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Analytical shock solutions at large and small
Prandtl number
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Exact one-dimensional solutions to the equations of fluid dynamics are derived in the
Pr →∞ and Pr → 0 limits (where Pr is the Prandtl number). The solutions are
analogous to the Pr = 3/4 solution discovered by Becker and analytically capture
the profile of shock fronts in ideal gases. The large-Pr solution is very similar
to Becker’s solution, differing only by a scale factor. The small-Pr solution is
qualitatively different, with an embedded isothermal shock occurring above a critical
Mach number. Solutions are derived for constant viscosity and conductivity as well as
for the case in which conduction is provided by a radiation field. For a completely
general density- and temperature-dependent viscosity and conductivity, the system of
equations in all three limits can be reduced to quadrature. The maximum error in
the analytical solutions when compared to a numerical integration of the finite-Pr
equations is O(Pr−1) as Pr→∞ and O(Pr) as Pr→ 0.
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1. Introduction

Although the power of numerical techniques makes them indispensable for solving
the equations of fluid dynamics, analytical solutions, while difficult to find, remain
useful, for several reasons: they build physical intuition, they can be quickly evaluated
over a wide dynamic range, and they can be used to verify numerical algorithms. One
such solution was discovered by Becker (1922) under the assumptions of a steady
state, one planar dimension, constant viscosity, an ideal gas equation of state, and a
fluid Prandtl number of 3/4. It consists of implicit, closed-form expressions for the
fluid variables and analytically captures the behaviour of shocks in ideal gases with
Pr = 3/4. Thomas (1944), Morduchow & Libby (1949), Hayes (1960) and Iannelli
(2013) extended Becker’s solution to non-constant viscosity and conductivity, for both
a power-law variation with temperature and a Sutherland viscosity model (White 1991).
This is a more realistic assumption for gases, whose viscosity typically varies with
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temperature (White 1991). Approximate solutions for Pr 6= 3/4 have also been derived
by Khidr & Mahmoud (1985).

It is shown here that analogous solutions can be derived in both the Pr →∞ and
Pr → 0 limits, for both constant and non-constant viscosity and thermal conductivity.
The transport properties of large-Prandtl-number fluids are dominated by momentum
diffusion, whereas those of small-Prandtl-number fluids are dominated by thermal
diffusion. Becker’s (1922) solution applies to air and many other gases, which have
Pr ∼ 0.75. Examples at the other extremes include mercury (Pr ∼ 10−2), gas mixtures
(Pr ∼ 10−1), engine oil (Pr ∼ 102–105) and the Earth’s mantle (Pr > 1023) (Clay 1973;
Kaminski & Jaupart 2003; Bejan 2004; Hogg 2012). In addition, plasmas behave
as small-Pr fluids due to the importance of heat conduction by both electrons and
radiation (Zel’dovich & Raizer 2002). A proton–electron plasma, for example, has
Pr = 0.065 (Chapman & Cowling 1939). It should be noted that not all of these fluids
obey an ideal gas equation of state, and other physics may need to be taken into
account; see the discussion in § 4. Taken together with Becker’s solution, the solutions
derived here yield analytical profiles of shock fronts in ideal gases over a wide range
of parameter space. The basic equations are outlined in § 2, § 3 gives the derivation of
the solutions, and § 4 discusses some implications.

2. Basic equations

For a fluid with mass density ρ, velocity magnitude v, pressure p, internal energy e,
temperature T , viscosity µ (this can be regarded as either the dynamic viscosity in the
limit of negligible bulk viscosity, or the dynamic viscosity plus three-quarters of the
bulk viscosity) and thermal conductivity κ (Pr = µCp/κ , where Cp is the specific heat
at constant pressure), the equations of fluid dynamics in planar geometry are:

∂ρ

∂t
+ ∂

∂x
(ρv)= 0, (2.1)

∂

∂t
(ρv)+ ∂

∂x

(
ρv2 + p− 4µ

3
∂v

∂x

)
= 0, (2.2)

∂

∂t

(
1
2
ρv2 + ρe

)
+ ∂

∂x

[
ρv

(
1
2
v2 + h

)
− 4µ

3
v
∂v

∂x
− κ ∂T

∂x

]
= 0, (2.3)

where h = e + p/ρ is the fluid enthalpy (Landau & Lifshitz 1987). It will be assumed
throughout that the fluid obeys an ideal gas equation of state,

p= (γ − 1)ρe, (2.4)

so that h = γ e = CpT with Cp = γCv, where Cv is the specific heat at constant
volume. Under this assumption and the assumption of a steady state, (2.1)–(2.3) can be
integrated from −∞ to x to give

ρv = ρ0v0 ≡ m0, (2.5)

v2 + γ − 1
γ

h− 4µ
3m0

v
dv
dx
=
(
v2

0 +
γ − 1
γ

h0

)
ρ0

ρ
, (2.6)

1
2
v2 + h− 4µ

3ρ
dv
dx
− κ

ρvCp

dh

dx
=
(

1
2
v2

0 + h0

)
ρ0v0

ρv
, (2.7)

where the zero-slope boundary conditions appropriate for a shock are assumed to
hold at x = ±∞. A subscript ‘0’ here denotes a fluid quantity in the ambient (pre-
shock) state. These equations can be combined into two ordinary differential equations
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governing the spatial profile of the shock front:

4µ
3m0

v
dv
dx
= v2 + γ − 1

γ
h− γ + 1

2γ
(v0 + v1)v, (2.8)

κ

m0Cp

dh

dx
= h

γ
− v

2

2
+ γ + 1

2γ
(v0 + v1)v − γ + 1

γ − 1
v0v1

2
. (2.9)

Here the integration constants have been expressed in terms of both pre-shock and
post-shock (denoted by a subscript ‘1’) velocities via the Rankine–Hugoniot jump
conditions,

v1

v0
= γ − 1+ 2/M2

0

γ + 1
, (2.10)

where M2
0 = v2

0/c
2
0 is the shock Mach number and c0 =√γ p0/ρ0 is the adiabatic sound

speed in the ambient fluid (Landau & Lifshitz 1987).

3. Solutions

The derivation of the Becker (1922) solution is outlined in § 3.1, followed by a
derivation of the Pr→∞ and Pr→ 0 solutions in §§ 3.2 and 3.3, respectively. These
are all derived for constant viscosity and conductivity. Section 3.4 shows how the
solutions can be extended to non-constant viscosity and conductivity, using radiation
heat conduction as an example. General expressions for the shock profiles in all three
Pr limits under the assumption of a viscosity and conductivity that vary as powers of
the density and temperature are derived in § 3.5.

3.1. Becker’s (Pr = 3/4) solution

Becker (1922) noticed that, for Pr = 3/4, equation (2.7) for the energy flux,

v2

2
+ h− κ

m0Cp

d
dx

(
v2

2
+ h

)
= v

2
0

2
+ h0, (3.1)

is linear and has the finite solution

v2

2
+ h= v

2
0

2
+ h0 = γ + 1

γ − 1
v0v1

2
, (3.2)

where the second equality follows from the Rankine–Hugoniot conditions. Solving this
equation for h and inserting it into (2.6) for the momentum flux leads to

vLκ
κ

κ0

dv
dx
= γ + 1

2
(v − v0)(v − v1), (3.3)

where

Lκ ≡ κ0

m0Cv

. (3.4)

Equation (3.3) can be rewritten as an integral over the velocity,

x= 2Lκ
γ + 1

∫
(κ/κ0)v

(v − v0)(v − v1)
dv. (3.5)
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FIGURE 1. (a) Velocity and (b) temperature for the Becker solution (Pr = 3/4) with M0 = 3.
No distinction is visible between the analytical (solid) and numerical (dotted) results.

For constant κ = κ0, this integral is given (to within an arbitrary constant) by

x= 2Lκ
γ + 1

ln[(v0 − v)v0/(v0−v1)(v − v1)
−v1/(v0−v1)]. (3.6)

Physical notation has been retained here as an aid to intuition; notice that x = ±∞
at v = v1 and v = v0, respectively. Defining the origin at the adiabatic sonic point
(v = √v0v1) and using η ≡ v/v0 = ρ0/ρ (the specific volume relative to its ambient
value) rather than v yields the expression given in Zel’dovich & Raizer (2002). From
(3.2), the temperature in this limit is given by

T = R∞v0v1 − v2

2Cp
, (3.7)

where

R∞ ≡ γ + 1
γ − 1

(3.8)

is the maximum compression ratio.
Figure 1 shows the velocity and temperature for this solution, using expressions

(3.6) and (3.7). For comparison, results from a numerical integration of (2.8) and
(2.9) are shown in figure 1 as well. The numerical results here and in the following
sections were obtained via a shooting method using the odeint differential equation
solver in scipy. An important practical note here is that it is necessary to shoot from
the post-shock state in order to obtain the desired solution. Equation (3.1) admits an
exponential solution in addition to the constant solution, representing an additional
energy flux at the boundary of arbitrary magnitude (Zel’dovich & Raizer 2002). For
an integration from the pre- to post-shock state, this solution is exponentially growing,
bounded only by the end point of the integration, and can quickly dominate the
numerical results. For an integration from the post- to pre-shock state, the exponential
solution is decaying and therefore unproblematic.
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3.2. Large-Pr solution

In the limit Pr→∞ (κ→ 0), equations (2.6) and (2.7) become

v2 + γ − 1
γ

h− 4µ
3m0

v
dv
dx
= γ + 1

2γ
(v0 + v1)v, (3.9)

1
2
v2 + h− 4µ

3m0
v

dv
dx
= γ + 1
γ − 1

v0v1

2
, (3.10)

which can be combined to give

vLµ
µ

µ0

dv
dx
= γ + 1

2
(v − v0)(v − v1), (3.11)

where

Lµ ≡ 4µ0

3m0
= 4Pr

3γ
Lκ . (3.12)

This can again be expressed as an integral over velocity,

x= 2Lµ
γ + 1

∫
(µ/µ0)v

(v − v0)(v − v1)
dv, (3.13)

with the solution (for constant µ= µ0) given by

x= 2Lµ
γ + 1

ln[(v0 − v)v0/(v0−v1)(v − v1)
−v1/(v0−v1)]. (3.14)

Comparing expression (3.14) with (3.6), it can be seen that the velocity profile
in the large-Pr solution differs from that of the Becker (1922) solution only by
the scale factor Lµ/Lκ = 4Pr/(3γ ) (assuming constant Pr). The difference between
the temperature profiles is more complicated, since solving (3.9) and (3.10) for the
temperature in this limit yields an expression that differs from expression (3.7):

T = v
2 − 4viv + R∞v0v1

2Cv

, (3.15)

where

vi ≡ γ + 1
4γ

(v0 + v1). (3.16)

Figure 2 shows the velocity and temperature for the large-Pr solution with M0 = 3 and
constant viscosity. A value of Pr = 103 was used to generate the numerical results in
this figure.

3.3. Small-Pr solution

In the limit Pr→ 0 (µ→ 0), equations (2.6) and (2.7) become

v2 + γ − 1
γ

h= γ + 1
2γ

(v0 + v1)v, (3.17)

v2

2
+ h− κ

m0Cp

dh

dx
= γ + 1
γ − 1

v0v1

2
. (3.18)
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FIGURE 2. (a) Velocity and (b) temperature for the Pr→∞ solution with M0 = 3 and constant
viscosity. No distinction is visible between the analytical (solid) and numerical (dotted) results.

Taking the spatial derivative of (3.17) and eliminating the enthalpy derivative via (3.18)
and the enthalpy via (3.17) gives

2(v − vi)Lκ
κ

κ0

dv
dx
= γ + 1

2
(v − v0)(v − v1). (3.19)

Notice that, unlike (3.3) and (3.11), equation (3.19) is singular at v = vi (vi is the
isothermal sonic point for this solution). Expressed as an integral over the velocity,

x= 4Lκ
γ + 1

∫
(κ/κ0)(v − vi)

(v − v0)(v − v1)
dv, (3.20)

a solution can be obtained for x(v) (again assuming constant κ):

x= 4Lκ
γ (γ + 1)

ln[(v0 − v)(βv0−v1)/(v0−v1)(v − v1)
(v0−βv1)/(v0−v1)], (3.21)

where

β ≡ 3γ − 1
γ + 1

. (3.22)

From (3.17), the temperature in this limit is given by

T = v(2vi − v)
(γ − 1)Cv

. (3.23)

As discussed in Zel’dovich & Raizer (2002), the small-Pr solution can be either
discontinuous or continuous depending upon whether the isothermal sonic point lies
inside or outside the shock region. The function T(v) given by expression (3.23)
passes through a maximum at v = vi and is monotonically increasing (dT/dv > 0)
for v1 < v < vi (see figure 7.7 of Zel’dovich & Raizer (2002) for a graphical
representation). The velocity in the frame of the shock (or, equivalently, the
specific volume) must decrease in this region, as it has not yet reached its final
value, i.e. dv/dx < 0. This implies that the temperature also decreases in this
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FIGURE 3. (a) Velocity and (b) temperature for the Pr→ 0 solution with M0 = 3 and constant
conductivity. No distinction is visible between the analytical (solid) and numerical (dotted)
results. The isothermal shock is located at x = 0. The material in front of the shock is heated
to temperatures above the ambient temperature because heat is being conducted from the hotter
post-shock region to the colder pre-shock region.

region: dT/dx= (dT/dv)(dv/dx) < 0. However, this contradicts

dT

dx
= (γ + 1)ρ0v0

2(γ − 1)κ
(v0 − v)(v − v1) > 0, (3.24)

i.e. the temperature monotonically increases throughout the shock. The region
v1 < v < vi is thus excluded as unphysical. Since the presence of heat conduction
also implies a continuous temperature, the only possibility is for the velocity to drop
immediately to v1 as soon as the temperature reaches T1, i.e. an isothermal shock
occurs. From (3.23), T = T1 for v(2vi− v)= v1(2vi− v1), or (v− v1)(v− 2vi+ v1)= 0,
i.e. the embedded discontinuity occurs at

v = 2vi − v1. (3.25)

If the singularity lies within the shock region, vi > v1, the small-Pr solution is given
by expression (3.21) for 2vi − v1 < v < v0, followed by an isothermal shock from
v = 2vi − v1 to v = v1. If the singularity falls outside the shock region, vi < v1 or

M0 <

√
3γ − 1
γ (3− γ ), (3.26)

the solution is continuous and given by expression (3.21) throughout the shock region.
Figure 3 shows the velocity and temperature for a discontinuous small-Pr solution
with M0 = 3 and constant conductivity. A value of Pr = 10−3 was used to generate the
numerical results in this figure.

3.4. Radiation heat conduction
In an opaque gas, thermal radiation is in local thermodynamic equilibrium with the
gas and diffuses from high- to low-temperature regions, thus acting as a form of heat
conduction. For a constant opacity, radiation gives rise to a thermal conductivity with
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a T3 dependence,

κ = 16σ
3χ

T3, (3.27)

where σ is the Stefan–Boltzmann constant and χ is the opacity in units of inverse
length (Zel’dovich & Raizer 2002). Equation (3.20) in that case can be expressed as

x= 4Lκ
γ + 1

∫ (
T

T0

)3
v − vi

(v − v0)(v − v1)
dv, (3.28)

with κ0 = 16σT3
0/(3χ). Using (3.23), this can be rewritten as

x= 4Lκγ 3M6
0

γ + 1

∫
η3(2ηi − η)3(η − ηi)

(η − 1)(η − η1)
dη, (3.29)

where η ≡ v/v0 and ηi ≡ vi/v0. The integrand in (3.29) can be expanded into

η3(2ηi − η)3(η − ηi)

(η − 1)(η − η1)
= η

6 + c1η
5 + c2η

3

η − 1
+ −2η6 + c3η

5 + c4η
3

η − η1
, (3.30)

where

c1 ≡ 7ηi + η1 − 2− 18η2
i

1− η1
, c2 ≡ 4η3

i (2ηi − 5)
η1 − 1

, (3.31)

c3 ≡ −7ηiη1 − η2
1 + 2η1 + 18η2

i

1− η1
, c4 ≡ 4η3

i (5η1 − 2ηi)

η1 − 1
. (3.32)

Using the result (for integer m)∫
zn

z− c
dz= cn ln(z− c)+

n∑
m=1

cn−m zm

m
, (3.33)

the integral in (3.29) is given by∫
η3(2ηi − η)3(η − ηi)

(1− η)(η − η1)
dη

= ln (1− η)α1 + ln (η − η1)
−α2 +

6∑
m=1

(1− 2η6−m
1 )

ηm

m

+
5∑

m=1

(c1 + c3η
5−m
1 )

ηm

m
+

3∑
m=1

(c2 + c4η
3−m
1 )

ηm

m
, (3.34)

where

α1 ≡ (ηi − 1)(2ηi − 1)3

η1 − 1
, α2 ≡ η

3
1(ηi − η1)(2ηi − η1)

3

η1 − 1
. (3.35)

Inserting this result into expression (3.29) gives a closed-form expression for x(v).
Figures 4 and 5 show the velocity and temperature for the solution described in

this section with M0 = 10 and M0 = 1.2, respectively. A value of Pr = 10−4 was used
to generate the numerical results in these figures. Incidentally, this is an analytical
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FIGURE 4. (a) Velocity and (b) temperature for the Pr→ 0 solution with M0 = 10 and κ ∼ T3.
No distinction is visible between the analytical (solid) and numerical (dotted) results. The
isothermal shock is located at x= 0. The material in front of the shock is heated to temperatures
above the ambient temperature because heat is being conducted via radiation from the hotter
post-shock region to the colder pre-shock region.
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FIGURE 5. (a) Velocity and (b) temperature for the Pr→ 0 solution with M0 = 1.2 and κ ∼ T3.
No distinction is visible between the analytical (solid) and numerical (dotted) results.

solution for radiative shocks (Zel’dovich & Raizer 2002; Lowrie & Rauenzahn 2007)
in the limit of constant opacity and a radiation energy much lower than the gas
internal energy. In the notation of Lowrie & Rauenzahn (2007), this solution applies to
the P0→ 0 limit, where P0 is approximately the ratio of radiation to gas pressures.
Compare figures 4 and 5 with figures 3 and 5 of Lowrie & Rauenzahn (2007).

3.5. General viscosity and conductivity
Equations (3.5), (3.13) and (3.20) can be solved numerically for any κ(ρ,T) and
µ(ρ,T), whether analytical or tabular, using (2.5) and either (3.7), (3.15) or (3.23) to
express ρ and T as functions of v. The problem can thus be reduced to quadrature
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FIGURE 6. Temperature errors in the (a) large-Pr and (b) small-Pr solutions with constant
viscosity and conductivity (figures 2 and 3), for (from top to bottom) Pr = 10, 100, 1000 in
panel (a) and Pr = 0.1, 0.01, 0.001 in panel (b).

under quite general conditions. For a viscosity and thermal conductivity that vary as a
power law in density and temperature,

µ= µ0

(
ρ

ρ0

)a( T

T0

)b

, κ = κ0

(
ρ

ρ0

)a( T

T0

)b

, (3.36)

expressions (3.5), (3.13) and (3.20) become

x(Pr = 3/4)= 2Lκ
γ + 1

[
(γ − 1)M2

0

2

]b ∫
η1−a(R∞η1 − η2)

b

(η − 1)(η − η1)
dη, (3.37)

x(Pr =∞)= 2Lµ
γ + 1

[
γ (γ − 1)M2

0

2

]b ∫
η1−a(η2 − 4ηiη + R∞η1)

b

(η − 1)(η − η1)
dη, (3.38)

x(Pr = 0)= 4Lκ
γ + 1

(γM2
0)

b
∫
(η − ηi)η

b−a(2ηi − η)b
(η − 1)(η − η1)

dη. (3.39)

Analytical expressions in terms of elementary functions can be obtained for particular
values of a and b (the solution in § 3.4 is an example with a = 0, b = 3), although
they can be quite lengthy. The expression for a Spitzer conductivity (a = 0, b = 5/2),
for example, is even longer than expression (3.34) and is not reproduced here (Spitzer
1956). The best approach for general a and b is to perform the quadratures in
(3.37)–(3.39) numerically. Notice that µ and κ have been assumed to have the
same temperature and density dependence so that Pr is constant, for simplicity; this
assumption is not necessary and is easily relaxed.

4. Discussion

Exact solutions to the equations of fluid dynamics have been derived in the Pr→∞
and Pr → 0 limits, analogous to the Pr → 3/4 solution derived by Becker (1922).
As shown in figure 6, the solutions are accurate to within O(Pr−1) for Pr →∞ and
O(Pr) for Pr → 0. The derived solutions are given in their most general form by
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expressions (3.5), (3.13) and (3.20), along with specific forms for a constant viscosity
and conductivity (equations (3.6), (3.14) and (3.21)) and for a power-law temperature
and density dependence (equations (3.37)–(3.39)). The applicability of these solutions
to fluids in general is limited by the use of an ideal gas equation of state; the small-Pr
solution is applicable to ideal gas mixtures and single-component ideal gases in which
temperatures are high enough for radiation heat conduction to be important. Although
plasmas behave as small-Pr ideal gases, the greater mobility of the electrons relative
to the ions results in separate electron and ion temperatures, a physical effect not
included in this analysis (Spitzer 1956; Zel’dovich & Raizer 2002). The large-Pr
solution appears to be of mostly academic interest unless it can be extended to
analytical equations of state appropriate for liquids and solids (Ohtani 2009; Mozaffari
& Eslami 2013); it remains useful, however, for code verification.

A small-Pr solution with a T3 dependence has also been derived (§ 3.4) that is
equivalent to the semi-analytical radiative shock solutions of Lowrie & Rauenzahn
(2007) in the limit of low radiation energy density and constant opacity. Expressions
(3.29) and (3.39) provide a good estimate of the width of radiative shocks, the former
for the constant-opacity case, and the latter for a power-law opacity. In the case of a
power-law opacity, simply make the substitution a = −a′ − 1 and b = 3 − b′, where
a′ and b′ are the density and temperature power laws, respectively, for the opacity
expressed in units of area per mass (Bell & Lin 1994). Notice that the width of a
radiative shock can be quite sensitive to the shock Mach number (x ∼M6

0 in the case
of a constant opacity), although the applicability of the Navier–Stokes equations to
large-Mach-number shocks is questionable (Mott-Smith 1951; Jukes 1957).

In addition to providing physical insight, the analytical solutions derived here are
useful for quickly evaluating shock profiles over a wide range of parameter space.
It is possible to comprehend at a glance the scaling of the solutions with various
parameters without resorting to a comprehensive parameter survey via numerical
integration. The solutions are also nonlinear, with the only assumptions behind their
derivation being a steady state, one planar dimension, and an ideal gas equation of
state. In particular, no terms in the evolution equations have been approximated, which
makes these solutions an excellent verification test for numerical algorithms.

Acknowledgements

I thank the referees for their helpful comments. Many of the integrals in this
work were originally obtained with Mathematica. This work was performed under the
auspices of Lawrence Livermore National Security, LLC (LLNS) under contract no.
DE-AC52-07NA27344.

References

BECKER, R. 1922 Stosswelle und detonation. Z. Phys. 8, 321–362.
BEJAN, A. 2004 Convection Heat Transfer. Wiley.
BELL, K. R. & LIN, D. N. C. 1994 Using FU Orionis outbursts to constrain self-regulated

protostellar disk models. Astrophys. J. 427, 987–1004.
CHAPMAN, S. & COWLING, T. G. 1939 Mathematical Theory of Non-Uniform Gases. Cambridge

University Press.
CLAY, J. P. 1973 Turbulent mixing of temperature in water, air and mercury. PhD thesis, University

of California at San Diego.
HAYES, W. D. 1960 Gasdynamic Discontinuities. Princeton University Press.

726 R4-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.262


B. M. Johnson

HOGG, J. D. 2012 Turbulent Rayleigh–Bénard convection of low-Prandtl-number gases. PhD thesis,
University of California at Santa Barbara.

IANNELLI, J. 2013 An exact nonlinear Navier–Stokes compressible-flow solution for CFD code
verification. Intl J. Numer. Meth. Fluids 72, 157–176.

JUKES, J. D. 1957 The structure of a shock wave in a fully ionized gas. J. Fluid Mech. 3,
275–285.

KAMINSKI, E. & JAUPART, C. 2003 Laminar starting plumes in high-Prandtl-number fluids. J. Fluid
Mech. 478, 287–298.

KHIDR, M. A. & MAHMOUD, M. A. A. 1985 The shock-wave structure for arbitrary Prandtl
numbers and high Mach numbers. Astrophys. Space Sci. 113, 289–301.

LANDAU, L. D. & LIFSHITZ, E. M. 1987 Fluid Mechanics. Butterworth–Heinemann.
LOWRIE, R. B. & EDWARDS, J. D. 2008 Radiative shock solutions with grey nonequilibrium

diffusion. Shock Waves 18, 129–143.
LOWRIE, R. B. & RAUENZAHN, R. M. 2007 Radiative shock solutions in the equilibrium diffusion

limit. Shock Waves 16, 445–453.
MIHALAS, D. & MIHALAS, B. W. 1984 Foundations of Radiation Hydrodynamics. Oxford

University Press.
MORDUCHOW, M. & LIBBY, P. A. 1949 On a complete solution of the one-dimensional flow

equations of a viscous, heat conducting, compressible gas. J. Aeronaut. Sci. 16, 674–684.
MOTT-SMITH, H. M. 1951 Phys. Rev. 82, 885–892.
MOZAFFARI, F. & ESLAMI, H. 2013 Equation of state for mercury: revisited. Phys. Chem. Liq. 51,

517–523.
OHTANI, E. 2009 Melting relations and the equation of state of magmas at high pressure: application

to geodynamics. Chem. Geol. 265, 279–288.
SPITZER, L. 1956 Physics of Fully Ionized Gases. Interscience.
THOMAS, L. H. 1944 Note on Becker’s theory of the shock front. J. Chem. Phys. 12, 449–452.
WHITE, F. M. 1991 Viscous Fluid Flow. McGraw–Hill.
ZEL’DOVICH, YA. B. & RAIZER, YU. P. 2002 Physics of Shock Waves and High-Temperature

Hydrodynamic Phenomena. Dover.

726 R4-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.262

	Analytical shock solutions at large and small Prandtl number
	Introduction
	Basic equations
	Solutions
	Becker's (Pr= 3/ 4) solution
	Large-Pr solution
	Small-Pr solution
	Radiation heat conduction
	General viscosity and conductivity

	Discussion
	Acknowledgements
	References




