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Abstract

The n-back task is a widely used neuroimaging paradigm for studying the neural basis of working memory (WM);
however, its neuropsychometric properties have received little empirical investigation. The present study merged clinical
neuropsychology and functional magnetic resonance imaging (fMRI) to explore the construct validity of the letter variant
of the n-back task (LNB) and to further identify the task-evoked networks involved in WM. Construct validity of the
LNB task was investigated using a bootstrapping approach to correlate LNB task performance across clinically validated
neuropsychological measures of WM to establish convergent validity, as well as measures of related but distinct cognitive
constructs (i.e., attention and short-term memory) to establish discriminant validity. Independent component analysis
(ICA) identified brain networks active during the LNB task in 34 healthy control participants, and general linear
modeling determined task-relatedness of these networks. Bootstrap correlation analyses revealed moderate to high
correlations among measures expected to converge with LNB (|ρ|≥ 0.37) and weak correlations among measures
expected to discriminate (|ρ|≤ 0.29), controlling for age and education. ICA identified 35 independent networks, 17 of
which demonstrated engagement significantly related to task condition, controlling for reaction time variability. Of these,
the bilateral frontoparietal networks, bilateral dorsolateral prefrontal cortices, bilateral superior parietal lobules including
precuneus, and frontoinsular network were preferentially recruited by the 2-back condition compared to 0-back control
condition, indicating WM involvement. These results support the use of the LNB as a measure of WM and confirm its
use in probing the network-level neural correlates of WM processing. (JINS, 2014, 20, 736–750)
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INTRODUCTION

Working memory (WM) is the set of mental processes
that enables manipulation of information stored within
short-term memory, and provides an interface between sen-
sory perception, long-term memory, and active interaction
with one’s environment (Baddeley, 2012; Conway, Jarrold,
Kane, Miyake, & Towse, 2007; Miyake & Shah, 1999). This
transient storage and active manipulation of goal-relevant
information facilitates higher-order cognitive processes, such

as reasoning, comprehension, planning and learning (Baddeley,
1986; D’Esposito, 2007; Just & Carpenter, 1992; Was,
Dunlosky, Bailey, & Rawson, 2012). The prominent role of
WM in diverse cognitive processes has motivated research
investigating WM dysfunction across a range of psychiatric
and neurologic disorders, including schizophrenia, attention
deficit hyperactivity disorder, dementia, and traumatic
brain injury (Gagnon & Belleville, 2011; Gorman, Barnes,
Swank, Prasad, & Ewing-Cobbs, 2012; Kim et al., 2009;
Schweitzer et al., 2000). However, disparate WM theories
and approaches to its study have resulted in incongruities in
our understanding of its components, functions and dynamics
(Baddeley, Banse, Huang, & Page, 2012; Conway et al.,
2007; Miyake & Shah, 1999). Thus, we must first improve
our characterization of the neural encoding of normative
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population variance in WM to provide a framework by which
we may define the neural processing variance associated with
cognitive and behavioral dysfunction in clinical groups.
Functional neuroimaging has played a pivotal role in

refining the cognitive construct and neural representation of
WM (Champod & Petrides, 2010; Smith & Jonides, 1997).
The n-back task is arguably the most widely used functional
neuroimaging paradigm for investigating the neural basis
of WM due to its ability to produce robust and consistent
neuroactivations and to parametrically vary memory load
demands (Braver et al., 1997; Cohen et al., 1997; Jonides
et al., 1997; Kane & Engle, 2002). However, despite the
n-back task’s strong face validity as a measure of WM, its
construct validity as a WM measure has been inconsistently
established. Some studies report strong convergent validity
between n-back performance andWM-related processes such
asWM capacity (Schmiedek, Hildebrandt, Lövdén, Wilhelm,
& Lindenberger, 2009; Shamosh et al., 2008; Shelton, Elliott,
Hill, Calamia, & Gouvier, 2009; Shelton, Metzger, & Elliott,
2007), various executive functions (Ciesielski, Lesnik, Savoy,
Grant, & Ahlfors, 2006), and/or general and fluid intelligence
(Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008; Gevins
& Smith, 2000; Gray, Chabris, & Braver, 2003; Jaeggi, Busch-
kuehl, Perrig, & Meier, 2010). However, others have reported
weak or negligible correlations between n-back performance and
WM-relatedmeasures (Friedman et al., 2006; Jaeggi et al., 2010;
Kane, Conway, Miura, & Colflesh, 2007), instead associating
n-back with simple short-term memory (Oberauer, 2005;
Roberts & Gibson, 2002), or concluding that the complexity of
n-back tasks requires a combination of processes not easily
disentangled or characterized through comparison of perfor-
mance on existing cognitive tests (Jaeggi et al., 2010).
The inconsistency of these findings limits the interpret-

ability of the n-back as a reliable probe of WM (as mentioned
by Conway et al., 2005; Miller, Price, Okun, Montijo,
& Bowers, 2009). Thus, the present study sought to validate
the n-back as a reliable WM probe by demonstrating its
cognitive-behavioral specificity for a domain-general WM
construct. We use the letter variant of the n-back task (LNB),
generally considered a measure of verbal WM (Cohen
et al., 1997; Owen, McMillan, Laird, & Bullmore, 2005). To
establish LNB’s construct validity, we correlate LNB task
performance with a diverse battery of (1) clinically validated
neuropsychological (NP) measures of WM (i.e., auditory,
verbal, and visuospatial), to establish convergent validity,
and (2) measures related to but conceptually distinct from
WM, to establish discriminant validity. We sought to control
for the effects of paradigm design-specific variance on the
validity relationships by administering NP instruments that
included separate subtests which did and did not measure
WM, thereby allowing within-instrument measures of con-
vergent and discriminant validity with the n-back.
Furthermore, while several brain regions have been shown to

be consistently recruited by the LNB task, it remains unclear
how these regions are integrated into larger functional networks.
In a 2005 quantitative meta-analysis, 24 normative functional
neuroimaging studies of several n-back task variants differing

in WM process (i.e., location vs. identity monitoring) and
content (i.e., verbal vs. non-verbal material) were compiled to
investigate the neuroanatomic representation of WM (Owen
et al., 2005). Seven brain regions were identified as consistently
activated across all studies, regardless of task variant, including
six cortical regions: (1) bilateral and medial posterior parietal
cortex; (2) bilateral premotor cortex; (3) dorsal cingulate/
medial premotor cortex; (4) bilateral rostral prefrontal cortex;
(5) bilateral dorsolateral prefrontal cortex; (6) bilateral mid-
ventrolateral prefrontal cortex, and (7) the medial cerebellum.
Owen et al. provided strong evidence for the consistent involve-
ment of core frontal and parietal cortical regions across variants
of the n-back task, as well as identifying differential subregional
and lateralized activation patterns for process- and content-
specific task differences.
We sought to expand upon Owen et al.’s findings by

identifying the LNB’s network-level neural correlates ofWM
using independent component analysis (ICA), a data-driven
statistical method for identifying functionally connected
networks of brain regions (Calhoun, Adali, Pearlson, &
Pekar, 2002; McKeown et al., 1998). While previous studies
have sought to establish the neural correlates of this task
using ICA-based approaches, all have either studied dys-
functional network organization in patients (Cousijn et al.,
2014; Nejad et al., 2013; Palacios et al., 2012; Penadés et al.,
2013), the organization of the default mode network (DMN)
(Esposito et al., 2009, 2006; Sambataro et al., 2010), or
focused on neuroimaging method development (Haller,
Homola, Scheffler, Beckmann, & Bartsch, 2009; Missonnier
et al., 2003). The present study aims to characterize norma-
tive neural networks recruited by the LNB task and their
relationships to task demand, thereby testing the hypothesis
that the LNB and its neural processing networks fulfill con-
vergent and discriminant validity as a WM demand.

METHODS

Subjects

Fifty-two participants [29 female; mean (SD) age = 32 (10)
years] were recruited via community advertisements in accor-
dance with University of Arkansas for Medical Sciences
(UAMS) Institutional Review Board approval and oversight.
We strove to recruit a demographically diverse sample of
participants by posting flyers and banners on city buses, at local
eateries, and in community centers, in addition to posting at the
university. Inclusion criteria for the study were native English-
speaking adults ages 18–50 without history of psychiatric or
neurologic illness. Exclusion criteria included the presence of
anyDSM-IV psychiatric disorders (except nicotine dependence)
as determined by structured clinical interview (SCID-NP) (First,
Spitzer, Gibbon, & Williams, 2002), ferromagnetic implants
and other contraindications to the high-field MRI environment
(determined through medical history), and pregnancy (deter-
mined through urinalysis). Eighteen participants were excluded
from analyses due to incomplete fMRI or NP data (n = 11) or
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excessive head motion artifact (n = 7; see the METHODS,
Image Acquisition and Processing, for details). Analyses were
conducted on the remaining 34 participants [22 female; mean
(SD) age = 32 (10) years; range 19–50 years; 31 right-handed;
see Table 1 for full demographic information].

Procedures

The data included in the present study were collected as a
subset of a larger, multifaceted initiative known as the
“Cognitive Connectome (Cognectome)” which seeks to
comprehensively map the brain’s functional and structural
encoding of individual variation in cognitive and behavioral
abilities across cognitive modalities. All procedures were
conducted at the Brain Imaging Research Center (BIRC) in
the Psychiatric Research Institute at UAMS. Participants
first underwent a telephone interview to establish inclusion
criteria. Eligible participants were invited to the BIRC for an
intake session where they provided written informed consent
and underwent SCID-NP assessment and medical evaluation
to assess exclusion criteria. Eligible participants underwent
two MRI sessions (1 hr each), a battery of computerized
assessments (1 hr), and comprehensive NP assessment (3–4 hr).
Intakes were conducted in the morning, fMRI sessions in the
afternoon (between 1 p.m. and 5 p.m.), and NP assessment (due
to length) in morning or afternoon at participants’ convenience.
Participants were compensated $25 for completion of each of
the four sessions (Intake, one NP, two fMRI), in addition to
compensation for parking or bus fare.

Neuropsychological (NP) Assessments

NP instruments were administered per standardized instruc-
tions. Administrators were trained by a board-certified clinical

neuropsychologist. The following tests were selected from the
larger Cognectome test battery for having at least one subscale
accepted as a measure ofWM and at least one subscale that was
not, thus permitting exploration of convergent and discriminant
validity. Two additional tests, the Halstead-Reitan Finger
Tapping Test and the Boston Naming Test, were included as
stand-alone measures of discriminant validity.

Digit Span Test (WAIS-IV)

The Digit Span Test of the Wechsler Adult Intelligence
Scales-Fourth Edition (WAIS-IV) was designed to measure
span of auditory attention and verbal WM and was adminis-
tered and scored per standardized instructions (Wechsler,
2008). This version of the Digit Span Test includes: Digit
Span Forward (DSF), Digit Span Backward (DSB), and
Digit Span Sequencing (DSS) which requires oral repetition,
reversal, and sequencing of number strings, respectively.

Spatial Span Test (WMS-III)

TheWechsler Memory Scale-Third Edition (WMS-III) Spatial
Span Test was designed to measure span of visuospatial
attention and visuospatial WM and was administered and
scored per standardized instructions (Wechsler, 1997). The
Spatial Span Test includes: Spatial Span Forward (SSF) and
Spatial Span Reverse (SSR), which requires manual repetition
and reversal of visuospatial sequences, respectively.

Test of Everyday Attention (TEA)

The Test of Everyday Attention (TEA) consists of eight sub-
tests designed to measure three major features of attention—
selective attention, sustained attention and attentional
switching—as well as auditory-verbal WM (Robertson, Ward,
Ridgeway, & Nimmo-Smith, 1994, 1996). Five of the eight
subtests were included in the Cognectome test battery and
were administered and scored per standardized instructions
(Robertson et al., 1994). These included: [TEA 1] Map Search
(selective visual attention), [TEA 2-3] Elevator Counting and
Elevator Counting with Distraction (sustained attention and
auditory-verbal WM, respectively) and [TEA 4-5] Elevator
Counting with Reversal using visual or auditory stimuli
(attentional switching and auditory-verbal WM, respectively).

D-KEFS Trail-Making Test (TMT)

The Delis-Kaplan Executive Function System (D-KEFS)
Trail-Making Test (TMT) was administered and scored per
standardized instructions and included five self-paced subt-
ests designed to measure cognitive flexibility/set-shifting
(an executive subprocess of WM) while also allowing for
the disambiguation of constituent processes embedded in
the higher-level task performances (i.e., visuomotor speed,
selective visual attention, and temporal sequencing; Delis,
Kaplan, & Kramer, 2001). The five self-paced TMT subtests
included: [1] Visual Scanning (visuomotor speed, selective
visual attention), [2-3] Number Sequencing and Letter

Table 1. Participant Demographics

Number of Participants 34

Age (years)
mean 32
SD 10
range 19-50

Sex
Female 22 (65%)
Male 12 (35°%)

Ethnicity
African-American† 13 (38°%)
Caucasian† 21 (62%)
Hispanic / Latino 1 (3%)

Education (years)
mean 16
SD 1.9
range 12-19

Handedness
Left 3 (9%)
Right 31 (91%)

†Includes one participant self-reporting as both African-American and Caucasian
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Sequencing (visuomotor speed, selective visual attention,
temporal sequencing of numerical or alphabetical stimuli,
respectively), [4] Number-Letter Sequencing (visuomotor
speed, selective visual attention, complex temporal sequen-
cing, cognitive flexibility/set shifting), and [5] Motor Speed
(visuomotor speed/agility).

Halstead-Reitan Finger Tapping Test (FTT)

The Halstead-Reitan Finger Tapping Test (FTT) was
designed to provide a measure of simple motor speed and was
administered and scored per standardized instructions (Reitan
& Wolfson, 1985).

Boston Naming Test-2 (BNT)

The Boston Naming Test-2 (BNT) is a picture naming task
designed to measure visual confrontational naming—which
involves processes such as semantic fluency, lexical retrieval, and
speech production—and was administered and scored per stan-
dardized instructions (Kaplan, Goodglass, & Weintraub, 2001).

Letter n-back (LNB) fMRI Task

The LNB task was conducted as a block design using Pre-
sentation 14.4 (Neurobehavioral Systems, Inc.) and consisted
of alternating blocks of 0-back (sensorimotor and sustained
attention control) and 2-back (WM) conditions. Task blocks
involved the random sequential presentation of uppercase
letter stimuli (A-E), with each trial lasting a total of 1500 ms
(letter presentation for 1200 ms or until participant made a
response, followed by fixation cross presented for remainder
of the trial). During 0-back blocks, participants were
instructed to respond whenever the letter “A”was shown. For
2-back blocks, participants were instructed to respond if
the currently presented letter matched the letter presented
two letters prior. Twenty-five percent of trials from each
condition were coded as target trials warranting a response.
Before fMRI scanning, all participants practiced the task
outside the MRI scanner to ensure task comprehension.
The first five participants underwent alternating 90 s blocks

of 0-back and 2-back conditions (three blocks each; six total).
Each block was preceded by a 6 s Instruction block indicating
task condition (“0-back” or “2-back”) and followed by a
20 s Rest (baseline) block consisting of a static fixation cross,
for total duration of 11.1 min. Interim analysis showed
comparable neural responses when each task condition was
reduced to blocks with shorter total durations, prompting a
task redesign to reduce participant fatigue. Subsequent par-
ticipants underwent alternating 40 s blocks of 0-back and 2-
back trials (four blocks each; eight total), which were now
preceded by a 5 s Instruction block and followed by a 15 s
Rest block for a total task time of 7.3 min.
Performance on the LNB was computed using the Critical

Success Index (CSI), a modified estimate of percent accuracy
given by: the number of hits (correct intentional responses)
divided by the sum of hits, false alarms (incorrect intentional
responses), and misses (incorrect intentional non-responses)

(Wilks, 2011). CSI was preferred over standard percent
accuracy due to the fact that correct intentional non-responses
(“rejections”) cannot be discriminated from correct uninten-
tional non-responses when using standard percent accuracy
calculations, which results in overinflated accuracy estimates,
especially for designs with a high percentage of non-response
trials, such as the present study (~75% of trials). Thus,
the CSI provided a performance measure less biased by the
ambiguity of non-response trials (Wilks, 2011). However, for
simplicity, we will still refer to the performance scores as
“accuracy” or “percent accuracy” throughout the manuscript.

Construct Validity Analysis of the LNB Task

LNB construct validity was determined using bootstrapping to
estimate correlations of LNB performance with each NP
assessment. Considering our relatively small sample compared
to other behavioral and/or construct validation studies, boot-
strapping provided a statistical approach more robust against
small sample size than simple correlations alone (Cumming,
2008; Efron & Tibshirani, 1993; Gardner & Altman, 1986;
Young & Lewis, 1997). This is because it involves the simu-
lation of an empirical distribution of correlation estimates that
represents the true (population) distribution, followed by the
evaluation of the stability of these approximations using con-
fidence intervals (CI), a more interpretable (i.e., generalizable)
statistical measure of significance than p-values (Cumming,
2008; Efron & Tibshirani, 1993; Gardner & Altman, 1986;
Young & Lewis, 1997). Bootstrapping provided estimates of
the means, standard deviations (SE) and 95% CI for correla-
tions between LNB performance and each NP assessment, as
follows. First, 34 subjects were randomly selected with repla-
cement from the observed sample to form a bootstrap resample;
this process was repeated 1000 times to form 1000 34-subject
resamples. Partial correlations were calculated (controlling for
age and education) between LNB accuracy and the raw scores
on each NP subscale for each of the 1000 resamples, forming
an empirical distribution of the correlation estimates, from
which a mean, SE, and 95% CI were calculated. LNB was
interpreted as having discriminant or convergent validity with a
NP test if the 95% CI of its bootstrapped correlation did
or did not include zero, respectively. All analyses of behavioral
performance were conducted using Matlab 7.10 (The
MathWorks, Inc.).

Image Acquisition and Processing

Participants were scanned using a Philips 3T Achieva
X-series MRI scanner (Philips Healthcare, USA). Anatomic
images were acquired with a magnetization prepared gradient
echo (MPRAGE) sequence (matrix = 256 × 256, 160 sagittal
slices, repetition time/echo time/flip angle [TR/TE/FA] =
2600ms/3.05ms/8°, final resolution = 1 × 1× 1mm3). Func-
tional images were acquired for 23 participants using an
8-channel head coil with an echo planar imaging sequence [TR/
TE/FA = 2000ms/30ms/90°, field of view = 240 ×240mm,
matrix = 80 ×80, 37 oblique slices (parallel to orbitofrontal

Neuropsychology and neuroimaging to evaluate the n-back task 739

https://doi.org/10.1017/S135561771400054X Published online by Cambridge University Press

https://doi.org/10.1017/S135561771400054X


cortex to reduce sinus artifact), slice thickness = 4mm,
interleaved slice acquisition, final resolution 3 × 3 × 4mm3].
Following an equipment upgrade, functional data for the
11 remaining participants were acquired with a Phillips
32-channel head coil (Philips Healthcare, USA). The same
image acquisition parameters were used, except with thinner
slices (slice thickness = 2.5 mm with 0.5 mm gap) and a
sequential ascending slice acquisition. The thinner slices were
selected to reduce orbitofrontal signal loss caused by sinus
cavity artifact.
MRI data preprocessing was performed using AFNI version

2011_12_21_1014 (Cox, 1996). Anatomic data underwent
skull stripping, spatial normalization to the ICBM 452 brain
atlas and segmentation into white matter, gray matter, and
cerebrospinal fluid (CSF) using FSL v5.0.4 (Jenkinson, Beck-
mann, Behrens, Woolrich, & Smith, 2012). The functional
data underwent despiking; slice time correction; deobliquing
(to 3 × 3 × 3 mm3 voxels); head motion correction; transfor-
mation to the spatially normalized anatomic image; regres-
sion of motion parameters, mean timecourse of white matter
voxels, and mean timecourse of CSF voxels; spatial
smoothing with a 6 mm FWHMGaussian kernel; and scaling
to percent signal change.
After preprocessing, ICA was conducted using the Group

ICA of fMRI Toolbox (GIFT v1.3) for Matlab (Calhoun,
Adali, Pearlson, & Pekar, 2001) to identify and remove
sources of signal caused by head motion (Tohka et al., 2008;
see METHODS, Independent Component Analysis and
General Linear Modeling for detailed ICA procedure). Head
motion artifact manifests in the functional data as alternating
“bands” or “stripes” of activity corresponding to the order of
slice acquisition. For each subject, ICA solved for the optimal
number of components as determined by GIFT’s MDL
algorithm (typically 150–200 components). Because the
pattern of slice acquisition (e.g., all even slices or all odd
slices) does not represent biologically relevant brain activity,
a liberal threshold (r> 0.05) was used to identify components
that correlated with slice acquisition. These components were
removed from the preprocessed functional data using the
“icatb_removeArtifact.m” command in Matlab. Motion arti-
fact was assessed before and after ICA “stripe” removal using
single voxel seed-based correlation analyses via AFNI’s
“InstaCorr” function. Seven subjects still demonstrated
“striping” after ICA removal and were thus excluded from
further analysis. Two additional subjects were excluded
because excessive signal loss in the orbitofrontal cortex
resulted in poor normalization of the functional data to the
ICBM 452 template.

Independent Component Analysis and General
Linear Modeling

Independent Component Analysis (ICA)

ICA was performed on the LNB fMRI data using Matlab’s
GIFT. GIFT uses a two-step data-reduction ICA approach.
The first step of the GIFT ICA procedure performs a principal

component analysis (PCA) on each individual participant to
reduce the dimensionality of each fMRI dataset into subject-
specific principal components. The second step performs
ICA upon these subjects’ principal components by first con-
catenating the subject-specific components into a group
and then identifying group-level independent components
(i.e., components that are consistently represented across all
subjects). For the first step, PCAs were performed using
GIFT’s expectation maximization and stacked datasets
options. For the second step, GIFT’s ICASSO3 toolbox was
used to determine the reliability of the ICA components
across iterations. ICASSO3 was repeated 20 times using the
Infomax algorithm to calculate the stability index (iq) of each
component, a measure of how reliably each component was
reproduced in the sample across ICASSO iterations.
The GIFT ICA procedure defines components by their spa-

tial independence, which requires that the spatial distributions
of the components be independent of one another (Beckmann,
2012; McKeown et al., 1998). Thus, any given brain region is
capable of contributing to multiple components—for instance,
when the same brain region is transiently recruited by several
discrete neural processes throughout the course of the task—
as long as the overall spatiotemporal maps are statistically
spatially distinct (Calhoun et al., 2001; Xu, Potenza, &
Calhoun, 2013). However, ICA model order selection (i.e., the
number of components solved for) can greatly impact the
extent of segregation and/or overlap of the components’ spa-
tiotemporal maps by altering the stringency of their spatial
independence (Calhoun et al., 2001; Ray et al., 2013). Yet
methods for determining the optimal number of components
for a given sample are either still in debate or in active
development (Li, Adali, & Calhoun, 2007; Ray et al., 2013).
Thus, the selection of the present study’s ICA model order was
motivated by an empirical evaluation of the component quality
across several different ICA procedures within our sample, as
follows. Four separate ICAs were conducted (solving for the
following combinations of PCA/ICA components: 40/20, 50/
25, 60/30, and 70/35) to find the model with, both, the best
component stability (given by the iq estimate) and the best
replication of well-supported (“canonical”) functional networks
(Ray et al., 2013; Smith et al., 2009). Of the four models,
solving for 35 components produced the best balance between
component stability (iq ≥ .90) and the partitioning of compo-
nents into well-validated canonical functional networks (Ray
et al., 2013; Smith et al., 2009). Because the group ICA
approach identifies components common to all individuals, this
also ensured the generalizabilty (and interpretation) of the ICA
results across subjects (Calhoun et al., 2001).
In the final step of the GIFT ICA procedure, a back-

reconstruction was performed using the GICA3 algorithm to
identify the subject-specific neuroanatomical and timecourse
representations of every component, followed by the normal-
ization of all data to Z-scores to enable the comparison of
subject-specific component maps across subjects. (Note: addi-
tional software parameters included full storage of covariance
matrix to double precision and usage of selective eigenvariate
solvers, as detailed in the GIFT v1.3 User Manual).

740 T.E. Kearney-Ramos et al.

https://doi.org/10.1017/S135561771400054X Published online by Cambridge University Press

https://doi.org/10.1017/S135561771400054X


General Linear Modeling (GLM)

The GLM analysis assessed task-dependent recruitment of
each component. Each subject-specific ICA timecourse
underwent GLM using AFNI’s 3dDeconvolve program
(code available upon request). The GLM modeled nine
parameters: three task conditions (Instructions, 0-back, and
2-back) as parameters of interest, and six head motion para-
meters (x, y, z, roll, pitch, yaw) included into the baseline
model as parameters of no interest. Because trials were ter-
minated by participant responses, we accounted for the effect
of trial duration variability upon brain activity using ampli-
tude modulation, which models participants’ brain activity
for each task block as varying proportionally to the partici-
pants’ mean reaction time (RT) for that block. Beta values
(β) were estimated describing the magnitude of component
recruitment across each of the task conditions for the fol-
lowing general linear test (GLT) contrasts (controlling for
age and education): 0-back vs. Rest, 2-back vs. Rest, and 2-
back vs. 0-back. Group-level t tests then identified the com-
ponents whose β contrasts significantly differed from zero
across subjects within the sample [i.e., with p ≤ .05 after
false-discovery rate (FDR) correction for the 105 contrasts
(35 components × 3 GLT contrasts)].
A post hoc analysis was also conducted to determine if the

mid-study equipment upgrade from the 8- to 32-channel head
coil represented a confounding factor for the GLM analysis.
For each ICA component, a one-way analysis of variance
(ANOVA) tested whether subjects scanned on either head
coil (8 vs. 32) had significantly different GLT βs for the
2-back vs. 0-back contrast. ANOVA results demonstrated no

significant effect of head coil on GLT results for any of the
components (all p> .05 after FDR correction), supporting the
exclusion of head coil as a covariate.

RESULTS

Behavioral Results

Table 2 provides descriptive statistics for participants’ LNB
and NP performances. Mean (SD) LNB accuracy was 0.97
(0.09) for 0-back trials and 0.61 (0.21) for 2-back trials.
Accuracy was significantly lower for 2-back vs. 0-back trials
[paired t test(33) = 12.13, p< 1 × 10-12], consistent with
expected diminishes in performance resulting from 2-back’s
greater task difficulty. Increased task difficulty was also
conveyed by parallel increases in RT for 2-back relative to
0-back conditions, with a mean (SD) RT of 0.45 (0.06) and
0.63 (0.07) seconds for 0-back and 2-back trials, respectively
(paired t test(33) = 13.77; p< 1 × 10-14).
As an initial step of the construct validity analysis, a

Lilliefors’ test determined LNB 2-back accuracy to have a
non-normal distribution (K = 0.155; p < .05), warranting the
use of Spearman’s correlations for the bootstrapping proce-
dure. Table 3 and Figure 1 illustrate the 95% CIs calculated
from the bootstrapped correlations between LNB and each
NP assessment. The following assessments had 95% CIs that
did not include zero, indicating convergent validity with the
LNB: DSS, SSF, SSR, TEA 4 (accuracy and timing), TEA 5,
and TMT 2-4. Conversely, the following tests’ 95% CIs
did include zero, indicating discriminant validity with the

Table 2. Descriptive statistics for group performance

Measure mean SD range

0-back accuracy 0.97 0.08 0.65–1.00
0-back RT (s) 0.451 0.061 0.334–0.593
2-back accuracy 0.61 0.21 0.15–0.93
2-back RT (s) 0.632 0.068 0.480–0.798
Spatial Span Forward (SSF) 9.0 1.6 5–12
Spatial Span Reverse (SSR) 8.3 1.6 5–11
Digit Span Forward (DSF) 10.8 2.4 7–16
Digit Span Backward (DSB) 9.0 2.7 5–15
Digit Span Sequencing (DSS) 8.7 2.3 4–15
TEA subtest 1 (TEA 1) 42.1 10.7 20–63
TEA subtest 2 (TEA 2) 6.7 0.7 4–7
TEA subtest 3 (TEA 3) 8.5 2.1 2–10
TEA subtest 4 (accuracy; TEA 4 Acc) 8.1 1.8 2–10
TEA subtest 4 (timing; TEA 4 Time) 3.92 1.04 2.46–6.43
TEA subtest 5 7.3 2.9 0–10
DKEFS Trails 1 (TMT 1) 22.4 6.8 13–40
DKEFS Trails 2 (TMT 2) 28.9 8.7 14–51
DKEFS Trails 3 (TMT 3) 30.1 8.4 16–53
DKEFS Trails 4 (TMT 4) 77.8 37.7 34–214
DKEFS Trails 5 (TMT 5) 24.4 7.0 11–45
Halstead-Reitan Finger Tapping Test (FTT) 49.9 6.2 39.43–68.57
Boston Naming Test-2 (BNT) 53.0 4.9 40–60
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LNB: DSF, DSB, TEA 1-3, TMT 1 and 5, FTT, and BNT. As
described in Table 3, the NP assessments that significantly
converged with LNB had mean bootstrapped |ρ| ranging from
0.37 to 0.60, while assessments that discriminated from LNB
had mean bootstrapped |ρ| ranging from 0.007 to 0.29.

Neuroimaging Results

Of the 35 ICA components identified, 14 were classified as
noise artifact components according to the criteria delineated in
METHODS, Image Acquisition and Processing, and omitted
from subsequent analysis (see Supplementary Table S1 for full
descriptions of all 35 components, including noise compo-
nents). Table 4 GLM statistics show that, of the 21 non-noise
components, 17 demonstrated significant task-dependent
activity. Eight components were significantly more active
during 2-back than 0-back: cerebellum (IC10), superior parietal
lobule (SPL)/precuneus (IC12), right frontoparietal (RFP;
IC21), supplementary motor area/lateral premotor (SMA/LPM;

IC22), left frontoparietal (LFP; IC23), dorsolateral prefrontal
cortex (DLPFC; IC25), frontoinsular (IC29), and bilateral pri-
mary motor (M1; IC30) (all FDR p< .0005; see Figure 2
for images of these components). Nine components were sig-
nificantly less active during 2-back than 0-back; bilateral ante-
rior insulae (IC4), left primary motor (LM1; IC6), right primary
motor (RM1; IC14), anterior DMN (IC17), bilateral amygda-
lae/hippocampi (IC18), posterior DMN (IC19), dorsomedial
prefrontal cortex (DMPFC; IC20), auditory (IC28), and ven-
tromedial prefrontal cortex (VMPFC; IC35) (all FDR p< .05;
see Supplementary Figure S2 for images of these components).

DISCUSSION

The current study sought to empirically validate the LNB as a
WM probe by assessing both its behavioral construct validity
and characterizing its specificity for network-level recruit-
ment of WM-related neural processing correlates.

LNB Demonstrates Strong Measurement
Specificity for WM Constructs

LNB demonstrated broad convergence with NP tasks assessing
auditory and verbal WM. LNB was most strongly convergent
with TEA 5, which measures auditory-verbal WM and atten-
tional switching, and was slightly less convergent with TEA 3,
which measures auditory-verbal WM and inhibitory control.
While LNB has been proposed to involve both attentional
switching and inhibitory control processes (Bledowski, Kaiser,
& Rahm, 2010; Owen et al., 2005; Wager & Smith, 2003),
LNB’s stronger correlation with TEA 5 than TEA 3 suggests a
greater involvement of attentional switching during the LNB.
LNB also exhibited strong convergence with DSS, which
requires maintenance and manipulation of auditory-verbal
stimuli within WM. Unexpectedly, LNB did not converge
with DSB, despite DSB reportedly tapping much the same
cognitive abilities as DSS. This finding may reflect the
greater WM demands required of DSS’s more complex
ordinal sequencing manipulation vs. DSB’s stimulus reversal
(Sattler & Ryan, 2009; Wechsler, 2008). Furthermore, the

Table 3. Bootstrap correlation statistics for LNB construct validity analysis

Mean SE − 95% CI + 95% CI Mean SE −95% CI + 95% CI

SSF 0.53 0.14 0.26 0.80 TMT 1 0.01 0.19 − 0.37 0.38
SSR 0.49 0.15 0.19 0.78 TMT 2 − 0.41 0.17 − 0.75 − 0.08
DSF 0.06 0.20 − 0.32 0.45 TMT 3 − 0.41 0.18 − 0.76 − 0.06
DSB 0.29 0.18 − 0.06 0.65 TMT 4 − 0.56 0.15 − 0.85 − 0.27
DSS 0.48 0.14 0.21 0.76 TMT 5 − 0.27 0.18 − 0.63 0.08
TEA 1 0.12 0.20 − 0.26 0.51 FTT 0.05 0.19 − 0.32 0.41
TEA 2 0.16 0.17 − 0.18 0.49 BNT 0.27 0.20 − 0.12 0.67
TEA 3 0.37 0.18 0.02 0.73
TEA 4 Acc 0.52 0.14 0.25 0.80
TEA 4 Time − 0.52 0.14 − 0.80 − 0.25
TEA 5 0.61 0.13 0.35 0.86

Abbreviations: SSF = Spatial Span Forward, SSR = Spatial Span Reverse, DSF = Digit Span Forward, DSB = Digit Span Backward, DSS = Digit Span
Sequencing, TEA = Test of Everyday Attention, TMT = Trail Making Test, FTT = Finger Tapping Test, BNT = Boston Naming Test-2.
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Fig. 1. Graph of 95% CIs for bootstrapped distributions of
LNB performance correlations with NP test scores. The means
and upper and lower confidence limits are depicted for each of
the bootstrap distributions. LNB demonstrated discriminant or
convergent validity with NP measures exhibiting 95% CIs that did
(DSF, DSB, TEA 1-3, TMT 1, TMT 5, FTT, and BNT) or did not
include zero (SSF, SSR, DSS, TEA 4 Acc and Time, TEA 5, and
TMT 2-4), respectively. See Table 3 for detailed statistics.
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95% CIs for LNB’s correlation with TEA 5 and DSS
(Figure 1) are distinctly different from zero (i.e., robust),
suggesting a high probability of replicating this finding in an
independent sample. Conversely, the 95% CIs for LNB’s
correlation with DSB and TEA 3 are marginally distinct from
zero, indicating that these findings are less statistically robust,
that is, more likely to differ in an independent replication.
LNB also demonstrated convergence with tasks engaging

visual and visuospatial WM processes. LNB was strongly
convergent with both SSF and SSR. This finding corroborates
previous reports that forward and reverse conditions of the
Spatial Span (and the homologous Corsi Block Tapping Task)
have comparable WM demands (Kessels, van den Berg,
Ruis, & Brands, 2008; Li & Lewandowsky, 1995; Smyth &
Scholey, 1992; Wilde & Strauss, 2002). LNB performance
also converged with TEA 4 timing and accuracy, measures of
visual attentional switching. Lastly, LNB exhibited strong
convergence with TMT 4 and weaker but significant con-
vergence with TMT 2 and 3. We expected convergence with
TMT 4 given its temporal sequencing and set shifting demands;
however, LNB convergence with TMT 2 and 3 was unantici-
pated. Similarities in task design may explain this unexpected
convergence, as LNB, TMT 2 and TMT 3 all require main-
tenance of a continuous alphabetical or numerical sequence.
In establishing discriminant validity, we expected LNB

performance to be unrelated to both verbal and visual/
visuospatial measures of short-term memory, simple sus-
tained attention, vigilance, visuomotor speed, simple motor
speed, and language processing. This was demonstrated in

the lack of correlation between the LNB and DSF, TEA 2,
TMT 1, TMT 5, FTT, and BNT, respectively.
In summary, we report moderate to high convergence of

LNB performance with WMmeasures across sensory modality
(i.e., auditory-verbal, visuospatial, visual) and discrimination
from measures of short-term memory, attention, vigilance,
visuomotor speed, and general language processing (Table 3).
Although LNB is generally considered a verbal WM task, we
report convergence with both verbal and visual/visuospatial
WM measures. Thus, LNB’s assessment of the underlying
domain-general WM construct transcended the modality-
specific differences that exist across differing WM validity
tests. These findings support the LNB as a processing load for
the same core cognitive construct measured by canonical WM
tasks despite task-specific differences, and demonstrate that
their relationships are not mediated by general attentional or
perceptual task demands alone. As such, these collective results
corroborate the use of the LNB as a robust, domain-general
cognitive-behavioral probe of WM.

LNB Demonstrates Specificity for WM-Related
Recruitment of Neural Networks

Our combined ICA and GLM approach identified eight
task-positive networks (Table 4; Figure 2), which included
all seven task-related regions described by previous meta-
analysis of n-back tasks (Owen et al., 2005). In addition to
replicating these past univariate findings, ICA informs how
these regions actively interact during task. Four of these

Table 4. GLT and group-level t test statistics describing task-relatedness of ICA networks (n components = 21)

IC # IC Label t-score: 2B - 0B FDR p-val t-score: 0B - R FDR p-val t-score: 2B - R FDR p-val

IC2 Primary visual − 0.47 0.6440 − 5.64 < 0.0001 − 8.18 < 0.0001
IC4 Bilateral anterior insulae − 3.45 0.0025 − 1.12 0.3310 − 4.31 0.0002
IC5 Ventral visual 0.58 0.5945 − 9.18 < 0.0001 − 11.90 < 0.0001
IC6 Left primary motor − 3.97 0.0009 4.19 0.0006 0.44 0.6606
IC10 Cerebellum 4.86 < 0.0001 3.38 0.0042 7.00 < 0.0001
IC11 Bilateral striatum − 1.31 0.2189 3.58 0.0027 2.02 0.0595
IC12 Bilateral SPL/precuneus 11.18 < 0.0001 − 9.06 < 0.0001 3.67 0.0011
IC14 Right primary motor − 3.17 0.0048 − 0.25 0.8016 − 3.82 0.0009
IC16 Bilateral fusiform gyri − 1.95 0.0689 3.03 0.0094 1.95 0.0660
IC17 Anterior DMN − 2.30 0.0340 1.15 0.3310 − 0.68 0.5253
IC18 Bilateral amygldalae/hippocampi − 5.78 < 0.0001 0.77 0.5183 − 4.24 0.0003
IC19 Posterior DMN − 2.35 0.0325 − 5.74 < 0.0001 − 9.31 < 0.0001
IC20 DMPFC − 7.12 < 0.0001 − 1.63 0.1660 − 9.98 < 0.0001
IC21 Right frontoparietal 6.35 < 0.0001 0.42 0.7427 8.80 < 0.0001
IC22 SMA/LPM 4.04 0.0007 5.37 < 0.0001 10.13 < 0.0001
IC23 Left frontoparietal 3.70 0.0015 1.93 0.1135 6.36 < 0.0001
IC25 Bilateral DLPFC 6.31 < 0.0001 0.34 0.7735 6.85 < 0.0001
IC28 Auditory − 11.91 < 0.0001 − 1.69 0.1660 − 13.60 < 0.0001
IC29 Frontoinsular 4.23 0.0006 − 1.65 0.1660 2.43 0.0254
IC30 Bilateral primary motor 3.21 0.0047 7.01 < 0.0001 12.10 < 0.0001
IC35 VMPFC − 3.85 0.0010 − 1.58 0.1689 − 6.48 < 0.0001

Abbreviations: GLT = General Linear Test, IC = independent component, 2B = 2-back, 0B = 0-back, R = Rest, FDR p-val = False Discovery Rate cor-
rected p-value, SPL = superior parietal lobule, DMN = default mode network, DMPFC = dorsomedial prefrontal cortex, SMA = supplementary motor area,
LPM = lateral premotor, DLPFC = dorsolateral prefrontal cortex, VMPFC = ventromedial prefrontal cortex
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previously reported regions (bilateral DLPFC, mid-VLPFC,
rostral PFC, and posterior parietal/precuneus regions) were
captured within our left and right frontoparietal networks [LFP
(IC23) and RFP (IC21)]. These networks were more active
during 2-back vs. Rest and 2-back vs. 0-back contrasts but not
0-back vs. Rest, indicating WM-related recruitment specificity.
These networks have been implicated in a broad range of
cognitive processes, including language, reasoning, attention,
and explicit memory (Fox et al., 2005; Smith et al., 2009). LFP
is often portrayed as having greater domain-general task
involvement than RFP (Smith et al., 2009), but is particularly
identified in tasks involving verbal WM (Owen et al., 2005;
Wager & Smith, 2003), as supported by our present findings.
Of interest, ICA also identified bilateral DLPFC (IC25) and
bilateral SPL/precuneus (IC12) components independent of the
LFP and RFP networks, possibly reflecting the intrinsic inter-
hemispheric connectivity of these regions.
ICA revealed Owen et al.’s bilateral premotor, dorsal

cingulate/SMA, and medial cerebellar neuroactivations as
three separate motor-related components: bilateral M1 (IC30),
SMA/LPM (IC22), and cerebellum (IC10). These networks

were positively activated across all three n-back GLT contrasts,
suggesting a general role in executing motor responses inde-
pendent of WM load. The premotor cortex has also been
associated with updating and maintenance of the temporal
order of stimuli encoded during n-back task performance
(Wager & Smith, 2003). Of note, the medial cerebellar cluster
identified by Owen et al. was represented in both our cerebellar
and LFP networks, indicating a possible role in cognitive
aspects of LNB performance. Given the known role of the
cerebellum in cognition, (Desmond & Fiez, 1998; Koziol,
Budding, & Chidekel, 2012; Leiner, Leiner, & Dow, 1986;
Marien, Engelborghs, & De Deyn, 2001; Strick, Dum, & Fiez,
2009), and, more specifically, in WM (Desmond, Gabrieli,
Wagner, Ginier, & Glover, 1997; Durisko & Fiez, 2010;
Hautzel, Mottaghy, Specht, Müller, & Krause, 2009) this is not
completely unexpected, although additional research tracking
cerebellar recruitment in WM may prove informative to
better understanding the interplay of cerebellar and frontal
networks. Our ICA also identified a frontoinsular network
(IC29) that included Owen et al.’s WM-related precuneus,
dorsal cingulate/SMA, and bilateral mid-VLPFC activations.

Fig. 2. Eight ICA-derived networks demonstrated greater activity during 2-back vs. 0-back task conditions. Axial, sagittal, and coronal
planes are shown (respectively) for each independent component (IC). Activations are depicted in neurological convention (left = left)
with minimum cluster size = 50 voxels (allowing voxels connected by edge to constitute a cluster). IC10 = cerebellum, IC12 = SPL/
precuneus, IC21 = RFP, IC22 = SMA/LPM, IC23 = LFP, IC25 = DLPFC, IC29 = frontoinsular, IC30 = Bilateral Primary Motor. (See
Supplementary Table S1 and Figure S1 for detailed IC subcluster composition).
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Studies have implicated this network in domain-independent,
externally directed task modes in opposition to the DMN that
initiate transitions between engagement and disengagement
of the frontoparietal and DMN across tasks and stimulus
modalities (Dosenbach et al., 2007; Sridharan, Levitin, &
Menon, 2008; Tang, Rothbart, & Posner, 2012). This dynamic
switching function has been proposed to permit access to
attentional and WM resources following a task-salient event to
facilitate goal-directed behavior (Menon & Uddin, 2010).
Our task-active ICA-derived networks overlapped in

their recruitment of the regions identified by Owen et al.,
suggesting that these common regions subserve multiple,
differing functional roles (Xu, Zhang, et al., 2013). Whereas,
traditional univariate approaches identify which brain regions
are involved in a task, ICA complements such findings by
also informing how these regions are co-recruited to form
distinct functional networks. The ability of ICA to map the
functional organization of these regions into discrete neural
processing networks underscores its power for exploring
individual differences in the brain’s capacity to dynamically
organize cognitive resources in response to task demands
(Congdon et al., 2010; Xu, Zhang, et al., 2013).
The ICA and GLM analysis also identified nine “task-

negative” networks, that is, networks less engaged during
2-back than 0-back conditions (Table 4 for GLM statistics;
Supplementary Figure S2 for images of task-negative com-
ponents). Because Owen et al. only included task-positive
activations, it is unclear whether our “deactivations” are
specific to this n-back task variant or generally applicable to
n-back tasks. Also, although we identified many of the same
networks as Esposito et al. (2006), their reporting of only
magnitude (not direction) of network activity prevents a
comparison of task-negative networks between our studies.
Consequently, we discuss these findings in brief.
Although we report activation of bilateral M1 (IC30)

across task conditions, ICA also identified separate LM1
(IC6) and RM1 (IC14) components that were deactivated by
task. LM1 showed less activity during 2-back vs. 0-back, but
more activity for 0-back vs. Rest and no difference in activity
between 2-back vs. Rest. RM1 exhibited less activity during
2-back vs. 0-back and 2-back vs. Rest but no significant dif-
ferences in activity for 0-back vs. Rest. Since participants
responded with only their right hand (corresponding to
LM1), the lesser RM1 engagement during the 2-back condi-
tions may reflect task-induced deactivation (TID), a relative
decrease in neural activity within an uninvolved region in
response to increased task demand elsewhere (Allison,
Meader, Loring, Figueroa, & Wright, 2000; Liu, Shen, Zhou,
& Hu, 2011; Zeharia, Hertz, Flash, & Amedi, 2012). The
task-deactivation of LM1, however, is harder to interpret.
Future work should explore the task-dependent interactions
among these motor networks at varying levels of cognitive
and psychomotor processing loads, for instance, using motor
response-based paradigms with parametric and/or dual-task
designs, as is the case in several variants of the n-back.
The bilateral anterior insulae (IC4), amygdalae/hippocampi

(IC18), DMPFC (IC20), auditory (IC28), and VMPFC (IC35)

networks also exhibited patterns of activity that seemed to
reflect TID. However, the current task design was unable to
determine whether these TID patterns represented a facilitatory
process (i.e., processing resources were redistributed from
task-irrelevant regions to support regions involved in task
performance) (Arsalidou, Pascal-Leone, Johnson, Morris, &
Taylor, 2013; Jackson, Morgan, Shapiro, Mohr, & Linden,
2011; Leech, Kamourieh, Beckmann, & Sharp, 2011), or
reflected the attenuation of internally focused mentation (i.e.,
activity in self-referential regions was suspended during the
externally focused, goal-directed task) (Gusnard & Raichle,
2001; McKiernan, Kaufman, Kucera-Thompson, & Binder,
2003; Spreng & Grady, 2010). Future research should explore
the involvement of differing cognitive strategies resulting in
both task-induced activation and deactivation as it relates to
performance of WM tasks, such as the n-back.
Finally, components representing anterior [VMPFC and

PCC (IC17)] and posterior [PCC and bilateral inferior
parietal (IC19)] elements of the DMN were identified as inde-
pendent networks. These regions are typically represented as a
single network consistently deactivated across demanding task
conditions, indicating greater activity during Rest than during
effortful cognition (Greicius, Krasnow, Reiss, & Menon, 2003;
Greicius, Srivastava, Reiss, & Menon, 2004) as a result of their
involvement in internally derived, self-referential thought
processes, such as daydreaming, introspection, and theory of
mind (Buckner, Andrews-Hanna, Schacter, Kingstone, &
Miller, 2008; Raichle et al., 2001; Spreng & Grady, 2010). We
report task-dependent activity for both posterior DMN and
anterior DMN. Of interest, however, only posterior DMN sig-
nificantly differs across all 3 contrasts, whereas anterior DMN
differs only for 2-back vs. 0-back. While the segregation of
DMN into anterior and posterior networks may be attributed to
network fragmentation when solving for a higher number of
components (n = 35), increasing evidence suggests the DMN
to be inherently modular in its organization and represented by
multiple interacting subsystems with differential functional
specializations (Andrews-Hanna, Reidler, Huang, & Buckner,
2010; Buckner et al., 2008; Laird et al., 2009; Mayer,
Roebroeck, Maurer, & Linden, 2010; Uddin, Kelly, Biswal,
Castellanos, & Milham, 2009). Future studies should explore
the functional relevance of these individual (sub)networks,
especially in the context of WM tasks (Ray et al., 2013).
Given past studies’ usage of the LNB to characterize DMN
function, the present study provides an important step toward
characterizing both the engagement and disengagement of
functional networks in service of LNB task performance
by illustrating the emergence of WM function through the
concerted efforts of functionally diverse networks.

Limitations

One limitation of ICA is that the number of components
estimated defines the neuroanatomical representation of the
identified networks (Abou-Elseoud et al., 2010; Pamilo et al.,
2012). While our 35-component ICA produced predomi-
nantly stable and functionally relevant networks, some
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components (i.e., IC27 and IC31) appeared to merge noise
artifact with the functional networks, while other networks
(i.e., DMN) appeared fragmented across multiple compo-
nents (IC17 and IC19). Solving for fewer components
(i.e., 20, 25, 30), however, led to components with a greater
merging of distinct functional networks, thus limiting their
interpretability. We, thus, chose the 35-component ICA as a
better representation of canonical functional networks and
task-relevant cognitive processing.
The present study sought to determine the convergent/

discriminant relationships of the n-back task with clinically
validated NP assessments that have previously undergone
construct validation. While our sample size is suitably large
for a neuroimaging study, psychometric validation studies are
typically conducted in much larger samples (Robertson et al.,
1996; Burton, Ryan, Axlerod, Schellenberger, & Richards,
2003); thus, replication of our analyses in a larger sample is
suggested to confirm the generalizability of these behavioral
findings. Additionally, we could not feasibly control for time of
NP administration in this study. While between-subject diurnal
variance in performance has been reported for some measures
of executive function (i.e., Wisconsin Card Sorting Task;
Bennett, Petros, Johnson, & Ferraro, 2008), measures of WM
(specifically, the Digit Span Test) appear resilient to such
effects. To further explore diurnal variance in these measures,
these effects should be assessed in a larger within-subject test-
–retest study design.
Finally, our LNB task was designed to quickly map brain

regions subserving WM in healthy and clinical adult popu-
lations, and was thus not optimized to assess other factors of
interest such as varying network recruitment with parametric
load manipulation, error processing, or differential network
involvement in WM subprocesses. Thus, our neuroimaging
findings may be specific to the LNB task, and should be
replicated using other n-back variants and neuroimaging
tasks of WM. However, we present these neuroimaging and
NP findings with hopes of laying the groundwork for future
investigations into these areas.

CONCLUSIONS

To our knowledge, the present study is the first to compre-
hensively investigate the construct validity of the LNB task
as aWM probe and to identify the task-related neural network
representation of healthy WM function. Future work will
characterize normative WM brain-behavior relationships by
assessing how WM network functional organization reflects
individual differences in WM ability. By modeling the
neural encoding of cognitive and behavioral WM—in both
healthy subjects (as described here) and in future clinical
populations—we aim to differentiate normative neural
processing variance from the specific disparities associated
with disrupted brain function in individual patients, thereby
extending this neuroimaging model into the personalized
treatment of various disorders related to WM dysfunction.
As functional neuroimaging begins to play a larger role

in clinical assessment, we need to better understand the

relationships between neuroimaging and clinical neuropsy-
chology, and remain receptive to questioning and modifying
each in the face of evidence derived from studies such as this.
As such, the present study exemplifies the value of merging
functional neuroimaging and clinical neuropsychology so
that these disparate fields may mutually inform one another,
and thus provide a framework to further translate functional
neuroimaging into clinical care.
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