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Abstract
It is currently believed that early Mars had a vast and shallow ocean, and microbial life may have formed in it,
albeit for a short geological time. The geological evidence indicates that during the existence of this ocean,
large collisions occurred on the surface of Mars, which led to the formation of megatsunamis in its palaeo-
ocean. Previous research has reported on the effects of tsunami waves on microbial ecosystems in the Earth’s
oceans. This work indicates that tsunami waves can cause changes in the physico-chemical properties of seawater,
as well as tsunami-affected land soils. These factors can certainly affect microbial life. Other researchers have
shown that there are large microbial communities of marine prokaryotes (bacteria and archaea) in tsunami-induced
sediments. These results led us to investigate the impact of tsunami waves on the proposed microbial life in the
ancient Martian ocean, and its role in the preservation or non-preservation of Martian microbial life as a fossil
signature.
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Introduction

In addition to eroding and changing the topography of the coast and seafloor, tsunami waves also affect
marine ecosystems. These waves can demolish coral reefs, coastal vegetation and mangroves, benthic
and infauna invertebrates and even vertebrates such as fish and amphibians (Masuda et al., 2016).

Nevertheless, the impact of a tsunami is not limited to macroscopic marine life, and it also affects
microorganisms. So far, few studies have been conducted on the impact of tsunami events on marine
microbial ecology (Bhattacharyya et al., 2014; Somboonna et al., 2014; Makino et al., 2019).
The results of these studies mainly indicate that tsunami-induced sediments have more microbial
communities of prokaryotes (bacteria and archaea) than non-tsunami-affected sediments (Somboonna
et al., 2014).

Another group of researchers found that the ingression of tsunami waves in land soils increased soil
salinity, and affected microbial communities in the soil (Bhattacharyya et al., 2014).
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Some studies have shown that tsunami waves alter the physico-chemical properties of seawater
(including oxygen level, light penetration depth, nutrient content, salinity and water turbidity)
(Satpathy et al., 2008; Haldar et al., 2013; Bhattacharyya et al., 2014; Somboonna et al., 2014;
Kakehi et al., 2017). These changes can definitely affect the microbial life in the sea.

Studies of the geology of Mars have suggested the possibility of a shallow and vast ocean in the past
(Mahaney et al., 2010; Iijima et al., 2014; Billings, 2016; Costard et al., 2017, 2019; Di Pietro et al.,
2021).

The possibility of primary microbial life in this ocean has also been considered (Goetz et al., 2016;
Cabrol, 2018; Joseph et al., 2020; Becker, 2021). However, there are still many questions about the
ocean and microbial life on early Mars that need further investigation.

The Red Planet has experienced numerous large and small collisions in the past. The effects of these
collisions are evident all over the planet. Some of these collisions, such as the Lomonosov crater, are
thought to have occurred when there was a vast and shallow ocean in the northern plains.

The collision of these large objects in the northern palaeo-ocean of Mars has certainly caused mega-
tsunamis, and some researchers claim that there is evidence of tsunami-induced sediments on the sur-
face (Billings, 2016; Witze, 2016; Costard et al., 2017, 2019; Stanley, 2020; Di Pietro et al., 2021).
Because tsunami waves on Earth affect marine microbial communities, the effect of Martian megatsu-
namis on the ancient microbial life on this planet is not unexpected. For this reason, we have addressed
this issue in this study.

Many researchers today cautiously discuss about the Martian palaeo-ocean and its shorelines, and
despite some geological evidence, the issue of the existence of an ocean on early Mars remains in
debate (Schmidt et al., 2022).

Using geomorphological mapping, Context Camera (CTX), High-Resolution Imaging Science
Experiment (HiRISE) and Thermal Emission Imaging System (THEMIS) in the southeast of the
Acidalia Planitia (northwest of the Arabia Terra), and the Chryse Planitia, some researchers have
claimed that there are geomorphological features of tsunami-induced sediments on Mars. They
claim that these sedimentary features are related to two megatsunamis from large collisions in the
Martian palaeo-ocean that occurred 3.4 billion years ago (Iijima et al., 2014; Rodriguez et al.,
2016; Costard et al., 2017).

In this study, we investigate the effect of collision-induced megatsunamis on possible microbial life
in the ancient Martian ocean, assuming the presence of an ocean in the northern plains, and the pres-
ence of microbial life in it.

Characteristics of tsunami wave propagation in the palaeo-ocean of Mars

Due to the low gravity of Mars, the height of the tsunami waves caused by the large collisions in the
northern plains was more than the common terrestrial tsunamis. Because the topography of Mars has
changed a lot since the disappearance of the palaeo-ocean, it is impossible to calculate with certainty
the propagation characteristics of megatsunami waves on the surface of Mars, and there is a significant
error in this regard. However, it appears that the velocity of the megatsunamis waves attained 20 m s−1

in the vicinity of impact craters, and 16 m s−1 near the shoreline (Iijima et al., 2014). Megatsunamis
are also estimated to be up to 120 m high, and 570 000 km2 area (Billings, 2016; Drake, 2016;
Sumner, 2016).

Distribution of proposed microbial life in the Martian palaeo-ocean

In terrestrial oceans, microbial life is found in the tidal flat, continental margin, oceanic trench, abyssal
plain and in the vicinity of mid-ocean ridges (Fig. 1). Nevertheless, the topography of the ancient
Martian ocean floor in the Vastitas Borealis basin does not appear to be similar to the topography
of the Earth’s oceans’ floor. This could be due to the lack of plate tectonics on early Mars (Yin,
2012; Costard et al., 2019). For this reason, geomorphological features such as mid-ocean ridges or
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oceanic trench do not appear to have formed on the Martian palaeo-ocean floor. As a result, the topo-
graphic structure of the Martian palaeo-ocean floor must have been simpler than that of Earth’s oceans.
Nevertheless, at least there should be zones such as the continental margin, and abyssal plain. Of
course, large and numerous collisions have caused severe changes in the topography of the
palaeo-ocean floor (Fig. 2).

In various parts of the simple topography of the Martian ocean floor, microbial life could have lived
in the abyssal plain as a benthic (or infauna), or alongside black smokers. Some of the possible micro-
organisms may have been pelagic (planktonic), and living on the continental margin. Others, such as
cyanobacteria (green-blue algae), could have lived in the tidal flat of the palaeo-ocean. Of course, it is
claimed that there was no spring tide in the ancient Martian ocean (Iijima et al., 2014). In this case,
cyanobacterial colonies may have formed in the vicinity of the shore.

In this study, we consider a situation similar to the Earth’s oceans’ floor for the distribution of micro-
bial life in the ancient Martian ocean, and assume that the proposed microbial life in the Martian
palaeo-ocean near the shore, in the form of planktonic on the continental margin, and existed in the
form of benthic and infauna on the Martian ocean floor.

Effect of megatsunamis waves on microbial life in the Martian palaeo-ocean

When a Tsunami wave base encounters the oceanic basin floor, it can displace the whole of life forms
on the floor, inside sediments, pelagic and even in the tidal flat or shore moving them far distances from
their initial location (Robinson and Bernard, 2009). Some microorganisms can remain in the
palaeo-ocean after the occurrence of megatsunamis. In this case, the change in the physico-chemical
properties of seawater (such as salinity, oxygen level, light penetration depth or photic zone and nutri-
ent content) due to the tsunami waves (Satpathy et al., 2008; Haldar et al., 2013; Bhattacharyya et al.,
2014; Somboonna et al., 2014; Kakehi et al., 2017), can create an extreme environment suitable for the
growth of extremophile microorganisms (such as halophiles). But some other microorganisms that
would not be compatible with increasing salinity, decreasing temperature or increasing seawater turbid-
ity, would be eliminated.

Life in tsunami sediments and preservation of microbial fossils

Suitable sediments for microbial fossilization

Microbial life does not readily undergo fossilization, and large amounts of clay deposits are required to
preserve them as a fossil. For instance, on the Earth, fossils of microorganisms such as Ediacaran per-
iod bacteria are well preserved due to their presence in clayey covers. As a result, these clay deposits on
Mars can also provide a suitable environment for the preservation of microbial fossils (Joel, 2016).

Fig. 1. General topography of the Earth’s oceans’ floor and the distribution of microbial life in its
various zones.
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Preservation of microbial fossils in sediments caused by Martian megatsunamis

Thumbprint terrains

Thumbprint terrains are part of the geomorphological features of the Martian megatsunamis, discovered
by geomorphological mapping, CTX and THEMIS imaging in the southeast of the Acidalia Planitia
(northwest of the Arabia Terra), and the Chryse Planitia. Due to the high albedo of thumbprint terrains,
they appear to be coarse-grained and made of sand, gravel and rock fragments (Costard et al., 2017; Di
Pietro et al., 2021) (Fig. 3).

Because tsunami waves carry large volumes of marine sediments and seawater into mainlands, there
is definitely marine microbial life in tsunami sediments (Somboonna et al., 2014). Nevertheless, in
tsunami-induced thumbprint terrain deposits due to an abundance of coarse-grained sediments and
deficiency of clay particles, the chances of preserving marine microbial life as a fossil for billions
of years are very low.

Fig. 2. Proposed oceanic basin for the ancient Martian ocean at Vastitas Borealis and its possible
shorelines. The proposed ancient ocean floor topography is not similar to the Earth’s oceans’ floor,
which could be due to the lack of plate tectonics on early Mars and the effects of large collisions.
Produced via MOLA digital elevation models (460 m pixel−1), in Esri’s ArcGIS® 10.2 software
(http://www.esri.com/software/arcgis). Credit: MOLA Science Team, MSS, JPL, NASA.
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Boulder fields and ice-rich lobes

HiRISE images show large metre-sized boulders on the northern plains of Mars. Numerous boulder
fields have been identified at the Gusev crater, Isidis and Elysium Planitia (Golombek et al., 2003,
2008; Iijima et al., 2014; Rodriguez et al., 2016) (Fig. 4). Some of these bouldery sediments have accu-
mulated concentrically around the impact craters, and upon the proposed marine terraces of the
palaeo-ocean (Fig. 5). For this reason, many researchers have suggested that these bouldery sediments
are caused by megatsunamis waves (Iijima et al., 2014; Rodriguez et al., 2016) (Fig. 6).

Two individual megatsunamis appear to have occurred in the ancient Martian ocean about 3.4 bil-
lion years ago, a few million years apart. The first megatsunami caused by a collision occurred in a
liquid ocean, and caused the boulder rocks to scatter on the surface of Mars. Nevertheless, the second
megatsunami occurred in a frozen ocean (due to the cooling of the Martian climate), scattering
ice-rich lobes on the surface of the Red Planet (Drake, 2016; Rodriguez et al., 2016; Sumner,
2016; Di Pietro et al., 2021). Some impact craters on the northern plains, such as the Lyot crater
(48°33′42.7′′N, 18°12′46.7′′E), have the ice-rich ejecta from the second megatsunami (Di Pietro
et al., 2021).

Considering the sedimentological properties required to preserve microbial fossils, it is clear that
microorganisms transferred from the ancient Martian ocean have no chance of preservation in boulder
fields on the northern plains. Considering that life can survive in frozen oceans and snowball terrestrial
planets (or moons) (Sutherland, 2022), the ice-rich lobes from the second megatsunami in the frozen
ocean of Mars can preserve microbial life.

Tsunami palaeo-lakes on Mars

Martian palaeo-lakes that formed in impact craters are mainly of glacial, fluvial, rainfalls and ground-
water rise origin (Hargitai et al., 2018; Zhao et al., 2020; Boatwright and Head, 2021).

In lacustrine environments, phyllosilicate clays and evaporite sediments are abundant, which is a
suitable sedimentological property for the preservation of microbial fossils (Anderson, 2012; Zhao
et al., 2020).

Nevertheless, there was another group of palaeo-lakes on Mars that were fed directly by tsunami
waves (Drake, 2016). That is, the craters that are older than the megatsunamis, and existed near the
proposed shorelines at the time of the megatsunamis occurrence.

Fig. 3. Distribution of tsunami-induced thumbprint terrain deposits in the northern plains, on the geo-
logical map of Mars. Courtesy of USGS, 2014 (at a scale of 1 : 20 000 000).
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In this case, some of the impact craters near the Chryse Planitia, which are older than the mentioned
megatsunamis (3.4 billion years ago), could have been tsunami-induced lakes or pools, which foster the
marine microbial life and preserve the fossil signatures.

Another group of tsunami palaeo-lakes can be formed indirectly from runoffs due to outflow chan-
nels caused by tsunami waves on mainlands (Boatwright and Head, 2021).

Some impact units in the vicinity of Chryse Planitia are older than the Early Hesperian, which was
more than 3.56 billion years ago. There are more than seven impact craters near the proposed shorelines
in the Chryse Planitia older than the Early Hesperian. The mentioned megatsunamis occurred roughly
3.4 billion years ago; as a result, craters near the Chryse Planitia that are approximately the age of Early
Hesperian or older, may have been tsunami lakes in the past (Fig. 7).

Conclusion

Considering the effect of terrestrial tsunamis on marine ecosystems, including microorganisms, and the
discovery of some geological evidence of megatsunamis on early Mars, Martian megatsunamis could
have influenced the proposed microbial life in the ancient Martian ocean.

Fig. 4. Distribution of boulder fields in the northern plains within the Gusev crater, Isidis and Elysium
Planitia. The ice-rich ejecta resides in Lyot crater. Image via Mars Orbiter Laser Altimeter (MOLA).
Courtesy of NASA GSFC.
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Fig. 5. Concentrated large sorted boulders around an impact crater in the northern plains in the
vicinity of Panchaia Rupes. Image via THEMIS daytime Infrared. Courtesy of NASA/JPL/Univ. of
Arizona.

Fig. 6. Boulder field was caused by massive torrential currents at the landing site of the Mars
Pathfinder in 1997. The Ares Vallis on the northern plains (19.13°N, 33.22°W). Courtesy of NASA /
JPL-Caltech/Popular Mechanics.
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Changes in the physico-chemical properties of seawater, and the transfer of microbial life into soils
and crateric lakes on the mainlands of early Mars, were among the effects of tsunami waves on micro-
bial life of the Martian palaeo-ocean.

Tsunami waves have also been implicated in the preservation or non-preservation of fossil signatures
on early Mars. Tsunami-induced deposits, such as boulder fields and thumbprint terrains, do not have
appropriate sedimentological properties for microbial fossilization. Nevertheless, the ice-rich lobes
from the tsunami in the frozen palaeo-ocean of Mars in the Early Hesperian, and the tsunami lakes
in the vicinity of proposed palaeo-ocean shorelines, have good conditions for the fossilization of mar-
ine microbial life of early Mars.
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