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State estimation in turbulent channel flow from
limited observations
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Estimation of the initial state of turbulent channel flow from limited data is investigated
using an adjoint-variational approach. The data are generated from a reference direct
numerical simulation that is subsampled at different spatiotemporal resolutions. When
the velocity data are at 1/4096 the spatiotemporal resolution of the direct numerical
simulation, the correlation coefficient between the true and adjoint-variational estimated
state exceeds 99 %. The robustness of the algorithm to observation noise is demonstrated.
In addition, the impact of the spatiotemporal density of the data on estimation quality
is evaluated, and a resolution threshold is established for a successful reconstruction.
The critical spanwise data resolution is proportional to the Taylor microscale, which
characterizes the domain of dependence of an observation location. Owing to mean
advection, either the streamwise or temporal data resolution must satisfy a criterion based
on the streamwise Taylor microscale. A second configuration is considered where the
subsampled data comprise velocities in the outer layer and wall shear stresses only. The
near-wall flow statistics and coherent structures, although not sampled, are accurately
reconstructed, which is possible because of the coupling between the outer flow and
near-wall motions. Finally, the most challenging configuration is addressed where only
the spatiotemporally resolved wall stresses are observed. The estimation remains accurate
within the viscous sublayer and deteriorates significantly with distance from the wall. In
wall units, this trend is nearly independent of the Reynolds number considered, and is
indicative of the fundamental difficulty of reconstructing wall-detached motions from wall
data.
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1. Introduction

Estimation of instantaneous turbulent flows from the assimilation of limited observations
is a challenging problem due to the chaotic nature of turbulence (Kim & Bewley 2007).
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Given flow-field information with limited resolution, such as particle image velocimetry
(PIV) data or pressure measurements, there are potentially multiple solutions that satisfy
the Navier—Stokes solutions and match the observations. In addition, a small error
in the initial state or boundary conditions will amplify exponentially in time, and thus
the estimated state will diverge from the true one (Deissler 1986). Adjoint-variational
methods address the state estimation problem by constructing an optimal initial condition
that generates a trajectory in state space as close to the observations as possible. In this
work, we evaluate the accuracy of the adjoint-variational approach for estimating turbulent
channel flow and the dependence of estimation quality on the locations and resolution of
the observations.

Three classes of state estimation techniques have been applied to flow problems: linear
stochastic estimation (LSE) (e.g. Adrian & Moin 1988; Naguib, Morrison & Zaki 2010;
Encinar & Jiménez 2019), filtering and smoothing (Law, Stuart & Zygalakis 2015).
LSE utilizes prior knowledge of two-point correlation to estimate the flow state from
observations. The correlation, which is not always available in practice, sets an upper
bound on the estimation accuracy. In addition, LSE does not satisfy the Navier—Stokes
equations and, as such, does not provide a trajectory in state space.

Filtering, or sequential, techniques consist of a prediction step, which involves marching
the governing equations until the observation time, and an update step, where the
prediction is augmented with observations (Evensen 1994). When the governing equations
are linear, the optimal weight for the observations can be analytically derived, and
the corresponding method is the so-called Kalman filter, which has been adopted for
estimating the disturbance of laminar flows (Heepffner et al. 2005). For nonlinear
problems, the weight can be calculated by either linearizing the governing equations
(extended Kalman filter) or marching an ensemble of different states in time (ensemble
Kalman filter). Both of these methods have been evaluated for estimating turbulent channel
flow from wall observations (Chevalier et al. 2006; Colburn, Cessna & Bewley 2011;
Suzuki & Hasegawa 2017). Ultimately, the accuracy of the filtering techniques is limited
because they only focus on fitting the data at one moment rather than a time interval (Kim
& Bewley 2007). Also, the filtered state may not satisfy the Navier—Stokes equations due
to observation noise and the difference between estimation and observations.

Smoothing techniques utilize a time series of data to search for the optimal initial
condition, boundary conditions and model parameters which ensure that the evolution
of the predicted state reproduces available data. Therefore, an accurate forecast of the
flow evolution beyond the observation window is possible. This class of techniques is
also capable of optimizing sensor placement and weighting in order to achieve the best
prediction accuracy (see e.g. Mons, Chassaing & Sagaut 2017; Mons, Wang & Zaki
2019; Buchta & Zaki 2020). Mons et al. (2016) compared three of the most popular
smoothing techniques: the adjoint-variational method (referred to as 4DVar in numerical
weather prediction (Le Dimet & Talagrand 1986)), the ensemble Kalman smoother, and
the ensemble variational method. The objective was to estimate the unsteady free-stream
condition for laminar flow around a cylinder, and 4DVar achieved the lowest estimation
error, for a specified computational cost. Adjoint techniques were also demonstrated
to be viable in transitional (Mao, Blackburn & Sherwin 2013; Mao et al. 2017) and
turbulent flows (Bewley & Protas 2004; Vishnampet, Bodony & Freund 2015), including,
for example, for estimating scalar sources from remote observations (Cerizza et al. 2016;
Wang, Hasegawa & Zaki 2019b). Wang, Wang & Zaki (2019a) derived the discrete adjoint
of the incompressible Navier—Stokes equations in general curvilinear coordinates and
applied it to estimating the turbulent state of circular Couette flow; they demonstrated

917 A9-2


https://doi.org/10.1017/jfm.2021.268

https://doi.org/10.1017/jfm.2021.268 Published online by Cambridge University Press

State estimation in turbulent channel flow

accuracy of the forward-adjoint relation to within eight significant figures. We herein adopt
the adjoint-variational approach to examine the influence of available observations on the
accuracy of the estimated turbulent fields in channel flow.

Previous efforts in the context of channel flow have all attempted to estimate the entire
state from wall observations only, namely the wall stresses and pressure (Bewley & Protas
2004; Heepftner et al. 2005; Chevalier et al. 2006; Colburn et al. 2011; Suzuki & Hasegawa
2017; Liu & Hasegawa 2020). No matter which method was adopted, the estimated state
was only correlated with the true state up to the buffer layer. The literature on wall-bounded
turbulence has not, however, examined how the accuracy of turbulence reconstruction
changes with spatiotemporal resolution and placement of the observations, e.g. if more
information about the flow state is available from PIV data. Recent state estimation tests
in homogeneous isotropic turbulence (Yoshida, Yamaguchi & Kaneda 2005; Lalescu,
Meneveau & Eyink 2013; Di Leoni, Mazzino & Biferale 2019; Li et al. 2020) demonstrated
that the reconstruction of turbulence is successful only when the highest wavenumber &,
of velocity data satisfies k;;n > 0.2, where 1 is the Kolmogorov scale of the flow. In wall
turbulence, however, flow inhomogeneity in the wall-normal direction, the wall-normal
dependence of mean advection and the turbulence production all preclude adopting the
same criterion from the homogeneous case. For the same reasons, it is also anticipated that
the critical data resolution for reconstructing the turbulence is anisotropic — a matter that
we will explore herein. Our focus is on reconstruction of turbulence at all scales using the
nonlinear Navier—Stokes equations, and thus the critical data resolution is more restrictive
than that for designing a reduced-order model for flow control (Jones et al. 2011, 2015).

In § 2, we introduce the adjoint-variational state estimation algorithm, and provide the
details of the flow configuration and problem set-up. The state estimation results are
presented in § 3. A benchmark case with subsampled volume data of velocity is analysed,
followed by the effect of observation noise. Then a range of streamwise, spanwise and
temporal data resolutions are explored. We propose criteria for minimal data required
to successfully reconstruct the turbulent state. The possibility of estimating near-wall
structures, which are difficult to measure experimentally, from data in the outer region
and at the wall is subsequently investigated. At the end of § 3, the Reynolds-number effect
on state estimation is discussed in the context of wall observations. The main conclusions
that are drawn from these tests are summarized in § 4.

2. Adjoint-variational state estimation

A schematic of the channel-flow configuration is shown in figure 1. The domain is periodic
in the streamwise and spanwise directions, and bounded by two no-slip surfaces in the
vertical direction. The relevant Reynolds numbers are Re = Uph/v and Re; = u;h/v,
where Uj, is the bulk velocity, u; is the friction velocity, 4 is the half channel height and v
is the kinematic viscosity.

The adjoint-variational state estimation is formulated as a constrained optimization
problem. The constraint is the numerical model u"*! = N'(u"), which governs the
evolution of the velocity field # from one time instant n to the next n 4 1. The control
vector, or the subject of the optimization, is the initial condition u°. Given the observation
data {m}ﬁlV:O, we define a cost function,

N
J@) =" 3lm" — M@")Ip, @.1)

n=0
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Figure 1. Schematic of channel flow and the coordinate system.

which is the L, norm of the difference between the observation data and their estimation

from an initial condition u”. The subscript O represents the observation space, and M is
an observation operator, which generates the measured quantity from any velocity field.
The adjoint model is invoked to calculate the gradient of the cost function, which is
necessary for its minimization procedure. The minimizer is the estimated initial condition,
and the velocity field marched from this initial condition is the estimated flow. A detailed
derivation and validation of the adjoint-variational method is provided by Wang et al.
(2019a). In the following, we briefly summarize the forward model, adjoint equations and
the optimization procedures.

2.1. Forward equations and data acquisition
The flow evolution is governed by the incompressible Navier—Stokes equations,

V.ou=0, 2.2)

ou I _,
” +V.(uu)=—-Vp+ ReV u, (2.3)
where 7 is time and p is pressure. These equations are also referred to as the forward model
because they are adopted to advance the flow state in time.

The Navier—Stokes equations are solved using a fractional-step method with a local
volume flux formulation on a staggered grid (Rosenfeld, Kwak & Vinokur 1991). The
advection terms are discretized by the Adams—Bashforth scheme, and the Crank—Nicolson
scheme is adopted for the diffusion terms. The pressure Poisson equation is solved using
a Fourier transform in the periodic directions and tridiagonal inversion in the wall-normal
direction. The algorithm has been applied in a number of direct numerical simulations
(DNS) of transitional and turbulent flows (Zaki & Durbin 2005; Zaki et al. 2010; Zaki
2013; Lee & Zaki 2017). For simplicity, the discretized Navier—Stokes equations will be
denoted as

gt =G'q, 2.4)

where ¢" is the state vector, including the velocity and pressure at every grid point, and
G" is a matrix that represents the discretized Navier—Stokes operator. Note that G" is also
a function of ¢" because the equations are nonlinear.

The true state is statistically stationary turbulence, and is sustained by a known constant
pressure gradient in the streamwise direction. Except in § 3.5, where we explore the effect
of Reynolds numbers, we set Re; = 180. While the forward model at these conditions
has been extensively studied (Kim, Moin & Moser 1987; Jelly, Jung & Zaki 2014), this
Reynolds number is higher than previously attempted in the context of adjoint-variational
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Domain size Grid points Grid resolution
Lyh Lyh LJ/h N, Ny N, Axt Ayt Ayh,. AZf
47 2 27 384 256 320 5.89 0.20 2.95 3.53

Table 1. Domain size and grid resolution.

357 4.0m

0 X X

Figure 2. Visualization of observation data of spanwise velocity in the x—y plane, subsampled at one-eighth
the DNS resolution. Coloured regions represent the observation locations, and line contours are the full DNS
field.

state estimation in channel flow. The domain size and the grid resolution are summarized
in table 1. The computational domain is the same as that adopted by Kim et al. (1987),
who used a pseudo-spectral algorithm. For our finite-volume scheme, we have doubled
the resolution in each direction and performed extensive validation (see e.g. Jelly et al.
2014). The grid resolution is also reported in viscous units, denoted by superscript plus
()", Axt = (Ax/h)Re;. The time-step size is At = (AtU,/h)(Re? /Re) = 0.058 such
that the Courant—Friedrichs—Lewy (CFL) number is lower than one-half.

We consider two types of observations: subsampled velocity data (e.g. figure 2) and
stresses on both channel walls. The observations set-up is summarized in table 2. In all
cases, the estimation window is T = 4.5 (T = 50). This choice is motivated by the
following considerations. The duration 7" should be sufficiently long that each point in
the fluid is within the domain of dependence of observations. It should also be longer than
the time to ‘fill’ the turbulence energy spectra starting solely form observations. Finally, T
should not appreciably exceed the Lyapunov time scale (t,;7 = 48 at Re; = 180 according
to Nikitin (2018)). If T > 1,, any infinitesimal perturbation in the initial condition will
exponentially amplify and the accuracy of the state estimation deteriorates (Li et al.
2020; Chandramouli, Mémin & Heitz 2020). We start with a benchmark case (§ 3.1,
case B1), where the velocity field is observed every eighth point in each dimension,
including space and time. The velocity at the observation locations is assumed to be known
precisely, without measurement noise. Subsequently (§ 3.2, cases N1-N2), the data will
be contaminated with Gaussian random noise with standard deviation proportional to the
local velocity, for example, for the streamwise velocity,

Wy = Urye +1, 1~ N(O, 0|usyel). (2.5a,b)

The effect of spatial and temporal data resolution is explored in § 3.3 (cases RZ1-RZ4,
RX1-RX4 and RT1-RT4), and in § 3.4 the velocity observations in the viscous sublayer
and buffer layer are removed. Finally, in § 3.5, we evaluate the influence of Reynolds
number when the only observations are the wall stresses.
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§ Case  AM, AM, AM, AM, Axh Ay} Az Ath T o (%)
31 Bl 8 8 8 8 47 [1.8,24] 28 046 50 0
32 NLN2 8 8 8 8 47 [1.8,24] 28 046 50 5,10
33 RZI4 1 1 432 8 59  [02,295] 14-112 046 50 0
33 RXI14 432 1 1 8 24-192  [0.2,2.95]  3.53 046 50 0
33 RTI4 32 1 1 16-128 192 [0.2,2.95] 353 092-74 50 0

Table 2. Parameters of observations relative to the reference DNS. The sampling rate is AM, with a subscript
that denotes the spatial or temporal dimension; subscript m denotes the resolution of the observation grid,
superscript ‘4’ denotes viscous scaling, 7" is the observation time horizon, and o is the standard deviation of
the Gaussian noise.

2.2. Adjoint equations and the state estimation algorithm

In order to minimize the cost function (2.1) while satisfying the Navier—Stokes constraint,
we introduce the Lagrangian,

N—-1
L=J— Z(qT(I’H-l))T(q}’H—l _ Gnqn)' (26)
n=0

Note that the Lagrangian is a function of {q}g:() and {q" }ﬁlv:l. Taking the derivative of the
Lagrangian with respect to ¢'" and setting it to zero, we obtain the forward Navier—Stokes
equations (2.4). By setting the derivatives of the Lagrangian with respect to ¢" to zero
(1 < n <N —1), we obtain the discrete adjoint equations,
i _ gnTgieth o 97
g =(G)q tom l<n<N-1, 2.7
q
which are marched backwards in time, and are forced by the gradient of the cost function
with respect to the state. The forward operator G" contains the forward variables ¢"*, which
means that the full spatiotemporal evolution of the forward fields are required and must be
stored for the solution of the adjoint equations. The second term on the right-hand side of
(2.7) can be analytically derived from the expression of the cost function.
When the adjoint equations are marched back to n = 0, the following relation is
obtained:
L aJ
S0 =g+ 5 =q" (2.8)
q
The initial adjoint field is therefore the gradient of the Lagrangian, and also the gradient
of the cost function when both the forward and adjoint equations are satisfied,
oL
Vol =—=4q". (2.9)
q 9 qO
Note that ¢° contains the velocity field u® only, because the initial pressure field is
not required to solve the incompressible Navier—Stokes equations. Similarly, the initial
adjoint field ¢ comprises u' only. Since the above derivation starts from the discrete
Navier—Stokes equations, the gradient obtained using the discrete adjoint in (2.8) is
accurate to machine precision. Detailed expressions of the discrete adjoint and verification
of the forward-adjoint relation are provided in Wang et al. (2019a).
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Algorithm 1: Adjoint-variational state estimation.

Step 1: Forward model;

0

e Start with an estimate of the initial condition #” and project it onto a

divergence-free space, u® = Pu"";
e March u° using the forward equations (2.4) fromn =0ton =N — 1 and
store the forward velocity fields at every time step;
* Evaluate the cost function (2.1);
Step 2: Adjoint model;
* Solve the discrete adjoint equations (2.7) fromn =N —1lton = 1;
* Obtain the gradient of the cost function, u'0, defined in (2.8);

* Project the gradient onto solenoidal space Pu?;
Step 3: Update the estimated initial state;
* Compute the search direction using L-BFGS algorithm;
* Find an appropriate step size along the search direction;
* Update the estimate of the initial state and repeat Steps 1-3 until a prescribed
maximum number of iterations is reached.

With the gradient of the cost function, we adopt the limited-memory Broyden—Fletcher—
Goldfarb—Shanno(L-BFGS) optimization algorithm to minimize the cost function
(Nocedal 1980). In order to guarantee that the estimated initial condition is
divergence-free, we slightly modify the L-BFGS algorithm by introducing a symmetric
projector. The basic idea is to update the new estimate of the initial condition using

uy, | = Pl + axdy), (2.10)

where subscript k denotes the kth iteration of the optimization procedure, and
d; = —BPu'® is the search direction; the matrix By is a rank-two approximation of the
inversion of the Hessian matrix of the cost function; and the matrix P is a symmetric
projector, which projects any velocity field u° or gradient u™ onto the divergence-free
space. The symmetry of P ensures that Pu' is the gradient of the cost function with
respect to u” when u” is projected and before being advanced by the forward equations.
The step size ay is computed by the line search routine CVRSCH (Moré & Thuente 1994),
which enforces the strong Wolfe condition and adopts cubic interpolation to update o.

Combining the forward solver (§ 2.1) with the adjoint solver and optimization algorithm
(§2.2), we obtain the adjoint-variational state estimation algorithm. A summary is
provided in algorithm algorithm 1. In all the examined configurations, the algorithm is
always performed for 100 L-BFGS iterations, and, as such, comparisons are made using
the same computational cost. It is important to emphasize that, in addition to the storage
requirements associated with saving the forward fields at full spatiotemporal resolution,
the computational cost is also substantial because each of the 100 L-BFGS iterations
comprises at least one forward and one adjoint computation.

3. State estimation results

3.1. Performance of the algorithm: the benchmark case
In order to provide a qualitative perspective on the performance of the algorithm, figure 3
shows realizations of the flow from case B1 (see table 2), at both (i) the initial and (i)
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Figure 3. Instantaneous spanwise velocity w at z = L./2 visualized using (a) observational data and (b) true
fields (lines) and adjoint-variational prediction (colours) at (i) # = 0 and (ii) t = T (T+ = 50). (¢) Zoom-in
views of (b).

the final (t" = T = 50) times within the assimilation window. At each instant, the field
is visualized using (a) the observational data only, (b) the adjoint-variational prediction,
and (c) a detailed comparison of the predicted (colour) and true (lines) states. Recall that
the observations from benchmark case B1 are at 1/4096 the resolution of the simulation,
since the velocity is observed at every eighth point in each spatial dimension and in time.
The quality of the reconstruction is evident in figure 3, with the predictions at the initial
time capturing the large scales of the flow, but appearing to contain some small-scale, or
high-wavenumber, deviations (figure 3ci). At the final time, in contrast, these small-scale
deviations have mostly vanished and the reconstruction quality is, qualitatively, improved
(figure 3cii).

The convergence history of the cost function that generated the assimilated initial
condition is shown in figure 4(a). The normalization is performed using the cost function
associated with advancing the initial guess which was obtained by spline interpolation
of the observations and their projection onto the divergence-free space. The monotonic
decrease of the cost function is ensured by the accurate evaluation of its gradient using the
discrete adjoint. After 100 L-BFGS iterations, the cost function is reduced to 2.8 % of its
initial value.

A quantitative assessment of prediction accuracy starts with an evaluation of the
root-mean-square (r.m.s.) errors between the predicted and true states,

Ev) = (lu — w0, 3.1)

where (-) denotes averaging, and the subscript indicates the averaging domain, here over
the volume V; the same convention is adopted throughout the work for errors £ and
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Figure 4. (a) Convergence history of the cost function, normalized by its initial value. (b) Volume-averaged
error (3.1) of the instantaneous velocity field estimated using different strategies: black dashed line, interpolated
initial condition (red circle) is projected onto divergence-free space (black cross) and advanced using the
Navier—Stokes equations; black solid line, estimated initial condition using data within ¢ € [0, T] (grey region)
is evolved in time; green solid line, estimated state at + = 27 using data within ¢ € [27, 3T] (green region) is
evolved in time.

correlation coefficients C. When errors and correlation coefficients between the predicted
and true fields are reported, they are evaluated throughout the domain, and not only at
observation locations.

The time dependence of the estimation error is plotted in figure 4(b). At the initial time,
the spline interpolation of the observations (red circle), projection onto the solenoidal
space (cross) and the adjoint-variational state all have seemingly similar errors — the
last being obtained after 100 L-BFGS iterations. A mild reduction in the initial errors
is achieved by the projection, and a further modest improvement is achieved by the
variational approach, but the initial errors remain approximately 4 % of the bulk velocity,
which is of the same order of magnitude as the r.m.s. fluctuations. An important
difference arises, however, when the initial conditions are advanced in time. When the
interpolated observations are projected onto the divergence-free field and marched using
the Navier—Stokes equations (dashed line), without any data assimilation, the errors
amplify as expected due to the chaotic nature of the flow. At long times, after a transient
divergence, nonlinear effects become dominant and thus the estimation error saturates.
Simply performing spatiotemporal interpolation of the observations would maintain lower
errors, similar to the red circle, although that would not be a solution to the governing
equations. Now consider the errors when the initial condition is obtained from the
adjoint-variational state estimation (solid line). The initial errors in the assimilated field
decay with time, and the flow more closely tracks the trajectory of the true field in state
space during the observation window (shaded region, 0 <t < 4.5). Att = T, the errors
are an order of magnitude smaller than those from interpolating and advancing the initial
condition or performing spatiotemporal interpolation of observations.

Beyond the observation window, the estimated state again diverges from the truth but
remains more accurate than evolving the interpolated initial field during the interval
[T, 3T]. These results demonstrate the potential of the algorithm to provide a better
prediction of the future state ¢+ > 7', when observations are not available. If new data do
become available at later times, the estimated state can be adopted as the initial guess,
and the same variational procedure can be applied to drive the estimated state towards
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Figure 5. Wall-normal profiles of (black curves) horizontally averaged errors &;(¢) and (red curves)
correlation coefficient Cy;(q) (3.2) between the estimated and true flow states: (a) streamwise, (b) wall-normal
and (c) spanwise components. Lines: black dashed line, spline interpolation of observed velocity field at # = O;
black and red solid thin lines, adjoint-variational estimation at t = 0; and black and red solid thick lines,
estimation at t = T (T+ = 50).

the true state, again. This idea is demonstrated in figure 4(b): new observation data were
provided in the interval ¢ € [2T, 3T], which is marked by the light grey region. The
adjoint-variational algorithm was applied in that new interval, and the predicted state at
t = 2T now yields a new trajectory that more closely follows the true flow (green line).
While this point was noteworthy, the focus of the present effort is on characteristics of
the state estimation in the first window ¢ € [0, T], which are generally applicable to any
subsequent interval of new observations.

The r.m.s. estimation error evaluated in the horizontal plane, &,,(¢), are plotted as a
function of wall-normal direction in figure 5. The errors in the interpolated initial guess
(dashed lines) are proportional to the level of physical fluctuations in the velocity field and,
as a result, the errors in the streamwise component are most dominant especially in the
near-wall region where u-perturbations are most energetic. The estimated initial condition
(thin black line) is slightly improved relative to the interpolated state. The key observation
is, however, at t = T, where all three components of errors in the estimated state are an
order of magnitude more accurate than advancing the interpolated state using the forward
model. For the streamwise component, the error is less than 0.5 % of the bulk velocity, or,
equivalently, 8 % of the peak value of r.m.s. streamwise fluctuation. Figure 5(b) also shows
the correlation coefficient,

(9 Grrue)xz

Crz(q) = T5a/2, 0 a2

(g)xt (%%ue)xz
Att = T, the estimated and the true fields are nearly perfectly correlated, which highlights
the capacity of the assimilated field to reproduce the true trajectory of the flow in state
space.
In order to explain the improvement in accuracy during the observation time horizon,
we evaluate the spectra of the estimation error,

(3.2)

Ey(@) = (& — furuel®),?, (3.3)

where & is the Fourier transform of u in the streamwise and spanwise directions. The
spectra of the errors are reported in figure 6(a) as a function of the horizontal (k, k;)
wavenumbers; also shown in figure 6(b) is the spectrum of the true velocity field. Errors
appear largest in the low-wavenumber modes, but they should be viewed relative to the
high energy content in these modes in figure 6(b). Normalized by the spectral density
in the true field (see figure 6¢), low wavenumbers are better reconstructed since they are
encoded in the sparse observations. A more important observation is the behaviour of the
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Figure 6. (a) Fourier spectrum of errors from adjoint-variational estimation, averaged in y and normalized
by the bulk velocity, log;q £, (&). (b) Spectrum of the true velocity field averaged in time and wall-normal

direction, loglo(llﬁm,ellz);,ﬂ. (c) Same as (a) with the errors normalized by (||i4,mg||2)}l.,/2, Panels: (i) t = 0 and
(ii) t = T (T = 50). Wavenumbers (ky, k,) are normalized by the half channel height.

high-wavenumber components of the errors. The estimated initial condition (figure 6ai)
has appreciable errors in those wavenumbers (higher than the interpolated state — not
shown). However, since most of these modes decay with time (figure 6aii), they have
little impact on the estimation quality later within the assimilation time horizon. In
addition, due to their rapid decay, these high-wavenumber initial errors do not appreciably
affect the value of the cost function, which is integrated over the entire observation
window. As a result, they persist in the initial condition during the optimization procedure.
An effective strategy to reduce these initial high-wavenumber errors is to incorporate
time-dependent weights in the cost function, which amplify the contribution of early
observations near t = 0 (Wang et al. 2019a). One should caution, however, that not all
the initial high-wavenumber errors are stable and decaying. Small components of that
error are unstable and amplify at the Lyapunov rate, and, although they are not perceptible
within the present time horizon, they will dominate at longer times.

Consistent with the above integral and spectral measures of the estimation quality,
the reconstructed velocity field at t = T is almost identical to the true one (side views
in figure 7). An accurate estimation of vortical structures is, however, more challenging
since the computation involves velocity gradients. These structures are visualized using
the A» vortex identification criterion (Jeong & Hussain 1995) and compared in figure 7
(grey isosurfaces). The prediction of vortical structures is very compelling, in both the
near-wall and outer regions. In the former, the vortical tubes are attached to the wall
and elongated in the streamwise direction. Farther from the wall, the lifted vortical tubes
break down and generate small-scale structures that are mostly captured by the estimated
state. In practice, reconstructing the vorticity field from coarse-resolution experimental
data is a challenge (Suzuki 2012). The satisfactory estimation quality in figure 7(b)
demonstrates the potential of our algorithm to augment under-resolved turbulent data from
experiments.
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Figure 7. Comparison of (a) true and (b) adjoint-variational estimated state at t =T (T = 50). Grey
isosurfaces: vortical structures visualized using the A, vortex identification criterion with threshold 1, = —2.
Side view: contours of spanwise velocity.

3.2. The influence of noise in the observation data

In the previous section, the observation data were free of any noise. In practice, however,
experimental measurements invariably contain errors and, as such, may violate the
governing equations, lead to statistical errors and severely preclude accurate evaluation of
derivatives, especially in turbulent flows where strong velocity gradients are expected (see
e.g. Bardet, Peterson & Savas 2010). For example, Abrahamson & Lonnes (1995) assessed
the ability of conventional circulation and least-squares methods to reproduce the vorticity
field from a randomly perturbed DNS velocity field. When 5 % noise was superposed onto
the fully resolved velocity data, the uncertainty in the computed vorticity field reached
40 %, and most of the small-scale structures were absent in the reconstruction.

In order to evaluate the performance of the adjoint-variational algorithm with noisy data,
we contaminate the observed velocities by Gaussian random noise with standard deviation
that is proportional to the local velocity component (2.5a,b). The spatiotemporal resolution
of the data and the estimation window 7" = 50 remain the same as in the benchmark case.
We consider three levels of noise: o = {0, 5, 10} %, which correspond to cases B1, N1 and
N2 in table 2. The first guess of the initial condition is interpolation of the noisy data at
t=0.

After 100 L-BFGS iterations, the cost function is decreased to {2.8, 27, 45} % for the
three levels of contamination. Since the cost function is defined as the difference between
the estimated and contaminated data, and the latter do not satisfy the Navier—Stokes
equations, the cost function cannot decrease to zero. The r.m.s. error of the estimated state
relative to the true, uncontaminated flow field was evaluated and shows a similar decay
from the initial to the final time as in the benchmark case without noise. Therefore, only the
results at = T are examined here (figure 8). The estimation error increases with the noise
level (from light grey to black lines), but remains within 2 % of the bulk velocity. Note that,
due to the mean flow, the observation noise in the streamwise direction can exceed o times
the bulk velocity, which means that the estimation accuracy of the streamwise velocity
actually exceeds the precision of observation data. Comparatively, the estimation errors of
the wall-normal and spanwise velocity components are bounded by the observation noise,
which is approximately o times the r.m.s. turbulence fluctuations. Overall, even with the
highest noise level (o = 10 %), the correlation coefficient (3.2) between the estimated and
true state is close to unity at all the y locations, as shown by the red lines in figure 8(b).

The reconstructed vortical structures are visualized in figure 9. Although some of
the small-scale structures are not captured, most of the reconstructed wall-attached and
detached vortical structures remain nearly identical to the true flow, and the estimation
quality is almost independent of the noise level. A quantitative assessment of the quality
of the vorticity field is provided in figure 10. When noisy observations are interpolated and
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Figure 8. Effect of observation noise level on (grey to black, o = {0, 5, 10} %) estimation error &,;(g) and
(red, 0 = 10 %) correlation coefficient C,,(q) at t = T (T = 50): (a) streamwise, (b) wall-normal and (c)
spanwise components.

Figure 9. Comparison of (a) true vortical structures and (b,c) the adjoint-variational reconstruction when o =
{5,10} % at t = T (T* = 50) within the bottom half channel, visualized using the 1, vortex identification
criterion with threshold A, = —2.
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Figure 10. Horizontally averaged error &,,(q) of vorticity field at t = T (T = 50), estimated by (black dashed
line) interpolating noisy velocity data and (black solid line) adjoint-variational approach (grey to black, noise
level o = {0, 5, 10} %): (a) streamwise, (b) wall-normal and (c¢) spanwise components. The error is normalized
by mean vorticity (du/dy) at the wall.

vorticity is evaluated, the error (dashed lines) in the near-wall region reaches 10-40 % of
the mean vorticity at the wall. The error of the vorticity field from adjoint-variational
estimation (black solid lines) is within 4 % of the wall vorticity, and the estimation
accuracy is robust against observation noise. These results demonstrate the superiority
of the adjoint-variational approach for evaluating velocity gradients and its robustness to
observation noise.
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Figure 11. The (lines) true streamwise fluctuation u — (u) at t = T (T+ = 50) and (colours) estimation with
data resolution Az,, = 112 (case RZ4 in table 2). The fields are visualized at (a) an observation plane, z = z,,
and (b) the midpoint between two observation planes, z = z,;, + 0.5Az,.

3.3. The effect of spatial and temporal data resolution

Although the results thus far have demonstrated the accuracy of the flow reconstructions,
it is expected that the estimation quality depends on the spatiotemporal resolution of
the observations. And it is also of interest to query the lowest resolution requirement
for accurate estimation. In homogeneous isotropic turbulence, it has been reported that
reconstruction of the full field is successful only if the resolution of spatial observations
satisfies A,,, < 15n (Li et al. 2020), where 7 is the Kolmogorov length scale. An equivalent
criterion has not, however, been proposed for anisotropic, wall-bounded turbulence, where
the effects of mean shear, advection and the no-slip boundary may alter the resolution
requirements of the observations. Hereafter, we revert to adopting noise-free data and
focus on the influence of spatiotemporal resolution of observations on the accuracy of
state estimation within the time horizon T1 = 50.

We first consider the impact of spanwise spacing of observations that are fully resolved
in the x—y plane (cases RZ1-RZ4 in table 2). With the most coarse observations (Azjn' =
112, case RZ4), the estimated state is visualized in figure 11 and compared to the true
one. At the observation locations (z = z,,), velocity data are reproduced by the algorithm.
At the midpoint between observation planes (z = z,, + 0.5Az,), however, the estimation
accuracy is notably compromised.

Since our interest is in the distribution of errors between observation planes, the
estimation error is phase-averaged in the span in addition to averaging in the streamwise
direction, and is denoted &y, (q). The results for cases RZ1-RZ4 are shown in figure 12.
Only the error for the u component is plotted, and the results for the v and w components
are similar. With the most poorly resolved data (figure 12a), the estimation error increases
by an order of magnitude from the observation planes to the midpoint between them.
The error in the near-wall region is of the same order of magnitude as the local
turbulence fluctuations, which is significantly higher than the error at the channel centre.
As better-resolved observations are adopted (figure 12b—d), the inhomogeneity of the error
distribution in the spanwise direction becomes weaker.

The effect of spanwise data resolution can be explained by examining the spanwise
two-point correlations R, (Az) in figure 13(ai). Since the dominant structures in the
wall layer are streaks and streamwise vortices that are narrow in the span, the two-point
correlation decays faster at locations closer to the wall. As a result, the domain of
dependence of the observation planes shrinks from channel centre to the wall, which
explains the high estimation error in the wall layer. Figure 13(aii) shows the reconstruction
quality at # =T in terms of the correlation coefficient between the true and estimated
states from the least-resolved data (Az} = 112). The profiles are qualitatively similar
to the two-point correlations within Azt < 20. However, while the turbulent structures
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Figure 12. Streamwise- and phase-averaged estimation error &, (1) between two x—y observation planes
at t =T (T+ = 50), normalized by the true local r.m.s. fluctuations u,,: (a—d) Az} = {112, 56, 28, 14},
respectively.
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Figure 13. (ai) Two-point correlations R, of the true streamwise fluctuation as a function of spanwise
separation; and (aii) correlation coefficient Cy,, (') between estimated (case RZ4, Azg = 112) and true
streamwise fluctuations at t = T (T = 50) as a function of distance from observation planes. Grey to black
correspond to y* = {17, 51, 180}. The horizontal dotted line marks zero correlation. (b) Wall-normal profiles
of (red dashed line) Kolmogorov length scale and Taylor microscales based on (black solid thin line) correlation
coefficient Cy;,, (1') and (black dashed line) spanwise two-point correlations. (¢) Streamwise Taylor microscales
based on two-point correlations of (black dashed line) u, (blue dashed line) v and (green dashed line) w
components.

decorrelate at larger distances, the accuracy of the reconstruction remains relatively higher,
and Cy,,, (u') returns to approximately unity as we approach the next observation plane at
=z, =112
o= 112.
Similar to the notion of the Taylor microscale,
~1/2

1 d2
Ru , (3.4)

U=\ T A2
2d(Az) Are0
we introduce a length scale for the domain of dependence of one observation plane by

replacing R, in (3.4) by the correlation coefficient Cy,, («'). The resulting length scale,
which we denote Ac;, is representative of the domain of accurate estimation. Both A_
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and Ac; are plotted in figure 13(b), and have similar values across the height of the
channel: the spanwise size of the domain of dependence of observations is similar in the
Taylor microscale. Therefore, the criterion

Az S2A;, (3.5)

must be satisfied to guarantee an accurate estimation of the local u field. Similar criteria
can be adopted for accurate estimation of the v and w components using the Taylor
microscales A, , and A_ ,, respectively. Since those length scales are commensurate with
A 4, the condition (3.5) suffices. Using (3.5), we can also interpret the estimation results
with different spanwise data resolutions (figure 12). When Azz = 56 (figure 12b), the
criterion (3.5) is satisfied for the bulk of the channel (ZAZM ~ 80, cf. figure 13b) and starts
to be violated for y* < 70. As such, while figure 12(b) reports high prediction accuracy in
the bulk (Cy,, (u’) = 0.97), errors increase in that near-wall region (Cy,,, (1) = 0.83) and
become inhomogeneous in the span. When Az, = 28 < min, QAZM (figure 12c¢), every
point in the flow is covered by the domain of dependence of observations, so the estimation
quality becomes more accurate and uniform at all the y locations (Cy;,, (') = 0.99).

We compare the criterion (3.5) to that for homogeneous isotropic turbulence (Yoshida
et al. 2005; Lalescu er al. 2013; Li et al. 2020) that A,, < 157. The Kolmogorov scale
in our case is n = (Re3D) /4, where D = (2 /Re)(sgjs;.j) is the viscous rate of dissipation
and s;.j = (8,~uj’- + 9ju})/2 is the fluctuating strain-rate tensor. The criterion 157 is plotted
as the red dashed line in figure 13(b). Since the average dissipation is affected by the
streamwise-elongated structures in the channel, 5 is larger than the spanwise size of
the smallest eddies. Nonetheless, the trend is similar to the Taylor microscale condition
provided above. Physically, both criteria demonstrate that the critical data resolution for
accurate estimation of the entire flow is within the transition zone between the inertial and
viscous dissipation ranges.

Next, we consider fully resolved observations in the cross-flow y-z planes, and
under-resolved in the streamwise direction (cases RX1-RX4 in table 2). Before examining
the state estimation results, we report the Taylor microscales Ay; (i =u,v,w) in
figure 13(c), which is computed from the streamwise two-point correlations. Owing to
the near-wall elongated streaky structures, Ay, is largest among all three components,
peaks near the wall and decays towards the channel centre. We therefore expect that the
estimation, particularly of the u component, should be most accurate in the inner layer
relative to the accuracy in the outer flow.

The r.m.s. estimation error is plotted in figure 14, where &, .(u) is averaged in the
span and phase-averaged in the streamwise direction, and also normalized by the r.m.s.
fluctuations. Overall, the estimation error decreases as better-resolved data are included
(figure 14a—d). For each observation resolution, the estimation quality deteriorates from
the wall to the channel centre, as expected. Two notable differences from the effect
of spanwise resolution are observed: (i) the estimation error is not symmetric with
respect to the midpoint between observation planes, especially in figure 14(a,b); and (ii)
although the separation of observation planes in figure 14(a) is larger than ZAL, (~ 118)
in the bulk (cf. figure 13c), the estimation error does not increase appreciably between
streamwise observation locations and remains within approximately 10 % of the local
r.m.s. fluctuations (Cy, . (') > 0.95 while R.(AxT = 96) ~~ 0.6). Both points are caused
by the mean advection in the streamwise direction. Conceptually, every instant when
data are recorded in the cross-flow y—z plane corresponds to an accurately estimated
‘layer’ in the spatiotemporal evolution of the flow, propagating by the advection velocity
U,. The thickness of such layers is approximately the Taylor microscale A, ,, and the
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Figure 14. Spanwise- and phase-averaged estimation error £y, . (1) between two y—z observation planes at t =
T (T = 50), normalized by the true local r.m.s. fluctuations u/, : (a—d) Ax;; = {192, 96, 48, 24}, respectively.
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distance between two adjacent ones is approximately U,At,. Since the observation data
are temporally well resolved, U,At,, < 2Ay, ,, the accurately estimated layers overlap
with one another and lead to commensurate accuracy between observation locations. An
example that further highlights this conceptual interpretation is considered next, where
the temporal sampling rate is sufficiently low (U, At,, > 2Ay ) in order to distinguish the
accurately predicted layers associated with different (x;,, #,,).

Consider the same coarse spatial resolution from case RX4 (Ax;; = 192), and we now
adopt a long time between observations, Az} = 7.4. This case is denoted RT4, and a
temporal evolution of the estimation error from ¢ = 0 to t = At,, is shown in figure 15.
Three layers of small errors are observed: A originates at the observation station at t = 0
and advects downstream; B emerges between observation locations and times, such that
the field accurately reproduces measurements at a downstream observation point at a
subsequent measurement time ¢ = At,,; and B’ is similar to B but reaches the observation
station at t = 2At,. Once A leaves the observation plane, the error increases, at least
initially, due to the chaotic nature of turbulence and the absence of a nearby observation
station to correct the field — behaviour later in time is discussed below. By comparison, the
error in B decays with time as it approaches the observation location at time t = At,,.

A detailed space—time representation of the estimation error at the channel centre is
shown in figure 16. All the regions of small errors (blue) belong to one of the three
classes described above, and can be associated with at least one observation station (black
plus signs). The pattern of the errors is repeated, anchored at (Ax,, At,) and inclined
according to the advection speed. Since 3U,At,, ~ 2Ax,,, regions A; that originate from
(x, 1) = (x,,, 0) will reach another observation station at (x, 1) = (x;;, + 2Ax,,, 3At,,); the
errors in that region thus initially increase moving away from (x,,, 0) and reduce as
that later observation point is approached. For a general spatiotemporal resolution of
observations, regions A; may not coincide with another observation position and time, and
hence the errors would not undergo the later decay. From figure 16, it is evident that an
accurate estimation of the entire flow state can be achieved by refining either the spatial or
temporal data resolution such that the low-error regions overlap. This view is demonstrated
in figure 17(a—d) where the panels correspond to increasing temporal resolution (cases
RT4-RT1, respectively, in table 2). When the true state is observed sufficiently frequently,
the estimation error in the bulk region approaches homogeneity in the streamwise direction
(figure 17¢,d). Specifically, accurate reconstruction is achieved when the distance between
the thin layers that sample observation points is within the domain of dependence of
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Figure 15. Spanwise- and phase-averaged estimation error &, -(u) within the first observation time interval
(At,‘; =74, TT =50, case RT4): (a—e) t = {0.00, 0.25, 0.50, 0.75, 1.00} At,,, respectively. Blue regions: A,
regions where error is low at (x, r) = (x,,, 0) and advected downstream; B, emergent region of small error that
later coincides with observation plane (x, 1) = (x;;, Aty); and similarly B coincides with (x, 1) = (X, 2A%y).
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Figure 16. Space-time evolution of the spanwise-averaged estimation error £, (u) at the channel centre. Black
plus sign, observation location and time; A;, Bj, B;, same as A, B, B’ in figure 15; and the subscript denotes the
ith interval between streamwise observations.

observations,
UgAty S 2 A5 4. (3.6)

Recalling that A, , ~ A,,, < Ay, (cf. figure 13c), the equivalent criterion for accurate
estimation of v and w is more restrictive. When the observations only satisfy the bound
for u, the reconstruction is less accurate for the other two velocity components (e.g.
Cu,z(t, v, w) = {0.95,0.86, 0.79} when Ax), = 192 and Az} = 7.4).
In summary, to guarantee an accurate estimation of local velocity component i, the
streamwise and temporal data resolution must satisfy either one of two conditions:
() Axy S2Ax;and Aty S 7o or (1) Aty S 2A4i/Ug and Axy, S Upty. (3.7)

~

The first condition is similar to that for the spanwise data resolution, namely that the
Taylor microscale must be resolved by observations. Note that it is supplemented by a
statement regarding the observation time, which must be smaller than the Lyapunov time
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Figure 17. Spanwise- and phase-averaged estimation error &, (u) att =T (T* = 50) with different
observation time interval: (a—d) At;; ={7.4,3.7, 1.8, 0.9}, respectively.
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Figure 18. Criteria for streamwise and temporal data resolutions: (black line) At, =1, and Ax, =

miny ;(2Ay,;); (blue line) At,, = miny ;(2A,;)/Up and Ax,, = Upts: (empty circles) successful estimation
with correlation coefficient higher than 0.9; (crosses) unsuccessful estimation.

scale t, because even a near-perfect estimate of the flow state will diverge from the true
solution over that period unless additional data are available for assimilation. The second
condition is a reinterpretation that accounts for mean advection: should the temporal
resolution resolve the advected Taylor scale, the only requirement for spatial resolution
becomes a condition based on the travel distance within the Lyapunov time. These two
conditions are plotted in figure 18. We performed additional tests with Ax) = 48 and
At:,; = {0.45,0.90, 1.80, 3.70, 7.40}. When the correlation coefficient between the true
and estimated states was higher than 90 %, the outcome was deemed successful; these
cases are marked by circles. Inaccurate, or unsuccessful, reconstructions are marked by
crosses. The outcomes of all the cases agree with the above two conditions.

3.4. Estimation without wall-layer data

In all the above cases, observations were distributed throughout the wall-normal extent of
the channel, spanning both the inner and outer layers. In reality, however, experimental
observations become progressively more difficult to obtain near the wall (Hutchins,
Hambleton & Marusic 2005; Smits, McKeon & Marusic 2011). And since most of
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the turbulence kinetic energy is produced near the wall (peak production at y™ ~ 12)
and transported into the bulk region, lack of observation in this region may severely
compromise the estimation of the full state. We therefore explore the accuracy of
reconstructing the flow within the inner region when observations are only available in
the outer layer and directly on the wall. Previous efforts for this configuration are limited
and have generally focused on use of linear models (Baars, Hutchins & Marusic 2016;
[llingworth, Monty & Marusic 2018). The present test case is the first attempt to perform
a reconstruction based on the full nonlinear Navier—Stokes equations.

Specifically, we consider two types of observations: (i) subsampled velocity data
available in the outer layer, y* > 30, with the same spatial and temporal resolution as
the benchmark case; (ii) shear stresses T = (T,y, Tzy) on both channel walls with the same
resolution as velocity data. The observation time horizon is the same as the benchmark
case, TT = 50. These observations are weighted in the cost function,

N
J@®) = 5> M), — Mu@")I* + (BRe/Rer)* |1, — M @M1, (3.8)
n=0

where || - ||,, represents integration over top and bottom walls and the weight 8 = 1/5.
The choice of weighting parameter § may be motivated by different objectives, such as
balancing the two contributions in the cost function or their gradients or minimizing the
condition number of the Hessian of 7. Here we adopt 8 = 1/5 such that the stress term
is commensurate with the velocity at the first fluid grid point that was observed in our
benchmark case. The estimated state is compared with the benchmark case to highlight
the impact of missing observations in the wall layer.

The predicted statistics without wall-layer observations, evaluated at t = T, are plotted
in figure 19 and are compared with the true statistics. The quantities shown are horizontally
averaged; the corresponding turbulence kinetic energy equation is

oE //8<ui> 0 1// ’ 2 ’ 2 a
T _<”i”j>w v E(Miuiuj) + (u;p) — E(uislj) — E(sljsij) . (3.9)
j j fe ~

P D

The estimated profiles are accurate, even within the viscous sublayer and buffer layer,
which are void of observations and where production and dissipation predominate.
Although the interpolated initial condition also converges to the true statistics after a long
time (¢ & 4T), our estimated state reaches the statistically stationary state faster (r ~ 1.57),
especially for dissipation. The errors in the estimated instantaneous velocity fields are
shown in figure 20. Compared with the benchmark case (grey lines), the estimation quality
in the outer layer is almost unaffected when the wall-layer data are removed. In the
near-wall region, however, the estimation error reaches a maximum and exceeds twice the
error in the benchmark case. The streamwise component is the most poorly reconstructed.
Without data in the wall layer, the data assimilation algorithm starts with an interpolated
velocity field as a first guess, which underestimates the mean flow near the wall; the final
prediction of the algorithm retains a similar deficit in the mean, and hence the estimation
error is largest in the streamwise component (black lines in figure 20). At t = T, the highest
estimation error is approximately 4 % of the bulk velocity, which is smaller than the 16 %
local r.m.s. streamwise turbulence fluctuations. In addition, the correlation coefficient
between the true and estimated states at t = T is above 0.8 for all three components of
the velocity field.
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Figure 19. Comparison of the instantaneous (t = T, T+ = 50), horizontally averaged flow statistics for the
(grey circles) true and (black lines) estimated fields, without wall-layer observation data: (a) r.m.s. fluctuations;
and (b) turbulence kinetic energy (TKE) production and dissipation. Dashed lines, y* = 30.
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Figure 20. Comparison of the estimation errors £,.(¢g) (grey) with and (black) without wall-layer observation
data: (a) streamwise, (b) wall-normal and (c) spanwise components at (thin) # = 0 and (thick) t = T (T+ = 50).
Red: correlation coefficient C,;(q) between the true and estimated states without wall-layer observation data at
t = T. Dashed line, y* = 30.

The wall layer is host to coherent structures, such as streaks and streamwise vortices, that
play an important role in the dynamics of the near-wall turbulence cycle (Hamilton, Kim
& Waleffe 1995) and in flow control. For example, the streak spacing must be resolved by a
controller in order to effectively relaminarize turbulent channel flow (Sharma et al. 2011).
Accurate prediction of these structures is therefore important. The error of our estimation
at different length scales is reported in figure 21. The most accurately reconstructed
structures are long in the streamwise direction (1, & O(L,)) and large waves in the span
(lj € (102, 10%)), which are typical features of near-wall streaks and streamwise vortices
(Jiménez 2018). The estimation error of these structures is mildly affected by removing the
wall-layer data, due to their coherence across wall-normal locations, which facilitates the
estimation even without near-wall observations. In contrast, reconstruction of small-scale
near-wall structures is more sensitive to the lack of observations in that region, which is
symptomatic of the weaker sensitivity of the outer flow to these structures.

Despite the overall increase of estimation errors when wall-layer data are not available,
the instantaneous visualization of the coherent structures can still be compelling. Figure 22
shows a visualization of the predicted instantaneous streamwise fluctuation velocities for
two predictions: without and with observations in the wall layer. The estimated streaky
structures without wall-layer observations (figure 22qi) are irregularly spaced in the
spanwise direction and meander downstream, as expected from a realistic channel flow.

917 A9-21


https://doi.org/10.1017/jfm.2021.268

https://doi.org/10.1017/jfm.2021.268 Published online by Cambridge University Press

M. Wang and T.A. Zaki

(a) 2.0 (b) 20
1.5 1.5
= =
= =
S 10 S 10
0! N
0.5 0.5
. \\\\ . “\\\_\%——
102 103 10! 102 103
+ +
/lx /lZ

Figure 21. One-dimensional Fourier spectra of estimation error at y© = 15, averaged within ¢ € [0.5, 1.5]T
and normalized by the amplitude of the corresponding Fourier modes: (a) streamwise spectrum averaged in the
span; and (b) spanwise spectrum averaged in the streamwise direction. Estimation (grey line) with and (black
line) without wall-layer observation data.
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Figure 22. Streamwise fluctuations at y*© = 15 and t = T (T = 50), calculated by subtracting the true mean
velocity: estimations («) without and (b) with wall-layer data. Lines: true fluctuation fields.

The zoomed-in view (figure 22aii) also includes the true state (line contours), which
confirms that the state estimation is predictive: the true streaks are reproduced. The
estimation accuracy is in fact comparable to the case when observations are available in
the wall layer (figure 22b). The successful estimation of the missing wall layer is directly
tied to the sensitivity of the observations in the outer flow and at the walls to the state in
this region at the initial time. In other words, accurate reconstruction of the inner layer
at the initial time is indispensable to match future observations far from the wall, and is
manifest in figure 22 by the accurate prediction of the flow state at the final time.

3.5. Estimation from wall observations

In practice, control of wall-bounded turbulence may rely on sensing and actuation at
the wall, and effective strategies are often predicated on decoding the wall signature
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Re; Re Ly/h  LJh N N, N, Axt Ayt Ayt Az

100 1429 47 27 128 128 128 9.8 0.74 22 4.9
180 2800 47 27 384 256 320 59 0.20 3.0 3.5
392 6875 2n b1 256 320 192 9.6 0.34 5.1 6.4
590 10935 27 bl 384 384 384 9.6 0.44 6.5 4.8

Table 3. Computational set-up of cases with wall observations (§ 3.5).

of outer turbulence structures. It has been demonstrated both mathematically (Lighthill
1963; Constantin & Iyer 2011) and numerically (Eyink, Gupta & Zaki 2020a,b) that
all the interior vorticity is generated at the wall. The converse problem, specifically to
what extent the initial flow state can be predicted from wall observations, has not been
addressed as comprehensively. Previous efforts at Re; = 100, and using a variety of
approaches, yielded an estimated state that is nearly uncorrelated with the true flow beyond
the buffer layer (Bewley & Protas 2004; Suzuki & Hasegawa 2017; Liu & Hasegawa
2020). The modest Reynolds number in those studies does not support the presence of
large-scale outer structures that appreciably influence the wall stress fluctuations (Abe,
Kawamura & Choi 2004). LSE has been applied at higher Re; to reconstruct large-scale
structures in the log layer from wall observations (Encinar & Jiménez 2019). However, the
predicted state from LSE does not satisfy the Navier—Stokes equations. Here we focus on
adjoint-variational state estimation, specifically on the accuracy of the predicted state and
the domain of dependence of wall observations. The dependence on Reynolds number
will be examined for Re; = {100, 180, 392, 590}. The computational domain and grid
resolution are summarized in table 3. Note that a smaller domain size is adopted for the
Re; = {392, 590} cases due to the limited computational resources.

The observations are fully resolved shear stresses T = (tyy, Ty;) and pressure p at both
walls, similar to those adopted by Bewley & Protas (2004) at the lower Reynolds number.
The corresponding cost function is defined as

N
J@) =33 Tz, — M @I + Ny, — P (3.10)
n=0

For all the different Re cases, the estimation window is the same in viscous units, 7+ = 50,
which is long enough for perturbation in the bulk region to affect wall signals. The
first guess of the initial condition is an LSE of the flow using observations at ¢ = 0.
The stochastic estimator was constructed with a completely independent time series. All
the estimated flows are obtained after 100 L-BFGS iterations of the state estimation 4DVar
algorithm.

The correlation coefficients of the estimated and true fluctuating velocities at r = T are
shown in figure 23. The Re; = 100 results are comparable to those in figure 6(a) of Bewley
& Protas (2004) at the same Reynolds number. As Re; is increased, the correlation near the
wall slightly deteriorates but remains sufficiently high to provide confidence in predictions.
Precisely, for all Reynolds numbers, C,; > 0.8 when y* < 15. The correlations start
to decay beyond the buffer layer, and those for v and w (figure 23b,c) do so nearly
monotonically and with a similar slope for all Re;. This trend highlights the challenge
of interpreting turbulent flows from wall observations: the accurately predicted near-wall
layer is a diminishingly smaller physical region as the Reynolds number is increased. A
noteworthy exception is recorded in the correlation coefficients of the streamwise velocity
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Figure 23. Correlation coefficient Cy;(g) (3.2) between the true and estimated fluctuation fields at t =T
(T = 50), evaluated relative to the true mean flow: (a) streamwise, (b) wall-normal and (c) spanwise
components. Grey to black: Re; = {100, 180, 392, 590}, respectively.
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Figure 24. Time dependence of the horizontally averaged correlation coefficient Cy,(1') between true state
and adjoint-variational estimation at Re; = 590.

(figure 23a) at Re; = {392, 590}: the initial decay outside the buffer layer is followed by
a plateau within (30 < y™, y < 0.3) where the reconstruction remains marginally accurate
because the large-scale structures in that region superimpose a footprint on wall signals
(Abe et al. 2004; Mathis, Hutchins & Marusic 2009).

The history of the correlation coefficient Cy,(«') at the highest Reynolds number
Re; = 590 is shown in figure 24. The adjoint-variational approach yields an evolution of
the near-wall flow that is strongly correlated with the true state throughout the observation
horizon. It also sustains the plateau in Cy,(«') in the outer region that was observed at
the final time in figure 23, and which is related to the estimation of the outer large-scale
motions. This relation is evident in visualizations of the perturbation fields, e.g. the
instantaneous views in figure 25 at t = 7. In the outer layer, the estimated field matches
the mean flow and large-scale motions, while the small-scale fluctuations in the bulk
and vortices that are detached from the wall are not captured. These results indicate
that the wall signature at these Reynolds numbers is not sensitive to the wall-detached
motions in the initial condition — a demonstration of the inherent difficulty of turbulence
reconstruction from wall observations.

In light of the importance of the near-wall turbulence regeneration cycle, we turn to
the detail of the true and estimated states in that region. The near-wall streaks (bottom
x—z planes in figure 25) are accurately reconstructed, and many of the vortical structures
(grey isosurfaces in figure 26) are reproduced in the estimated field. Sheng, Malkiel &
Katz (2009) reported that violent near-wall ejections and sweeps contribute appreciably
to the local turbulence energy. Examples of both events are shown in panels (i) and (ii) in
figure 26: the true vortex lines above the stress local extrema are closely followed by the
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Figure 25. Comparison of (a) true streamwise fluctuation and (b) estimation using wall observations at t = T
(T = 50), Re; = 590.

@ 20,
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Figure 26. (a) True and (b) estimated vortical structures at t = T (T = 50) within y* € [0, 30] (Re; = 590),
visualized using the A vortex identification criterion with threshold A = —15. Panels (i) and (ii) show (dashed
grey) true and (black solid line) estimated vortex lines associated with extreme events: (i) sweep, (s, zs) =
(3.0, 0.9), vortex lines initiated at y*© = 7.6; (ii) ejection, (x, z.) = (1.3, 2.8), vortex lines initiated at y* =
2.3.

estimation, which demonstrates that the extreme events in the buffer layer are encoded in
the wall signatures.

The accuracy of the estimated state can be viewed against the backdrop of the near-wall
‘autonomous cycle’ (Jiménez & Pinelli 1999; Jiménez & Moser 2007). By artificially
removing the outer flow in DNS, Jiménez & Pinelli (1999) demonstrated that the near-wall
dynamics, especially the regeneration cycle of streaks and vortices, is self-sustained.
And, as observed in experiments, ‘ejection’ and ‘sweep’ events in that cycle have a wall
signature in the form of minima and maxima of the wall shear stress (Sheng et al. 2009).
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Here we demonstrate that the wall stress is in fact encoded with the entire dynamics of
the regeneration cycle, and our state estimation algorithm decodes these observations to
discover the entire flow within the wall layer. The algorithm can also reconstruct the outer
large-scale motions when their footprint is encoded in the wall measurements.

4. Conclusions

Starting from sparse observations, we attempted to reconstruct the initial state of
turbulence in channel flow. The problem was formulated as an adjoint-variational
minimization of a cost function that is defined in terms of the difference between the
available observations and their estimates from fully resolved Navier—Stokes simulations.
The gradient of the cost function was computed by solving the forward equations and
their discrete adjoints, and an L-BFGS algorithm was adopted to update the estimate of
the initial state during successive iteration; this step was supplemented by a symmetric
projector that constrains both the search direction and estimated initial state to be
solenoidal.

The performance of the algorithm was evaluated in a benchmark case, where the
observations were low-resolution data, at 1/4096 of the required sampling to spatially and
temporally resolve the flow in DNS. The variational state estimation algorithm achieved
more than 80 % error reduction compared to interpolating the coarse-resolution velocity
data, and ensured that the predicted flow not only satisfies the Navier—Stokes equations but
also tracks the evolution of the true field in state space over the observation time horizon.
The estimation errors are initially high wavenumber, and decay within the assimilation
time window which was designed to be of the order of the Lyapunov time scale. The
error characteristics were explained in terms of the sensitivity of observations to the initial
state. Specifically, observations are insensitive to the high-wavenumber content of the
initial condition. In addition, the estimation error decays because the optimization problem
is dominated by late observations since any mismatch with available data amplifies
exponentially in the adjoint reverse time. We cautioned, however, that longer time horizons
than the Lyapunov time scale would lead to diverging trajectories because small unstable
errors in the initial condition would amplify sufficiently and compromise accuracy.

Using the same benchmark configuration, the observations were contaminated
with Gaussian noise and yet the variational state estimation algorithm successfully
reconstructed a noise-free Navier—Stokes solution. The correlation between the estimated
and true states exceeds 95 %, even when observation noise reaches 10 % of local velocity.
The vortical structures, which are generally difficult to reproduce from noisy data, were
also accurately reconstructed. Quantitatively, the error of the estimated vorticity field is
within 4 % of the wall vorticity. That the noise in the observations was not amplified
in the estimated state demonstrates the robustness of the method to reconstruct velocity
gradients.

Criteria for the density of observations in the horizontal plane and in time were
identified, and are related to the Taylor microscale of the turbulence. Physically, in order to
ensure accurate reconstruction, the separation of observation stations cannot exceed their
domain of dependence. The criteria are consistent with that obtained in homogeneous
isotropic turbulence (Yoshida er al. 2005; Lalescu et al. 2013; Li et al. 2020), and can
accommodate anisotropy of wall turbulence. The presence of mean advection can be
exploited to relax the critical streamwise data resolution, when the frequency of temporal
sampling can resolve the advected Taylor scale. These criteria were also supplemented
with a condition that accounts for divergence of trajectories during the Lyapunov time
scale due to the stochasticity of the flow.
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Another important configuration was considered where no observations were available
in the wall layer. Instead, observations only comprised subsampled velocities in the outer
flow and wall shear stresses. This test case is, to date, the first attempt to reconstruct the

instantaneous flow field in the wall layer y© < 30 from such observations and using the
full nonlinear Navier—Stokes equations. In spite of the lack of observations in the region
of peak turbulence kinetic energy production, the estimated profiles of flow statistics and
the streaky structures in the wall layer were almost indistinguishable from the true state.
These results demonstrate the sensitivity of the outer flow and wall shear stress to the
turbulence field in the wall layer at the initial state — a result consistent with our notion
that the turbulence produced in that region imprints onto the wall stresses (Sheng et al.
2009) and extends and is transported into the outer flow (Jiménez & Moser 2007).

One final configuration that is of both theoretical and practical interest is state estimation
from wall observations. From a theoretical perspective, it is known that all the vorticity
in the field can be traced back in time to its origin at the wall (Lighthill 1963; Constantin
& lyer 2011; Eyink et al. 2020a,b); here the converse problem is examined, where the
wall vorticity is traced back to the initial state of the flow. From a practical perspective,
the capacity to control wall turbulence is often reliant on our ability to predict its
state from wall measurements. State estimation was performed using fully resolved
wall observations of shear stresses and pressure, at four Reynolds numbers. The first
guess of the initial condition was constructed from an LSE, and was updated using the
iterative adjoint-variational approach. The adjoint estimation accurately reproduces the
evolution of the true state in the near-wall region and also captures the evolution of outer
large-scale motions when their footprint reaches the wall. Despite the accurate estimation
of u' large-scale structures in the log layer, overall the estimation quality deteriorates
appreciably beyond the buffer layer. This deterioration is due to a lack of sensitivity of wall
observations to the wall-detached outer structures, which is consistent with the autonomy
of the near-wall regeneration cycle that was demonstrated by Jiménez & Pinelli (1999).
Finally, it is important to recall that the accurately predicted region below the buffer layer
corresponds to a progressively smaller physical height at higher Reynolds numbers, which
highlights the challenge of estimating wall-bounded turbulence in that regime.
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