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Yohei Onuki1,† and Toshiyuki Hibiya2

1Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
2Department of Earth and Planetary Science, Graduate School of Science,

The University of Tokyo, Tokyo 113-0033, Japan

(Received 28 April 2018; revised 7 January 2019; accepted 8 January 2019;
first published online 18 February 2019)

Parametric subharmonic instability arising in a narrow-band wave spectrum is
investigated. Using a statistical equation that describes weakly nonlinear interactions
in a random wave field, we perform analytical and numerical stability analyses
for a modulating wave train. The analytically obtained growth rate λ = (−µ +√
µ2 + 4CEB)/2 agrees favourably with the results from direct numerical experiments,

where µ is the half-value width of the background wave frequency spectrum, EB is
the background wave energy density, and C is a constant. This expression has two
asymptotic limits: λ∼

√
CEB for µ�

√
CEB and λ∼ CEB/µ for µ�

√
CEB. In the

terms of weak turbulence, these two growth rates correspond to the ones occurring in
the dynamic and kinetic time scales. In this way, our formulation successfully unifies
the two conventional types of parametric subharmonic instability and offers a new
criterion to determine the applicability of the classical kinetic equation in three-wave
systems.

Key words: internal waves, parametric instability

1. Introduction
Periodic variation of a system parameter drives oscillatory motion, which is known

as parametric excitation. Pumping a playground swing by standing and squatting on it
is a typical example. Parametric excitation is commonly observed in various systems
and, in the specific case of the ocean, it plays a vital role in the dissipation of
internal waves and resulting vertical water mixing (Hibiya & Nagasawa 2004; Hibiya,
Nagasawa & Niwa 2006). In the context of physical oceanography, enhancement
of fine disturbances in a higher-frequency and larger-scale ambient wave field is
in particular named parametric subharmonic instability (PSI). Despite many years of
ocean research, the actual efficiency of PSI remains uncertain, even today (MacKinnon
et al. 2017).

Because the spatial structure of an internal wave varies depending on the situation
in which it is generated and propagates, PSI has been separately investigated for
each case: e.g. spatially monochromatic wave trains (Sonmor & Klaassen 1997),
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low-vertical-mode wave trains (MacKinnon & Winters 2005; Young, Tsang &
Balmforth 2008; Hazewinkel & Winters 2011), vertically propagating beam waves
(Bourget et al. 2014; Karimi & Akylas 2014, 2017) and waves near boundaries
(Gerkema, Staquet & Bouruet-Aubertot 2006; Chalamalla & Sarkar 2016). Several
studies specifically considered irrotational cases, whereas the recent geophysical
interest is mainly directed to the effect of variation of the Coriolis parameter that
makes up the latitudinal dependence of the PSI efficiency (Hibiya, Nagasawa & Niwa
2002; Furuichi, Hibiya & Niwa 2005). The common factor in all of these studies is
the discussion of the stability of a temporally monochromatic wave. However, the
monochromatic assumption is not necessarily appropriate when applied to real ocean
systems.

In general, the most significant forces inducing periodic motion of seawater are
those exerted by tides. Variation in the gravity potential produces primarily a very
large-scale barotropic flow, which collides with seamounts or continental shelves
to generate secondary baroclinic motion, called internal tides. If we assume the
linearity in the response (i.e. ignoring advection), the generated internal tides can be
considered monochromatic in time with the same frequency as the original tidal force.
However, large-scale internal tides subsequently propagate as wave trains through a
temporally fluctuating geostrophic flow field, experiencing time-dependent refraction
and then producing ‘incoherent’ components (Zaron & Egbert 2014). From an in situ
observation, Alford & Zhao (2007) indeed reported phase modulation of the internal
tides far from their generation sites. As will be made clear in this paper, stochastic
phase modulation acts to disturb the frequency of a harmonic oscillation, broadening
its energy spectrum in the frequency space. All the studies mentioned above have
only investigated the complete line spectrum cases, leading to the effects of wave
frequency fluctuations on PSI being insufficiently considered.

In the stochastic problem, the ordinary deterministic approach for parametric
excitation, which is based on the famous Floquet theory, does not work. An
alternative approach is to employ statistical methods, which is rather effective when
stochastic noise exists. A standard model used to describe the statistical evolution
of a continuous spectrum is the kinetic equation. This equation is primarily utilised
for the study of weak turbulence, i.e. a turbulent system where weakly nonlinear
interactions among dispersive waves cause energy transfer over a broadly distributed
spectrum (Zakharov, L’vov & Falkovich 1992). Resonant interactions in the oceanic
wave field had been rigorously investigated using the kinetic equation until the 1980s
(Müller et al. 1986). Also in this field, PSI is defined as a major class of resonant
triad interactions that acts to transfer energy towards large-wavenumber low-frequency
regions (McComas 1977).

Here, we recognise that PSI has two definitions, one being the instability of
a monochromatic wave and the second as a class of resonant interactions in a
continuous spectrum. A simple explanation for the difference between these concepts
can be given based on their interaction time scales. In the former case, disturbance
waves are exponentially amplified, with their maximum growth rate proportional to the
amplitude of the parent wave (Hasselmann 1967). In the latter case, the growth rate of
the disturbance energy is proportional to the energy density of the parent components
(McComas & Müller 1981). Letting ε be the typical size of the wave amplitude, the
time scale of PSI in a monochromatic wave is represented as t ∼ O(ε−1), whereas
in the broadband spectrum case, it is given as t ∼ O(ε−2). In the theory of weak
turbulence, these two time scales are respectively called the ‘dynamic’ and ‘kinetic’
time scales (Kartashova 2013). We note that the specific definitions depend on the
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system being considered. For surface water waves, the dynamic and kinetic time
scales are respectively defined as t∼O(ε−2) and t∼O(ε−4). The difference from the
case of internal waves comes from the fact that surface waves never cause resonant
triad interactions and, alternatively, four-wave interactions play the dominant role.
In any case, assuming that ε is sufficiently small, the kinetic time scale will be
much larger than the dynamic time scale. Accordingly, the kinetic equation can be
interpreted as a model that describes the long-term evolution of the system.

Bearing in mind the ideas mentioned above, one may expect that the growth rate of
PSI in an internal tide derived using the kinetic equation becomes much smaller than
the deterministic counterpart. In reality, however, if the kinetic equation is applied to
a narrow-band wave spectrum, the growth rate of the instability becomes unnaturally
large and even diverges in the limit of a monochromatic wave train. This problem was
identified in Polzin & Lvov (2011), but a satisfactory explanation for this unphysical
result has yet to be given.

There has been another line of research that addresses the ‘decay rates’ of internal
tides caused by resonant interactions, which are also derivable from the kinetic
equation (Olbers & Pomphrey 1981; Olbers 1983; Eden & Olbers 2014; Onuki
& Hibiya 2018). Contrary to the disturbance growth rate, the decay rate of an
internal tide depends on the energy of the recipient waves, and not on the spectrum
shape of the internal tide itself. Therefore, the decay rate takes a finite value, even
for a monochromatic wave, so long as the overall spectrum is sufficiently smooth.
Young et al. (2008) compared the decay time of internal tides estimated by Olbers
& Pomphrey (1981) of O(100) days with the growth time of disturbances in a
monochromatic internal tide, which is O(10) days, and concluded that the classical
statistical approach overlooked the significance of PSI. This consideration may be
somewhat misleading, as the kinetic equation does not underestimate but extremely
overestimates the growth of disturbance energy if applied to monochromatic waves.

Since the conventional kinetic equation cannot be applied to PSI in a narrow-band
wave spectrum, we must reconsider the statistical theory of resonant wave–wave
interaction and formulate a new model that meets the present requirements. Although
our attention focuses mainly on internal wave dynamics, the theoretical considerations
have much in common with other research subjects, especially with surface water
waves.

The stability of a wave train on a water surface has been a major topic since
Benjamin & Feir (1967). It is currently known that a sinusoidal wave with slight
phase modulation is dynamically unstable. This type of phenomenon is called a
Benjamin–Feir instability and the concept has also been extended to a random wave
field. Alber (1978) formulated a stability condition for a narrow-band random wave
train from a two-dimensional nonlinear Schrödinger equation, in which a cubic term
causes four-wave interactions. He derived and analysed an evolution equation of a
two-point correlation function by assuming a Gaussian random wave field. As for
PSI caused by three-wave interactions, a different approach is required to construct a
statistical equation suitable for analysis. Moreover, the statistical features of PSI are
different from those of Benjamin–Feir-type instabilities, containing new and important
findings related to nonlinear wave dynamics in general, as we shall see in this study.

A summary of this paper is as follows. In § 2, we start the story with a classical
stochastic oscillator equation. This simple linear model offers basic insights into the
difference between the dynamic and kinetic properties of general resonant phenomena.
In addition to the conventional two types of time scales, we introduce the ‘time
ranges’ to clarify the transition from the dynamic- to kinetic-type responses in
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the oscillator, which enables us to readily understand why the kinetic equation is
bankrupt for monochromatic wave cases. In § 3, we switch the discussion to a linear
parametric excitation model, dividing the section into two parts: we first investigate
the difference of the two types of energy growth in the stochastic parametric excitation
in a heuristic manner based on the consideration in the previous section; and, after
that, we introduce a more systematic approach by employing statistical assumptions.
The former approach is rather intuitive, whereas the latter, which leads to an identical
result, is more relevant to the weak turbulence theory. In § 4, we extend the discussion
to the finite-dimensional case. Following the derivation procedure of the classical
kinetic equation, we explain why it does not accurately represent the energy growth
of PSI and how it can be fixed. Using a generalised version of the kinetic equation,
we conduct analytical and numerical stability analyses for a modulating wave train,
to find a simple expression for the growth rate of PSI. In § 5, we compare the
analytically obtained growth rate with the results from numerical experiments with a
one-dimensional model that mimics the parametric growth of small-scale waves in a
progressive internal tide. We confirm the favourable agreement between the analytical
and experimental results and discuss how the present study can be translated in terms
of real oceanographic research. Concluding remarks are given in § 6.

2. Statistical description of resonant oscillation
The statistical theory of resonant interactions has a long history. Above all,

Hasselmann (1962) presented a monumental work in which the kinetic equation
for surface water waves was derived for the first time. A key ingredient in his
approach is the consideration of the asymptotic behaviour of an undamped harmonic
oscillator in response to stochastic forcing. This type of problem frequently arises
from fluid equations expanded in Fourier space and thus has a wide range of
application including that to oceanic internal waves (Hasselmann 1966). In his original
formulation, however, the difference between the common deterministic theory and
the statistical approach is somewhat obscure. To elucidate the essence of the kinetic
equation, we revisit this basic problem from a different viewpoint.

Let us consider an ordinary differential equation

d2x
dt2
+ x= εf , (2.1)

the identical model to equation (3.6) of Hasselmann (1962), together with initial
conditions x(0) = ẋ(0) = 0. The function f (t) represents an external driving force to
the harmonic system, with the parameter ε specifying its typical size. In general,
equation (2.1) can be analytically solved as

x= ε
∫ t

0
sin(t− t1)f (t1) dt1, (2.2a)

ẋ= ε
∫ t

0
cos(t− t1)f (t1) dt1. (2.2b)

Using these expressions, the energy of the oscillator, E(t)= (x2
+ ẋ2)/2, can be written

as

E=
ε2

2

∫ t

0

∫ t

0
cos(t1 − t2)f (t1)f (t2) dt1 dt2. (2.3)
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Notice that the scale of E is limited to O(ε2) so long as the time integration in (2.3)
does not grow secularly. We now assume f to be a stochastic stationary process, with
an associated autocorrelation function

〈 f (t+ τ)f (t)〉 = F(τ ), (2.4)

which we know in advance. It is specified here that the notation 〈·〉 represents the
expectation value or the ensemble average of the function within the brackets, and not
a temporal average. The Wiener–Khinchin theorem relates the autocorrelation function
to the power spectrum S(ω) as

F(τ )=
1

2π

∫
∞

−∞

S(ω) cos(ωτ) dω. (2.5)

Taking the average of (2.3), using (2.5), and integrating it with respect to both t1 and
t2, we may write the expectation of energy in the form

〈E〉 =
ε2

2π

∫
∞

−∞

S(ω)K(ω, t) dω, (2.6)

where K(ω, t) acts as the time-dependent kernel associating the forcing spectrum S(ω)
with the energy of the system, 〈E(t)〉, at any time t. The specific expression for K is

K(ω, t)=
1− cos((ω+ 1)t)

2(ω+ 1)2
+

1− cos((ω− 1)t)
2(ω− 1)2

. (2.7)

Figure 1(a) shows plots of K(ω, t) as a function of ω for several values of t. As
time progresses, values of K at ω=±1 grow to form sharp spectral peaks, indicating
that most of the energy provided to the oscillator system comes from the narrow-band
components in the forcing spectrum. The peak frequency of K, in this case |ω| = 1,
corresponds to the natural frequency of the oscillator.

From the above considerations, we recall another, and perhaps more famous, case;
that is, a forced damped oscillator, which can be represented as

d2x
dt2
+ ν

dx
dt
+ x= εf (t) (ν > 0). (2.8)

Also in this system, the time evolution of the energy can be represented in the form
of (2.6), using a different function K. Owing to the damping effect, K(ω, t) uniformly
converges in the limit of t→∞ as

K(ω, t)→ k(ω)≡
1+ω2

(ω2 − 1)2 + ν2
. (2.9)

Figure 1(b) shows the shape of the function k(ω). The square root of k(ω) corresponds
to the classical resonance curve, which represents the ratio of the amplitude of the
oscillator to that of the forcing for each frequency in a steady state. In contrast, for
the completely undamped case (2.1), K(ω, t) diverges at ω=±1 in the long-time limit.
Therefore, 〈E〉 will never reach a steady state. In the following, excluding the damping
effect, we focus on such an unsteady process and discuss the rate at which the energy
grows in response to several types of driving forces.
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FIGURE 1. (a) Plots of the kernel K(ω, t) as defined in (2.7) versus frequency ω at
different times t. (b) Plot of k(ω), the asymptotic form of the kernel K(ω, t) for a damping
oscillator, as defined in (2.9).

2.1. Types of response
First, we consider a monochromatic forcing F(τ ) = cos(τ ). In this case, the
corresponding forcing spectrum forms a line shape S(ω) = π(δ(ω + 1) + δ(ω − 1)),
substitution of which into (2.6) yields

〈E〉 =
ε2t2

4
+
ε2 sin2 t

4
. (2.10)

As time progresses, the first term on the right-hand side of (2.10) quickly becomes
dominant. This result may seem natural because, as is well known, when an oscillator
is driven with its natural frequency, its oscillation amplitude becomes directly
proportional to time, and therefore the energy, being proportional to amplitude
squared, is proportional to the square of time.

Second, we consider stochastic white-noise forcing F(τ )= δ(τ ), which corresponds
to S(ω)= 1. In this case, (2.3) directly yields the energy expectation value

〈E〉 =
ε2t
2
. (2.11)

This result also corresponds to the familiar feature of a basic stochastic process:
variance of the spatial displacement of a randomly forced particle grows proportionally
with time.

The contrasting expressions (2.10) and (2.11), 〈E〉∝ t2 for the former case and 〈E〉∝
t for the latter case, represent the essential difference between dynamic and kinetic
responses. Moreover, an additional viewpoint can be introduced by focusing on the
amplitude parameter of the forcing term ε. The energy expectation value reaches O(1)
in t ∼ O(ε−1) in the former case and t ∼ O(ε−2) in the latter case. They are exactly
the dynamic and kinetic time scales, as defined in § 1.

From the above example, we have verified that the energy expectation value of the
oscillator in response to a simple white noise grows linearly with time. In fact, this
property holds for more general situations. To see this, we differentiate (2.6) with
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respect to t and use an elementary asymptotic relation, sin(ωt)/ω→πδ(ω), that holds
in the limit of t→∞. We then obtain

d〈E〉
dt
=
ε2

4

∫
∞

−∞

S(ω)(δ(ω+ 1)+ δ(ω− 1)) dω. (2.12)

Equation (2.12) shows that the long-term evolution of the energy expectation value
can be described by a first-order differential equation. This is the cornerstone of
Hasselmann’s work that underlies the derivation of the kinetic equation. However, a
problem arises at this point; the right-hand side of (2.12) never takes a finite value
when the forcing spectrum S(ω) is also composed of delta functions, as is the case
for the monochromatic driving forces. Therefore, equation (2.12) never explains the
existing result (2.10), in which the energy expectation value grows nonlinearly with
time: 〈E〉 ∝ t2. Yet, this puzzle can be resolved if we consider the following.

We have already seen the responses of an oscillator to monochromatic and white-
noise forcing. Let us now consider the intermediate case, that is, a quasi-periodic
forcing with a narrow-band spectrum. A simple model is introduced as

f (t)=
√

2 sin(t+
√

2µWt + θ), (2.13)

where Wt represents the Wiener process, θ is a uniform random number ranging from
0 to 2π, and µ > 0 is an additional constant. In accordance with appendix A, the
autocorrelation of (2.13) is written as

F(τ )= 〈 f (t+ τ)f (t)〉 = exp(−µ|τ |) cos(τ ), (2.14)

with an associated power spectrum,

S(ω)=
µ

(ω+ 1)2 +µ2
+

µ

(ω− 1)2 +µ2
. (2.15)

The function (2.13) represents a phase-modulating wave, with µ specifying the
intensity of modulation. The parameter µ is interpreted physically as the reciprocal
of the correlation length in the time domain (see figure 2a) or the half-value width
in the frequency domain (figure 2b). Since S(ω) and K(ω, t) both include two terms
with their spectrum peaks occurring at ω = ±1, if we ignore cross-multiplication
terms, (2.6) can be calculated as

〈E〉 ∼
ε2t
2µ
+

ε2

2µ2
(exp(−µt)− 1)≡ ε2Ψ (t;µ), (2.16)

where a new function Ψ (t;µ) is introduced. This function has two types of asymptotic
forms:

Ψ (t;µ)=
t

2µ
+

exp(−µt)− 1
2µ2

∼


t2

4
for t∼ 0,

t
2µ

for t∼∞.
(2.17)

Notice that the power laws with respect to t in (2.17) correspond to the prior two
cases (2.10) and (2.11). Figure 2(c) presents plots of (2.17) on double-logarithmic
axes, showing the transition of energy growth from the dynamic- to kinetic-type
responses. Since the transition time can be scaled as t ∼ µ−1, let us define the
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FIGURE 2. (a) Autocorrelation function of the modulated sinusoidal function, as defined
in (2.14). (b) Power spectrum of the modulated sinusoidal function, as defined in (2.15).
(c) Double-logarithmic plot of function Ψ (t; µ), which represents the time evolution of
the energy expectation value of an oscillator in response to stochastic forcing (2.13). In
all panels, µ= 0.1 is adopted.

‘dynamic time range’ as t � µ−1, and the ‘kinetic time range’ as t � µ−1. It is
interesting to note that conventional dynamic and kinetic ‘time scales’ are defined
in terms of the amplitude of forcing, but the new concept of ‘time ranges’ are now
introduced in terms of the spectrum width.

The above result provides a criterion that determines the validity of (2.12). For the
energy expectation value to be represented by (2.12), the measurement time t must be
longer than the correlation time of the forcing µ−1. This property is rewarded in terms
of the spectrum width. If we consider the integrand of the right-hand side of (2.6),
the spectrum width of K(ω, t) becomes narrower with time, whereas S(ω) remains
unchanged. For short times, S(ω) is much narrower than K(ω, t), whereas over longer
times the relation is reversed. The interchange occurs at t∼ µ−1, corresponding to a
transition from dynamic to kinetic time ranges. In the line spectrum limit µ→ 0, the
transition time diverges to infinity, making the kinetic time range inaccessible. This
is the simplest explanation as to why the expression (2.12) becomes invalid for a
situation involving monochromatic forcing.

We can explain the difference between the two types of responses in an alternative
way. In figure 3, grey curves show the numerically calculated sample paths of
E, excited by quasi-periodic forcing (2.13), whereas the black curve depicts their
expectation value 〈E〉. In the dynamic time range, almost all of the sample paths are
close to the expectation value. In the kinetic time range, in contrast, each path shows
random variations, deviating around the expectation value. From this property, it can
be said that the transition from the dynamic to kinetic ranges corresponds to that
from deterministic to stochastic ranges.

3. Parametric excitation

In the case of a linear response, the division point between dynamic- and kinetic-
type responses depends only on the bandwidth of the forcing spectrum, which is given
by µ in this paper. For a nonlinear system, we also need to take into account the
amplitude of oscillation that determines the intensity of self-interaction. Since the full
nonlinear equations are difficult to analyse directly, we begin with a linear parametric
excitation model, which can demonstrate the essence of self-interaction and resulting
wave amplification.
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FIGURE 3. Time evolution of the energy of the oscillator in response to stochastic forcing
as specified in (2.1) and (2.13), depicted in a double-logarithmic graph. The grey curves
are numerically obtained sample paths. The black curve represents their expectation value,
which is defined in (2.16). The parameters are chosen as ε = 1 and µ= 0.03.

Parametric excitation can be described by a differential equation with variable
coefficients. Here, we consider a model equation,

d2x
dt2
+ (1+ εf (t))x= 0, (3.1)

with associated initial conditions x(0) = 0 and ẋ(0) = a. The parameter ε, which
represents the typical amplitude of the variable coefficient, is assumed here to be
small. Unlike the case of linear response, parametric excitation shows an exponential
growth in energy, E∼Ceλt. The constant λ is generally called the growth rate.

If f (t) is a simple sinusoidal function, equation (3.1) reduces to the Mathieu
equation. Let us consider the special case where the frequency of f coincides with
twice the natural frequency of the system,

f =
√

2 sin(2t+ θ), (3.2)

where θ is again a random constant taking values ranging from 0 to 2π. In this case,
equation (3.1) can be solved in the usual asymptotic manner (appendix B). As a result,
the energy expectation value can be approximately expressed as

〈E〉 =
1

2π

∫ 2π

0

1
2
(x2
+ ẋ2) dθ ∼

a2

2
cosh

(√
2εt
2

)
. (3.3)

Equation (3.3) shows that the growth rate is proportional to the coefficient ε. In other
words, excitation occurs on the dynamic time scale.

For an arbitrary function f (t), it is difficult to solve equation (3.1) exactly. If f is
a periodic function perturbed by stochastic noise, in particular, the problem becomes
so-called stochastic parametric excitation. Although stochastic parametric excitation
has so far been investigated in several studies (e.g., Floris 2012), we revisit this topic
in connection with wave–wave interaction theory. In the following, we first present a
heuristic procedure to derive the growth rate of a basic model of stochastic parametric
excitation. After that, a more general statistical theory is introduced.
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3.1. Heuristic approach
Let us construct an asymptotic solution for (3.1) by first expanding x in terms of ε:

x= x0 + εx1 + ε
2x2 + · · · . (3.4)

The solutions up to the second order are as follows:

x0 = a sin t, (3.5a)

x1 =−a
∫ t

0
sin(t− t1)f (t1) sin t1 dt1, (3.5b)

x2 = a
∫ t

0
sin(t− t1)f (t1)

∫ t1

0
sin(t1 − t2)f (t2) sin t2 dt1 dt2. (3.5c)

In the same manner as in the linear response case, we assume f (t) to be a stationary
process and define its power spectrum as S(ω). Using (3.5), the energy expectation
value 〈E(t)〉 = 〈x2

+ ẋ2
〉/2 can be approximately written as

〈E〉 =
a2

2
+
ε2a2

2π

∫
∞

−∞

S(ω)K(ω, t) dω+O(ε3), (3.6a)

K(ω, t)=
1− cos((ω− 2)t)

2ω(ω− 2)2
−

1− cos((ω+ 2)t)
2ω(ω+ 2)2

. (3.6b)

In this case, the kernel function K(ω, t) has peaks at ω=±2.
Let us now assume that the variable coefficient is a phase-modulating wave,

f (t)=
√

2 sin(2t+
√

2µWt + θ), (3.7)

and hence

S(ω)=
µ

(ω+ 2)2 +µ2
+

µ

(ω− 2)2 +µ2
. (3.8)

Ignoring the cross-multiplication terms and replacing the factors ω in the denominator
of K by the peak frequency ±2, we can calculate (3.6) as

〈E〉 =
a2

2
+
ε2a2

2

[
t

2µ
+

exp(−µt)− 1
2µ2

]
+O(ε3). (3.9)

The bracketed terms on the right-hand side of (3.9) are secular, which means that
the resonant feedback to the energy of the oscillator accumulates with time and thus
the solution (3.9) does not hold for large t. To obtain a global solution, a singular
perturbation approach is needed. Traditional singular perturbation methods such as
described by Bender & Orszag (1999) are not applicable to this problem; however,
the renormalisation theory developed by Chen, Goldenfeld & Oono (1996) may
be suitable. That is, we reconstruct a differential equation that is consistent with
the regular perturbation solution (3.9) in t� ε−1. In fact, this idea has already been
employed in the derivation of (2.12). Although our method is not a strict mathematical
procedure, the result agrees well with the numerical solutions and, more importantly,
gives us basic insight into the applicability of the kinetic equation.
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To make the problem simpler, the regular perturbation solution (3.9) is rewritten as

〈E(t)〉 = 〈E(0)〉 + ε2Ψ (t;µ)〈E(0)〉. (3.10)

We then consider two special cases.
Firstly, the function Ψ is evaluated in the dynamic time range. The energy

expectation value (3.10) can then be approximated as

〈E(t)〉 = 〈E(0)〉 +
ε2t2

4
〈E(0)〉. (3.11)

The first and second derivatives of (3.11) at t= 0 are written as

d
dt
〈E〉 = 0,

d2

dt2
〈E〉 =

ε2

2
〈E〉. (3.12a,b)

Again, solving the latter equation of (3.12) with the initial condition of the former,
we obtain

〈E〉 = 〈E(0)〉 cosh

(√
2εt
2

)
. (3.13)

This result coincides with the basic solution (3.3).
Another situation occurs when Ψ is evaluated in the kinetic time range. In this case,

equation (3.10) can be approximated as

〈E(t)〉 = 〈E(0)〉 +
ε2t
2µ
〈E(0)〉. (3.14)

The first derivative of (3.14) at t= 0 is

d
dt
〈E〉 =

ε2

2µ
〈E〉, (3.15)

which is solved as

〈E〉 = 〈E(0)〉 exp
(
ε2t
2µ

)
. (3.16)

For the kinetic case, the growth rate is proportional to the square of ε and diverges
in the narrow-band limit, µ→ 0, as mentioned in § 1.

The difference between (3.13) and (3.16) originates from the choice of a time
range in which the resonance feedback is evaluated. How, then, should we adopt
the time range? The answer depends on when the secular terms reach O(1). That is,
if ε2Ψ (t) ∼ O(1) occurs within the dynamic time range t� µ−1, the approximation
(3.11) is valid. If ε2Ψ (t) ∼ O(1) occurs in the kinetic time range t � µ−1, the
approximation (3.14) becomes valid instead. Moreover, in the latter case, the time
evolution of the energy expectation value is described by the first-order differential
equation (3.15) in the same way as (2.12). The kinetic equation is generally derived
in this way.

We now seek a unified expression of the growth rate that is applicable to both the
dynamic and kinetic cases. In the derivation of (3.12) and (3.15), we have replaced
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FIGURE 4. (a) Double-logarithmic plots of Ψ (t; µ) (solid black curves) and its
approximate form Ψ̃ (t; µ) (broken grey curves) for µ = 0.01, 0.03, 0.1, 0.3. The
expressions are defined in (2.17) and (3.18). (b) Growth rates of the energy expectation
value of the stochastically excited oscillator, as specified in (3.1) and (3.7). The
black curves represent analytical solution (3.21), whereas the grey symbols represent
experimental values. The numerical calculation was conducted 1000 times for each case
using the fourth-order Runge–Kutta method with a time interval 1t= 0.03. The logarithm
of the average energy is linearly fitted for 90 6 t 6 450 to estimate the growth rates.

the secular terms in (3.10) by polynomial forms. Extending this idea, we consider a
rational function

t2

α + βt
, (3.17)

which approaches t2/α as t→ 0 and t/β as t→∞. Choosing α= 4 and β= 2µ makes
(2.17) and (3.17) asymptotically identical in both the short- and long-time limits. With
this in mind, we define a new function,

Ψ̃ (t;µ)=
t2

4+ 2µt
, (3.18)

and replace Ψ (t;µ) in (3.10) by Ψ̃ (t;µ). Figure 4(a) compares Ψ (t;µ) and Ψ̃ (t;µ)
in double-logarithmic plots. Close agreement between the two functions is promising
regarding the validity of this approximation. Let us transform the equation 〈E(t)〉 =
〈E(0)〉 + ε2Ψ̃ (t;µ)〈E(0)〉 into the following:

(4+ 2µt)(〈E(t)〉 − 〈E(0)〉)− ε2t2
〈E(0)〉 = 0. (3.19)

The second derivative of (3.19) at t= 0 yields

d2

dt2
〈E〉 +µ

d
dt
〈E〉 −

ε2

2
〈E〉 = 0. (3.20)

The positive root of the characteristic equation of (3.20) is

λ=
−µ+

√
µ2 + 2ε2

2
. (3.21)
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The solution (3.21) has two asymptotic forms:

λ∼


√

2ε
2

for µ� ε,

ε2

2µ
for µ� ε,

(3.22)

in agreement with the dynamic and kinetic results, equations (3.13) and (3.16).
Figure 4(b) compares the analytical solution (3.21) with the experimentally obtained
growth rates. The unified solution (3.21) also agrees well with the results from direct
numerical integrations.

3.2. Statistical theory
In § 3.1, the growth rate of stochastic parametric excitation was heuristically derived.
Here, a more systematic consideration is presented based on a general statistical
approach. Attention should be paid to the assumptions to be employed, as the
validity of these is a central concern in the resonant interaction theory.

First, we introduce a complex variable a= (x+ iẋ)/
√

2, and rewrite (3.1) as

da
dt
=−ia−

iε
2

fa−
iε
2

fa†, (3.23)

where † indicates the complex conjugate. Since the energy expectation value can be
expressed as 〈E〉 = 〈a†a〉, equation (3.23) yields a simple energy equation,

d
dt
〈E〉 =−ε Im〈 fa2

〉. (3.24)

This equation implies that the variation in energy expectation value is induced by
the triple correlation of the complex variable a and the forcing function f . Now, we
expand the complex variable as

a(t)= a0(t)+ εa1(t)+O(ε2). (3.25)

Substituting this into (3.23) gives the zero- and first-order equations:

da0

dt
=−ia0, (3.26a)

da1

dt
=−ia1 −

iε
2

fa0 −
iε
2

fa†
0. (3.26b)

Equation (3.26b) is formally solved as

a1 =−
iε
2

∫ t

e−i(t−t′)( f (t′)a0(t′)+ f (t′)a†
0(t
′)) dt′. (3.27)

Substituting a∼ a0+ εa1 together with (3.27) into (3.24) with the assumptions for the
statistical properties,

〈 f (t)a0(t)2〉 = 0, (3.28a)
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〈 f (t)f (t′)a0(t)a0(t′)〉 = 0, (3.28b)
〈 f (t)f (t′)a0(t)a

†
0(t
′)〉 = 〈 f (t)f (t′)〉〈a0(t)a

†
0(t
′)〉, (3.28c)

we obtain
d
dt
〈E〉 = ε2 Im

∫ t

ie−i(t−t′)
〈 f (t)f (t′)〉〈a0(t)a

†
0(t
′)〉 dt′. (3.29)

Taking into account 〈 f (t)f (t′)〉 = F(t − t′) and making an additional assumption that
〈a0(t)a

†
0(t′)〉 ∼ e−i(t−t′)

〈E(t′)〉, which comes from (3.26a), a closed equation

d
dt
〈E〉 = ε2

∫ t

cos(2(t− t′))F(t− t′)〈E(t′)〉 dt′ (3.30)

is obtained. Conditions (3.28) argue that variations in the oscillator and the forcing
function are statistically independent at their lowest order and their correlations can
be evaluated from the perturbation terms. This corresponds to the classical Gaussian
assumption (see § 4.1 for details) frequently made in turbulence theory.

In (3.30), the evolution of 〈E〉 depends on its earlier values. As we would like to
discuss the long-term evolution of the system, the choice of initial condition at t= 0
is inconvenient. Alternatively, we define the initial condition to be

〈E〉→ 0 for t→−∞. (3.31)

One may consider an additional Markovian approximation: to replace the energy
expectation value 〈E(t′)〉 in the integrand of (3.30) by the present value 〈E(t)〉. This
allows the time integration on the right-hand side to be performed without solving
the differential equation. This coincides with the procedure in the derivation of (2.12),
which again breaks down if the correlation function F(τ ) involves a pure sinusoidal
function. To avoid this problem, we now directly solve (3.30), by assuming only an
exponential function 〈E(t)〉 = eλt as its solution. Transforming the correlation function
F(τ ) into the power spectrum S(ω) and integrating the right-hand side of (3.30) from
−∞ to 0, we obtain the characteristic equation

λ=
ε2

2π

∫
∞

−∞

S(ω)
(

λ

2((ω+ 2)2 + λ2)
+

λ

2((ω− 2)2 + λ2)

)
dω, (3.32)

which determines the growth rate λ in response to a given power spectrum S.
A special choice of S for a phase-modulating wave, (3.8), reduces (3.32) to a simple

algebraic equation,

λ=
ε2

2(λ+µ)
, (3.33)

where trivial cross-multiplication terms are neglected. The positive root of (3.33) is
given as λ = (−µ +

√
µ2 + 2ε2)/2. This is equivalent to the result of § 3.1, that is,

(3.21).
Although the heuristic method in § 3.1 and the statistical theory introduced here

both produce the same result in the current example, the latter is a more useful
methodological approach than the former. The difference between them can be
clearly seen when we consider the effect of detuning. If the central frequency of the
external function in (3.1) deviates slightly from twice the natural frequency of the
system as

f =
√

2 sin((2+ η)t+
√

2µWt + θ) (η� 1), (3.34)
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the energy growth moderates as η increases. The heuristic method fails to cope with
this problem. On the other hand, the characteristic equation (3.32) derived from the
statistical theory in this case reduces to

λ=
ε2(λ+µ)

2(λ+µ)2 + η2
. (3.35)

This is a reasonable result since the positive root of (3.35) coincides with the classical
solution (appendix B) in the limit of µ→ 0.

4. Finite-dimensional case
In §§ 2 and 3, the fundamentals of linear resonance and parametric excitation have

been explored for the zero-dimensional cases. In this section, being concerned with
real wave systems, we extend the discussion to the finite-dimensional cases. The
course is essentially the same as that in § 3.2; we derive the growth rate of PSI
using a statistical theory of weak wave–wave interactions. Note that the methodology
developed here may apply to a wide range of weakly nonlinear wave systems,
including the oceanic internal wave field where resonant triad interaction plays the
dominant role in the energy transfer in wavevector space.

4.1. Statistical description of wave–wave interaction
Wave motions are generally described by partial differential equations in which all
the variables are defined as functions of both spatial and temporal coordinates. To
discuss the wave–wave interactions, however, it is rather convenient to take the
Fourier transform such that each spatial coordinate is replaced by the corresponding
wavenumber. As a result, the governing equations are transformed into an integro-
differential equation. Moreover, in many cases, a conservative wave system can be
represented in a simple Hamiltonian form, and a common procedure can be utilised
to derive a statistical equation that describes the energy transfer in wavevector space
(see Zakharov et al. 1992). The most standard model for a three-wave system in
d-dimensional space is described by the Hamiltonian

H=H2 + εH3, (4.1a)

H2 =

∫
ω(k)a†(k)a(k) dk, (4.1b)

H3 =

∫ {
1
2

V(k1, k2, k3)a†(k1)a(k2)a(k3)δ(k1 − k2 − k3)

+
1
6

U(k1, k2, k3)a(k1)a(k2)a(k3)δ(k1 + k2 + k3)

}
dk1 dk2 dk3 + c.c., (4.1c)

and the evolution equation

i
∂a
∂t
=
δH
δa†

, (4.2)

where a(k, t) is a complex variable defined as a function of wavevector k∈Rd, δ(k) is
the d-dimensional delta function, coefficients ω(k), V(k1, k2, k3) and U(k1, k2, k3) are
functions constant in time, ε is a constant parameter, c.c. denotes the complex
conjugate of the previous terms, and integration is performed over the whole
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wavenumber space. Without loss of generality, we may assume the symmetry of
the arguments of the coefficients: V(k1, k2, k3)= V(k1, k3, k2) and U does not change
under any permutation of the arguments. We further assume that ω(k) > 0 holds
almost everywhere in Rd, which assures the positivity of the Hamiltonian H in the
asymptotic limit ε→ 0. Appendix C briefly describes the formulation of this model
for the case of rotating long internal waves.

Variable a(k, t) specifies the amplitude and phase of the wavevector k component;
it is translated to the real domain, r ∈ Rd, by the inverse Fourier transform,
(2π)−d/2

∫
a(k, t)eik·r dk. Expanding the functional derivative of (4.2) leads to an

integro-differential equation:

i
∂a1

∂t
=ω1a1+ ε

∫ (
1
2

V123a2a3δ1−2−3 + V†
213a2a†

3δ2−1−3 +
1
2

U†
123a†

2a†
3δ1+2+3

)
dk23, (4.3)

where, for conciseness, subscripts are used to represent the arguments of a variable;
specifically, a1 = a(k1, t), ω1 = ω(k1), V123 = V(k1, k2, k3), U123 = U(k1, k2, k3)
and δ1−2−3 = δ(k1 − k2 − k3). From (4.3), one may understand that ω(k) represents
the linear dispersion relation, V(k1, k2, k3) and U(k1, k2, k3) represent the nonlinear
coupling coefficients for triad interaction, and ε specifies the intensity of the nonlinear
interaction. We shall regard ε to be small, that is, the nonlinearity is sufficiently weak.

In the following, we will construct a statistical model to describe the nonlinear
energy transfer among waves. First of all, as in the previous sections, let us introduce
the notation 〈·〉 to specify the ensemble average. Then, we assume the spatial
homogeneity of the system in a statistical sense; that is, any kind of statistical quantity
is invariant with respect to the coordinate change in the real domain, r→ r+ r′. Since
this transformation changes the mth moment of a and a† as

〈a1 . . . ala
†
l+1 . . . a

†
m〉→ 〈a1 . . . ala

†
l+1 . . . a

†
m〉e
−i(k1+···+kl−kl+1−···−km)·r′, (4.4)

it can become non-zero only if k1 + · · · + kl − kl+1 − · · · − km = 0 is satisfied. This
condition allows the second- and third-order correlation functions (here we omit 〈a1a2〉

since it will not appear in the following discussion) to be represented as

〈a†(k1, t)a(k2, t)〉 = n(k1, t)δ(k1 − k2), (4.5a)
〈a†(k1, t)a(k2, t)a(k3, t)〉 = J(k1, k2, k3, t)δ(k1 − k2 − k3), (4.5b)
〈a(k1, t)a(k2, t)a(k3, t)〉 =K(k1, k2, k3, t)δ(k1 + k2 + k3). (4.5c)

In the following, we also utilise subscripts to represent the arguments of n, J, K, such
as n1 = n(k1, t), J123 = J(k1, k2, k3, t) and K123 =K(k1, k2, k3, t). Multiplying (4.3) by
a†

1′ , subtracting its complex conjugate, taking an ensemble average, substituting (4.5),
and integrating it with respect to k1′ , we obtain the evolution equation for the second-
order correlation function n as

∂n1

∂t
= ε Im

∫
(V123J123δ1−2−3 − 2V213J213δ2−1−3 −U123K123δ1+2+3) dk23. (4.6)

To calculate this equation, we need to evaluate the third-order correlation functions J
and K in terms of the second-order correlation function n. This closure problem can
be solved under the weak nonlinearity condition and the statistical assumptions.

Assuming that the nonlinear parameter ε is small, let us expand the variable a as

a= a0
+ εa1

+ · · · , (4.7)
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where the superscripts denote the order of perturbation. Substituting (4.7) into (4.3)
and evaluating the O(1) and O(ε) terms, respectively, we readily obtain the leading-
order solution,

a0(k, t)= a0(k, t′)e−iω(k)(t−t′), (4.8)

where the ‘initial’ time t′ can be arbitrarily chosen, and the first-order solution,

a1
1 = −i

∫ t

e−iω1(t−t′)
∫ (

1
2

V123a0
2(t
′)a0

3(t
′)δ1−2−3

+V†
213a0

2(t
′)a0†

3 (t
′)δ2−1−3 +

1
2

U†
123a0†

2 (t
′)a0†

3 (t
′)δ1+2+3

)
dk23 dt′. (4.9)

Next we employ the statistical assumptions for the different-time correlations of the
leading-order variable a0. (The assumption used here is referred to as the random
phase and amplitude (RPA) field (Nazarenko 2011), a generalised version of the
classical Gaussian field. Since the phase-modulated wave adopted in this study, such
as (2.13), is not Gaussian, RPA is more suitable in the present context.) Although
a similar assumption has already been introduced in § 3.2, here we explain it more
precisely. Let us separate a0 into its amplitude and phase:

a0(k, t)= α(k, t)eiθ(k,t). (4.10)

Then we regard α(k, t) and θ(k, t) as statistically independent of all k∈Rd with θ(k, t)
distributed uniformly from 0 to 2π. This assumption makes odd-order correlations
trivially zero. Besides, an even-order correlation can become non-zero only if a and
a† appear the same times in it; i.e. if m= 2l holds in 〈a0

1 . . . a
0
l a0†

l+1 . . . a0†
m 〉. With use

of (4.8), the non-trivial second-order correlation is written as

〈a0
1(t)a

0†
2 (t
′)〉 = n1(t′)δ(k1 − k2)e−iω1(t−t′). (4.11)

The non-trivial fourth-order correlation is evaluated by using the second-order
correlations as

〈a0
1a0

2a0†
3 a0†

4 〉 = 〈a
0
1a0†

3 〉〈a
0
2a0†

4 〉 + 〈a
0
1a0†

4 〉〈a
0
2a0†

3 〉, (4.12)

except for the special case of k1 = k2 = k3 = k4, which we neglect since it will
not contribute to resonant interaction in dispersive wave systems. We substitute (4.7)
together with (4.9) into the left-hand sides of (4.5b) and (4.5c), evaluate the correlation
terms using (4.11) and (4.12), perform the wavenumber integrations, and omit the
delta functions on both sides, to obtain

J123 = iε
∫ t

ei(ω1−ω2−ω3)(t−t′)V†
123(n2(t′)n3(t′)− n1(t′)n3(t′)− n1(t′)n2(t′)) dt′, (4.13a)

K123 =−
iε
2

∫ t

e−i(ω1+ω2+ω3)(t−t′)U†
123(n1(t′)n2(t′)+ n1(t′)n3(t′)+ n2(t′)n3(t′)) dt′.

(4.13b)

Consequently, the third-order correlations J and K can be evaluated by the second-
order correlation n, making (4.6) closed in terms of n.
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If we replace the past value of the second-order correlation n(t′) in (4.13) by its
present value n(t), i.e. using the Markovian approximation, and then integrate (4.13)
from −∞ to t, (4.6) reduces to the usual kinetic equation,

∂n1

∂t
= ε2π

∫
{|V123|

2(n2n3 − n1n3 − n1n2)δ(k1 − k2 − k3)δ(ω1 −ω2 −ω3)

− 2|V213|
2(n1n3 − n1n2 − n2n3)δ(k2 − k1 − k3)δ(ω2 −ω1 −ω3)} dk23. (4.14)

(Here, we assume that ω1 + ω2 + ω3 never becomes equal to zero, so that the terms
involving U trivially vanish.) However, this procedure is valid only in a steady
state. For an unsteady process, especially for the instability problem, the Markovian
approximation might not be valid. In such a case, a set of equations (4.6) and (4.13)
is a more appropriate statistical model since it takes into account the ‘hysteresis’ of
the spectrum.

4.2. Stability analysis
We now analyse the stability of a modulating wave train using the statistical equation,
(4.6) and (4.13). To simplify the problem, some presumptions are made:

(i) The action density is decomposed into separable background and infinitesimal
disturbance components, n=NB+ n′. The background spectrum NB(k) is idealised
as a strict stationary solution of the basic statistical equation, i.e. NB(k) is a
solution of the kinetic equation (4.14) with ∂n/∂t= 0.

(ii) The background spectrum NB(k) represents a modulating wave train with the
carrier wavevector kB. Therefore, NB(k) vanishes except in the vicinity of a sharp
peak at kB.

(iii) The disturbance spectrum n′(k) is enhanced through the resonant or near-resonant
interactions with the background components. Therefore, n′(k) vanishes except in
the vicinity of the (d − 1)-dimensional manifold where wavevectors k1 and k2
satisfy the perfect resonance conditions:

k1 + k2 − kB = 0, ω(k1)+ω(k2)−ω(kB)= 0. (4.15)

(iv) Terms that do not cause resonance, especially all the terms with the coefficient
U, are ignored.

Consequently, combining (4.6) and (4.13), we can obtain the approximate evolution
equation for n′ as

∂n′(kα, t)
∂t

= 2ε2 Re
∫

dk dkβ δ(−kα + k− kβ)

×

∫ t

dt′ {ei(ω(kα)−ω(k)+ω(kβ ))(t−t′)
|V(k, kα, kβ)|2NB(k)n′(kβ, t′)

+ ei(ω(kα)−ω(k)+ω(kβ ))(t−t′)
|V(k, kα, kβ)|2NB(k)n′(kα, t′)}. (4.16)

Supposing the solution of (4.16) to be an exponential function n′=N(k)eλt, integration
of the right-hand side with respect to t′ from −∞ to 0 yields a nonlinear eigenvalue
problem,

λN(kα) = ε2
∫

dk dkβ δ(−kα + k− kβ)

×{Φ(ω(kα)−ω(k)+ω(kβ), λ)|V(k, kα, kβ)|2NB(k)N(kβ)
+Φ(ω(kα)−ω(k)+ω(kβ), λ)|V(k, kα, kβ)|2NB(k)N(kα)}, (4.17)
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with an associated transfer function,

Φ(ω, λ)≡
2λ

(ω2 + λ2)
. (4.18)

Equation (4.17) is a kind of self-consistent equation; the ‘renormalised’ transfer
function Φ contains an unknown parameter λ that is to be determined. It is worth
noting that, in the limit of λ→ 0, Φ(ω, λ) approaches 2πδ(ω) and hence the problem
reduces to that obtained from the usual kinetic equation. In the following, we discuss
the solution of (4.17) with finite λ using some simplifications.

4.3. One-dimensional case
Although interaction among oceanic internal waves is a three-dimensional process, we
make the discussion simpler by first considering a one-dimensional problem (d = 1).
In this model, both the analytical and numerical solutions for (4.17) are accessible.
Attention should be directed to the additional factor from the case in § 3, namely, the
shape of the disturbance spectrum N(k), which corresponds to the eigenfunction of
the unstable mode.

Let us write the solution of the resonant condition (4.15) as k1 = kc
1, k2 = kc

2
and decompose the disturbance spectrum as N(k) = N1(k) + N2(k) with N1 and
N2 concentrated near kc

1 and kc
2, respectively. We then redefine the wavenumber

coordinates as the deviations from kB, kc
1, kc

2, i.e. k = kB + k′ and (kα, kβ) =
(kc

1, kc
2)+ (k

′

1, k′2) or (kα, kβ)= (kc
2, kc

1)+ (k
′

2, k′1). The first-order truncation of a Taylor
expansion in the denominator of the transfer function in (4.17) yields

Φ(ω(k1)+ω(k2)−ω(k), λ)∼
2λ

((c− c1)k′ + (c1 − c2)k′2)2 + λ2
(4.19a)

=
2λ

((c− c2)k′ + (c2 − c1)k′1)2 + λ2
, (4.19b)

where the interaction condition k′ = k′1 + k′2 is used, and the group velocity cg(k) =
∂ω/∂k and the abbreviations c = cg(kB), c1 = cg(kc

1), c2 = cg(kc
2) are defined. Since

the interaction is restricted in a narrow-band region, it may be natural to approximate
the coupling coefficients as a constant value, |V(k, kα, kβ)|2 ∼ |V(kB, kc

1, kc
2)|

2
≡ |V|2.

Hereinafter, we rewrite the spectrum functions as Ñ1(k′1) ≡ N1(kc
1 + k′1), Ñ2(k′2) ≡

N2(kc
2 + k′2), ÑB(k′)≡NB(kc

B + k′).
For (4.17) to be solved, the background spectrum ÑB(k′) requires specification. In

fact, several model spectra for a modulating wave train have been suggested in studies
for surface waves (Stiassnie, Regev & Agnon 2008). In this paper, we choose

ÑB(k′)=
2N0µk

k′2 +µ2
k
, (4.20)

where µk is the spectrum width in wavenumber space. In § 2, we have derived the
frequency spectrum for a modulating sinusoidal function as (2.15), which is the same
form as (4.20) when the frequency ω is replaced by the wavenumber k. From this
fact, one may understand that (4.20) represents the spectrum of a wave train subject
to spatial random phase modulation. The eigenvalue equation (4.17) is now explicitly
represented as
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λÑ1(k′1) = ε2
|V|2

∫ {
2λ

((c− c2)k′ + (c2 − c1)k′1)2 + λ2

2N0µk

k′2 +µ2
k
Ñ2(−k′1 + k′)

+
2λ

((c− c2)k′ + (c2 − c1)k′1)2 + λ2

2N0µk

k′2 +µ2
k
Ñ1(k′1)

}
dk′, (4.21a)

λÑ2(k′2) = ε2
|V|2

∫ {
2λ

((c− c1)k′ + (c1 − c2)k′2)2 + λ2

2N0µk

k′2 +µ2
k
Ñ1(−k′2 + k′)

+
2λ

((c− c1)k′ + (c1 − c2)k′2)2 + λ2

2N0µk

k′2 +µ2
k
Ñ2(k′2)

}
dk′. (4.21b)

These equations are similar to (3.32) with (3.8) except that the present model involves
the unknown functions Ñ1,2 to be determined along with λ.

Let us tentatively set the disturbance spectra Ñ1,2 in the integrands to be constant,
to reduce the equations to

λÑ1 =
4πε2
|V|2N0

|c− c2|µk + λ
Ñ2 +

4πε2
|V|2N0

|c− c2|µk + λ
Ñ1, (4.22a)

λÑ2 =
4πε2
|V|2N0

|c− c1|µk + λ
Ñ1 +

4πε2
|V|2N0

|c− c1|µk + λ
Ñ2. (4.22b)

An additional condition |c| � |c1|, |c2|, which is generally valid for large-scale
background waves and small-scale disturbance waves in the ocean, further reduces
(4.22) to a simple quadratic equation for λ. The growth rate can then be written in
the same form as (3.21), namely,

λ=
−µ+

√
µ2 + 4CEB

2
, (4.23)

where parameters are rearranged as

µ≡ |c|µk =

∣∣∣∣∂ω∂k

∣∣∣∣
kB

µk, C≡
8πε2
|V|2

ω(kB)
, EB ≡ω(kB)N0. (4.24a−c)

Recalling that µk represents the spectrum width of the background wave in
wavenumber space, µ corresponds to the spectrum width in frequency space in
the same way as the zero-dimensional case (§ 2). The parameter EB represents the
energy density of the background wave. We again emphasise that the solution (4.23)
possesses two asymptotic forms: the dynamic limit λ∼

√
CEB for µ�

√
CEB and the

kinetic limit λ∼CEB/µ for µ�
√

CEB. In this way, the two classical approaches are
unified.

Figure 5(a) plots the analytical expression (4.23) and the direct numerical solutions
of eigenvalue equations (4.21). See appendix D for the details of the numerical solver
of the eigenproblem. Despite the assumption that the disturbance spectra are taken to
be constant, the analytical expression coincides well with the numerical solution. This
favourable result can be attributed to the following.

Generally speaking, the integrands on the right-hand side of (4.21) possess
innumerable singular points in the complex plane of k′. Each singular point contributes
to the total integral through the residue theorem. The relative contribution of each
depends on the functional form. In the present case, since all the integrands are real
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FIGURE 5. Numerical and approximate analytical solutions to the eigenvalue
equations (4.21). (a) Solutions of growth rates versus the background action density N0
with the group velocity of the background wave chosen as c= 3.0, 5.0, 8.0. Numerically
obtained results are plotted as scatterplots, whereas the analytical expression (4.23) is
depicted as curves. (b–d) Spectrum shapes of the eigenfunctions Ñ1 that represent the
disturbance spectra, in comparison with the background wave spectrum ÑB and the
transfer functions Φ. Each function is normalised such that it becomes 1.0 at k′ = 0.
Three cases (c= 5.0, N0 = 0.01), (c= 5.0, N0 = 0.16) and (c= 8.0, N0 = 0.1) are shown.
See appendix D for the details of the calculation.

and finite, singular points always occur as a set of conjugate numbers. Therefore, the
integrands may be separated into the factors of 1/((k′−α)2+β2), the residue of which
is proportional to β−1. This means that the relative contribution from each singular
point strongly depends on its imaginary part, or the bandwidth of the factor. As the
bandwidth β becomes smaller, the contribution from its associated singular point
becomes more significant. With this in mind, we again consider the equations (4.21).
The integrands involve three factors: the transfer function Φ, the background energy
spectrum ÑB and the disturbance spectrum Ñ1,2. To see the relative bandwidths of
these, figure 5(b–d) shows the numerically obtained eigenfunctions Ñ1(k′1) with Φ

and ÑB for three cases. The bandwidth of the disturbance spectrum Ñ1 never becomes
smallest among those of the three functions. Therefore, at least in these examples,
the contribution to the integration from the singular points in Ñ1 is minor. Hence,
the disturbance spectrum can be regarded as constant in the integration, making the
analytical solution (4.23) a good approximation of the true solution of (4.21).
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Taking further estimates, supposing |c|� |c1|, |c2|, integration on the right-hand side
of (4.21) with N1,2 in the integrands taken as constants yields

λÑ1,2 ∼
8πε2
|V|2N0(|c|µk + λ)

(|c|µk + λ)2 + (c1 − c2)2k′21,2
, (4.25)

which shows that the half-value width of the disturbance spectrum is approximately
equal to (|c|µk + λ)/|c1 − c2| ≡ βD. Again taking into account |c| � |c1|, |c2|, along
with the fact that the bandwidths of Φ and B̃B are, respectively, λ/|c|≡βT and µk≡βB,
we find that βD is always larger than βT or βB. Consequently, the disturbance spectrum
N1,2 can be regarded as constant in the integration, which is self-consistent with the
derivation of (4.25).

The considerations above can be reinterpreted from a physical point of view. When
the background spectrum NB has a sharp peak at some wavenumber, the resonant
interaction specified by the transfer function Φ produces peaks in the disturbance
spectrum N, as well. However, if the group velocity of disturbances is much slower
than that of the background wave, the spectrum width of N does not become as narrow
as NB and Φ. Therefore N can be taken to be constant in the integration.

We additionally consider the relative contributions from the singular points in the
transfer function Φ and the background spectrum ÑB, which are determined from the
relative magnitudes of βT and βB. If βT�βB holds, the singular point in ÑB dominates
the integration; and if βT � βB, on the other hand, the singular point in Φ becomes
dominant. These respectively correspond to the cases discussed in § 2; we name the
situation when the spectrum width of K(ω, t) is much larger than that of S(ω) in (2.6)
the dynamic time range and its opposite the kinetic time range. The present situations,
βT � βB and βT � βB, can be similarly called the ‘dynamic’ and ‘kinetic’ ranges of
PSI, respectively.

4.4. Three-dimensional case
For oceanographic applications, we should discuss the three-dimensional case,
analysing the eigenvalue equation (4.17) with d = 3. This problem is so complicated
that a significant effort is required to solve it for both N and λ even numerically.
Nonetheless, also in this problem, imposing the assumptions on the group velocities
and the spectrum widths, we retain the main result in the one-dimensional case,
namely solution (4.23). Relegating the rigorous derivation of it to appendix E, let us
proceed to the numerical experiments in the next section.

5. Numerical experiments
In § 4, the growth rate of PSI is obtained by solving the eigenvalue problem

(4.17) both analytically and numerically, but (4.17) is itself derived under several
assumptions. The most crucial one is the statistical assumptions as described in (4.10)
to (4.12). To assess the validity of the analytical result, we should conduct direct
numerical experiments excluding these assumptions. However, direct calculation for
the oceanic internal wave field, such as conducted by Lvov & Yokoyama (2009), is too
hard due to the following reasons. In general, numerical simulation of an interacting
wave field requires careful treatment. While the theoretical consideration so far is
aimed at continuous wave spectra, numerical computation requires discretisation of
wavevector space, the interval of which is determined by the size of the model
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domain L. Over the time scale of τ = L/|∇ω|, which represents the time for wave
packets to cross over the domain, resonant interaction is subject to the finite size
effect (Nazarenko 2011). Since τ should be much longer than the interaction time of
PSI, a sufficiently large model size is required. Another problem is that, to discuss
statistical properties of the system, numerous trials for the same situation are needed.
To avoid the massive computation, we adopt a very simplified model here.

The motivation of this study originates from the speculation that parametric
instability within the oceanic internal tides might be impeded by the phase modulation
occurring due to geostrophic eddies. Therefore, the model should inherit the characters
of the interaction between modulated internal tides and enhanced disturbances. Based
on the understanding that internal tides form a progressive wave train exciting a
pair of disturbance waves with opposite wavenumbers (Young et al. 2008), the
suitable model is the one that mimics a one-way propagating background wave and
bi-directional unstable disturbances. Additionally, we may well consider the following
prescriptions: (i) dispersion is not important as long as the group velocity of the
background wave is much larger than that of disturbance components, (ii) amplitudes
of disturbances are so small that the feedback to the background wave is negligible,
and (iii) interaction is expressed through the fluctuation of the coefficient parameter
of the governing equation of disturbance components. Note that (i) comes from the
consideration in the previous section and, for (iii), phase velocity should be a suitable
coefficient parameter for a non-dispersive wave equation. Finally, we come up with
basic model equations as

∂2u
∂t2
−
∂

∂x
(1+ εU)

∂u
∂x
= 0, (5.1a)

∂U
∂t
+ c

∂U
∂x
= 0, (5.1b)

in which U stands for the internal tide wave train and u the disturbance components
amplified through the interaction with U. Parameter c represents the phase speed of
the internal tides and should be larger than that of the disturbance components, namely,
unity. On the other hand, the coupling parameter ε should be sufficiently smaller than
unity. The initial condition of the background component U is

U(x, t= 0)=
√

2 sin(kBx+
√

2µkWx + θ), (5.2)

where Wx is the Wiener process and θ is a uniform random number ranging from 0 to
2π. Definitions of the carrier wavenumber kB and the spectrum width µk follow those
in § 4. Equations (5.1) along with (5.2) meet all the requirements for the present study.
In the following, taking the Fourier transform, we will solve (5.1) numerically in the
wavenumber domain.

Assuming periodic boundary conditions of length L, we determine the interval in
the wavenumber domain as 1k = 2π/L. To simplify the problem, we exclude the
homogeneous component in advance:

∫
u dx= 0. Accordingly, the set of wavenumbers

is specified as
K≡ {±1k,±21k, . . .} . (5.3)

The Fourier series expansion is applied:

u=
∑
k∈K

ũ(k)eikx, U =
∑
k∈K

Ũ(k)eikx. (5.4)
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Peak wavenumber of the background wave kB = 1.0
Phase velocity of the background wave c= 5.0
Total number of grids for each component n= 1025
Resolution in wavenumber space 1k= 2.0/(n− 1)
Time interval 1t= 0.02
Standard value of variable parameters ε = 0.05, µk = 0.02
Variation of parameters ε = 0.01, 0.03, 0.06, . . . , 0.3

µk = 0.0, 0.01, 0.02, . . . , 0.1
Total number of trials 192

TABLE 1. Parameters for numerical experiments.

We then introduce a new variable a defined as

a(k)=
1
√

2|k|

(
dũ(k)

dt
+ i|k|ũ(k)

)
. (5.5)

The equations of motion (5.1) are consequently transformed into

i
da(k)

dt
= |k|a(k)+ ε

∑
k′∈K

[
k(k− k′)

2
√
|k(k− k′)|

Ũ(k′)a(k− k′)

+
k(k− k′)

2
√
|k(k− k′)|

Ũ(k′)a†(k′ − k)
]
, (5.6a)

i
dŨ(k)

dt
= ckŨ(k). (5.6b)

The first term in the square brackets in (5.6a) does not cause any resonance, so that
is completely omitted from consideration.

The following resonant conditions determine wavenumbers kc
1 and kc

2 which most
intensively interact with each other:

kc
1 + kc

2 − kB = 0, |kc
1| + |k

c
2| − ckB = 0. (5.7a,b)

Without loss of generality, kc
1 > 0 and kc

2 < 0 can be assumed. Different from usual
spectral models in which grids are homogeneously distributed in the wavenumber
domain, calculation points are chosen to be concentrated near kB, kc

1, kc
2 in the

present study. Specifically, three sets of wavenumbers are arranged as

K′ = {kB, kB ±1k, . . . , kB ± (n− 1)1k/2}, (5.8a)
K′1 = {k

c
1, kc

1 ±1k, . . . , kc
1 ± (n− 1)1k/2}, (5.8b)

K′2 = {k
c
2, kc

2 ±1k, . . . , kc
2 ± (n− 1)1k/2}, (5.8c)

and all of the possible triad interactions among components in K′, K′1, K′2 are taken
into consideration. Solving (5.6a) using the fourth-order Runge–Kutta method, we
simulate the time evolution of a(k) from initial white noise. Detailed settings and
parameters are listed in table 1.

Examples of the time series of average energy density E=〈
∑

k |k| |a(k)|
2
〉 are shown

in figure 6. It is clear that, after a sufficiently long time, the energy expectation value
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FIGURE 6. Examples of the time series of the average energy density obtained in the
numerical experiments for the model equation (5.1). All of the data are normalised such
that E = 1 is satisfied at t = 0. The spectrum width of the background wave varies in
µk = 0.0, 0.01, 0.02, . . . , 0.1 with a fixed amplitude ε = 0.05. The energy growth rate
decreases monotonically as µk increases.
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FIGURE 7. Growth rates of the expectation value of energy density E for the model
equation (5.1) versus (a) the amplitude of the background wave ε with a fixed spectrum
width µk = 0.02 and (b) µk with a fixed ε = 0.05. Grey squares are empirical
values obtained from numerical experiments. Solid black curves show λ = (−5.0µk +√
(5.0µk)2 + 1.732ε2)/2, which corresponds to (4.23), whereas broken curves correspond

to the two asymptotic limits.

grows exponentially. Linear fitting of log E versus t gives an empirical growth rate λ.
The parameter dependence of λ is compared with the theoretical estimates in figure 7.
The unified expression (4.23), denoted as the solid black curves, seems to agree well
with the numerical results, the grey squares. We also point out that, when the spectrum
width µk takes a halfway value between the dynamic and kinetic ranges, both the
asymptotic expressions, the broken curves, overestimate the growth rates. Our unified
theory is useful to investigate the effect of weak modulation of the background wave.
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The results in figure 7(b) provide further insights. Let us define the intercept of the
analytical solution on the vertical axis as λ0 to rewrite (4.23) as

λ=
−µ+

√
µ2 + 4λ2

0

2
. (5.9)

It is noticeable that the coupling coefficient C involved in the original formula
(4.23), which is generally hard to get, now disappears and λ0 appears instead, which
represents the growth rate in the case of µ= 0. This is an advantage since, without
conducting experiments for random wave fields as in the present simulation, we can
discuss quantitatively the effect of phase modulation on PSI combining the single
experimental result, λ0, with the information about the bandwidth, µ. As discussed
at the beginning of § 1, the previous experimental studies have deterministically
estimated the growth rate of PSI. Equation (5.9) serves as the correction formula
to give the actual growth rate of PSI from the conventional estimate, λ0, with the
spectrum information of internal tides, µ, in the real ocean.

6. Concluding remarks

Previous studies of parametric subharmonic instability can be classified into two
types that are concerned with the dynamic and kinetic time scales, which have
been carried out using, say, deterministic and statistical theories, respectively. The
applicability of the two theories depends on the spectrum width of the background
waves. The deterministic theory is applicable only to systems with discrete line
spectra. The classical statistical theory described by the kinetic equation works well
if the bandwidth of the frequency spectrum is sufficiently broad. Our new solution
(4.23), obtained by solving the nonlinear eigenvalue equation (4.17), unifies these
past two results and is valid even for the case of a slowly modulating wave train.

In this paper, we have also investigated the theoretical foundation of the general
wave–wave interactions. In the study of oceanic internal waves, the validity of the
kinetic equation has been questioned in terms of its two underlying assumptions:
the weak nonlinearity (Holloway 1980) and the random phase property (Young et al.
2008). The present study offers another viewpoint to this problem; that is, even
though the weak nonlinearity and the random phase assumption are both employed in
our formulation, the result still involves the rapid instability occurring at the dynamic
time scale t ∼ O(ε−1), which cannot be seen in the classical kinetic equation. We
further point out that the additional Markovian approximation is the crucial premise
for the derivation of the kinetic equation, which may break down when applied to
an unsteady process. From this perspective, formulations (4.6) and (4.13), which do
not involve the Markovian approximation, serve as extensions of the classical kinetic
equation.

Again, looking at (4.23) and figure 7, we notice that as the dimensionless
number δ ≡ (CEB)

1/2/µ decreases, the growth rate deviates from that observed in
standard deterministic (or dynamic) theory. This parameter δ corresponds to the
so-called Benjamin–Feir index (BFI) for water surface waves (Janssen 2003). As
for Benjamin–Feir instability in four-wave systems, BFI has a threshold value below
which instability does not occur. On the other hand, in three-wave systems, as long
as the resonant conditions are satisfied, instability will always occur, but its properties
vary continuously from dynamic to kinetic types as δ decreases. On this point, the
effect of phase modulation on the resonant instability is essentially different between
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surface and internal waves. In the study of the four-wave interactions among surface
gravity waves, a statistical model corresponding to (4.6) and (4.13) has recently been
referred to as the generalised kinetic equation (gKE) and applied to the non-stationary
spectra in response to wind forcing (Annenkov & Shrira 2006, 2015, 2018). However,
the applicability of gKE to the Benjamin–Feir instability is yet to be discussed.
To deepen understanding of the statistics of resonant interaction systems, thorough
comparison between the instabilities of surface and internal waves is required.

Based on the results of this study, we suggest a proposal that, towards the
quantification of PSI in the ocean, we need to take into account not only the
amplitude or the wavenumber of a wave train but also its spectrum shape. It is
expected that, utilising time-series data obtained from long-term mooring systems,
spectrum width µ will be estimated empirically and applied to the formula (4.23) or
(5.9). There remains a lot of work to do for the detailed clarification of PSI in the
global ocean.
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Appendix A. Autocorrelation of the modulated sinusoidal function
The autocorrelation function of (2.13) is written as

〈 f (t+ τ)f (t)〉 =
〈

cos(τ +
√

2µ(Wτ+t −Wt))
〉

−

〈
cos(2t+ τ +

√
2µ(Wτ+t +Wt)+ θ)

〉
. (A 1)

Given that θ is a uniform random number, the last term identically vanishes. We shall
write Wτ+t − Wt ≡ Wτ , whose moments depend only on the lag time τ . The basic
property of the Wiener process yields〈

exp(i(τ +
√

2µWτ ))
〉
= exp(iτ)

〈
exp(i

√
2µWτ )

〉
= exp(iτ)

∞∑
n=0

〈
(i
√

2µWτ )
n
〉

n!

= exp(iτ)
∞∑

n=0

(−2µ|τ |)n · 1 · 3 · · · (2n− 1)
(2n)!

= exp(iτ)
∞∑

n=0

(−µ|τ |)n

n!

= exp(iτ −µ|τ |). (A 2)

Using this, equation (A 1) reduces to (2.14).

Appendix B. Approximate solution of the Mathieu equation
Let us consider the Mathieu equation:

d2x
dt2
+ (1+

√
2ε sin((2+ η)t+ θ))x= 0, (B 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

44
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.44


274 Y. Onuki and T. Hibiya

with the associated initial conditions x(0)=0, ẋ(0)=a. If ε and η are small, following
Landau & Lifshitz (1976), we may assume an approximate solution of (B 1) as

x= u sin
((

1+
η

2

)
t+

θ

2

)
+ v cos

((
1+

η

2

)
t+

θ

2

)
, (B 2)

where u and v are slow functions of t such that u̇ and v̇ are regarded as sufficiently
small. Therefore, the derivative of x is approximately

ẋ∼ u cos
((

1+
η

2

)
t+

θ

2

)
− v sin

((
1+

η

2

)
t+

θ

2

)
. (B 3)

From these expressions, the initial conditions are represented as u(0)= a cos(θ/2) and
v(0)=−a sin(θ/2).

We now consider the variation in u and v. Substituting (B 2) into (B 1) and ignoring
the second derivatives of u and v and higher-order harmonic terms yields

2
du
dt
− ηv +

√
2ε
2

u= 0, (B 4a)

−2
dv
dt
− ηu+

√
2ε
2
v = 0. (B 4b)

Solutions of its characteristic equation are

± λa ≡±
1
2

(
ε2

2
− η2

)1/2

. (B 5)

Let us now assume ε2/4− η2 > 0 so that λa takes a positive real value. Taking into
account the initial conditions, the solutions of (B 4) become u= u+eλat

+ u−e−λat and
v = v+eλat

+ v−e−λat, where

u+ =

(
a
2
−

√
2εa

8λa

)
cos

θ

2
−
ηa
4λa

sin
θ

2
, (B 6a)

u− =

(
a
2
+

√
2εa

8λa

)
cos

θ

2
+
ηa
4λa

sin
θ

2
, (B 6b)

v+ =−
ηa
4λa

cos
θ

2
−

(
a
2
+

√
2εa

8λa

)
sin

θ

2
, (B 6c)

v− =
ηa
4λa

cos
θ

2
−

(
a
2
−

√
2εa

8λa

)
sin

θ

2
. (B 6d)

Regarding θ as a uniform random number ranging from 0 to 2π, the energy
expectation value is calculated as

〈E〉 =
1

2π

∫ 2π

0
(x2
+ ẋ2) dθ ∼

1
2π

∫ 2π

0
(u2
+ v2) dθ

=

(
1
2
+

ε2

16λ2
a

+
η2

8λ2
a

)
a2 cosh(2λat)−

η2a2

4λ2
a

. (B 7)

Note that the growth rate of the energy expectation value is twice that of the amplitude
of the oscillator, i.e. λ = 2λa. In the no-detuning case η = 0, equation (B 7) reduces
to (3.3).
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Appendix C. Hamiltonian description of long internal waves
A basic Hamiltonian description of long internal waves is summarised here. For a

more detailed derivation, refer to the work by Lvov & Tabak (2004) or Medvedev
& Zeitlin (2007). Let us consider an inviscid, incompressible, rotating, stratified fluid
under the hydrostatic approximation. We employ the isopycnal coordinate system r=
(x, y, ρ) and choose the horizontal velocities (u, v) and the thickness h as dependent
variables. Further utilising the Boussinesq approximation with representative density
ρ0, the thickness variable is defined in terms of vertical position z as h≡−ρ0zρ (here
the subscript represents the partial derivative). Note that z is also a function of (x, y, ρ)
and is always associated with h. The governing equations are

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
− fv =−

1
ρ0

∂M
∂x
, (C 1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu=−

1
ρ0

∂M
∂y
, (C 1b)

∂h
∂t
+
∂uh
∂x
+
∂vh
∂y
= 0, (C 1c)

where f is a constant Coriolis parameter and M is the Montgomery potential defined
such as Mρ = gz. As a reference field, we consider the state of rest u = v = 0 with
horizontally uniform thickness h = h0(ρ), and then introduce the thickness deviation
as η ≡ h− h0. The governing equations (C 1) are consequently rewritten in the form
of

∂

∂t

u
v
η

= J

δH/δuδH/δv
δH/δη

 , (C 2)

where the functional H and the skew symmetric operator J are defined as

H=
1
2

∫ (
(h0 + η)(u2

+ v2)+ g
(∫

η

ρ0
dρ ′
)2
)

dr, (C 3a)

J =

 0 q −∂x
−q 0 −∂y
−∂x −∂y 0

 , (C 3b)

with the potential vorticity q ≡ ( f + vx − uy)/(h0 + η). The functional H is the
Hamiltonian that represents the total energy of the system.

To focus on the wave motion, we assume that potential vorticity is uniform on each
isopycnal surface: q = f /h0. As a result, the horizontal velocity can be decomposed
into

u=
∂φ

∂x
−
∂

∂y
1−1

H
fη
h0
, (C 4a)

v =
∂φ

∂y
+
∂

∂x
1−1

H
fη
h0
, (C 4b)

where 1H = ∂
2
x + ∂

2
y is the horizontal Laplacian and φ is the velocity potential. After

some algebraic manipulation, equation (C 2) is transformed into the canonical equation

∂η

∂t
=
δH
δφ
,

∂φ

∂t
=−

δH
δη
, (C 5a,b)
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with the associated Hamiltonian

H=
1
2

∫ [
(h0 + η)

∣∣∣∣∇φ −∇⊥1−1
H

fη
h0

∣∣∣∣2 + g
(∫ ρ η

ρ0
dρ ′
)2
]

dr, (C 6)

where ∇≡ (∂x, ∂y) and ∇⊥ ≡ (∂y,−∂x).
The reference thickness h0 is related to the local buoyancy frequency N as h0=g/N2

and is assumed to be constant. We then take the Fourier transform(
φ(r)
η(r)

)
=

1
(2π)3/2

∫ (
φ̃(k)
η̃(k)

)
e−ik·r dk, (C 7)

where k = (k1, k2, k3) is the three-dimensional wavevector. Writing the horizontal
wavenumber as p ≡

√
k2

1 + k2
2 and the vertical wavenumber as q ≡ k3, we have the

variable transformation

a(k)=
1
2

√
2N2ω

gp2
η̃(k)−

i
2

√
2gp2

N2ω
φ̃(k), (C 8)

with the dispersion relation

ω(k)=

√
f 2 +

g2p2

ρ2
0 N2q2

, (C 9)

which enables the canonical equation (C 5) to be written in the form of (4.1) and (4.2).
Although the coupling coefficients U and V are somewhat complicated functions of
wavevectors, they are obtained in a straightforward manner.

Appendix D. Numerical analysis of eigenvalue equation (4.21)

Here we introduce a constant ε2
|V|2 ≡ B and the additional functions Mr,i

1,2(k′, k′2)
and L1,2(k′1) such that (4.21) are transformed to standard linear eigenvalue equations:

λÑ1(k′1)= 2B
∫

ÑB(k′)Mr
2(k
′, k′1) dk′ + 4πBN0L1(k′1), (D 1a)

λÑ2(k′2)= 2B
∫

ÑB(k′)Mr
1(k
′, k′2) dk′ + 4πBN0L2(k′2), (D 1b)

λMr
1(k
′, k′2)= Ñ1(−k′2 + k′)− ((c− c1)k′ + (c1 − c2)k′2)M

i
1(k
′, k′2), (D 1c)

λMi
1(k
′, k′2)= ((c− c1)k′ + (c1 − c2)k′2)M

r
1(k
′, k′2), (D 1d)

λMr
2(k
′, k′1)= Ñ2(−k′1 + k′)− ((c− c2)k′ + (c2 − c1)k′1)M

i
2(k
′, k′1), (D 1e)

λMi
2(k
′, k′1)= ((c− c2)k′ + (c2 − c1)k′1)M

r
2(k
′, k′1), (D 1f )

λL1(k′1)= Ñ1(k′1)− |c− c2|µkL1(k′1), (D 1g)

λL2(k′2)= Ñ2(k′2)− |c− c1|µkL2(k′2). (D 1h)

Each wavenumber domain is discretised with 64 grid points, the interval of which is
arranged as 1k = µk/6. Consequently, the right-hand sides of (D 1) are rewritten as
the product of a 16 640 × 16 640 sparse matrix and a vector. The largest eigenvalue
and the corresponding eigenvector of this matrix are numerically obtained. In the
calculation, the parameters B= 0.01, c1= 1.0, c2=−1.0 and µk = 0.02 are assumed
to be constant, whereas N0 and c are varied. The results are shown in figure 5.
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Appendix E. Approximate solution for (4.17) with d= 3

Let us define the two-dimensional manifold M in (k1, k2) space that satisfies the
resonant conditions (4.15). We choose a point on this manifold as (kc

1, kc
2) and define

a pair of unit vectors (em
1 , em

2 ) which are normal to M at (kc
1, k

c
2). From the conditions

(4.15), they can be written as

em
1 = em

2 =
c1 − c2

|c1 − c2|
≡ em, (E 1)

where the group velocities at kc
1 and kc

2 are defined as c1 ≡ ∇ω|kc
1

and c2 ≡ ∇ω|kc
2
.

Within the disturbance spectrum N, only wavevectors in the vicinity of M interact
intensively with the background waves. Accordingly, N may vary slowly along M,
but damp rapidly along em. Therefore, the disturbance spectrum near kc

1, kc
2 can be

approximately written as

N(kc
1 + k′1)∼ Ñ1(km

1 ), N(kc
2 + k′2)∼ Ñ2(km

2 ), (E 2a,b)

where km
1 = k′1 · em and km

2 = k′2 · em.
We next examine the transfer function Φ. Given k1, a condition ω(k1) + ω(k −

k1) − ω(k) = 0 determines a manifold N1 in the wavevector space of k. Similarly,
given k2, another condition ω(k− k2)+ ω(k2)− ω(k)= 0 determines a manifold N2
in the wavevector space of k. Along these manifolds, the transfer function takes the
maximum value, Φ|N = 2/λ. We introduce unit vectors en

1 and en
2 which are normal

to N1 and N2. In the vicinity of k1 = kc
1, k = kB or k2 = kc

2, k = kB, they can be
represented as

en
1 =

c− c2

|c− c2|
, en

2 =
c− c1

|c− c1|
, (E 3a,b)

where c≡∇ω|kB is the group velocity of the background wave train.
Substituting kα = kc

1 + km
1 em or kα = kc

2 + km
2 em into (4.17) and performing the

integration with respect to kβ , we may write the equation formally as

λÑ1,2(km
1,2)= ε

2
∫
|V|2Φ(Ñ2,1 + Ñ1,2)NB dk. (E 4)

Now we decompose the integration wavevector as k= kB+ knen
1,2+ k′′ with k′′ · en

1,2= 0
and specify the arguments of the factors on the right-hand side of (E 4): the coupling
coefficient V can be approximated by the constant value, |V|2 = |V(kB, kc

1, kc
2)|

2, the
transfer function Φ is Taylor-expanded in terms of k1,2, kn as

Φ =
2λ

(|c− c2|kn − |c1 − c2|km
1 )

2 + λ2
(E 5)

or

Φ =
2λ

(|c− c1|kn + |c1 − c2|km
2 )

2 + λ2
, (E 6)

the disturbance spectra Ñ1,2 depend on km
1,2, kn and k′′, and the background spectrum

NB depends on kn and k′′. In the same way as in the one-dimensional case (§ 4.3), let
us assume |c| � |c1|, |c2| leading to en

1 ∼ en
2 ≡ en, and regard Ñ1,2 in the integrand as
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constant. Integration of (E 4) with respect to k′′ can now be performed, yielding the
one-dimensional background spectrum,

ÑB(kn)=
1

(2π)2

∫
S

NB(kB + knen
+ k′′) dk′′, (E 7)

where S indicates the two-dimensional plane orthogonal to en
1. Adopting the phase-

modulated sinusoidal function as the background wave that yields

ÑB(kn)=
2N0µk

(kn)2 +µ2
k
, (E 8)

equation (E 4) is calculated to estimate the disturbance spectrum,

λÑ1,2(km
1,2)∼

32π3ε2
|V|2N0(|c|µk + λ)

(|c|µk + λ)2 + |c1 − c2|
2(km

1,2)
2
, (E 9)

the same form as (4.25). Following the logic in the one-dimensional case, we can
conclude that the bandwidth of Ñ1,2 becomes much larger than Φ or NB, which
justifies the assumption that Ñ1,2 in the integrands can be regarded as constant.

Finally, we solve (E 4) algebraically with the conditions of km
1,2 = 0, N1,2 being

constant, and |c| � |c1|, |c2|, to obtain the growth rate λ in the same form as (4.23)
with the parameters

µ≡ |c|µk = |∇ω|kB
µk, C≡

32π3ε2
|V|2

ω(kB)
, EB ≡ω(kB)N0. (E 10a−c)

Again, µ is the spectrum width of the background frequency spectrum.
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