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Abstract

The Holme–Kim random graph process is a variant of the Barabási–Álbert scale-free
graph that was designed to exhibit clustering. In this paper we show that whether the
model does indeed exhibit clustering depends on how we define the clustering coefficient.
In fact, we find that the local clustering coefficient typically remains positive whereas
global clustering tends to 0 at a slow rate. These and other results are proven via
martingale techniques, such as Freedman’s concentration inequality combined with a
bootstrapping argument.
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1. Introduction

The theory of random graphs traces its beginnings to the seminal work of Erdös and Rényi [8].
For about 40 years, most papers in this area were concerned with homogeneous models, where
vertices are statistically indistinguishable. The original Erdös–Rényi model and random regular
graphs both fall into this category; see [2] and [11].

More recently, inhomogeneous random graphs have also gained prominence, as large-scale
networks of social, biological, and technological origins tend to be very far from homogeneous.
Research on models of such ‘complex networks’has attracted much interest in statistical physics,
systems biology, sociology, and computer science, as well as in mathematics. We will not
attempt to survey this huge area of research, but the interested reader is directed to [13] for a
broad survey of the nonrigorous literature and to [6], [7], and [15] for compendia of rigorous
results for many different models.

Two important complex network features are especially important for this paper. The first one
is the power-law, or scale-free, degree distribution. It is believed that many real-life networks
have constant average degree (relative to network size) but a highly skewed degree distribution,
where the fraction of nodes of degree k behaves roughly as k−β for some β > 1. This contrasts
with the Poisson degree distribution of sparse Erdös–Rényi graphs. A well-known scale-free
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model is the seminal Barabási–Álbert preferential attachment random graph model; see [1]
and [4]. In this case β = 3 is the power-law exponent, but any 2 < β ≤ 3 may be achieved by
minor modifications of the process; see [5].

Another important feature of certain social and metabolic networks is so-called clustering,
meaning that ‘friends of friends tend to be friends’. That is, if a node v is connected to both w
and u then u andw are likely to be connected. This trait is not captured by the Barabási–Álbert
model, but the small-world model of Strogatz and Watts [16], which is also extremely well
known, does have this property (but has no power law).

1.1. The Holme–Kim model

In this paper we provide a rigorous analysis of a specific nonhomogeneous random graph
model, whose motivation was to combine scale-freeness and clustering. This model was
introduced in 2001 by Holme and Kim [10]. The Holme–Kim (HK) model describes a random
sequence of graphs {Gt }t∈N that we formally define in Section 3. Here we provide an informal
description of this evolution. Fix two parameters p ∈ [0, 1] and a positive integer m > 1, and
start with a graph G1. For t > 1, the evolution from Gt−1 to Gt consists of the addition of a
new vertex vt and m new edges between vt and the vertices already in Gt−1. These m edges
are added sequentially in the following fashion.

• The first edge is always attached following the preferential attachment (PA) mechanism,
that is, it connects to a previously existing node w with probability proportional to the
degree of w in Gt−1.

• Each of the m− 1 remaining edges makes a random decision on how to attach.

• With probability p, the edge is attached according to the triad formation (TF)
mechanism. Let w′ be the node ofGt−1 to which the immediately preceding edge
was attached. Then the current edge connects to a neighbor w of w′ chosen with
probability proportional to number of edges between w and w′.

• With probability 1−p (p ∈ [0, 1] fixed), the edge follows the same PA mechanism
as the first edge (with fresh random choices). That is to say, the random choice
of vertex w′ to connect to is made independently of all other choices made up to
this point.

The p = 0 case of this process, where only preferential attachment steps are performed, is
essentially the Barabási–Álbert model [1]. The triad formation steps, on the other hand, are
reminiscent of the copying model by Kumar et al. [12]. Holme and Kim argued on the basis
of simulations and nonrigorous analysis that their model has the properties of scale-freeness
and positive clustering. Still regarding the HK model, Ostroumova et al. [14] argued that it has
vanishing clustering coefficient, although the argument lacks mathematical rigor.

Our rigorous results partly confirm their findings. The power-law degree distribution can be
checked by known methods. On the other hand, we show that there are aspects of the clustering
phenomenon (or lack thereof) that were not made evident in [10]. We will see that the question
of whether the HK model has clustering admits two different answers depending on how we
define clustering. In fact, we will argue that this same phenomenon should hold for a wide
variety of network models.
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1.2. Two distinct clustering coefficients

We start by providing some graph-theoretic definitions, valid for any graph G. We state
these somewhat informally below and give precise definitions in Section 2.

• A triangle in G is a set of three vertices that are mutually connected by edges.

• A cherry (or path of length two) inG is a set of three vertices {u, v,w} ofGwhere u andw
are both adjacent to v (we call v the middle vertex). Observe that a triangle contains
three cherries.

• The local clustering coefficient Cloc
G measures the average, over vertices v of G, of the

fraction of pairs of neighbors of v that are connected by edges. That is, if each pair of
neighbors of v counts as a ‘potential triangle involving v’, then Cloc

G is the average over
the vertices v of the ratio of ‘actual triangles involving v’ to ‘potential triangles involving
v’.

• The global clustering coefficient C
glo
G measures the fraction of all cherries u ∼ v ∼ w

in G that also satisfies u ∼ w. If we count each cherry u ∼ v ∼ w as a ‘potential
triangle’ in G then C

glo
G measures the ratio of actual to potential triangles in the whole

of G, multiplied by a factor of three so that 0 ≤ C
glo
G ≤ 1 (again, note that each actual

triangle contains three cherries, if vertex labels are taken into account).

Bollobás and Riordan [3] observed that Cloc
G and C

glo
G are used interchangeably in the nonrig-

orous literature. They warned that:

In more balanced graphs the definitions will give more similar values, but they will still
differ by at least a constant factor much of the time [3].

In fact, more extreme differences are possible for nonregular graphs.

Example 1.1. Building a graph G consisting of an edge e and n− 2 other vertices connected
to the two endpoints of e, it is straightforward to see that Cloc

G = 1 − 2/n+ 4/n(n− 1). On the
other hand, it is straightforward to see that C

glo
G = 3(n− 2)/(n− 2 + (n− 1)(n− 2)) = 3/n.

1.3. Our results

The main results in this paper show that such a disparity between local and global clustering
does indeed occur in the specific case of the HK model, albeit in a less extreme form than
Example 1.1 suggests. We enunciate that formally below. For a formal definition of the
clustering coefficients involved at the statement of the two first theorems, we refer the reader
to Section 2.4.

Theorem 1.1. (Positive local clustering for HK.) Let {Gt }t≥0 be the sequence of random graphs
generated by the HK model with parameters m ≥ 2 and p ∈ (0, 1). Then the local clustering
coefficients Cloc

Gt
of the graphs Gt satisfy

lim
t→+∞ P

(
Cloc
Gt

≥ 1 − (1 − p)m−1

(m+ 2)m(m− 1)

)
= 1.

Theorem 1.2. (Vanishing global clustering for HK.) Let {Gt }t≥0 be as in Theorem 1.1. Then
the global clustering coefficients C

glo
Gt

satisfy

lim
t→+∞ P

(
3(m− 1)p/(m2 +m+ 1)

log t
≤ C

glo
Gt

≤ 3m(m− 1)/(m2 +m− 1)

log t

)
= 1.
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Thus, for large t , one of the two clustering coefficients is typically far from 0, whereas the
other one goes to 0 in probability, albeit at a slow rate. This shows that the remark by Bollobás
and Riordan is very relevant in the analysis of at least one network model.

For completeness, we will also check that the HK model is scale free with power-law
exponent β = 3; see Appendix A. The proof follows from standard methods in the literature.

Theorem 1.3. (The power law for HK.) Let {Gt }t≥0 be as in the previous theorem. Also let
Nt(d) be the number of vertices of degree d in Gt and set

Dt(d) := ENt(d)

t
.

Then

lim
t→∞Dt(d) = 2(m+ 1)m

(d + 2)(d + 1)d
. P(|Nt(d)−Dt(d)t | ≥ 16dc

√
t) ≤ (t + 1)d−me−c2

.

1.4. Heuristics and a seemingly general phenomenon

The disparity between Cloc
G and C

glo
G should be a general phenomenon for large scale-free

graph models with many (but not too many )triangles. This will transpire from the following
heuristic analysis of the HK case with p ∈ (0, 1).

To begin, it is not difficult to understand why Theorem 1.1 should hold. By Theorem 1.3,
there is a positive fraction of nodes with degree m. Moreover, a positive fraction of these
vertices are contained in at least one triangle because of the TF steps. We can make a more
general observation.

Reason for positive local clustering. If a positive fraction of nodes have degree less than or
equal to d (assumed constant), and a positive fraction of these nodes are contained in at least
one triangle, then the local clustering coefficient Cloc

Gt
must be bounded away from 0.

We now argue that the vanishing of C
glo
Gt

should be a consequence of the power-law degree
distribution. The global clustering coefficient C

glo
Gt

is essentially the ratio of the number of
triangles to the number of cherries in Gt , the latter being denoted by Ct . Now we can easily
show that the number of triangles in Gt grows linearly in t with high probability (w.h.p.), that
is,

C
glo
Gt

≈ number of triangles in Gt
Ct

≈ t

Ct
.

To estimate Ct , we note that each vertex v of degree d inGt is the ‘middle vertex’ of exactly
d(d − 1)/2 ≈ d2 cherries. This means

Ct

t
≈

t∑
d=1

Nt(d)

t
d2 ≈

t∑
d=1

1

d
≈ log t,

noting that Nt(d)/t ∼ Dt(d) ≈ d−3 by Theorem 1.3. Our reasoning is not rigorous because
it requires bounds on Nt(d) for very large d. However, we feel our argument is compelling
enough to be true for many models. In fact, considering the case where Nt(d)/t ≈ d−β for
0 < β ≤ 3, we are led to the following statement.

Heuristic reason for the large number of cherries. If the fraction of nodes of degree d inGt
is ≈ d−β for some 0 < β ≤ 3, the number of cherries Ct is superlinear in t . More precisely,
we expect Ct/t ≈ t3−β for 0 < β < 3 and Ct/t ≈ log t for β = 3.
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The power-law range 0 < β ≤ 3 corresponds to most models of large networks in the
literature. Likewise, we believe that the disparity between C

glo
Gt

and Cloc
Gt

should hold for all
‘natural’ random graph sequences with many triangles and power-law degree distribution with
exponent 0 < β ≤ 3. We formulate the general message as follows.

Heuristic disparity between local and global clustering. Achieving positive local clustering
is ‘easy’: just introduce a density of triangles in sparse areas of the graph. On the other hand,
if the number of triangles inGt grows linearly with time, and the fraction of nodes of degree d
inGt is ≈ d−β for some 0 < β ≤ 3, then one can expect a vanishingly small global clustering
coefficient.

1.5. Main technical ideas

At a high level, our proofs follow standard ideas from rigorous papers on complex networks.
For instance, suppose we want to keep track of the number of nodes of degree d at time t for
d = m,m+1, . . . , D. LettingNt = (Nt (m), . . . , Nt (D)), the basic strategy adopted in several
papers is to find a deterministic matrix Mt−1 and a deterministic vector rt−1, both measurable
with respect to G0, . . . ,Gt−1, such that

Nt = Mt−1Nt + rt−1 + εt ,

where E[εt | G0, . . . ,Gt ] ≈ 0. This can be seen as a ‘noisy version’ of the deterministic
recursion Nt = Mt−1Nt−1 + rt−1 with εt the ‘noise’ term. We can then study the recursion
and use martingale techniques (especially the Azuma–Höffding inequality) to prove that Nt
concentrates around the solution of the deterministic recursion. Our own proof of the power-
law degree distribution follows this outline, and is only slightly different from the one in [6].

Once the degree sequence is analyzed, Theorem 1.1 is then a matter of observing that a
density of vertices of degree m will be contained in at least one triangle, due to a TF step.
On the other hand, the analysis of global clustering is more difficult, due to the need to estimate
the number of cherries Ct . Justifying the heuristic calculation above would require strong
control of the degree distribution up to very large values of d. We opt instead to write a
‘noisy recursion’ for Ct itself. However, the increments in this noisy recursion can be quite
large, and the Azuma–Höffding inequality is not enough to control the process. We use instead
Freedman’s concentration inequality, which involves the quadratic variation, but even that is
delicate because the variation might ‘blow up’ in certain unlikely events. In the end, we use
a kind of ‘bootstrap’ argument, whereby a preliminary estimate of Ct is fed back into the
martingale calculation to give sharper control of the predictable terms and the variation. The
outcome is a weak law of large numbers for Ct , stated in the following theorem.

Theorem 1.4. (The weak law of large numbers forCt .) LetCt be the number of cherries inGt .
Then

Ct

t log t
P−→

(
m+ 1

2

)
,

where ‘
P−→’ denotes convergence in probability.

Overall, our martingale analysis of Ct is our main technical contribution.

1.6. Organization

The remainder of the paper is organized as follows. In Section 2 we review some standard
notation, introduce the relevant graph-theoretic concepts, and record martingale inequalities.
In Section 3 we present a formal definition of the model. In Section 4 we prove technical
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estimates for the degree distribution which will be useful throughout the paper. Sections 5
and 6 are devoted to proving the bounds for the local and the global clustering coefficients,
respectively. In Section 7 we present a comparative explanation for the distinct behavior of the
clustering coefficients. The proof of the power-law distribution is left to Appendix A since it
follows well-known martingale arguments.

2. Preliminaries

2.1. Set and multiset notation

Denote N = {0, 1, 2, 3, . . . }. For n ∈ N\{0}, [n] := {1, 2, . . . , n}. Given a set S, let
|S| denote its cardinality, and

(
S
k

)
denote the collection of all subsets of S of size k ∈ N.

The binomial coefficient
(
n
k

)
is the number of elements in

([n]
k

)
.

A multiset M consists of a base set M0 and, for each s ∈ M0, a multiplicity ms ∈ N\{0}.
We say that a multisetM is contained in set S (and writeM ⊂ S) ifM0 ⊂ S, and we say s ∈ M
if s ∈ M0.

2.2. Basic graph theory

Recall that a graphG = (VG,EG) consists of a setVG of vertices and a multisetEG ⊂ (
VG
2

)
of

edges. This implies that there might be multiple ‘parallel’ edges between any given v,w ∈ VG.
GivenG and v,w ∈ VG, we say that v andw are neighbors, and write v ∼G w, if {v,w} ∈ EG.
We also write �G(v) = {w ∈ V : w ∼G v} for the neighborhood of v ∈ VG and e(�G(v)) for
the number of edges between the neighbors of v. Since we allow multiple edges, for all vertices
v,w ∈ VG, we let eG(v,w) be the number of edges between v and w. In this case, we may
define the degree of v in terms of eG(v,w), writing it as dG(w) = ∑

w∈�G(v) eG(v,w), that is,
the total of edges where one of its ends is v.

2.3. Triangles and cherries

A triangle in a graphG = (VG,EG) is a subset {u, v,w} ∈ (
VG
3

)
with u ∼G v ∼G w ∼G u.

We denote the number of triangles contained in a graph G by �G. For a fixed vertex v ∈ VG,
we denote the number of triangles sharing at least the common vertex v by �G(v).

A cherry, or path of length two, is an element (v, {u,w}) ∈ VG × (
VG
2

)
with u ∼G v ∼G w,

or a pair (v, u) ∈ V 2
G with eG(u, v) ≥ 2. We let CG denote the number of cherries in G,

counted according to edge multiplicities, that is,

CG :=
∑
v∈VG

(
dG(v)

2

)
.

2.4. Clustering coefficients

We assume that G = (VG,EG) is a graph where |VG| > 0 and all vertices have degree at
least 2.

Definition 2.1. (Local clustering coefficient in v.) Given a vertex v ∈ G, the local clustering
coefficient at v is

CG(v) = �G(v)(
dG(v)

2

) .
Note that 0 ≤ CG(v) ≤ 1 always, since there can be at most one triangle formed by v and

a pair of its neighbors. In probabilistic terms, CG(v) measures the probability that a pair of
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random neighbors of v form an edge, that is, how likely it is that ‘two friends of v are also each
other’s friends’.

We define the two coefficients for the graph G as follows.

Definition 2.2. (Local and global clustering coefficients.) The local clustering coefficient ofG
is defined as

Cloc
G :=

∑
v∈VG CG(v)

|VG| ,

whereas the global coefficient is

C
glo
G := 3 × �G

CG
.

Observation 2.1. For our purposes there is no significant difference between taking or not
taking multiple edges into account in the above definitions. The key point is that our model
allows at mostm edges between two vertices. Thus, all bounds considering multiple edges may
be carried over to the other case (and vice versa) at the cost of losing constant factors.

2.5. Sequences of graphs

We will often consider the sequence of graphs {Gt }t defined by the HK model, which is
indexed by a discrete-time parameter t ≥ 0. When considering this sequence, we replace the
subscript Gt with t in our graph notation so that Vt := VGt , Et := EGt , and so on. Given a
sequence of numerical values {xt }t≥0 depending on t , we let �xt := xt − xt−1.

2.6. Asymptotics

We will use the Landau o/O/� notation at several points of our discussion. This always
presupposes some asymptotics as a parameter n or t of interest goes to +∞. The parameter
will be clear from the context.

2.7. Martingale concentration inequalities

Recall that a supermartingale (Mn,Fn)n∈N consists of a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · and
a family {Mn}n∈N of integrable random variables where, for each n ∈ N,Mn is Fn-measurable
and E[Mn+1 | Fn] ≤ Mn. If (−Mn,Fn)n∈N is also a supermartingale, we say that (Mn,Fn)n∈N

is a martingale. We recall two well-known concentration inequalities for martingales.

Theorem 2.1. (Azuma–Höffding inequality; see [6].) Let (Mn,Fn)n≥1 be a (super)martingale
satisfying

|Mi+1 −Mi | ≤ ai.

Then, for all λ > 0 we have

P(Mn −M0 > λ) ≤ exp

(
− λ2∑n

i=1 a
2
i

)
.

Theorem 2.2. (Freedman’s inequality; see [9].) Let (Mn,Fn)n≥1 be a (super)martingale.
Write

Vn :=
n−1∑
k=1

E[(Mk+1 −Mk)
2 | Fk]

and suppose that M0 = 0 and

|Mk+1 −Mk| ≤ R for all k.
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Then, for all λ > 0 we have

P(Mn ≥ λ, Vn ≤ σ 2 for some n) ≤ exp

(
− λ2

2σ 2 + 2Rλ/3

)
.

3. Formal definition of the process

In this section we provide a more formal definition of the HK process (compare with
Section 1.1).

The model has two parameters: a positive integer number m ≥ 2 and a real number p ∈
[0, 1]. It produces a graph sequence {Gt }t≥1 which is obtained inductively according to the
growth rule we describe below.

Initial state. The initial graphG1, which will be taken as the graph with vertex set V1 = {1}
and a single edge, is a self-loop.

Evolution. For t > 1, obtainGt+1 fromGt adding to it a vertex t + 1 andm edges between
t + 1 and vertices Y (i)t+1 ∈ Vt , 1 ≤ i ≤ m. These vertices are chosen as follows. Let Ft be the
σ -field generated by all random choices made in our construction up to time t . Assume we are
given independent and identically distributed random variables (ξ (i)t+1) independent from Ft .
We define

P(Y
(1)
t+1 = u | Ft ) = dt (u)

2mt
,

which means the first choice of vertex is always made using the preferential attachment
mechanism. The next m − 1 choices Y (i)t+1, 2 ≤ i ≤ m, are made as follows. Let F (i−1)

t

be the σ -field generated by Ft and all subsequent random choices made in choosing Y (j)t+1 for
1 ≤ j ≤ i − 1. Then

P(Y
(i)
t+1 = u | ξ (i)t+1 = x,F (i−1)

t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dt (u)

2mt
if x = 0,

et (Y
(i−1)
t+1 , u)

dt (Y
(i−1)
t+1 )

if x = 1 and u ∈ �t(Y (i−1)
t+1 ),

0 otherwise.

In other words, for each choice of the m − 1 end points, we flip an independent coin of
parameter p and decide according to the outcome which mechanism we use to choose the end
point. With probability p, we use the triad formation mechanism, that is, we choose the end
point among the neighbors of the previously chosen vertex Y (i−1)

t+1 . With probability 1 − p,
we make a fresh choice from Vt using the preferential attachment mechanism. In this sense, if
ξ
(i)
t = 1 we say that we have taken a TF-step. Otherwise, we say that a PA-step was performed.

4. Technical estimates for vertex degrees

In this section we collect several results on vertex degrees. In Subsection 4.1 we describe
the probability of degree increments in a single step. In Subsection 4.2 we obtain upper bounds
on all degrees. Some of these results are fairly technical and may be skipped in a first reading.

4.1. Degree increments

We begin with the following simple lemma.
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Lemma 4.1. For all k ∈ {1, . . . , m}, there exist positive constants cm,p,k and c̃m,p,k such that

∣∣∣∣P(�dt (v) = k | Gt)− cm,p,k
dkt (v)

t

∣∣∣∣ ≤ c̃m,p,k
dk+1
t (v)

tk+1 .

In particular, for k = 1 we have cm,p,1 = 1
2 .

Before proving the lemma, we start by proving the following claim involving the random
variables Y (i)t .

Claim 4.1. For all i ∈ {0, 1, 2, . . . , m},

P(Y
(i)
t+1 = v | Gt) = dt (v)

2mt
. (4.1)

Proof. The proof follows by induction on i. For i = 1 we have nothing to do. So, suppose
the claim holds for all choices before i − 1. Then

P(Y
(i)
t+1 = v | Gt) = P(Y

(i)
t+1 = v, Y

(i−1)
t+1 = v | Gt)+ P(Y

(i)
t+1 = v, Y

(i−1)
t+1 
= v | Gt)

= (1 − p)

4m2

d2
t (v)

t2
+ P(Y

(i)
t+1 = v, Y

(i−1)
t+1 
= v | Gt). (4.2)

For the first term on the right-hand side the only way we can choose v again is following a
PA-step and then choosing v according to a preferential attachment rule. Thus,

P(Y
(i)
t+1 = v, Y

(i−1)
t+1 = v | Gt) = (1 − p)

4m2

d2
t (v)

t2
.

For the second term, we divide it in two sets; whether the vertex chosen at the previous choice
is a neighbor of v or not. Thus,

P(Y
(i)
t+1 = v, Y

(i−1)
t+1 
= v | Gt)

=
∑

u/∈�Gt (v)
P(Y

(i)
t+1 = v, Y

(i−1)
t+1 = u | Gt)+

∑
u∈�Gt (v)

P(Y
(i)
t+1 = v, Y

(i−1)
t+1 = u | Gt)

= (1 − p)
dt (v)

2mt

( ∑
u/∈�Gt (v)

dt (u)

2mt

)
+ p

( ∑
u∈�Gt (v)

eGt (u, v)

dt (u)

dt (u)

2mt

)

+ (1 − p)

2m

dt(v)

t

( ∑
u∈�Gt (v)

dt (u)

2mt

)

= dt (v)

2mt
− (1 − p)

4m2

d2
t (v)

t2
,

where we used our inductive hypothesis and the fact that

∑
u∈�Gt (v)

dt (u)

2mt
+

∑
u/∈�Gt (v)

dt (u)

2mt
= 1 − dt (v)

2mt
.

Returning to (4.2), we prove the claim. �
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Proof of Lemma 4.1. We will show the particular case of k = 1 since we have a particular
interest in the value of cm,p,1 and point out how to obtain the other cases. We begin by noting
that the process of choosing is by definition a homogeneous Markovian process. This means
that in order to evaluate the probability of a vertex increasing its degree by exactly one, the k = 1
case, we just need to know the probabilities of transition. In this way, we use the notation Pt

to denote the measure conditioned on Gt and proceed to the computation of the probabilities
of transition. We start with the most challenging one, that is,

Pt (Y
(i+1)
t+1 = v | Y (i)t+1 
= v)

=
∑

u∈�Gt (v)
Pt (Y

(i+1)
t+1 = v | Y (i)t+1 = u)Pt (Y

(i)
t+1 = u | Y (i)t+1 
= v)

+
∑

u/∈�Gt (v)
Pt (Y

(i+1)
t+1 = v | Y (i)t+1 = u)Pt (Y

(i)
t+1 = u | Y (i)t+1 
= v). (4.3)

When u ∈ �Gt (v), we can choose v by taking either a PA-step or a TP-step. This implies that

Pt (Y
(i+1)
t+1 = v | Y (i)t+1 = u) = (1 − p)

dt (v)

2mt
+ p

et (u, v)

dt (u)
, (4.4)

but when u /∈ �Gt (v), the only way we can choose v is following a PA-step, which implies that

Pt (Y
(i+1)
t+1 = v | Y (i)t+1 = u) = (1 − p)

dt (v)

2mt
. (4.5)

We also note that the following equation holds since u 
= v and Claim 4.1:

Pt (Y
(i)
t+1 = u | Y (i)t+1 
= v) = Pt (Y

(i)
t+1 = u)

Pt (Y
(i)
t+1 
= v)

= dt (u)

2mtPt (Y
(i)
t+1 
= v)

. (4.6)

Claim 4.1 also implies that

1

Pt (Y
(i)
t+1 
= v)

= 1

1 − dt (v)/2mt
= 1 +

∞∑
n=1

(
dt (v)

2mt

)n
. (4.7)

Combining (4.4)–(4.6), we obtain

Pt (Y
(i+1)
t+1 = v | Y (i)t+1 
= v) = (1 − p)

dt (v)

2mt
+ p

dt (v)

2mt

(
1 +

∞∑
n=1

(
dt (v)

2mt

)n)

= dt (v)

2mt
+O

(
d2
t (v)

t2

)
. (4.8)

If we chose v at the previous choice, the only way we select it again is following a PA-step,
meaning that

Pt (Y
(i+1)
t+1 = v | Y (i)t+1 = v) = (1 − p)

dt (v)

2mt
. (4.9)

From these two probabilities of transition we are able to obtain the remaining ones.
To compute the probability of {�dt(v) = 1} given Gt , we may split it in m possible ways

to increase dt (v) by exactly one. For each of these we have an index i ∈ {1, . . . , m} that
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indicates v has been chosen at the ith step and avoided at the other m− 1 choices. This means
that each of these m ways has a probability similar to

(
1 − dt (v)

2mt
−O

(
d2
t (v)

t2

))i−1(
dt (v)

2mt
+O

(
d2
t (v)

t2

))(
1 − dt (v)

2mt
−O

(
d2
t (v)

t2

))m−i
.

Expanding the products and summing on i ∈ {1, 2, . . . , m}, we find a positive constant c̃m,p,1
which does not depend on v or t and satisfies

∣∣∣∣P(�dt (v) = 1 | Gt)− dt (v)

2t

∣∣∣∣ ≤ c̃m,p,1
d2
t (v)

t2
.

For the sake of simplicity, we write the above statement as

P(�dt (v) = 1 | Gt) = dt (v)

2t
+O

(
d2
t (v)

t2

)
.

The k > 1 cases are obtained in the same way, considering the
(
m
k

)
ways of increasing dt (v)

by k. �
4.2. Upper bounds on vertex degrees

To control the number of cherries Ct , we will need upper bounds on vertex degrees.
The bound is obtained applying the Azuma–Hoffding inequality and Theorem 2.1 to the degree
of each vertex, which is a martingale after normalizing by

φ(t) :=
t−1∏
s=1

(
1 + 1

2s

)
.

The following fact about φ(t) will be useful: there exist positive constants b1 and b2 such that

b1
√
t ≤ φ(t) ≤ b2

√
t for all t .

Proposition 4.1. For each vertex j , the sequence (X(j)t )t≥j defined as

X
(j)
t := dt (j)

φ(t)

is a martingale.

Proof. Since the vertex j will remain fixed throughout the proof, we will simply write Xt
instead of X(j)t .

Observe that we can write dt+1(j) as

dt+1(j) = dt (j)+
m∑
k=1

1(Y (k)t+1 = j),

where 1(·) is the indicator function on the event (·). In addition, (4.1), proved in Lemma 4.1,
ensures that for all k ∈ 1, . . . , m, we have

P(Y
(k)
t+1 = j | Gt) = dt (j)

2mt
. (4.10)
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Thus, the follow equivalence relation holds:

E[dt+1(j) | Gt ] =
(

1 + 1

2t

)
dt (j). (4.11)

Then, dividing the above equation by φ(t + 1), the desired result follows. �

Once we have Proposition 4.1 we are able to obtain an upper bound for dt (j).

Theorem 4.1. There is a positive constant b3 such that for all vertices j ,

P(dt (j) ≥ b3
√
t log(t)) ≤ t−100.

Proof. The proof is essentially applying Azuma’s inequality to the martingale we obtained
in Proposition 4.1. Again we will write it as Xt .

Applying Azuma’s inequality demands controlling the Xt ’s variation, which satisfies the
following upper bound:

|�Xs | =
∣∣∣∣ds+1(j)− (1 + 1/2s)ds(j)

φ(s + 1)

∣∣∣∣ ≤ 2m

φ(s + 1)
≤ b4√

s
. (4.12)

Thus,
t∑

s=j+1

|�Xs |2 ≤ b5 log(t).

We must note that none of the above constants depend on j . Then Azuma’s inequality yields

P(|Xt −X0| > λ) ≤ 2 exp

(
− λ2

b5 log(t)

)
.

Choosing λ = 10
√
b5 log(t) and recalling Xt = dt (j)/φ(t), we obtain

P

(∣∣∣∣dt (j)− mφ(t)

φ(j)

∣∣∣∣ > 10
√
b5φ(t) log(t)

)
≤ t−100.

The reader may wonder why we need such a large exponent in the above inequality. For our
purposes, it will be useful to have the polynomial decay with a large exponent so that we can
make use of a union bound several times and still have all the bounds going to 0 polynomially
fast. We state other theorems in this way throughout the paper.

Finally, using the fact that b1
√
t ≤ φ(t + 1) ≤ b2

√
t , we have

P

(∣∣∣∣dt (j)− mφ(t)

φ(j)

∣∣∣∣ > 10
√
b5b2

√
t log(t)

)
≤ t−100,

implying the desired result. �

An immediate consequence of Theorem 4.1 is an upper bound for the maximum degree ofGt

Corollary 4.1. (Upper bound to the maximum degree.) There exists a positive constant b1
such that

P(dmax(Gt ) ≥ b1
√
t log(t)) ≤ t−99.

https://doi.org/10.1017/apr.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.41


930 R. I. OLIVEIRA ET AL.

Proof. The event involving dmax(Gt ) may be written as

{dmax(Gt ) ≥ b1
√
t log(t)} =

⋃
j≤t

{dt (j) ≥ b1
√
t log(t)}.

Using a union bound and applying Theorem 4.1 completes the proof. �

The next three lemmas are of a technical nature. Their statements will become clearer in the
proof of the upper bound for Ct .

Lemma 4.2. There are positive constants b6 and b7 such that for all vertex j and all time
t0 ≤ t , we have

P

(
dt0(j) > b4

√
t0

t
dt (j)+ b5

√
t0 log(t)

)
≤ t−100.

Proof. For each vertex j and t0 ≤ t , consider the sequence of random variables (Zs)s≥0
defined as Zs = Xt0+s , which is adaptable to the filtration Fs := Gt0+t .

Concerning the variation of the Zs , using (4.12) we have the upper bound

|�Zs | = |�Xt0+s | ≤ b4√
t0 + s

.

Thus,
t−t0∑
s=0

|�Zs |2 ≤ b5 log(t).

Applying Azuma’s inequality, we obtain

P(|Zt−t0 − Z0| ≥ λ) ≤ 2 exp

(
− λ2

b5 log(t)

)
. (4.13)

However, the definition ofZs and the fact that φ(t) = �(
√
t)means that the inclusion of events

{
dt0(j) > b2

√
t0λ+ b2

√
t0

b1
√
t
dt (j)

}
⊂ {|Zt − Z0| ≥ λ}

hold, which, combined with (4.13), proves the lemma if we choose λ = 10
√
b5 log(t). �

Lemma 4.3. There is a positive constant b8 such that

P

( t⋃
j=1

t⋃
t0=j

{dt0(j) > b8
√
t0 log(t)}

)
≤ 2t−98.

Proof. This lemma is a consequence of Theorem 4.1 and Lemma 4.2, which state, respec-
tively,

P(dt (j) ≥ b3
√
t log(t)) ≤ t−100, P

(
dt0(j) > b4

√
t0

t
dt (j)+ b5

√
t0 log(t)

)
≤ t−100,

in which the constants b3, b4, and b5 do not depend on the vertex j nor do the times t0 and t .
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Now, for each t0 ≤ t and vertex j , consider the events

At0,j := {dt0(j) > b8
√
t0 log(t)}, Bt0,j :=

{
dt0(j) > b4

√
t0

t
dt (j)+ b5

√
t0 log(t)

}
,

Ct,j := {dt (j) ≥ b3
√
t log(t)}.

Now we obtain an upper bound for P(At0,j ) using the bounds we obtained for the probabilities
of Bt0,j and Ct,j . Thus,

P(At0,j ) = P(At0,j ∩ Bt0,j )+ P(At0,j ∩ Bct0,j )
≤ P(Bt0,j )+ P(At0,j ∩ Bct0,j ∩ Ct,j )+ P(At0,j ∩ Bct0,j ∩ Cct,j )
≤ P(Bt0,j )+ P(Ct0,j )+ P(At0,j ∩ Bct0,j ∩ Cct,j ).

However, note that we have the inclusion of events

Bct0,j ∩ Cct,j ⊂ {dt0(j) ≤ (b4b3 + b5)
√
t0 log(t)}.

Thus, choosing b8 = 2(b4b3 + b5), we have At0,j ∩ Bct0,j ∩ Cct,j = ∅, which allows us to
conclude that

P(At0,j ) ≤ 2t−100.

Finally, a union bound over t0 followed by a union bound over j completes the proof. �

5. Positive local clustering

In this section we prove Theorem 1.1, which says that the local clustering coefficient is
bounded away from 0 w.h.p.

Proof of Theorem 1.1. We need a lower bound for

Cloc
Gt

:= 1

t

∑
v∈Gt

CGt (v).

Let vm be a vertex in Gt whose degree is m. Observe that each TF-step we took when vm was
added increases e(�Gt (vm)) by 1. So denote by Tv the number of TF-steps taken at the moment
of creation of vertex v. Since all the choices of steps are made independently, Tv follows a
binomial distribution with parametersm− 1 and p. Now, for every vertex we add to the graph,
put a blue label on it if Tv ≥ 1. The probability of labeling a vertex is 1 − (1 − p)m−1 and we
denote it by pb in order to simplify our notation.

By Theorem 1.3, with probability at least 1 − t−100, we have

Nt(m) ≥ b1t − b2
√
t log(t),

where b1 = 2/(m+ 2) and b2 = 160m. Thus, the number of vertices inGt of degreem which
were labeled,Nb

t (m) is bounded from below by a binomial random variableBt with parameters
b1t − b2

√
t log(t) and pb. But, about Bt we have, for all δ > 0,

P
(
Bt ≤ 1

4E[Bt ]
) ≤ (1 − pb + pbe−δ)b1t−b2

√
t log(t) exp

( 1
4δpb(b1t − b2

√
t log(t))

)
and choosing δ properly, we conclude that w.h.p.

Nb
t (m) ≥ 1

4pb(b1t − b2
√
t log(t)). (5.1)
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Finally, note that each blue vertex of degree m has CGt (v) > 2/m(m − 1). Combining this
with (5.1), we have

Cloc
Gt

≥ 1

t

∑
v∈Nb

t (m)

CGt (v)

>
t−1Nb

t (m)2

m(m− 1)

≥ t−1pb(b1t − b2
√
t log(t))

2m(m− 1)

→ 1 − (1 − p)m−1

(m+ 2)m(m− 1)

> 0 as t → +∞,

proving the theorem. �

6. Vanishing global clustering

This section is devoted to the proof of Theorem 1.2 which states that the global clustering of
Gt goes to 0 at 1/ log t speed. Since the proof depends on estimates for the number of cherries
Ct , we first derive the necessary bounds and finally combine our results at the end of the section.

6.1. Preliminary estimates for number of cherries

Let

C̃t :=
t∑

j=1

d2
t (j)

denote the sum of the squares of the degrees in Gt . We will prove bounds for C̃t instead of
proving them directly for Ct . Since Ct = 1

2 C̃t −mt , the results obtained for C̃t directly extend
to Ct .

Lemma 6.1. There is a positive constant B3 such that

E[(C̃s+1 − C̃s)
2 | Gs] ≤ B3

dmax(Gs)C̃s

s
.

Proof. We start the proof by noting that for all vertices j , we have

d2
s+1(j)− d2

s (j) ≤ 2mds(j)+m2

deterministically. From this remark, it follows that

C̃s+1 − C̃s ≤ 2m
s∑
j=1

ds(j) 1(�ds(j) ≥ 1)+ 2m2.

Since all vertices have degree at least m, we have m2 ≤ m
∑s
j=1 ds(j) 1(�ds(j) ≥ 1); thus,

C̃s+1 − C̃s ≤ 4m
s∑
j=1

ds(j) 1(�ds(j) ≥ 1).
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Applying the Cauchy–Schwarz inequality to the above inequality, we obtain

(C̃s+1 − C̃s)
2 ≤ 16m2

( s∑
j=1

ds(j) 1(�ds(j) ≥ 1) 1(�ds(j) ≥ 1)

)2

≤ 16m2
( s∑
j=1

d2
s (j) 1(�ds(j) ≥ 1)

)( s∑
j=1

1(�ds(j) ≥ 1)

)

≤ 16m3
s∑
j=1

d2
s (j) 1(�ds(j) ≥ 1).

Recalling that

P(�ds(j) ≥ 1 | Gs) ≤ ds(j)

2s
,

we have

E[(C̃s+1 − C̃s)
2 | Gs] ≤ B3

s∑
j=1

d3
s (j)

s
≤ B3

dmax(Gs)C̃s

s
,

concluding the proof. �
Theorem 6.1. (Upper bound for Ct .) There is a positive constant B1 such that

P(Ct ≥ B1t log2(t)) ≤ t−98.

Proof. We show the result for C̃t , which is greater thanCt . To do this, we need to determine
E[d2

t+1(j) | Gt ].
As in the proof of Proposition 4.1, write

dt+1(j) = dt (j)+
m∑
k=1

1(Y (k)t+1 = j)

and denote
∑m
k=1 1(Y (k)t+1 = j) by �dt(j). Thus,

d2
t+1(j) = d2

t (j)

(
1 + �dt(j)

dt (j)

)2

= d2
t (j)+ 2dt (j)�dt (j)+ (�dt (j))

2.

Combining the above equation with (4.10) and (4.11), we obtain

E[d2
t+1(j) | Gt ] = d2

t (j)+ d2
t (j)

t
+ E[(�dt (j))2 | Gt ].

Dividing the above equation by t + 1, we have

E

[
d2
t+1(j)

t + 1

∣∣∣∣ Gt
]

= d2
t (j)

t
+ E[(�dt (j))2 | Gt ]

t + 1
,

which implies

E

[
C̃t+1

t + 1

∣∣∣∣ Gt
]

= C̃t

t
+ m2

t + 1
+

t∑
j=1

E[(�dt (j))2 | Gt ]
t + 1

. (6.1)
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It is straightforward to see that �dt(j) ≤ (�dt (j))
2 ≤ m�dt(j), which implies

E[(�dt (j))2 | Gt ] = �

(
dt (j)

t

)
.

Thus, (6.1) may be written as

E

[
C̃t+1

t + 1

∣∣∣∣ Gt
]

= C̃t

t
+�

(
1

t

)
. (6.2)

Now define

Xt := C̃t+1

t + 1
.

Equation (6.2) states that Xt is a martingale up to a term of magnitude �(1/t). In order
to apply martingale concentration inequalities, we decompose Xt as in Doob’s decomposition
theorem. Then Xt can be written as Xt = Mt + At , in which Mt is a martingale and At is a
predictable process. By (6.2), we have

At =
t∑
s=2

E[Xs | Gs−1] −Xs−1 =
t∑
s=2

�

(
1

s

)
,

that is, At = �(log(t)) almost surely.
The remainder of the proof is devoted to controlling the martingale component of the Xt

using Freedman’s inequality (Theorem 2.2). Once again, by Doob’s decomposition theorem,
we have

Mt := X0 +
t∑
s=2

Xs − E[Xs | Gs−1].

Observe that Mt+1 = Mt +Xt+1 − E[Xt+1 | Gt ]; thus,

|�Ms | = |Xs+1 − E[Xs+1 | Gs]|
≤ |Xs+1 −Xs | + b9

s

≤
∣∣∣∣ C̃s+1 − (1 + 1/s)C̃s

s + 1

∣∣∣∣ + b9

s

≤ b10
dmax(Gs)

s
+ b11

C̃s

s2 + b9

s
,

since �C̃s attains its maximum when the vertices of maximum degree in Gs receive at least
a new edge at time s + 1. Furthermore, since dmax(Gs) ≤ ms and C̃s ≤ m2s2, there exists a
constant b12 such that maxs≤t|�Ms| ≤ b12 almost surely.

Combining

|�Ms | ≤
∣∣∣∣ C̃s+1 − (1 + 1/s)C̃s

s + 1

∣∣∣∣ + b9

s

with the Cauchy–Schwarz inequality and Lemma 6.1, we obtain positive constants b13, b14,
and b15 such that

E[(�Ms)
2 | Gs] ≤ b13

E[(�C̃s)2 | Gs]
s2 + b14

C̃2
s

s4 + b15

s2 (Cauchy–Schwarz)

≤ b16
dmax(Gs)C̃s

s3 + b14
C̃2
s

s4 + b15

s2 (Lemma 6.1). (6.3)
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Now define Vt as

Vt :=
t∑
s=2

E[(�Ms)
2 | Gs]

and define a bad set as

Bt :=
t⋃

j=1

t⋃
t0=j

{dt0(j) > b8
√
t0 log(t)},

observing that Lemma 4.3 guarantees P(Bt ) ≤ 2t−98.
Also note that C̃s ≤ b17dmax(Gs)s almost surely and inBct , we havedmax(Gs) ≤ b8

√
s log(t)

for all s ≤ t . Then outside Bt , we have

Vt ≤
t∑
s=2

b16
dmax(Gs)C̃s

s3 + b14
C̃2
s

s4 + b15

s2 (from (6.3))

≤
t∑
s=2

b16b
2
8b17s

2 log2(t)

s3 + b14b
2
17s

3 log2(t)

s4 + b15

s2

≤ b18 log3(t). (6.4)

So, by Freedman’s inequality, we obtain

P(Mt > λ, Vt ≤ b18 log3(t)) ≤ exp

(
− λ2

2b18 log3(t)+ 2b12λ/3

)
.

Therefore, if λ = b19 log2(t) with large enough b19, we obtain

P(Mt > b19 log2(t), Vt ≤ b18 log3(t)) ≤ t−100.

Inequality (6.4) guarantees the following inclusion of events:

Bct ⊂ {Vt ≤ b18 log3(t)}.
Also,

{Xt ≥ b21 log2(t)} ⊂ {Mt ≥ (b21 − b20) log2(t)}
since At ≤ b20 log(t) and Mt ≥ Xt − b20 log(t).

Finally,

P(Mt > b19 log2(t))

= P(Mt > b19 log2(t), Vt ≤ b18 log3(t))+ P(Mt > b19 log2(t), Vt > b18 log3(t))

≤ t−100 + P(Bt )

and
P(Mt > b19 log2(t)) ≤ 3t−98,

proving the theorem. �
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We note that from (6.1), we may extract the recurrence

E[C̃t ] =
(

1 + 1

t − 1

)
E[C̃t−1] + c0,

in which c0 is a positive constant depending on m and p only. Expanding it, we obtain

E[C̃t ] =
t−1∏
s=1

(
1 + 1

s

)
E[C̃1] + c0

t−1∑
s=1

t−1∏
r=s

(
1 + 1

r

)
,

which implies E[C̃t ] = �(t log t). This means the upper bound for C̃t given by Theorem 6.1
is exactly E[C̃t ] log(t).

6.2. The bootstrap argument

Obtaining bounds for Ct requires some control of its quadratic variation, which requires
bounds for the maximum degree and Ct , as in Lemma 6.1. Applying some deterministic
bounds and upper bounds on the maximum degree, we are able to derive an upper bound forCt ,
which is of order E[Ct ] log t . To improve this bound and obtain the correct order, we proceed
as in the proof of Theorem 6.1, but making use of the preliminary estimate just discussed. This
is what we call the bootstrap argument.

The result we obtain is enunciated in Theorem 1.4 and consists of a weak law of large
numbers, which states that Ct divided by t log t actually converges in probability to a constant
depending only on m.

Proof of Theorem 1.4. In the proof of Theorem 6.1, we decomposed the processXt = C̃t /t

into two components: Mt and At . The first part of the proof will be dedicated to showing that
Mt = o(log(t)) w.h.p. Then we show that At = (m2 +m) log(t) also w.h.p.

We repeat the proof given for Theorem 6.1, but this time we change our definition of a bad
set to

Bt =
t⋃

s=log1/2(t)

{C̃s ≥ b20s log2(s)}. (6.5)

By Theorem 6.1 and a union bound, P(Bt ) ≤ log−97/2(t). Observe that an upper bound for C̃s
yields an upper bound for dmax(Gs), since

d2
max(Gs) ≤ C̃s �⇒ dmax(Gs) ≤

√
C̃s �⇒ dmax(Gs) ≤ √

s log(s)

when C̃s ≤ s log2(s).
Using (6.3), we have, in Bct ,

Vt ≤
t−1∑
s=1

b16
dmax(Gs)C̃s

s3 + b14
C̃s

2

s4 + b14

s2

≤
log1/2(t)−1∑

s=1

b′
16 +

t−1∑
s=log1/2(t)

b17

√
s log(s)s log2(s)

s3 + b18
s2 log4(s)

s4 + b14

s2

≤ b19 log1/2(t), (6.6)
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since dmax(Gs) ≤ ms and C̃s ≤ 2m2s2 for all s and in Bct , dmax(Gs) ≤ √
b20s log(s) and

C̃s ≤ b20s log2(s) for all s ≥ log1/2(t). Then, by Freedman’s inequality,

P(Mt ≥ log1/4+δ(t), Vt ≤ b19 log1/2(t)) = o(1). (6.7)

Recall (6.1). Now, from Lemma 4.1, we recall that for all k ∈ {1, . . . , m},

P(Y
(k)
t+1 = v | Gt) = dt (v)

2mt
.

Furthermore, there exists a positive constant c̃m,p depending only on m and p such that for all
time t and vertex v, we have

P(Y
(k)
t+1 = v, Y

(j)
t+1 = v | Gt) ≤ c̃m,p

d2
t (v)

t2
.

Thus, there exists another constant c̃m,p with the same conditions as above such that

∣∣∣∣E[(�dt (v))2 | Gt ] − dt (v)

2t

∣∣∣∣ ≤ c̃m,p
d2
t (v)

t2
, (6.8)

which, in turn, implies that

∣∣∣∣E
[
C̃t+1

t + 1

∣∣∣∣ Gt
]

− C̃t

t
− m2 +m

t + 1

∣∣∣∣ ≤ c̃m,p
C̃t

t3
,

and, consequently, there exists a positive constant b11 such that

∣∣∣∣At −
t∑
s=2

m2 +m

s + 1

∣∣∣∣ ≤
t∑
s=2

b11
C̃s

s3 .

Then, by the definition of the event Bt from (6.5), we deduce that, in Bct ,

t∑
s=2

b11
C̃s

s3 ≤ b11

log1/2(t)∑
s=2

C̃s

s3 +
t∑

s=log1/2(t)

s log2(s)

s3 ≤ b12 log(log(t)).

Thus, in Bct ,
At = (m2 +m) log(t)+ o(log(t)).

Finally, fix a small positive ε. Then

P

(∣∣∣∣ C̃t

t log(t)
−m2 −m

∣∣∣∣ > ε

)
= P

(∣∣∣∣Mt + At

log(t)
−m2 −m

∣∣∣∣ > ε

)

≤ P

(∣∣∣∣Mt + At

log(t)
−m2 −m

∣∣∣∣ > ε,Bct

)
+ P(Bt ). (6.9)

We also have Bct ⊂ {Vt ≤ b19 log1/2(t)}, which, combined to (6.7), implies that

P

(∣∣∣∣Mt + At

log(t)
−m2 −m

∣∣∣∣ > ε,Mt ≥ log1/4+δ(t), Bct
)

= o(1).
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Observe that, in the event Bct ,Mt is bounded by log1/4+δ(t), as assured by (6.6), and At =
(m2 +m) log(t)+ o(log(t)); thus,

P

(∣∣∣∣Mt + At

log(t)
−m2 −m

∣∣∣∣ > ε,Mt < log1/4+δ(t), Bct
)

= 0 for large enough t .

This proves that
C̃t

t log t
P−→ m2 +m.

Since Ct = C̃t /2 −mt , as defined at the beginning of this section, we obtain

Ct

t log t
P−→

(
m+ 1

2

)
,

which proves the theorem. �
6.3. Wrapping up

So far we have devoted our efforts to properly controlling the number of cherries in Gt .
Now we combine these results with simple bounds for the number of triangles in Gt to finally
obtain the exact order of the global clustering.

Proof of Theorem 1.2. We begin by pointing out that the number of triangles inGt,�Gt , is
bounded from above by

(
m
2

)
t and that every TF-step we take increases �Gt by 1. Then

�Gt ≥ Zt =
t∑
s=1

Ts,

where Ts is the number of TF-steps taken at time s. Since all the choices regarding the types
of step we follow are independent, Ts ∼ bin(m − 1, p) and Zt ∼ bin((m − 1)t, p). Using
Chernoff bounds, we are able to obtain

P

(
Zt ≤ (m− 1)p

2
t

)
≤ e−(m−1)pt/8.

Combining the above inequality with the deterministic upper bound for �Gt , we have w.h.p.

(m− 1)p

2
t ≤ �Gt ≤ m(m− 1)

2
t. (6.10)

Now we proceed to bound Ct . Taking ε = 1
2 in (6.9), we obtain w.h.p.(

m2 +m− 1
2

)
t log t ≤ C̃t ≤ (m2 +m+ 1)t log t,

which implies that

1
2

(
m2 +m− 1

2

)
t log(t)−mt ≤ Ct ≤ 1

2 (m
2 +m+ 1)t log(t)−mt,

which, for large enough t , may be written in the more symmetric and simpler form as

1
2 (m

2 +m− 1)t log(t) ≤ Ct ≤ 1
2 (m

2 +m+ 1)t log(t) w.h.p.

Combining the above inequalities with (6.10), we prove that, also w.h.p.,

(m− 1)p

(m2 +m+ 1) log(t)
≤ �Gt

Ct
≤ m(m− 1)

(m2 +m− 1) log(t)
.

Multiplying the above inequalities by 3, we conclude the proof. �
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7. Final comments on clustering

We conclude this paper by comparing the two clustering coefficients from a different
perspective than in Section 1.4. Recall that Cloc

Gt
is an unweighted average of local clustering

coefficients, that is,

Cloc
Gt

:= 1

t

∑
v∈Gt

CGt (v).

On the other hand, C
glo
Gt

is a weighted average, where the weight of vertex v is the number of
cherries that it belongs to, that is,

C
glo
Gt

= 3 ×
∑
v∈Gt CGt (v)

(
dt (v)

2

)
∑
v∈Gt

(
dt (v)

2

) .

Thus, the weight of v in C
glo
Gt

is essentially proportional to the square of the degree. This
skews the distribution of weights towards high-degree nodes. The clustering of the high-degree
vertices is the reason why the two coefficients present such distinct behaviors.

We will show below that CGt (v) for a vertex v of high degree d is of order d−1, which
explains why C

glo
Gt

goes to 0. Recall that the random variable et (�v) counts the number of
edges between the neighbors of v. Due to the definition of our model, we can increase et (�v)
by only 1 if dt (v) is also increased by at least one unit. Since et (�v) can increase by only m
units in each time step, we have

et (�v) ≤ mdt(v),

which implies an upper bound for CGt (v) ≈ et (�v)/dt (v)
2 of order d−1

t (v). In the next
proposition we state a lower bound of the same order.

Proposition 7.1. Let v be a vertex ofGt . Then there are positive constants, b1 and b2 such that

P

(
CGt (v) ≤ b1

dt (v)

∣∣∣∣ dt (v) ≥ b2 log(t)

)
≤ t−100.

This proposition does not prove our clustering estimates, but seems interesting in any case.

Proof of Proposition 7.1. Observe that if we choose v and take a TF-step thereafter, we
increase et (�v) by 1. Then, if we look only at times in which this occurs, et (�v)must be greater
than a binomial random variable with parameters: number of times we choose v at the first
choice and p. Since all the choices concerning the type of step we take are made independently
of the whole process, we just need to prove that the number of times we choose v at the first
choice, denoted by d(1)t (v), is proportional to dt (v) w.h.p.

Recall that Y (1)s indicates the vertex chosen at time s at the first of ourm choices. The random
variable d(1)t (v) can be written in terms of the Y (1) as

d
(1)
t (v) =

t∑
s=v+1

1(Y (1)s = v).

We first claim that ifdt (v) is large enough, a positive fraction of its value must come fromd(1)t (v).

Claim 7.1. There exist positive constants b1 and b2 such that

P(d
(1)
t (v) ≤ b1dt (v) | dt (v) ≥ b2 log(t)) ≤ t−100.

https://doi.org/10.1017/apr.2018.41 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.41


940 R. I. OLIVEIRA ET AL.

Proof. To prove the claim we condition on all possible trajectories of dt (v). In this direction,
let ω be an event describing when v was chosen and by how many times at each step. We have
to note that ω does not record whether v was chosen by a PA-step or a TF-step. The event ω
can be regarded as a vector in {0, 1, . . . , m}t−v−1 such that ω(s) = k means we have chosen v
k-times at time s. For each ω, let dω(v) be the degree of v obtained by the sequence of choices
given by ω.

Recall (4.8) and (4.9). For any ω such that ω(s) = k ≥ 1, we may show, using (4.8) and
(4.9), that there exists a positive constant δ depending only on m and p such that

P(Y (1)s = v | ω) ≥ δ.

Furthermore, given ω, the random variables 1(Y (1)s = v) are independent. This implies that,
given ω, the random variable d(1)t (v) dominates stochastically another random variable follow-
ing a binomial distribution of parameters dω(v)/m and δ. Thus, using Chernoff bounds, we
can choose a small b1 such that

P(d
(1)
t (v) ≤ b1dω(v) | ω) ≤ exp(−dω(v)).

Since we are on the event Dt := {dt (v) ≥ b2 log(t)}, all dω(v) ≥ b2 log(t) for some b2 can be
chosen in a way such that

P(d
(1)
t ≤ b1dω(v) | ω) ≤ t−100 for all ω compatible with Dt .

Finally, to estimate {d(1)t (v) ≤ b1dt (v)}, we condition on all the possible history of choices ω,
that is,

P(d
(1)
t (v) ≤ b1dt (v) | Dt) =

∑
ω

P(d
(1)
t (v) ≤ b1dt (v) | ω,Dt)P(ω | Dt) ≤ t−100

and this proves the claim. �

Returning to the proof of Proposition 7.1, as we observed at the beginning, et (�v) dominates
a random variable bin(d(1)t (v), p). And, from Claim 7.1, d(1)t (v) is proportional to dt (v) w.h.p.
Using Chernoff bounds, we obtain the result. �

Appendix A. Power-law degree distribution

Lemma A.1. (See [6, Lemma 3.1].) Let at be a sequence of positive real numbers satisfying
the recurrence relation

at+1 =
(

1 − bt

t

)
at + ct .

Furthermore, suppose that bt → b > 0 and ct → c. Then

lim
t→∞

at

t
= c

1 + b
.

Proof of Theorem 1.3. We divide the proof into two parts: (a) is the power law for the
expected value of the proportion of vertices with degree d, and (b) is the concentration inequal-
ities Nt(d).
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(a) The argument is essentially the same as that of [6, Section 3.2]. The key step is to
obtain a recurrence relation involving E[Nt(d)] which has the same form of that required by
Lemma A.1. To obtain the recurrence relation, observe that Nt+1(d) can be written as

Nt+1(d) =
∑

v∈Nt (d)
1 (�dt (v) = 0)

+
∑

v∈Nt (d−1)

1 (�dt (v) = 1)+ · · · +
∑

v∈Nt (d−m)
1 (�dt (v) = m).

Taking the conditional expected value with respect to Gt in the above equation, applying
Lemma 4.1, and recalling that Nt(d) ≤ t , we obtain

E[Nt+1(d) | Gt ]

= Nt(d)

[
1 − d

2t
+O

(
d2

t2

)]
+Nt(d − 1)

[
d − 1

2t
+O

(
(d − 1)2

t2

)]
+O

(
1

t

)
.

Finally, taking the expected value on both sides and denoting ENt(d) by a(d)t , we have

a
(d)
t+1 =

[
1 − d/2 +O(d2/t)

t

]
a
(d)
t + a

(d−1)
t

[
(d − 1)/2 +O((d − 1)2/t)

t

]
+O

(
1

t

)
.

From here the proof follows by an induction on d ≥ m and and application of Lemma A.1,
assuming that ENt(d − 1)/t −→ Dd−1, which yields

at (d)

t
→ Dd−1(d − 1)/2

1 + d/2
= Dd−1

d − 1

2 + d
=: Dd

leading to

Dd = 2

2 +m

d∏
k=m+1

k − 1

k + 2
= 2(m+ 1)m

(d + 2)(d + 1)d
,

which proves part (a).
(b) The proof is in line with the proof of [6, Theorem 3.2]. For this reason we show only

that the process

X
(d)
t := Nt(d)−Ddt + 16dc

√
t

ψd(t)
,

in which ψd(t) is defined as

ψd(t) :=
t−1∏
s=d

(
1 − d

2s

)
,

is a submartingale and we state an upper bound for its variation.
As in [6, Theorem 3.2], the proof follows by induction on d.
Inductive step. Suppose that for all d ′ ≤ d − 1, we have

P(Nt (d
′) ≤ Dd ′ t − 16d ′c

√
t) ≤ (t + 1)d

′−me−c2
. (A.1)

Recalling that

E[Nt+1(d) | Gt ] =
(

1 − d

2t
+O

(
d2

t2

))
Nt(d)+ (d − 1)Nt (d − 1)

2t
+O(t−1),
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we have the recurrence relation

E[ψd(t + 1)X(d)t | Gt ]
≥

(
1 − d

2t

)
Nt(d)+ (d − 1)Nt (d − 1)

2t
+O(t−1)+ 16dc

√
t −Dd(t + 1). (A.2)

The inductive hypothesis ensures that

Nt(d − 1) ≥ Dd−1t − 16(d − 1)c
√
t

with probability at least 1 − (t + 1)d−1−me−c2
. Thus, returning to (A.2),

E[ψd(t + 1)X(d)t | Gt ]
≥

(
1 − d

2t

)
Nt(d)+ (d − 1)Dd−1

2
−Dd(t + 1)+ 16dc

√
t +O(t−1). (A.3)

However, observe that for the right-hand side of the above inequality, we have

(d − 1)Dd−1

2
−Dd(t + 1)+ 16dc

√
t +O(t−1) ≥

(
1 − d

2t

)
(−Ddt + 16dc

√
t)

⇐⇒ (d − 1)Dd−1

2
−Dd +O(t−1) ≥ dDd

2t
− 8d2c√

t

⇐⇒ (d − 1)Dd−1

2
+ 8d2c√

t
+O(t−1) ≥ Dd + dDd

2t

with the last inequality holding since we have Dd = 2(m + 1)m/(d + 2)(d + 1)d and
(d−1)Dd−1 = (d+2)Dd . Returning to (A.3), we have just proved thatX(d)t+1 is a submartingale
with fail probability bounded from above by (t + 1)d−me−c2

. Its variation �X(d)t satisfies the
upper bound

|�X(d)s | ≤ �Ns(d)+Dd + 16dcs−1/2 + dNs(d)(2s)−1

ψd(s + 1)

≤ m+ 2/(d + 2)+ 17dcs−1/2 + d/2

ψd(s + 1)

≤ 2d

ψd(s + 1)
+ 17dc√

sψd(s + 1)
,

since �Ns(d) ≤ m, Ns(d) ≤ s, and Dd ≤ 2/(d + 2) for all s and d. Thus, there is a positive
constant M such that

|�X(d)s |2 ≤ 16d2

ψ2
d (s + 1)

+ Md2c2

sψ2
d (s + 1)

. (A.4)

The lower bound for Nt(d) is proved by applying [6, Theorem 2.36] on X(d)t , and setting

λ = 2c

√√√√ t+1∑
s=d

|�X(d)s |2.

The upper bound is obtained the same way, but considering the process

−X(d)t := Nt(d)−Ddt − 16dc
√
t

ψd(t)
,

which is a supermartingale. �
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