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In this article we study the commute and hitting times of simple random walks on
spherically symmetric random trees in which every vertex of level n has outdegree 1
with probability 1 − qn and outdegree 2 with probability qn. Our argument relies on
the link between the commute times and the effective resistances of the associated
electric networks when 1 unit of resistance is assigned to each edge of the tree.

1. INTRODUCTION

The random walk on a graph G = (V , E) is a Markov chain defined on its set of vertices
V , and from vertex x, it moves to a neighbor y chosen with uniform probability. The
access time (hitting time) Hxy of a vertex y starting from a vertex x is defined to be the
mean number of time units required to reach y for the first time. Obviously, Hxy is not
necessarily equal to Hyx unless the graph has a vertex-transitive automorphism group;
see [7]. The commute time τxy between x and y is the mean time units to go from x to y
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and then back to x; that is, τxy = Hxy + Hyx = τyx. An electrical network is a weighted
graph for which the weights are called conductances and their reciprocals are called
resistances. If a finite network is considered and two vertex a (source) and b (sink)
are distinguished and a battery is hooked up between a and b so that the potential at
a is 1 and the potential at b is zero, then a potential is established at each vertices
and a current flows through the edges. These two functions are defined and uniquely
determined by two laws:

• Ohm’s law: If xy is an edge of the graph, the current flowing from x to y
satisfies vx − vy = ixyrxy, where v, i, and r stand respectively for potential,
current, and resistance.

• Kirchhoff’s law: The sum of the currents flowing out of any vertex different
from a and b is zero.

We now consider G as an electric network by assigning 1-unit resistance to each edge
xy ∈ E. The effective resistance Rxy between x and y is the voltage that develops at x
if a 1 unit of current is injected into x and y is grounded. Equivalently, it is the potential
difference between x and y required to send 1 unit current from x to y. The effective
resistance between two vertices x and y of distance n apart satisfies the inequality
Rxy ≤ n, where the equality holds true if and only if there is a unique path connecting
x and y; see [2]. As such, if xn is a vertex at level n of a tree rooted at a vertex r, then
Rrxn = n.A tree � is called a spherically symmetric tree (SST) if the degree of a vertex
(number of its neighbors) depends only on its distance from the root. In this case, all
vertices of the same level have the same degree. In this article we are interested in
studying the hitting and the commute time between two vertices of an SST. Let dn

denote the outdegree (degree −1) of each vertex at level n and Zn denote the size
at that level. Obviously, Zn = ∏n−1

k=0 dk . Throughout this article, dn, n = 0, 1, 2, . . .,
are assumed to be independent random variables and the corresponding tree is called
spherically symmetric random tree (SSRT). Shorting (gathering) some vertices in
one vertex will not increase the effective resistance between any two vertices in the
sense that shorting vertices of the same potential will keep the effective resistance
unchanged, whereas shorting vertices of different potentials will decrease the effective
resistance; see [3]. Because of the symmetric structure of the spherically symmetric
tree, shorting vertices of the same level will not change its effective resistance. This
entails that the effective resistance between the root r and the level n, shorted in one
node s, of a spherically symmetric tree equals

Rrs =
n∑

k=1

1

Zk
.

For instance, for a degree-2 homogeneous tree with two paths of length n each dangling
out of the root, the effective resistance Rrs = n/2, whereas for the binary tree where
each vertex has two children, Rrs = 1 − (1/2)n.

This article is organized as follows. In Section 2 we give some auxiliary lemmas
concerning some limit results. In Section 3 we introduce lemmas concerning commute
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times in terms of the effective resistances of the associated electric networks. Commute
times of random trees are studied in Section 4; Section 5 is devoted to hitting times.

2. AUXILIARY LEMMAS

Lemma 1: Consider two sequences of nonnegative random variables Xn and Yn such
that

∑
n Yn is divergent a.s. If limn Xn/Yn = L a.s., then

lim
n

∑n
k=1 Xk∑n
k=1 Yk

= L a.s.

Proof: Let tn = Xn/Yn. Then as n −→ ∞, tn −→ L on some event A such that p(A) =
1.Additionally,

∑
n Yn = ∞ on an event B such that p(B) = 1. Note that p(A ∩ B) = 1.

Pick ω ∈ A ∩ B and ε > 0; then there exists sufficiently large n0(ω) such that for
k > n0(ω), we get

L − ε ≤ tk(ω) ≤ L + ε.

For the rest of the proof we will use n0 for n0(ω). Now, for n > n0,

n∑
k=n0+1

(L − ε)Yk(ω) ≤
n∑

k=n0+1

Xk(ω) ≤
n∑

k=n0+1

(L + ε)Yk(ω)

and, hence,(
n∑

k=1

Yk(ω) −
n0∑

k=1

Yk(ω)

)
(L − ε) ≤

n∑
k=1

Yk(ω) −
n0∑

k=1

Yk(ω)

≤
(

n∑
k=1

Yk(ω) −
n0∑

k=1

Yk(ω)

)
(L + ε).

As such, (
1 −

∑n0
k=1 Yk(ω)∑n
k=1 Yk(ω)

)
(L − ε) ≤

∑n
k=1 Xk(ω)∑n
k=1 Yk(ω)

−
∑n0

k=1 Xk(ω)∑n
k=1 Yk(ω)

≤
(

1 −
∑n0

k=1 Yk(ω)∑n
k=1 Yk(ω)

)
(L + ε).

Since
∑

n Yn = ∞,

(L − ε) ≤ lim
n

∑n
k=1 Xk(ω)∑n
k=1 Yk(ω)

≤ (L + ε).

Since ε is arbitrary small,

lim
n

∑n
k=1 Xk(ω)∑n
k=1 Yk(ω)

= L.
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This entails that

lim
n

∑n
k=1 Xk∑n
k=1 Yk

= L a.s. on A ∩ B.

The proof is complete. �

For a realization of the two sequences Xn and Yn we obtain the following.

Lemma 2 [5]: Let {an, n ≥ 1} and {bn, n ≥ 1} be two positive sequences such that∑
k bk = ∞. If ak/bk −→ L, then

∑n
k=1 ak/

∑n
k=1 bk −→ L.

Lemma 3: Consider a positive increasing function f and define a sequence
ak , k = 1, 2, . . . such that f (t) = at. Let In = ∫ n

1 f (t) dt and Sn = ∑n
k=1 ak. If

In+1/In −→ b then

1 ≤ lim
n

Sn

In
≤ b.

Proof: Since f is increasing,

∫ k

k−1
f (t) dt ≤ ak ≤

∫ k+1

k
f (t) dt,

and, hence,
n∑

k=2

∫ k

k−1
f (t) dt ≤

n∑
k=2

ak ≤
n∑

k=2

∫ k+1

k
f (t) dt,

from which we obtain ∫ n

1
f (t) dt ≤ Sn − a1 ≤

∫ n+1

2
f (t) dt,

that is,

In ≤ Sn − a1 ≤ In+1 − I2. (1)

This entails that

1 ≤ Sn

In
− a1

In
≤ In+1

In
− I2

In
.

Since In −→ ∞ and In+1/In −→ b,

1 ≤ lim
n

Sn

In
≤ b.

and the lemma is proved. �
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A similar argument shows, for positive decreasing function f and In and Sn are
defined as above, that

a ≤ lim
n

Sn

In
≤ 1. (2)

Lemma 4 [5]: For β > −1, limn
[(∑n

k=1 kβ
)
/(nβ+1)

] = 1/(β + 1).

3. COMMUTETIME AND ELECTRICAL NETWORKS

One important link between random walks on finite connected graphs and electrical
networks is the relationship concerning the commute time between two vertices x
and y and the effective resistance Rxy. In the rest of the article 1 ohm of resistance is
assigned to each edge of the graph under consideration.

Lemma 5 [2]: In a graph, the effective resistance between two vertices x and y of
distance n apart satisfies the inequality Rxy ≤ n, where the equality holds true if and
only if there a unique path connecting x and y.

Lemma 6 [2,6]: The commute time between two vertices x and y of a finite connected
graph G is τxy = 2mRxy, where m is the number of edges of G and Rxy is the effective
resistance between x and y.

For instance, for a degree-2 homogeneous tree, τrs = 2(2n)(n/2) = 2n2, whereas
for the binary tree, τrs = 4(2n − 1)(1 − (1/2)n). We notice that for the former tree,
τrs grows in a polynomial rate, whereas for the latter one, it grows exponentially.
This motivates us to study the phase transition between polynomial and exponential
rates of the commute times of random walks on random trees. Logically, we will
consider trees of mixed degrees 2 and 3. It seems intuitive that if the degree-3 vertices
become sparser as the tree grows, it will be more likely that we get commute time of
polynomial type.

Cutting Principle [3]: Cutting certain branches can only increase the effective
resistance between two given nodes.

The following lemma is an immediate consequence of the cutting principle.

Lemma 7: Let G be a connected finite random graph. Then the number of edges m
and effective resistance between two given vertices are negatively correlated.

Lemma 8: The commute time between two randomly chosen vertices x and y of a finite
connected random graph G satisfies τxy ≤ 2E(m)E(Rxy).

Proof: We may assume, without loss of generality, that G is a random tree � of height
n and r is the root of � and the level n is shorted in one node s. Let ζn denote the σ -field
generated by the degrees of vertices of �. If Zk , k = 0, 1, 2, . . . , n, denotes the sizes
of the successive levels of � and Trs is the random variable representing the time to
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reach s from r and then back to r, then τrs = E(Trs). Now, τrs = E(E(Trs|ζn)). From
Lemma 6,

E(Trs|Z1 = z1, . . . , Zn = zn) = 2

(
n∑

k=1

zk

)
R∗

rs,

where R∗
rs denotes the effective resistance of a realization of � that corresponds to

z1, z2, . . . , zn. This entails that

E(Trs | ζn) = 2

(
n∑

k=1

Zk

)
Rrs.

Hence, Lemma 7 assures that

τrs = 2E

[(
n∑

k=1

Zk

)
(Rrs)

]
≤ 2E(m)E(Rrs).

�

A similar argument along with Lemma 5 can be used to show that if xn denotes,
as usual, a leaf of level n of a tree, then

τrxn = 2E(m)n. (3)

4. SPHERICALLY SYMMETRIC RANDOMTREES

For the rest of the article we will use the notation an = θ(bn)if limn(an/bn) = K ∈
(0, ∞).As mentioned earlier, we will assume that all of the nodes of level n are shorted
in one node s.

Theorem 9: Consider a SSRT, �, with outdegree sequence {dn; n ≥ 0} such that

dn =
{

1 with probability 1 − qn

2 with probability qn,

where qn ↓ 0 and
∑

n qn < ∞. Then, τrs ≤ θ(n2) and τrxn = θ(n2).

Proof: It follows from the independence assumption of the di’s that the mean number
of edges of � is

m =
n∑

k=1

E(Zk) =
n∑

k=1

k−1∏
j=0

E(dj)

=
n∑

k=1

k−1∏
j=0

(1 + qj).

https://doi.org/10.1017/S0269964809990052 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990052


“S0269964809990052jra” — 2009/8/3 — 18:30 — page 655 — #7

�

�

�

�

COMMUTE TIMES AND RESISTANCES 655

Since
∑

n qn < ∞,

an =
n∏

j=1

(1 + qj) −→ K < ∞.

Choosing bn = 1 in Lemma 2, we obtain

lim
n

∑n
k=1 ak

n
= K

and, hence,
n∑

k=1

k−1∏
j=0

(1 + qj) = θ(n). (4)

On the other hand, the mean effective resistance is

n∑
k=1

E(1/Zk) =
n∑

k=1

k−1∏
j=0

E(1/dj)

=
n∑

k=1

k−1∏
j=0

(1 − 1

2
qj).

Once again,
∑

n qn < ∞ implies that

n∏
j=0

(
1 − 1

2
qj

)
−→ L > 0,

and Lemma 2 assures that

n∑
k=1

k−1∏
j=0

(
1 − 1

2
qj

)
= θ(n). (5)

It follows now from (4), (5), and Lemma 8 that τrs ≤ θ(n2). The result τrxn =
θ(n2) follows from (3), (4), and Lemma 5. �

Note: This result is not surprising, since the Borel–Cantelli lemma assures that dn = 1
eventually a.s. and the random walk in such case is not much different from the random
walk on {0, 1, 2, . . . , n}, for which the commute between zero and n is 2n2. This is
also consistent with the fact that the Brownian motion takes you a distance

√
n in n

time units.

Theorem 10: Consider a SSRT with outdegree sequence {dn; n ≥ 0} such that

dn =
{

1 with probability 1 − qn

2 with probability qn,
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where qn = min(1, c/n), c > 0. Then the following hold:

• for c = 2, τrs ≤ θ(n3 log n),

• for c > 2, τrs ≤ θ(nc+1),

• for c < 2, τrs ≤ θ(n2+c/2).

Moreover, for any c > 0, τrxn = θ(nc+2).

Proof: Obviously, E(dk) = min(2, 1 + c/k) and, hence,

E(Zn) =
n−1∏
k=0

E(dk) =
n−1∏
k=0

min
(

2, 1 + c

k

)
= θ(nc).

This entails that
n∑

k=1

E(Zk) = θ(nc+1); (6)

see [4]. Additionally,

E

(
1

dk

)
= max

(
1

2
, 1 − c

2k

)
.

Hence,

E

(
1

Zn

)
=

n−1∏
k=0

E

(
1

dk

)
=

n−1∏
k=0

max

(
1

2
, 1 − c

2k

)
= θ(n−c/2),

and for c = 2,
n∑

k=1

E(1/Zk) = θ(log n). (7)

From Lemma 8, we get

τrs ≤ θ(n3 log n).

Whereas for c > 2, Lemma 3 gives

n∑
k=1

E(1/Zk) = θ(1). (8)

We conclude from Lemma 8 that

τrs ≤ θ(nc+1).

Finally, for c < 2,
n∑

k=1

E(1/Zk) = θ(n1−c/2). (9)
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Hence,

τrs ≤ θ(n2+c/2);

the results concerning τrxn follow from (3) and (6). �

We now consider a model of random trees in which the outdegree-1 vertices
become sparser in a rate faster than that of the models considered earlier.

Theorem 11: Consider an SSRT with outdegree sequence {dn; n ≥ 0} such that d0 =
1 a.s. and, for n ≥ 1,

dn =

⎧⎪⎨
⎪⎩

1 with probability 1 − 1

nλ

2 with probability
1

nλ
,

where 0 < λ < 1. Then the commute time τrxn is such that

θ(nλ+12n1−λ

) ≤ τrxn ≤ θ(nλ+1en1−λ

).

Note: The case where λ > 1 is included in Theorem 9 and the case λ = 1 is included
in Theorem 10.

Proof: It follows from Jensen’s inequality that

log E(Zn) ≥ E(log Zn) =
n−1∑
k=0

E(log dk)

=
n−1∑
k=1

(log 2)
1

kλ
≥ α + (log 2)

n1−λ

1 − λ
,

for some constant α, where the last inequality follows from (2). Hence,

E(Zn) ≥ eα(2n1−λ/(1−λ)).

We now deduce from (1) that

n∑
k=1

E(Zk) ≥ eα

n∑
k=1

(2k1−λ/(1−λ)) = θ(nλ2n1−λ

). (10)

On the other hand,

log E(Zn) =
n−1∑
k=1

log E(dk) =
n−1∑
k=1

log

(
1 + 1

kλ

)

≤
n−1∑
k=1

k−λ ≤ 1 + (n − 1)1−λ

1 − λ
,

https://doi.org/10.1017/S0269964809990052 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990052


“S0269964809990052jra” — 2009/8/3 — 18:30 — page 658 — #10

�

�

�

�

658 F. Al-Awadhi, M. Konsowa, and Z. Najeh

where the last inequality follows from Lemma 4, in which case, (1) implies

n∑
k=1

E(Zk) ≤
n∑

k=1

e1+[(k−1)1−λ/(1−λ)] = θ(nλen1−λ

). (11)

It follows from (3), (10), and (11) that

θ(nλ+12n1−λ

) ≤ τrxn ≤ θ(nλ+1en1−λ

).
�

5. HITTINGTIMES

Our argument for calculating the hitting times of the random walks on trees relies
on the essential edge lemma. An edge xy of a graph is called essential if its removal
would disconnect the graph into two components A(xy) and A(yx) containing x and
y, respectively. Let e(xy) denote the set of edges of A(xy). Obviously, each edge of a
tree is an essential edge. The following is the essential edge lemma.

Lemma 12 [1]: If xy is an essential edge of a finite connected graph and Hxy stands
for the hitting time of y starting from x, then

Hxy = 2|e(xy)| + 1.

Note: We refer the reader to [1] for a generalized essential edge lemma for weighted
random walks.

Theorem 13: Consider an SSRT with an outdegree sequence {dn; n ≥ 0} such that

dn =
{

1 with probability 1 − qn

2 with probability qn,

where qn = min(1, j/n) for some positive integer j. If Hnr is the hitting time of the root
r from a leaf xn, then for j = 1, Hnr = θ(n2 log n) and for j > 1, Hnr = θ(nj+1).

Proof: Let x0, x1, x2, . . . , xn stand for the unique path connecting the root r = x0 to
the leaf xn of level n and Hk+1,k denote the mean time to hit xk from xk+1. The first
passage times from xk+1 to xk , k = 0, 1, . . . , n − 1 are stopping times. Applying the
strong Markov property to these stopping times leads to

Hnr =
n∑

k=1

Hk,k−1.
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Exploiting Lemma 12, we get

Hnr =
n∑

k=1

(2E(|e(xkxk−1)|) + 1),

Hnr = n + 2
n∑

k=1

E(|e(xkxk−1)|). (12)

However, it follows from the assumption of independence that

E(|e(xkxk−1)|) = E(dk) + E(dk)E(dk+1) + · · · + E(dk)E(dk+1) · · · E(dn−1). (13)

It follows from the definition of qn that for k ≤ j, E(dk) = 2 and for k > j , E(dk) =
1 + j/k. We only confine our investigation to the two cases j = 1 and j = 2.

Case 1: j = 1. Let k ≥ 2, it follows from (13) that

E(|e(xkxk−1)|) =
(

1 + 1

k

)
+

(
1 + 1

k

) (
1 + 1

k + 1

)

+ · · · +
(

1 + 1

k

) (
1 + 1

k + 1

)
· · ·

(
1 + 1

n − 1

)

= 1

k

n∑
j=k+1

j = n − k

2k
(n + k + 1). (14)

For k = 1, (13) gives

E(|e(x1x0)|) = 2

(
1 + 3

2
+ 4

2
+ · · · + n

2

)
= (n − 1)(n + 2)

2
. (15)

It can easily be verified, using (12)–(14), that

Hnr = θ(n2 log n).

Case 2: j = 2. For k ≥ 3 it can be shown that

E(|e(xkxk−1)|)

= 1

k(k + 1)

[
n∑

i=k+1

i(i + 1)

]

= 1

k(k + 1)

(
n(n + 1)(2n + 1)

6
− k(k + 1)(2k + 1)

6
+ n(n + 1)

2
− k(k + 1)

2

)
.

(16)

If k < 3, then simple calculations show that both E(|e(x1x0)|) and E(|e(xkxk+1)|) are
θ(n3). Hence, carrying out summation over k for (16), we obtain Hnr = θ(n3). Using
similar reasoning, we get for j ≥ 3 that Hnr = θ(nj+1). �

Note: From Theorems 10 and 13 we can compute the hitting time Hrn.
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