular flow; see figure 3.
The triangle dots denote the bifurcations between various flow regimes. Here, the
superficial velocity US for the light fluid (G) and heavy fluid (L) has been plotted
along the horizontal and vertical axes, respectively. It is defined as US

G = Ug ∗ αg,
where Ug is the average velocity of the light fluid. Therefore, US

G can be regarded as
the average velocity referenced with respect to the light fluid. Four cases, denoted by
square points in the map are further simulated by the current phase-field approach.
We confirmed that our method can characterize the flow regimes, as predicted by the
Taitel & Dukler (1976) model, in both 2-D and 3-D simulations; see figures 4 and 5.
The only exception is the annular flow pattern that can only exist in 3-D simulations.

More specifically, at very low superficial velocities the flow is stratified; see case
1 with US

G = 0.7, US
L = 0.06. As the heavy fluid rate US

L increases, the heavy fluid
level rises and a surface wave can form. When the heavy fluid reaches the top of the
pipe and blocks the entire cross-section, a slug is formed; see case 2 with US

G= 0.25,
US

L = 2. At a higher heavy fluid rate, the equilibrium level of the heavy fluid
approaches the top of the pipe. Therefore, the light fluid is mixed with the heavy
fluid, and a dispersed bubble flow emerges; see case 3 with US

G = 0.05, US
L = 8. On

the other hand, at higher light fluid rates, there is insufficient heavy fluid and the
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FIGURE 3. (Colour online) Flow regime map for a horizontal pipe, based on Taitel &
Dukler (1976). Four DNS are shown at various flow conditions, denoted cases 1–4.

(a)

(b)

(c)

FIGURE 4. (Colour online) Various flow regimes in a 2-D horizontal pipe, corresponding
to cases 1–3 in figure 3. Case 1: US

G = 0.7,US
L = 0.06; case 2: US

G = 0.25,US
L = 2; case 3:

US
G = 0.05,US

L = 8. Blue colour denotes heavy fluid while red is used for the light fluid.

heavy fluid is swept up and around the pipe to form an annulus; see case 4 with
US

G = 4.9,US
L = 0.06 for the wavy annular flow pattern.

Furthermore, a flow regime map for the inclined pipe (θ = 30◦) is shown in figure 6
using the theoretical model of Shoham (2006), since the model by Taitel & Dukler
(1976) can only be used up to 10◦ inclination. We see that the effect of inclination is
very pronounced, since the stratified flow regime disappears and the intermittent flow
(slug) takes place over a much wider range of flow conditions. Moreover, compared
to a horizontal pipe, the transition from slug flow to annular flow occurs at a lower
light fluid rate. Correspondingly, we perform three DNS at various flow conditions to
confirm the prediction of slug flow, wavy annular flow and dispersed bubble flow. The
simulation results are embedded into the flow regime map; they are similar to those
we see in figure 5.

In the following, we focus on case 1 with US
G= 0.5973,US

L= 0.069 for the inclined
pipe, where the slug flow has formed. Usually, a stratified flow with heavy fluid in
the bottom layer is considered as the initial condition. However, in applications, if
the inclined section is connected to other sections, the inflow condition may vary.
Therefore, both 2-D and 3-D simulations will be conducted to investigate the flow
transition under various inflow arrangements between the light fluid and the heavy
fluid. We will also study the instability mechanisms of slug formation by analysing
the vorticity generation and circulation dynamics.
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FIGURE 5. (Colour online) Various flow regimes in a horizontal pipe, corresponding to
cases 1–4 in figure 3. Case 1: US

G = 0.7, US
L = 0.06; case 2: US

G = 0.25, US
L = 2; case 3:

US
G = 0.05,US

L = 8; case 4: US
G = 4.9,US

L = 0.06. Only the heavy fluid is shown in blue.
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FIGURE 6. (Colour online) Flow regime map in the inclined pipe (θ = 30◦) based on the
theoretical model of Shoham (2006). Three DNS are conducted at various flow conditions,
denoted cases 1, 3, 4.

3. Two-phase flow in a 2-D upward inclined channel

In this section, we provide an overview of two-phase flow transition and the
emergence of coherent vortices within a 2-D upward inclined channel. The important
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 7. (Colour online) Temporal sequence of snapshots of two-phase flow patterns in
a 2-D upward inclined channel at θ = 30◦. The time instants are (a) t= 10 s, (b) t= 20 s,
(c) t= 30 s, (d) t= 40 s, (e) t= 50 s, ( f ) t= 60 s. At the inlet the heavy fluid is placed
at the top layer. Blue colour stands for the heavy fluid while red stands for the light fluid.
See supplementary movie 1 available at https://doi.org/10.1017/jfm.2017.417.

questions we will address are how vorticity reorganizes and what is the shape of the
forming patterns.

3.1. Heavy fluid on the top layer
We first conduct simulations with the heavy fluid placed at the top layer at the
inlet, with the inflow condition of u = 1–4y2 and φ = −tanh((y − 0.3)/η). Figure 7
shows the temporal evolution of two fluids inside the channel at various time instants:
(a) t = 10 s, (b) t = 20 s, (c) t = 30 s, (d) t = 40 s, (e) t = 50 s, ( f ) t = 60 s. Blue
colour stands for the heavy liquid while red stands for the light fluid. We find that
an oscillating heavy liquid jet emerges first, which periodically hits the bottom wall
as it develops further downstream. Subsequently, this heavy liquid jet stays aligned
with the bottom wall, slowly flowing downward along the channel. When this layer
of heavy fluid flows back to a certain location, it encounters a stagnation point area,
when the back flow starts recirculating parallel to the heavy liquid jet and induces
multiple rolling waves along its axis. Occasionally, a rolling wave can reach the top
surface of the channel and forms a slug, e.g. at time t = 50 s, which blocks the
entire channel section.

We also present the temporal sequence of vorticity contours (−5 6 ωz 6 5) in
figure 8. The black line denotes the interface between the two fluids. It is found that
the oscillating heavy liquid jet induces the formation of a vortex street-like flow along
the channel axis. Along the direction of the jet, positive vortices form at its lower
edge, which induce the roll up of negative vortices emanating from the bottom wall.
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1–1–3–5 3 5

(a) (b)

(c) (d )

(e) ( f )

FIGURE 8. (Colour online) Temporal sequence of vorticity contours for two-phase flow in
a 2-D upward inclined channel at θ = 30◦. The time instants are (a) t= 10 s, (b) t= 20 s,
(c) t= 30 s, (d) t= 40 s, (e) t= 50 s, ( f ) t= 60 s. At the inlet the heavy fluid is placed
at the top. Note that in this figure colours denote vorticity intensity and should not be
confused with the colours denoting heavy and light fluid as in the previous figure. See
movie 2.

In the area adjacent to the top edge of the jet, cross-annihilation is noted between
opposite-signed vorticity, coming from the upper jet edge and the top wall. Back
flow on the bottom wall induces the generation of positive vorticity. With the onset
of rolling waves, negative vorticity is induced on the upper edge of the jet, while
positive vorticity emerges on the lower edge. Consequently, the negative vorticity
coming from the rolling waves will interact with previously formed positive vorticity
from the jet. As the two come in contact, they disintegrate. This repeatable formation
of vorticity and subsequent disintegration and crushing of the jet inside the channel
causes a complex structure of the vorticity field in the middle section of the channel.

3.2. Heavy fluid at the bottom layer
When the heavy fluid is injected into the channel as the bottom layer, with the inflow
condition of u = 1–4y2 and φ = tanh((y + 0.3)/η), it accumulates and forms a large
slug, see figure 9. Next, this slug becomes unstable and the front part of it is injected
forward, eventually coming into contact with the bottom surface of the channel wall;
a part of the heavy fluid accumulates and then flows back toward the inlet, inducing
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 9. (Colour online) Temporal sequence of snapshots of two-phase flow pattern in
a 2-D upward inclined channel θ = 30◦. The time instants are (a) t = 10 s, (b) t = 20 s,
(c) t= 30 s, (d) t= 50 s, (e) t= 70 s, ( f ) t= 183 s. At the inlet the heavy fluid is placed
at the bottom. Blue stands for the heavy liquid while red stands for the light fluid. See
movie 3.

rolling waves. As in the previous case, a rolling wave can form another slug when it
touches the top of channel, e.g. at t= 183 s.

In terms of vorticity contours, as shown in figure 10, with the formation of the slug
negative vorticity emerges at the slug’s top surface, while the positive vorticity on the
top wall is enhanced, see t = 10 s. As the slug develops, pairs of vortices (denoted
with circles) will develop and grow along the channel axis, see t = 20 s. As in the
previous case, with heavy fluid at the top, the back flow produces positive vorticity
on the bottom wall, which is not continuous along the wall, because of intermittently
shed opposite vorticity caused by the rolling waves.

3.3. Vorticity generation
Above, we presented the development of two-phase flow in terms of the vorticity field
inside an upward inclined channel. To quantitatively assess the generation of vorticity
from two-phase interfaces, and from the channel walls, the circulation is calculated
using Stokes’ theorem and numerical integration:

Γ =

∫∫
A
ωz(t) dA, (3.1)

where A is a measurement window inside the 2-D channel and ωz is the vorticity
component in the z direction. Four measurement windows are used in the current
study, see figure 11. First, the channel domain is divided into 20 equal subsections
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1–1–3–5 3 5

(a) (b)

(c) (d)

(e) ( f )

FIGURE 10. (Colour online) Temporal sequence of vorticity contour for two-phase flow
in a 2-D upward inclined channel θ = 30◦. The time instants are (a) t= 10 s, (b) t= 20 s,
(c) t= 30 s, (d) t= 50 s, (e) t= 70 s, ( f ) t= 183 s. At the inlet the heavy fluid is placed
at the bottom. See movie 4.

along the axis. Within each subsection, we have i/2 6 x 6 (i+ 1)/2, with i = 0 : 19.
Then A1i denotes the region in the middle of the channel for various subsections along
the axis, with the integration taking place over −0.3 6 y 6 0.3. Similarly, A2i and A3i

denote the regions close to the top and bottom wall, respectively, corresponding to
integration over 0.46 y60.5 and −0.56 y6−0.4 for various subsections. Finally, A4i

denotes the region across the entire channel subsection, with integration over −0.5 6
y6 0.5. Here x, y are the non-dimensional coordinates along and perpendicular to the
channel axis.

Figure 12 shows the temporal evolution of circulation within various measurement
windows along the channel axis for the case with the heavy fluid placed as the top
layer in the inlet. If we isolate a slice at any axial position, we can observe the change
of circulation with time by the variation of the colour. Figure 13 shows the time
history of circulations at different windows along the channel axis: 1, 2, 4, 7.

We find that x = 2 is a critical position, as it corresponds to the stagnation point
of the back flow on the bottom wall. Specifically, the net circulation around A4
is positive in subsection x < 2; we find that the amount of positive circulation
produced by the unstable oscillating jet flow in figure 7 is higher than that of
negative circulation generated from the top and bottom wall surfaces. However, in
the subsection x> 2, the circulation fluctuates as the vortex shedding becomes erratic
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FIGURE 11. (Colour online) Sketch of four typical measurement windows A1i–A4i along
the channel axis over which the vorticity balance is computed. A1i–A4i with i= 0 : 19 are
within 20 equal subsections along the axis.
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FIGURE 12. (Colour online) Temporal evolution of circulations at different windows along
the channel axis. (a) A1, (b) A2, (c) A3 and (d) A4. The heavy fluid is placed at the top
of the inlet.

along the channel axis. In the top wall region A2, a positive circulation is observed at
x> 2, occasionally increasing in intensity due to the interaction of vorticity shed from
the jet. In the middle region A1, a negative circulation is seen at x> 2, a combination
of vorticity generated from the messy shedding of the jet and the rolling waves of
back flow. Furthermore, on the bottom wall region A3, the back flow continuously
induces positive circulation.

Similarly, we analyse the circulation dynamics when the heavy fluid is injected as
the bottom layer in the inlet; see figure 14. The heavy liquid slug reaches a quasi-
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FIGURE 13. (Colour online) Time history of circulation at different windows along the
channel axis: 1, 2, 4, 7. The heavy fluid is placed at the top of the inlet.

steady state after t = 45 s. Specifically, at x 6 2, the circulation is negative in the
middle region (A1), corresponding to the initially formed heavy fluid slug and the
generation of negative vorticity from its top interface. Meanwhile, the circulation at
x 6 2 near the top wall region (A2) is almost equal to that in the middle region (A1).
On the bottom wall region (A3), the circulation is almost zero at x62 due to the cross-
annihilation of opposite-sign vorticity generated between the right surface of the slug
and the bottom wall of channel. At the subsections with 26 x6 3, the circulation (Γ1)
starts oscillating as function of time, corresponding to the unstable vortex shedding in
figure figure 10. At the subsections with 4 6 x 6 6, intermittent behaviour is seen for
the circulation in both the (A1) and (A2) regions, which corresponds to the irregular
crushing of the heavy liquid slug on the right surface and its interaction with the
vortex shedding from the top wall. However, at the subsections with 6 6 x 6 8.5,
the circulation fluctuates randomly in the region (A1), due to contribution of negative
circulation from the unsteady rolling waves. Nevertheless, near the bottom wall region
(A3), positive circulation is found due to vorticity generation from the back flow along
the bottom wall.

In summary, in both cases, the net circulation on the entire channel section (A4)
shows that the vorticity generated from the two-phase flow interfaces and the channel
walls is generally negative, while positive vorticity is contributed by the oscillating jet
and the back flow inside the inclined pipe.

3.4. Comparison against the horizontal channel
In this subsection we study the effect of the inclination angle on the two-phase flow
mechanisms inside the channel when the heavy fluid is the top layer. In figure 15,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.417


202 F. Xie and others

A
xi

s
A

xi
s

5
6
7
8
9

10

3
2
1
0

4
5
6
7
8
9

10

3
2
1
0

4

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5

1.0

1.5

50 100 150 200 50 100 150 200

0
–0.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

(a) (b)

5
6
7
8
9

10

3
2
1
0

4
5
6
7
8
9

10

3
2
1
0

4

50 100 150 200 50 100 150 200

(c) (d)

0

–0.2

–0.4

0.2

0.4

0.6

–0.6

–0.8

0.5

0

–0.5

–1.0

1.0

1.5

t t

Circulation in A1, integrate over Circulation in A2, integrate over 

Circulation in A3, integrate over Circulation in A4, integrate over 

FIGURE 14. (Colour online) Temporal evolution of circulation within various measurement
windows along the channel axis. (a) A1, (b) A2, (c) A3 and (d) A4. The heavy fluid is
placed at the bottom of the inlet.

FIGURE 15. (Colour online) Instantaneous two-phase flow pattern in a 2-D horizontal
channel. At the inlet, the heavy liquid is placed as the top layer. Blue colour stands for
the heavy fluid while red stands for the light liquid.

we have found that, due to the gravity effect, the injected heavy fluid accumulates
on the bottom wall of the horizontal channel. As the flow develops, the heavy fluid
layer moves to the exit of the channel smoothly. For the inclined channel, we no more
observe the back flow or the rolling waves, as shown in figure 7.

As shown in § 2.4, a stratified flow is induced in the horizontal channel. We show
here that when the heavy fluid is placed as the top layer, an unsteady flow transition
is obtained in the upstream part of the channel, while a stratified wavy flow can still
be found in the downstream part of the channel.

4. Two-phase flow in a 3-D upward inclined pipe
In this section, we perform three-dimensional simulations of two-phase flow in

a circular inclined pipe, under similar inflow conditions as for § 3, with velocity
profile: u= 1–4(y2

+ z2). Three-dimensional flow transition and circulation dynamics
are discussed.
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FIGURE 16. (Colour online) Two instantaneous two-phase flow patterns in a 3-D upward
inclined pipe for θ = 30◦. (a,b) t = 5 s; (c,d) t = 60 s. At the inlet, the heavy fluid is
placed as the top layer. Blue colour stands for the heavy fluid.

y

xz

FIGURE 17. (Colour online) Instantaneous vorticity contours (ωz) for two-phase flow in
a 3-D upward inclined pipe with θ = 30◦. Purple colour stands for ωz > 4 while green
stands for ωz 6−4.5. At the inlet, the heavy fluid is placed as the top layer.

Two instantaneous two-phase flow patterns are shown in figure 16 when the heavy
fluid is the top layer, with φ profile: φ=− tanh((y− 0.3)/η). To characterize the 3-D
patterns, only the heavy fluid is shown in blue colour. It is seen that the injected heavy
fluid forms two symmetric jets, connected by rings at the inlet region. Subsequently,
parts of the jets hit the bottom wall of the circular pipe, and then slowly flow
downwards along the pipe. As time progresses, the heavy fluid forms a large slug
on the bottom wall. After some heavy liquid accumulation, the slug develops intense
unstable motion at its top interface because the jet flow interacts with the slug instead

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.417


204 F. Xie and others

A
xi

s

A
xi

s

5
6
7
8
9

10

3
2
1
0

4
5
6
7
8
9

10

3
2
1
0

4

0.5

0

–0.5

–1.0

–1.5

–2.0

50 100 150 250 50 100 150 250

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

(a) (b)

5
6
7
8
9

10

3
2
1
0

4

50 100 150 250

200 200

200

(c)

t

t t

Circulation in A1, integrate over Circulation in A2, integrate over 

Circulation in A3, integrate over 

–0.1

0.1
0.2

0.3

–0.2
–0.3
–0.4
–0.5

0

FIGURE 18. (Colour online) Temporal evolution of circulation in window A1, A2, A3 for
two-phase flow in a 3-D upward inclined pipe with θ = 30◦. The heavy fluid is placed as
the top layer at the inlet.

of the bottom wall. Meanwhile, part of the slug starts rolling up into waves as it
further develops upwards along the pipe. From the instantaneous vorticity contours
ωz in figure 17, it is seen that the unstable slug will induce negative vorticity at its
top surface, while positive vorticity on the top wall is enhanced. The back flow in
the slug generates positive vorticity, while vorticity discontinuities correspond to the
occurrence of multiple rolling waves in the slug.

In terms of circulation generation, earlier we focused on integrating ωz in four
measurement windows, as shown in figure 11. However, for the circular pipe, the
measurement windows are taken on a thin layer with −0.05 6 z 6 0.05 and the
average circulation is calculated. We find that there are similarities and differences
between the flow mechanisms in a circular pipe and those in a two-dimensional
channel. In particular, we find differences in the generation of vorticity in a circular
pipe versus that observed in the 2-D case. As seen in figure 18, in both the A2 and
A3 regions a positive circulation is found, and negative circulation is obtained only in
the middle area of the pipe, A1. In the 2-D case, this applies only to the part between
x/D= 3 to 8 along the axis, while between x/D= 0 to 2 the jet rings dominate the
vorticity generation causing positive circulation in A1 and negative circulation in the
A2 and A3 regions; this is not observed in the 3-D circular pipe case.

Figure 19 presents the instantaneous two-phase flow patterns in a 3-D upward
inclined pipe when the heavy fluid is as the bottom layer, with φ profile: φ =
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FIGURE 19. (Colour online) Instantaneous two-phase flow pattern in a 3-D upward
inclined pipe with θ = 30◦. At the inlet, the heavy fluid is placed as the bottom layer.
Colour blue stands for the heavy fluid.
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FIGURE 20. (Colour online) Instantaneous phase field and vorticity contours for two-phase
flow in a 3-D upward inclined pipe for θ =30◦. (a) Two-phase flow pattern. (b) Cross-flow
vorticity component ωz; purple colour stands for ωz > 4 while green stands for ωz 6−4.5.
Re= 1500.

tanh((y + 0.3)/η). We see that a large heavy fluid slug smoothly forms and slowly
fills up the lower half of the circular pipe. The leading surface of the slug is more flat
than at other positions. Compared to the previous 2-D case with heavy fluid at the
bottom, the flow transition in a 3-D circular pipe is more stable. Both the instability
of the slug at the leading edge and the back flow inside the slug are so weak that
they cannot disrupt the flow transition in the upstream part of the pipe. However, as
the Reynolds number increases, we find that an unstable slug can form; see figure 20
for Re= 1500, where the upstream side of the slug moves erratically while waves are
induced. We note that an entropy–viscosity-based LES method (Guermond, Pasquetti
& Popov 2011) is used to simulate the high Reynolds number flow inside the pipe.

5. Conclusions
In this paper, the phase-field approach is firstly validated against the theoretical

models of Taitel & Dukler (1976), Shoham (2006), which predict the various flow
regimes for horizontal and inclined pipes transporting two-phase flow. These regimes
that include stratified flow, slug flow, dispersed bubble flow and annular flow, have all
been identified and studied in our DNS. Then, the instability mechanisms of slug flow
formation in an inclined pipe are investigated by analysing two-phase flow patterns
and the associated vorticity dynamics. When the heavy fluid is injected as the bottom
layer, the formation and unstable evolution of a slug is observed in 2-D simulations.
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When the heavy fluid is placed at the top, an oscillating jet with vortex street
formation is captured. In both cases, a back flow results that induces multiple rolling
waves, and which further interact with the slug or jet, complicating the flow transition.
The vorticity dynamics is similar in both cases in terms of the net circulation of the
entire channel section (A4), showing that negative vorticity generation results from
two-phase flow interfaces and the channel walls, while positive vorticity components
are caused by the oscillating jet and the back flow inside the inclined pipe.

Finally, through 3-D simulation of flow in a circular pipe, it is found that the two-
phase flow becomes stable when the heavy fluid is injected as the bottom layer, but
a slug instability develops for higher Reynolds numbers. When the heavy fluid is
injected as the top layer, 3-D vortex rings are induced in the circular pipe, instead of
the 2-D periodical vortex formation. Overall, the vorticity generation and circulation
dynamics in a circular pipe are slight different from those we observe for a 2-D
channel flow.
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