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The popularity of small unmanned aerial vehicles (UAVs) is increasing. Therefore, the importance of security systems able to
detect and classify them is increasing as well. In this paper, we propose a new approach for UAVs classification using continuous
wave radar or high pulse repetition frequency (PRF) pulse radars. We consider all steps of processing required to make a deci-
sion out of the raw radar data. Before the classification, the micro-Doppler signature is filtered and aligned to compensate the
Doppler shift caused by the target’s body motion. Then, classification features are extracted from the micro-Doppler signature
in order to represent information about class at a lower dimension space. Eigenpairs extracted from the correlation matrix of
the signature are used as informative features for classification. The proposed approach is verified on real radar measurements
collected with X-band radar. Planes, quadrocopter, helicopters, and stationary rotors as well as birds are considered for clas-
sification. Moreover, a possibility of distinguishing different number of rotors is considered. The obtained results show the
effectiveness of the proposed approach. It provides the capability of correct classification with a probability of around 92%.
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I . I N T R O D U C T I O N

Over the last years, the popularity of small unmanned aerial
vehicles (UAVs) has boomed and is expected to increase
even further [1]. Both in the military domain and in the
civil domain mini-UAVs are more widely used, e.g. to obtain
television footage of main events or to support first responders
in dangerous areas. In particular, the civil market offers access
to capable UAV technology for professionals and enthusiasts.
On the Internet do-it-yourself components are readily avail-
able to build small fixed wing and rotary wing UAVs and
the active community of enthusiasts pushes technology
toward even more capable and scalable low-cost UAVs.

One concern of this increased popularity is violation
of privacy when people operate mini-UAVs equipped with
cameras. Another important concern is the abuse of
mini-UAVs for protests, criminal acts or even terrorist
attacks; in the wrong hands mini-UAVs may become arms
or at least tools for harassment. For instance in May 2010 a
mini-UAV was crashed into The Netherlands House of
Parliament [2]. More recently, in September 2013, a small
quadrocopter interrupted a meeting with the German
Chancellor Merkel before crashing right in front of the
lectern [3]. Although these incidents were probably more of

a publicity stunt than anything else, they show that
mini-UAVs pose an actual threat.

When considering mini-UAVs as a potential threat, suit-
able counteractions need to be developed. The first step in
counteracting this threat is timely detection of incoming
mini-UAVs. Small UAVs are however difficult to detect
since they fly relatively slow and at low altitude (LSS-target).
Moreover, flying birds may lead to (many) false alarms.
Thus it is not only mandatory to timely detect incoming
UAVs, but also to classify them as a suspect, potentially haz-
ardous manmade target. Further classification into UAV
classes, e.g. helicopter or multicopter, aids the threat assess-
ment process.

Detection and classification of mini-UAVs can be per-
formed with different types of sensors such as acoustic
sensors, high-resolution infrared sensors and radar. In
general detection by acoustic sensors is not very robust
because mini-UAVs are relatively quiet and in the urban
environment ambient noise levels may be high. High-
resolution infrared sensors are capable of detecting mini-
UAVs at practical distances and, after detection, they can
zoom in on the target to obtain detailed imagery supporting
classification. A drawback of infrared sensors is that they
cannot provide speed and range of the target, and they are
unsuitable for volume search and incapability to operate at
fog and bad weather conditions. This is one of the strong
points of radar, in addition to the ability to quickly scan a
large volume. The focus of this study is therefore on radar
detection and classification of small UAVs.

Some key radar techniques to classify airborne targets
are high-range resolution profiling (HRRP), inverse synthetic

Corresponding author:
P. Molchanov
Email: pavlo.molchanov@tut.fi

1Department of Signal Processing, Tampere University of Technology, Tampere,
Finland
2Thales Nederland B.V., Delft, The Netherlands
3Department of Radar Technology, TNO, The Hague, The Netherlands

435

International Journal of Microwave and Wireless Technologies, 2014, 6(3/4), 435–444. # Cambridge University Press and the European Microwave Association, 2014
doi:10.1017/S1759078714000282

https://doi.org/10.1017/S1759078714000282 Published online by Cambridge University Press

mailto:pavlo.molchanov@tut.fi
https://doi.org/10.1017/S1759078714000282


aperture radar (ISAR) and analysis of micro-Doppler (m-D)
signatures. The jet engine modulation (JEM) is a modulation
of the radar echo signal from flying objects by rotating propel-
lers of engines or compressor and turbine blades of jet engines
[4]. We will refer to JEM in terms of m-D phenomenon.
Classification on the basis of HRRP and ISAR relies on high
resolution. To capture the spatial structure of mini-UAVs
centimetre resolution is required. Consequently wide signal
bandwidths are mandatory and in case of ISAR also long
observation times with associated comprehensive motion
compensation. HRRP and ISAR are demanding radar modes
suitable for sophisticated radar systems (in terms of RF hard-
ware and processing). With respect to analysis of m-D signa-
tures, there is no need for high resolution or complex signal
processing. Detection can be performed using moderate
range resolution, i.e. of the order of decimeters, and afterwards
detailed Doppler information can be obtained by operating
the radar in continuous wave mode.

Over the years, m-D signatures have been used to classify
humans, animals, and large (manned) aircraft [5].
Classification of mini-UAVs based on m-D signatures, on
the other hand, is a novel topic. Nonetheless, m-D analysis
shows potential not only to discriminate birds and UAVs,
but also to separate different classes of UAVs, e.g. helicopters
versus multicopters [6, 7].

Within this study, a complete chain for automatic target
recognition (ATR) of UAVs based on m-D signatures has
been developed. The successive steps in the ATR chain are:
the generation of a spectrogram, noise reduction, alignment
of the main Doppler component, feature extraction, and
finally classification. New robust features are proposed that
can be extracted from the aligned m-D signature. The pro-
posed features are founded on basis functions of the m-D
signature and they can be extracted by applying singular
value decomposition (SVD) to the Doppler signature. The
resulting features are orthogonal and unique providing
essential and uncorrelated information about the target
under consideration. The robustness of the novel features
is assessed by feeding them to different types of classifiers.
This assessment is performed using measured radar data of
different types of targets such as fixed-wing UAVs, a quadro-
copter, helicopters, rotating blades on a fixed position and
birds. Each target type induces a unique m-D signature
depending on the velocity and orientation of moving and
rotating parts.

The main contributions of this study can be summarized as
follows:

– A system for classification of UAVs by m-D signatures is
developed;

– New robust features in the form of basis functions of the
m-D signature are introduced;

– The performance of the ATR chain is assessed using mea-
sured radar data;

– The sensitivity of the classification performance to obser-
vation time, signal-to-noise ratio and rejection of the
unknown target is assessed.

The rest of the paper is organized as follows. An overview of
radar classification on the basis of m-D signatures is given
in Section II. The proposed ATR chain is discussed in detail
in Section III. The experimental verification is given in
Section IV. Finally, conclusions are drawn in Section V.

I I . T H E M - D P H E N O M E N O N

The m-D properties of a target are determined by moving and
rotating parts in addition to the main body motion. The
moving parts induce frequency and amplitude modulations
on the backscattered radar wave. These modulations are
unique for different types of targets since they depend on
the specific configuration and rate of motion of the target’s
moving parts.

The different moving parts of a target act as separate scat-
terers, each inducing a distinctive Doppler frequency shift.
The Doppler shift related to a single moving scatterer is
given as:

f (n) = − 2v(n) cosf
l

, (1)

where v(n) is time-varying speed of a moving scatterer, f
is the angle between the velocity vector and the radar
Line-of-Sight (LOS) and l is the radar wavelength. The total
signal received by the radar constitutes the contribution of
all scatterers of a target:

s(n) =
∑K

k=1

ake j2pfk(n)n/Fs + e(n), (2)

where K is the total number of moving scatters, ak is the
reflectivity of the k-th scatterer, fk(n) is the Doppler frequency
shift of the k-th scatterer, 1(n) is additive noise, FS is a sam-
pling frequency.

The Doppler information contained in (2) can be analyzed
by computing the Doppler signature. On the basis of
Doppler signatures it is feasible to estimate the main rotor
configuration, rotor parity, tail rotor configuration, and hub
configuration of (manned) helicopters [8]. Also, it has been
demonstrated that turbojet aircraft, prop aircraft, and helicop-
ters can be classified on the basis of jet engine modulation
(JEM) characteristics.

If more detailed Doppler characteristics are required, e.g. to
distinguish between different classes of mini-UAVs, it is
common to analyze the time–frequency representation of
(2), i.e. the so-called spectrogram [9]. The spectrogram can
be obtained by applying successive, overlapping short-time
Fourier transforms (STFT) to the time-domain signal (2).
Also high-resolution transforms such as the Capon transform,
Wigner–Ville distribution or Hilbert–Huang transform can
be used.

An example of a spectrogram of a rotating helicopter blade
is shown in Fig. 1. Two key positions of the helicopter blade
with respect to the radar LOS are shown. In the position
marked as “1” the blade is parallel to the radar LOS. The
angle f between the blade tip velocity vector v and the
radar LOS is 908 resulting in near zero Doppler shift
(note that the hub is stationary). In the position marked as
“2” the blade is perpendicular to the radar LOS. In this case,
the angle f is 1808 resulting in the maximum Doppler shift.
Moreover, in position “2” the complete blade is observed by
the radar inducing a flash in the spectrogram from zero vel-
ocity (i.e. the hub velocity) up to v (i.e. the blade tip velocity).
From this simple example it is clear that different character-
istics of a rotary-wing aircraft can be extracted from the spec-
trogram, e.g. the blade rotation rate can be determined by
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counting the number of blade flashes per unit of time. In
general, the spectrogram depends on the shape, tilt angle,
blade length, number of blades, and blade rotation rate.

Indeed, by analyzing the spectrogram, the number of
blades and rotation rate can be estimated [10] using varying
techniques such as tomographic features [11] or maximum
likelihood estimation of helicopter parameters [12]. These
methods are able to distinguish different classes of UAVs,
but they cannot separate different UAV models within a
class. To separate different models within a class, more
detailed information than just the number of blades and the
rotation rate is needed.

Detailed information about the UAV parameters can be
obtained by decomposition of the m-D signature. In [13],
the wavelet transform is applied with time–frequency analysis
for decomposition of the m-D signature. This study shows
that after the signal decomposition the motion parameters
of a helicopter can be estimated with higher precision. In
[14] the Hilbert–Huang transform is used to obtain high reso-
lution time–frequency information. In this study, the Hilbert–
Huang transform is applied to the m-D signature of JEM
decomposing the signature into separate signals. Above men-
tioned techniques could be used together with the proposed
one to increase the performance.

I I I . P R O P O S E D A P P R O A C H

A) General scheme
Scheme of the proposed classification system is illustrated in
Fig. 2. The approach processes the radar signal sampled
at two different sampling rates: 32 and 3.2 kHz to discrim-
inate objects with wide (helicopters) and narrow (birds,
planes) Doppler bandwidth. All information is contained
in the branch of 32 kHz, however, to decrease the process-
ing time we use a second sampling rate (3.2 kHz) with dif-
ferent parameters of feature extraction procedure. There is
no practical need of the second ADC (3.2 kHz) as these
information could be retrieved from the radar data
sampled at 32 kHz followed by a down-sampler. Once the
signal from radar is sampled, it passes through the m-D sig-
nature estimation, filtering, alignment, feature extraction,
and classifier blocks, then the final decision (with confi-
dence score) is made. Let us consider all of these blocks
in detail.

B) Estimation of m-D signature
The m-D signature of the moving target is estimated as the
magnitude of the spectrogram of the Doppler signal:

S(w, t) =
∑M−1

m=0

W(m)s(m + (t − 1)(M − L))e−j2pwm/M

∣∣∣∣∣
∣∣∣∣∣, (3)

where W(m) is the smoothing window function of length M,
for instance, Hamming window can be used; w is the fre-
quency index; L is the overlap of successive Fourier lengths,
expressed in samples; the dimensionality of the spectrogram
is S [ RM×Q, Q = N−L

M−L

⌊ ⌋
; N is a total number of samples

(length of s).

Fig. 1. Continuous wave radar and example of the spectrogram of m-D phenomenon from rotating propeller (top view).

Fig. 2. Block scheme of the proposed approach.
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C) Filtering
The noise e together with clutter could be removed from the
observation s by the “spectral subtraction” noise reduction
procedure [15]. The main idea of this approach is subtraction
of an estimate of the average noise spectrum from the noisy
signal spectrum. We assume that noise exhibits a static fre-
quency profile with varied gain.

The average noise spectrum is estimated by a periodogram:

Y(w) = 1
Q

∑Q

t=1

S e( )(w, t), (4)

where S(e) is STFT of noise only signal e .
The gain of noise is estimated as a normalized length of

the projection of the noisy signal spectrum onto noise
spectrum:

G(t) =
∑M

w=1

Y(w)S(w, t)
‖Y‖2 , (5)

where ‖Y‖ =
���������������������������������
Y(1)2 + Y(2)2 + . . .+ Y(M)2

√
is a Euclidean

norm of the noise pattern.
The noise can be removed from the signature as:

U(w, t) = S(w, t) − G(t)Y(w). (6)

In order to make U non-negative:

U(·) = U(·), if U(·) ≥ bS(·)
bS(·), if U(·) , bS(·)

{
(7)

The threshold is set to be at level b ¼ 0.01.

D) Alignment of the m-D signatures
In order to extract behavior of m-D features the motion of the
target must be compensated. This can be done by tracking the
change of velocity of the target’s body.

Let us assume that the target’s body is a scatterer with the
highest reflectivity coefficient. Therefore, the target’s body will
appear as the maximum at the STFT. We need to track this
maximum and then compensate the motion. However, the
contribution of the stationary clutter is not removed yet. For
this purpose, we propose to apply a weighting function
before estimating the maximum:

h(w) = −ge−
w2

2s2 , (8)

where g ¼ 128000/Fs, s ¼ 7.(3200/Fs)
3 and Fs is sampling

frequency. It should be noticed that the weighting function
h is obtained in dB scale. The parameters of the weighting
function are selected empirically to maximize the classifica-
tion rate on the training data. The weighting function
assumes that stationary clutter contributes to near zero
Doppler frequencies only, with stationary amplitude, esti-
mated on signal-free data; therefore, it has a form of constant
function with amplitude 0 dB and a gap of 2g dB at zero
Doppler.

As initial points to track the target’s body motion, we take
10% of samples with the highest amplitude from the

spectrogram. Then, unsupervised clustering is applied to
reduce the number of initial points within the neighboring
area. Then for each remaining initial point, the maximum
is tracked within a local window with first increasing and
then decreasing time index. In such a way, we obtain a
number of possible tracks. Then the track corresponding
to the maximum accumulated energy is selected as the
target’s body track V(t).

The tracked velocity V(t) is approximated by a poly-
nomial of order 1 to reduce the number of outliers. In such
a way the track is assumed to be a simple line, meaning that
motion can contain only linear acceleration. The m-D signa-
ture is shifted then: Û(w, t) = U(w + V̂(t), t). The last
procedure is done by linear interpolation. Empirically, we
found that for a short observation time (decision making
interval is 0.5 s) linear track is a reasonable choice for consid-
ered types of UAVs.

Finally, the m-D signature is ready for feature extraction.

E) Feature extraction
The features are based on extraction of bases of the m-D sig-
nature. These bases are orthogonal to each other and contain
essential information about the rotating parts of the target.
After the alignment, we assume that the spectrogram can be
viewed as a low rank matrix.

First, we need to compute the correlation between
different frequency components. Correlation matrix is com-
puted as:

C(w1, w2) =
∑Q

t=1

Û(w1, t)Û(w2, t). (9)

Second step is to estimate eigenpairs {vr, lr}, where vr is
r-th eigenvector and lr corresponds r-th eigenvalue, such
that l1 . l2 . . . .lr. Each eigenpair satisfies the following
equality:

Cvr = lrvr. (10)

Eigenvectors are orthogonal and unique forming the basis
functions of the signal’s spectrum. Eigendecomposition of C
or singular value decomposition of Û can be used for estima-
tion of eigenpairs. The steps (9) and (10) are similar to prin-
cipal component analysis (PCA) with only small difference
[16]. For PCA, the data must be mean centered before calcu-
lating the correlation matrix. In our case, the first (and the
most important) eigenvector corresponds to the mean
vector of the spectrogram.

Next, the Fourier transform of the eigenvectors is com-
puted to obtain features with strong “energy compaction”
property, i.e. the features where most of the signal information
is concentrated. Typically, the signal information is contained
in just a few low-frequency components. Owing to this prop-
erty, we can calculate only the I first (low-frequency) coeffi-
cients to represent the data:

yr =
⋃I

l=1

∑M

p=1

vr(p)e−j2ppl/M

∣∣∣∣∣
∣∣∣∣∣

{ }
. (11)

Finally, the feature set is obtained by combining the first Z
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transformed eigenvectors and Z eigenvalues:

F =
⋃Z

r=1

{yr , lr}. (12)

F) Classifier
In this paper, three different types of classifiers are considered
in order to evaluate the robustness of the proposed features.
The first two classifiers are the linear and non-linear
support vector machines (SVMs) belonging to non-
probabilistic classifiers, and the third one is the Naive Bayes
classifier (NBC) belonging to probabilistic linear classifiers.

1) naive bayes classifier

Naive Bayes classifier decides in favor of the class with the
highest posterior probability, assuming that the features asso-
ciated with each class are conditionally independent.

The decision is based on the maximum of class conditional
probability:

Ĉ = max
C

P(C|F), (13)

where F is a feature vector.
Considering the Bayes’ theorem and assuming the condi-

tionally independent properties of features, the decision can
be expressed as:

Ĉ = max
C

P(C)
∏N

n=1

P(Fn|C), (14)

where P(C ) is a prior probability of class C; P(Fn|C) is the like-
lihood function; Fn is the feature n.

Commonly, the prior probability is unknown and the
equation is solved by maximizing the product of likelihood
functions. Therefore, the decision rule is called the
maximum likelihood (ML). Finally, the ML rule can be
written as:

Ĉ = max
C

∏N

n=1

P(Fn|C). (15)

According to the method of estimating P(Fn|C) the Naive
Bayes classifier can be considered as normal or kernel-based.
In the first case, the likelihood function is approximated
from the Gaussian distribution. In the second case, the likeli-
hood function is approximated by a kernel smoothing density
function.

2) support vector machine (svm)

Support vector machines belong to the non-probabilistic kind
of binary classifiers. In this paper, we use the version of a
SVM with soft margins proposed in [17]. Assuming the linearly
separable classes, a hyperplane with maximal margins can be
found to separate the classes with minimum error. The SVM
can be extended to the multiple hypothesis classifier combining
various SVMs using the one-against-one approach.

Assuming the training set of instance-label pairs
Ri = {F(i), ci |F(i) [ Rn; ci [ {1, − 1}} is given, the support

vectors are found by the solution of the following optimization
problem:

1
2

wT w + S
∑I

i=1

ei

subject to

min
w,b,e

ci(wTf(F(i)) + b) ≥ 1 − ei,
ei ≥ 0,

(16)

where e i is the degree of misclassification of the data F(i);
w and b describe the separation hyperplane; S is the penalty
parameter of the error term; f(.) is the function which
maps the data F into a higher dimensional space.

Actually, the SVM is a linear classifier. However, not all
data are linearly separable in the data space. Therefore, the
function f(.) is used for data mapping into a high dimensional
space, where data are linearly separable with the minimum
error (soft margin).

In this paper, we use a radial basis function: K(F(i), F( j)) ¼
exp(2g‖F(i) 2 F( j)‖2), g . 0. Thus, the function f(.) is
selected to satisfy K(F(i), F( j)) ¼ f(F(i))Tf(F( j)).

A number of parameters are required to characterize the
SVM classifier. The hyperplane that separates classes is
described by a few support vectors (few feature vectors, F(i)).
These selected support vectors are based on the training
set. The parameter g of mapping function f(.), and the
penalty parameter S are estimated using cross-validation
procedure for the training set using grid search. The consid-
ered parameters of S are equal to {exp(25,. . .,5)}, and g are
{1/2exp(2s)|s [ {2 4,. . .,4}}. The parameters of the SVM
are selected empirically to maximize the classification rate
on the training data.

I V . C L A S S I F I C A T I O N R E S U L T S

A) Data collection
The proposed ATR system is evaluated on real radar measure-
ments. The radar data have been collected with a continuous-
wave radar operating in X-band at radio frequency of
9.5 GHz. These radar measurements have been performed
within the framework of D-RACE, the Dutch Radar Centre
of Expertise, a strategic alliance of Thales Nederland B.V.

Table 1. UAVs used for experimental verification of the proposed ATR
system. Type ‘P’ is for Plane, ‘H’ is for Helicopter, ‘Q’ for quadrocopter,

‘B’ for birds, ‘S’ for stationary rotors.

Class Model Type # of rotors Rotor, mm

1 YAK54 vliegtuig P 1 100
2 EasyStar El-Sailor P 1 108
3 Birds B – –
4 Parrot AR.Drone Q 4 200
5 1 rotor S 1 203
6 2 rotor S 2 203
7 3 rotor S 3 203
8 4 rotor S 4 203
9 Mikado Logo 600 H 2 (main, tail) 1350 (main)
10 Mikado Logo 400 H 2 (main, tail) 1040 (main)
11 Align T-REX 450 H 2 (main, tail) 715 (main)
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and TNO. The measured data have been made available for
the present study.

The UAVs considered for classification by the proposed
technique are listed with their characteristics in Table 1.
Different types of the UAVs are considered: two planes, a
quadrocopter and three helicopters. For comparison, station-
ary rotating rotors with different number of blades as well as
diverse species of birds are considered for classification. At
least 30 s were recorded of each class. The data were recorded
at open space with the distance to target less than 30 m. The
aspect angle, distance and velocity were varying as within
the real situation.

For classification we formulate two problems:

11-classes problem where each class corresponds to different
model of the UAV, and the goal is to determine the correct
type as well as the model.
5-classes problem where each class consists of the data from
the same type of aerial object, and the goal is to determine
only the type of the flying object.

The radar signal is divided onto a number of non-
overlapping segments of fixed length, by processing these seg-
ments a decision about the class label is made. The length of
one segment is set to 0.5 s. To compute the STFT we use a
sliding Hamming window of length M ¼ 128 samples ¼
4 ms with overlapping of L ¼ 90 corresponding to 0.9 ×
4 ¼ 3.6 ms1. Finally, the features extracted for the two differ-
ent sample rates are concatenated to one feature vector.

Examples of m-D signatures of the considered classes are
illustrated in Fig. 3. The classes can be separated even visually.
The features we extract are based on eigenvectors of the signa-
ture and the first two of them are also shown in Fig. 3.

B) Performance analysis
To classify the type of UAV, we will use the machine learning
approach. All available segments are divided into training and
testing sets without overlapping. The decision about class
membership is made by a predefined system of rules. The
process of defining the system of rules is called learning; it
is performed on the training set. The number of correctly clas-
sified segments determines the probability of correct classifi-
cation as ratio to the total number of segments from the
testing set.

The K ¼ 10 cross-validation technique is applied to obtain
robust classification rates. The initial data under analysis are
split into K subsets of the same length, and K21 subsets are
used as a training dataset, and the remaining one as a
testing dataset. The cross-validation process is repeated K21
times (K21-folds) with each of the K subsets used as a
testing dataset. The K results from the folds are averaged to
evaluate a single estimation. The cross-validation is applied
in such a way that training and testing sets contain data
from different trials (experiments).

First, we want to study the influence of the feature extrac-
tion parameters on the classification result. Therefore, the
number of eigenpairs in (12) was varied as Z ¼ 1,2,. . .,14
and the number of calculated Fourier coefficients in (11)
was varied as I ¼ 1,2,. . .,40. Total number of 560 classification
results were obtained using ten-fold cross-validation for all
possible pairs of Z and I. Then, the classification rates were
averaged for all values of Z and I, to show the dependence
on these variables in Fig. 4. Analyzing the dependences, we
conclude the following:

– With increasing the number of Fourier coefficients, SVM
classifiers show increase in the performance;

– For Naive Bayes classifier, the performance reaches the pick
with 16 Fourier coefficients, with larger number the per-
formance degrades due to the “curse of dimensionality”
phenomenon;

Fig. 3. Examples of filtered and aligned micro-Doppler (m-D) signatures of 5 classes (first row); eigenvectors corresponding to the largest eigenvalue (second row)
and the second largest eigenvalue (third row) of c for corresponding signatures. These eigenvectors are basis functions of the m-D signatures.

1

The value of L was chosen based on visual quality of the spectrogram
and memory restrictions of PC.
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– For non-linear classifiers, such as non-linear SVM, with
increasing the number of eigenpairs, the performance
degrades; the best result is obtained for only one eigenpair
extracted.

– For linear classifiers, such as linear SVM and Naive Bayes
classifier, the best performance is reached when several
eigenpairs are extracted. Such for linear SVM, four eigen-
pairs provide the best performance, for Naive Bayes classi-
fier five eigenpairs are selected.

According to the analysis we selected the following
parameters:

– Non-linear SVM: Z ¼ 1, I ¼ 29;
– Linear SVM: Z ¼ 4, I ¼ 33;
– Naive Bayes classifier: Z ¼ 5, I ¼ 16;

Computed probabilities of correct classification for different
classifiers are shown in Table 2. The results are shown for dif-
ferent sampling frequencies of the signal: 3.2, 32 kHz and
when two of them are applied. The results in Table 2 allow
us to conclude the following:

– For all classifiers the best results are obtained when two
sampling frequencies are used;

– The benefit of processing the signal sampled at two sam-
pling frequencies, compared to the best result out of one
sampling frequency, is: SVM linear 3.56%; SVM non-linear
5.85%; Naive Bayes 0.14%;

– The best result is obtained with SVM nonlinear classifier:
92.3%.

Confusion matrix for non-linear SVM with applied ten-fold
cross-validation is shown in Table 3 to estimate the intra
class distribution of classification rates. It can be seen that
all targets, except classes 1, 2 and 7, 8 are classified with prob-
ability of correct classification higher than 95%. The first two
classes have more errors because blades are small and their
m-D signatures are similar. The results for classes 5–8 show
the capability to distinguish different number of rotors. The
class #7, three stationary rotors, shows misclassification at
level of 15% with class of four stationary rotors and helicopters
class.

To show the flexibility of the proposed ATR scheme to
classify different types of the UAVs, the following classes
were removed from the training set: 1, 5, 6, 7, 9, 10. In this
way for each type of the UAVs (plane, birds, stationery
rotors, quadrocopter, and helicopter) only a single class is
used for training. The removed classes are then used to test
the system. The results of classification by linear SVM classi-
fier are listed in the Table 4. The class of stationary rotating
rotor, and the class of helicopters are classified correctly
with 100%; the data from class 1 are classified correctly as a
class of plane with probability of 86%. We can claim that pro-
posed ATR scheme is robust to variations inside the class, and
therefore with high probability, other UAVs with similar
flying concept will be classified correctly.

For ATR system, it is important to reject an unknown
target which class significantly differs from the ones used
for training. To reject the unknown target a confidence thresh-
old can be set. By confidence threshold, we mean a minimum

Fig. 4. Probability of correct classification for 11-classes problem depending
on: (a) the number of Fourier coefficients in (11); (b) depending on the
number of eigenpairs in (12).

Table 2. Probability of correct classification obtained for 11-classes
problem using ten-fold cross validation.

Sampling
type (kHz)

SVM
linear (%)

SVM
non-linear (%)

Naive
Bayes (%)

3.2 73.79 74.75 69.22
32 86.3 86.14 88.28
32 and 3.2 89.86 92.3 88.42

Table 3. Confusion matrix (in percentages) for linear SVM classifier,
11-classes problem.

Class 1 2 3 4 5 6 7 8 9 10 11

1 70 22 4 2 0 0 0 0 0 0 2
2 17 79 2 2 0 0 0 0 0 0 0
3 0 5 95 0 0 0 0 0 0 0 0
4 1 0 3 96 0 0 0 0 0 0 0
5 0 0 0 0 100 0 0 0 0 0 0
6 0 0 0 0 0 100 0 0 0 0 0
7 0 0 0 0 0 0 85 8 7 0 0
8 0 0 0 0 0 0 4 96 0 0 0
9 0 0 0 0 0 0 0 0 99 1 0
10 0 0 0 0 0 0 0 0 2 98 0
11 0 1 0 0 0 0 0 0 0 0 99
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value of the class conditional probability (posterior probabil-
ity) for which the decision is assumed to be true, otherwise
the target is marked as unknown. Even for non-probabilistic
classifiers, such as SVM, it is possible to estimate the approxi-
mated posterior probability based on distances to the hyper-
planes [18]. If we set the confidence threshold to 0.85 then
with high probability targets from classes not used for training
will be rejected. To demonstrate this Table 5 is shown. The fol-
lowing classes were removed from training set: [1, 2, 5, 6, 7, 9,
10]. As classes 1 and 2 are removed, the classifier has no data
to train the class of planes, and these classes are assumed to be
from class of unknown target. According to Table 3, 83% of
the data of the plane’s class is classified as unknown; also,
16% of data from quadrocopter’s class and 9% of the class
of stationary rotating rotor are misclassified as unknown
target (Table 5).

For all experiments above we used half of a second of the
observation time to classify the target. Next, we show what a
performance can be achieved when shorter interval is used
for decision making. The training set is constructed in the
same manner as before (using 0.5 s as segment’s duration);
however, for training set, the features are extracted from
shorter segments. This shows the robustness of the feature
extraction procedure to the duration of the segment.

Figure 5 demonstrates the dependence of the classification
rates on the dwell time for 11-classes problem. The following
conclusions can be pointed out:

– Both SVM classifiers demonstrate stable result with dwell
time longer than 0.25 s;

– Naive Bayes classifier provides a decrease of 4% with dwell
time of 0.25 s;

– With dwell time shorter than 0.25 s, the performance drops
significantly with decrease of the dwell time. At dwell time
0.05 s the following result is achieved: linear SVM 75%,
non-linear SVM 82%, Naive Bayes classifier 65%.

Noise can corrupt the signal and degrade the classification
performance. We will add white Gaussian noise to experi-
ments from test dataset and examine the performance of the

system. To do this, we assume that collected radar signal con-
tains no noise and the power of the raw data will be used to
calculate Signal to Noise Ratios (SNRs). Additive white
Gaussian noise is generated as variable e(n) in (2). Figure 6
demonstrates the dependence of classification rate on SNR,
for 11-classes problem. We can conclude the following:

– The proposed approach together with SVM classifier
demonstrates robustness to the SNR when it is higher
than 30 dB;

– Performance drops to half with SNR ¼ 18 dB, and reaches
probability of random guess at 0 dB;

– Naive Bayes classifier together with the proposed approach
is more sensitive to the SNR; drop to the half of the perfor-
mance is obtained with 25 dB and than rapidly decreases.

V . M A I N C H A L L E N G E S

The proposed ATR system applies eigendecomposition of the
correlation matrix for feature extraction. This step is the most
consuming of the overall system. For current computers it is
not a problem; however for embedded systems it could
be, for example in case of multiple target scenario. The

Table 5. Classification of the unseen for training classes, 5-classes
problem.

Class Unknown B Q S H

P 83 0 13 5 0
B 0 100 0 0 0
Q 16 0 84 0 0
S 9 0 0 91 0
H 0 0 0 0 100

Table 4. Classification of UAVs hidden from training procedure,
11-classes problem.

Class P B Q S H

1 85 11 4 0 0
5 0 0 0 100 0
6 0 0 0 100 0
7 0 0 0 100 0
9 0 0 0 0 100
10 0 0 0 0 100

Fig. 5. Classification rate for 11-class problem depending on the dwell time.

Fig. 6. Classification rate depending on SNR, 11-classes problem.
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eigendecomposition could be replaced with calculation of pro-
jection of the spectrogram onto a dictionary. Dictionary could
be constructed only once during the training stage, it should
contain eigenvectors extracted from the training data.

Another challenge is a robust alignment of the m-D signa-
ture. Proposed feature extraction algorithm requires m-D sig-
nature to be properly aligned. The current alignment method
does not assume discontinues in the m-D signature (e.g. when
a part of the signature is shadowed by another object.) For
such scenarios, more robust alignment procedure is required.

Alignment procedure used in the system assumes that the
highest reflectivity line in Doppler signature corresponds to
main body of UAV. However, in some cases this assumption
is not true, e.g. because of a special body construction or
material. In this case, the alignment procedure will align the
Doppler signature with respect to the highest reflectivity
which could correspond to blades. Next, the track will be cor-
rected by polynomial regression, and with high probability it
will be associated correctly. Moreover, following feature
extraction procedure does not require full compensation of
the main body (to be at zero Doppler), any constant value
will lead to the same features (because of amplitude spec-
trum’s invariance to the spatial shift).

V I . C O N C L U S I O N S

A new automatic target recognition system has been proposed
for classification of unmanned aerial targets by their m-D sig-
natures. The preprocessing steps of the signature such as filter-
ing and Doppler alignment have been discussed. New, robust
features for target classification based on extraction of bases
of the m-D signature have been introduced. The probability
of correct classification of the order of 92% has been achieved.
It has been shown that different models of the same type could
be distinguished, helicopters with probability of 98%, station-
ary rotors near 95%, and planes with 74.5%. It was shown
that system can identify unknown classes as well as classify
models of UAVs excluded from the training procedure.
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