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We consider a Jackson network with two nadeish no exogenous inpubut instead
an infinite supply of work at each of the nod&ghenever a node is empiy pro-
cesses a job from this infinite supply/e obtain an explicit expression for the steady
state distribution of this systgmas an infinite sum of product forms

1. INTRODUCTION

We consider a Jackson network with two nod€gy. 1), numbered = 1,2. Pro-
cessing times at the nodes are independamd those at nodieare exponentially
distributed with rateg;, and jobs completing processing at nadeove to node

3 — i with probability p; and leave the system otherwiSghere is no exogenous
input to the systemHowever whenever one of the nodes is emptywill process

a job from an infinite supply of jobsThis system can be described by a two-
dimensional Markov jump procesX(t) = (X4(t), X5(1)), the state space of
which consists of the pairs of nonnegative integersn,), wheren, indicates the
number of jobs at node 1 amg indicates the number of jobs at node/Zhenever

n;, > 0, nodei will process one of the jobs at the nodéis introduces the transitions
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Ficure 1. A two-node Jackson network with infinite supply of work

(n,ny) — (np —1,n,+1) at ratey, py, n, >0,

(ng, Ny) = (g — 1, n,) at ratepy (1 — py), n, >0,

(ng, ) = (ng +1,n, — 1) at ratep, p,, n, > 0, -
(ng, ;) = (ng, Ny — 1) at ratep, (1 — p,), n, > 0.

Whenever nodeis empty it will process a job from its infinite suppjyat the same
ratep;, and upon completiarthis job will move to the other node with probability
p; and leave the system with probability-1 p;. This introduces the additional
transitions

(0,n,) — (0,n, + 1) at ratep, p;,
1.2)
(ny,0) = (n, + 1,0) at ratep, ps.

Note that jobs from the infinite supply of each buffer are indistinguishable from
jobs queued at the noddsut queued jobs have preemptive priority over jobs in the
infinite supply The transitiong1.2) constitute arrivals into the system

The two nodes in this system are processing jobs all the tifeace there are
four independent Poisson streams in this systéots depart the system in two
Poisson streams with rat@g(1 — p;) and,(1 — p,), and jobs arrive at the two
nodes in two Poisson streajwath ratesp; p; andp,p,. The queue at nodethere-
fore behaves as avi/M/1 queuewith arrival rateys_; ps—; and service ratg;. The
system is stable if

_ Ma—i P3—i -
Hi

1 i=1 2,

with marginal steady state distributions

Pi(n) = lim P(X(() =n)=(1-p)p’, n=0 i=12 (1.3)

https://doi.org/10.1017/50269964805050102 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964805050102

TWO-NODE JACKSON NETWORK 193

However the queue lengths at the two nodes in steady state are not independent
the joint steady state distribution is not a product form

P(ng,ny) = t“jo]o P((X4(t), Xo(t)) = (N, np)) # P1(ny) Pa(ny), N, N, = 0.

In this note we derive explicit expressions for the joint steady state distribution of
the two-node systenVe use the compensation approadéveloped by AdanVes-
sels and Zijm[2] to obtain an expression that is an infinite sum of product forms
This two-node Jackson network with an infinite supply of work describes quite
a useful model of cooperative service by two serv@ensider jobs that require a
sequence of taskghe first task is performed by one of the servers and the remain-
ing tasks are performed by alternating serv&wsrveri performs tasks at rate,
and the job then requires an additional task with probakjlitgr else itis complete
and leaves the systee assume that each of these servers has an infinite supply
of jobs to start However each server gives preemptive priority to tasks that it
received from the other servefach server then has a queue of jobs that are “in
process” and the analysis of these queues tells us how much storage fovavkP
in processis needed and what is the cycle time of a job from first task to completion
The concept of infinite supply of workkn contrast to the usual queuing assump-
tion that jobs arrive randomlys in fact very common in many system&henever
a server is expensive and it is desired not to keep it il tries to monitor the
server and control the inpytso that the server never runs out of wofkiis is the
case for an expensive machjmehighly trained serveor a high-performance com-
munication link In each casevork is shunted to such servers to prevent them from
idling.
As we will see in Section dnfinite-supply Jackson nodes provide much better
performance than standard Jackson nodes
Multiclass queuing networks with infinite supplies of jobs in some of the classes
also called infinite virtual queuewere introduced by Adan and Weigl, Kopzon
and Weisg48,9], and Weis§12-14; see also Levy and Yechidll0]. They repre-
sent monitored control over job arrivalas it often exists in manufacturing and
communication systemdackson networks are described by Jack€dand Kelly
[7]. Weiss[14] has discussed Jackson networks with virtual infinite buffeiesshas
derived flow ratesstability conditionsand partial steady state distributiofis
work is also closely related to the results of Goodman and Md&geyhe analysis
in the current article provides one example of such netwonksch is highly
tractable

2. MAIN THEOREM

The two-node Jackson network with an infinite supply of work is described by a
Markov jump process moving on the two-dimensional nonnegative integer grid
The Markov process performs a two-dimensional simple random walk on the
positive-integer grigdwith transitions only to neighboring stateend with reflect-
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ing barriers on the horizontal and vertical axearthermorein the interior of the
positive quadrantthe random walk has no transitions to the nottte northeast
and the east direction$he transition rates for this random walk are described in
Figure 2

For such Markov jump processétsis possible to obtain a closed-form expres-
sion of the steady state distributidoy the compensation method developed in the
work of Adan et al[2]. The random walk in Figure 2 has the property that the
transition rates at the vertical boundary= 0, n, > 0 and the horizontal boundary
n, > 0,n, = 0 are projections of the ones in the interigrn, > 0. Boxma and van
Houtum[ 3] showed that this property considerably simplifies the expression of the
steady state distributiorBee alsq11].

The main steps in the derivation of the steady state probabilities are as follows
The balance equations for the interior are satisfied by product form expressions
a™B", wherea andg are solutions of a quadratic equatiQa, 8) = 0. Solutions
of this form do not as a rule satisfy the equations for the horizontal or vertical
boundariesHowever it is possible to find compensating product forms such that
the linear combinatiom™B" + ca™B"™ satisfies the balance equations for the
interior and the vertical boundary of the quadte®imilarly, it is possible to find
compensating product forms such thdtB" + da ™3™ satisfies the balance equa-
tions for the interior and the horizontal boundary of the quadranén starting
with a product forme™B" with « andg satisfyingQ(«, 8) = 0, one can construct
an infinite linear combination by adding product forms to alternately compensate
for the horizontal and vertical boundarhe resulting solution formally satisfies
all of the balance equation®ne then needs to choose the parameters of the product
forms and their coefficients such that the solution is absolutely converghist
method does indeed work for our system

ny

Hypy

Hy(1 - py)

/411’11 Hypy
ny
:uzpz Hy (r- P1) :uzpz

FIGURE 2. Transition rates for the two-node system
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In Section 4 we will present the detailed derivation of the steady state distri-
bution, without invoking the results ifi2,3]. In the derivationwe make use of the
steady state marginal distributiofis3). This yields a particularly elegant and sim-
ple expression

THEOREM 2.1: The steady state distribution of the two-node Jackson network with
infinite supply of work, whep,, p, < 1, is given, for all(n,,n,) # (0,0), by

P(ny,ny) = kzl (DML = a) (1 = Brs1) Bz + (1= ) eyt (1= Bi) Bezl,

(2.1
where, for k= 1,
M1+ Mo 1-p,
acl = 1 _ a0l ,
k+1 P—zpz :Bk k—1 p2
(2.2)
_ Mat+ M2 _ 1-p
3k+11 = ll.llplz Ay t— k—ll_ Dy 1,
with initially ag = Bo = 1,a1 = p3, and B; = p,. The steady state probability
P(0,0) is
P(0,00 =1— pr—p2t 2 (= 1)k+l(ak/3k+1 + ak+1ﬁk)~ (2-3)
k=1

The closed-form expression in Theorerhh Bnmediately leads to similar expres-
sions for the distribution of the total number in the system and for(fidagtorial
moments of the queue lengths at node 1 ande? X; denote the queue length of
nodei in steady stateThen we have the following

COROLLARY 2.2:

(i) Foralln >0,

]P)(Xl + X2 - n)
= 2 P(nl’ n2)
ny+ny,=n
ny, N,=0
& ot — g
=2 DN Q- a)A =B ———
K=1 a = Bri1
afit - Bt

+ (1= ag) (1= Bi) (2.4)

i1~ Pi
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(i) Forallm,n=0and m+ n> 0,

A)0)

_ i (‘Dkﬂ[ ay’ Bisa iy Bk
k=1

1=a)™ (1= Bis)" (1= )™ (1= B)" .
(2.5)

Note that exact formulas fa, and 8, can be obtained from the difference
equation(2.2) but are not particularly illuminatingrhe asymptotic behavior af,
andpy is derived in Proposition.44.

3. COMPARISON WITH STANDARD JACKSON NETWORK

We compare our two-node system with an infinite supply of work and a standard
Jackson networtlkwith exogenous random inpufBhroughout this section we label
our system ascb-supply” and the Jackson network with random exogenous input
as “standard For the comparisonwe consider two nodes in a standard Jackson
network as shown in Figure Blere we have two nodes with the same processing
ratesyy;, and with the same probabilities-1p, to complete a jopwhich then departs
the systemThe total inputs into the nodes are at raigsand they consist of both
exogenous arrivals and feedback from other no&exall that thenput streams
are not PoissonThe outflow in steady state is also at rateand includes &oisson
output stream of departures from the systmate); (1 — p;). As is well known the
steady state joint distribution of the jobs in the two nodes is the product form

A A\ A Ao \2
P(ny, n,|standargl = (1— —l><—1> <1_ _2><_2> ]
Ha /\ Ha M2 Ha

This is only stable ifA; < y;; therefore the output rate of the standard nodes is
always less than the raté — p;) | achieved by theo-supply systemand if one
tries to approach this ratéhe queue length explodes

out out
1- P, 1- P,

L~
() T— () —
N

>
s
<y r

Fi1GuRE 3. Standard Jackson network nodes
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Itis interesting to compare the two systems in the case that both have the same
traffic intensities For the remainder of this sectipiwe takep; = A; /W = Mz—i P3—i/
K. We compare the total number in the two nodes for the two systéhes mar-
ginal steady state distributions in the nodes of the two systems are thersamedy
Geometrigwith P(X; = n) = p. In particular it follows that the mean number in
the system is the same for both networKswever the steady state distribution of
the total number in the system is different
In Figure 4 we show the distribution of the total number in the system for
MUy =2, U =3, p, = 0.8, p, = 0.5 (top) andp, = P, =1, p; = p, = 0.8 (bottom. We
also plot the standard product form probabilities for comparison

Asymmetric p; =0.75, pp =0.53
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FIGURE 4. Probabilities of total number in the system
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The correlation betweeX; and X,, calculated from formulg2.5), equals
—0.2976 for the first example of an asymmetric system ar@3873 for the sec-
ond example of a symmetric systein fact it can be shown that the correlation is
always negativesee Section 8. Negative correlation reduces the variance of the
total number in the system compared to independent nddésgure 5 we show
the correlation betweex,; andX, for the symmetric system, = p, andp; = p, = p.
Clearly the negative correlation gets strongepasnds to 1 the limiting value for
p = 1is equal to§72 — 7 (see Section 8).

We can also get the asymptotic tail probabilitiesXgf+ X,, from (2.4). We
will show that the sum is absolutely convergent and that the parameatersd 8y
monotonously decreas&he values for largen therefore behave like the largest
geometric term

1-8; n
S —— N >
1- B./py P1 P1 -~ P2

1- 1-
< B2 n 4%
1-32/p1 1—ay/ps

P(X; + X, = n|oco-supply ~

)Pf, P1= P2-
(3.1)
The corresponding asymptotics for the product form standard Jackson network are

1-p,

TP, PL1>p2
P(X, + X, = n|standargl~ § 1= p2/p1

N(1—ppi, p1=p2.

0.2 0.4 0.6 0.8 1 P=PL=DP2

-0.1 °
-0.15
0.2
-0.25
0.3
-0.35 °

-0.4 v ° °
COI‘I‘(X],XQ)

FiGure 5. Correlation betweeiX; and X, for the symmetric system,; = p, and
P1=pP2=p.
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Hence the asymptotic ratio of the two is
[ 1-ps
1-ps/pa
1-p5; ’
1-82/p1
1-ps
1-p8; + l—a; [N, p1=po.
\L 1—82/p1 1-ay/py

P1 > P2
P(X; + X, = n|standard
P(X; + X, = n|co-supply)

(3.2)

In Table 1 we summarize various quantities for the two examples and the com-
parison of the total number in the system for thesupply and standard systems

The most interesting part here is the strong form of variance reduction and tail
probability (i.e., overflow probabilities in practigeobtained in the infinite-supply
network when the two nodes are symmetric

TABLE 1. Comparison of Infinite-Supply and Standard
Jackson Networks

Asymmetric Symmetric
Example Example

Data

Ha 2 1

H2 3 1

p1 0.8 0.8

P2 0.5 0.8

p1 0.75 08

P2 0.533 Q8
Moments

E(Xy) 3 4

E(X2) 1.14 4

V(X1) 12 20

V(Xz) 2.45 20

Cov(Xy, Xz) -1.61 -7.75

Corr(Xy, Xz) —0.2976 —-0.3873

V(X; + X,|standard 1.287 1633

V(X3 + X,|oco-supply

P(X; + X, = n|standard 1.33445 007143n

- P(X; + X5 = n|oo-supply
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4. DERIVATION OF STEADY STATE DISTRIBUTION

In this sectionwe prove Theorem.2. We first derive the expression as a formal
solution to the balance equations and then prove that this solution is absolutely
convergent

4.1. Balance Equations

The balance equations for the steady state probabilities in this system are obtained
by equating the flow out and into each stateelding the following

(Mg + M2)P(ng,ny) = pepa P(ng + 1,0, — 1) + pa(1— py)P(ng +1L,ny)
+ MUpP(ng —1L,n, +1) + (1 — po)P(ng, Ny + 1),
ny, N, > 0, (4.1)
(Hy + H2p2)P(ny,0) = pop, P(ng = 1,0) + py(1 = py)P(ny + 1,0)
+ H2P2P(ny = 1,1) + Up(1 = p2) P(ny, 1),
n, >0, (4.2)
(Hep1 + H2)P(O,nz) = Wy p P(O,n; — 1) + Pp(1 = p2)P(O, N + 1)
T WP P(Lny = 1) + py(1— p)P(L ),
n, > 0, (4.3)
(Hipy + H2P2)P(0,0) = (1= py)P(1,0) + Uo(1 = p2) P(0,1). (4.4)
In the next sectionwe will characterize the product forme™B"™ satisfying
the balance equations in the interior of the quadrant
4.2. Product Form Trial Solutions in the Interior of the Quadrant

Consider first(4.1) in the interior of the quadrant and a product form trial solution
a™BM, Substituting this trial solution ii4.1) and cancelingr™ 1™, we see
immediately the following

ProposiTiON 4.1: The product forma™B"™ solves (4.1) for everynn, = O,
+1,+2,..., if and only ifa and 8 are on the curve:

(M1 + M) aB = a?(pypr + (1= py)B) + B2 (Uap2 + Ma(1— py)a).  (4.5)

Curve(4.5) is shown in Figure 6The pairs of valueéa, 8) = (0,0) and(a, 8) =
(1,1) are on this curveWe also illustrate on the curve how the special roots that
appear in the solutiof.1,2.2), ay, By, are calculategdfor k = 0,1,2,3.

For every fixed value of 6< a = 1, (4.5) yields a quadratic equation fg

[M2p2 + Mo(1— p2)a] BZ = [(Wy + Ho) e — pa(1— p)a®] B + [Mypra®] = 0.
(4.6)
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; B (o, Bo) (0, Bo)
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0.6
Y
(0L, B|) (0, B] )
0.4 /
(0(19132)
0.2
~—*T0,, B;)
0.2 0.4 0.6 0.8 1 o

F1GURE 6. Curve(4.5) for y; = 2,4, = 3 andp, = 0.8, p, = 0.5.

ProrosiTION 4.2: The quadratic equation (4.6) has two real roots for all<
a =1. Fora =1, the roots areg8 = 1 andg = p,. For 0 < a < 1, the larger root
is B8 > a and the smaller root i < B < a.

Proor: For the fixed valuer = o = 1, the quadratic equatiof®.6) for B is

H2B% — (HyPy + H2)B + WPy = 0,

with the two roots8 = 1 andB = By = H1p:/Hz = p,. For 0< a < 1, if we sub-
stitute 3 = « in the right-hand side of the quadratic equatidr6), we get
a?(a — 1) (p(1— py) + Ha(1—pp)) <O.

Hence the quadratic equatiof@.6) has two rootsone of them larger and the other
smaller tharw. The product of the two roots i$, p,/Hy; hence both are positive
[ ]

Similarly, for every fixed value 0< 8 = 1, (4.5) yields a quadratic equation
for a:

[Mips + (L= p)Bla® = [(M + H2) B — Ha(1 = p2)B%l a + [Hap2B%] = O,
(4.7)

ProposiTiON 4.3: The quadratic equation (4.7) has two real roots for all<
B =1 For B =1, the roots arex = 1 anda = p,. For 0 < 8 < 1, the larger root
is @ > B and the smaller root i < a < 8.
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It is convenient to divide the quadratic equatigds) and(4.7) by «?8? and
to consider quadratic equations f@r?, g~1:

[P (B™H)2 = [(Mi+ M) o™t — (1= p)] (B7Y)

+ (™) (M(1— po) + Hapoa™ )] =0 (4.8)
[H2p2](a )% = [(Hy + H2) B7H — pa(1— po)] ()
+ (B (M1 = py) + up B =0. (4.9)

4.3. Compensating for the Vertical and Horizontal Boundaries

Let @ and B satisfy(4.5), so thata™B" solves the balance equatiof#sl) for all
n,n, =0,£1,+2,.... We want to find a compensating term such thdtg" +
ca™fB" will, in addition solve the horizontal boundary equatic@ds2).

We first subtract4.2) from (4.1) to obtain

Ho(1— p2)P(ng,0) + pop P(ng —1,0) = pyp P(ng +1,-1), n, > 0.
(4.10)

Since our trial solutio™3" + ca™B" solves(4.1), it will solve (4.2) if and only
if it solves (4.10). We substitute the trial solution if#.10), yielding

[H2(1—p2) + Wopoa™t — PypraB o™
+ C[Ma(1— po) + Moot — pypr@p tl@™ = 0. (4.11)

To satisfy(4.11) fpr all n; > 0, we are forced to tak&@ = «; thus to solve(4.1),
we need to take8 as the second root of the qgadratic equatié®). Using the
quadratic equatiori4.8), we get the second ro@ ! in terms ofa and the first
root g 1:

i Bt o 1ok
M1 Py P1
We also get the product of the roots (@f8):
MapiB B = a H(Ma(1— po) + HoPa ). (4.12)
By cancelinga™"* in (4.11), we obtain an equation far:
(1+c)a (1= po) + Hoppa™) = Wypy(B~+cB7H). (4.13)
We now us€4.12) to cancely, p; 3-8t on both sides and obtain
E:
1-8

Multiplying the linear combination by the constait— «)(1 — 8), we may con-
clude thail — a)a™(1—B)B™ — (1— a)a™(1— B)B™ solves the balance equa-
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tions(4.1) and(4.2). The procedure to compensate for the vertical boundary equations
is symmetric

ProrosiTiON 4.4: Let « and B satisfy (4.5). Thenl — a)a™(1 — B)B™ —
(1— a)a™(1— B)B" sobes the balance equatiorid.1) and (4.2) in the interior
and the horizontal boundary if we take

~—1:&“20[71_ —1_1__p1_

4.14
H1 P2 P1 ( )

Similarly,(1—a)a™(1—-8)B" + (1—a)a™(1— B)B" sobes the balance equa
tions(4.1) and (4.3) in the interior and thevertical boundary if we take

~—1:u 1 _ —1_ﬂ

o 4.15
H2 P2 P2 ( )

4.4. Infinite Sequences of Compensations

Motivated by the marginal distributiofi.3), we start from a product form solution
with @; = p;1. The roots of(4.6) areBy, = 1 andB, < p;. Since we need conver-
gence we start from the trial solutiomj*852. To conform with our desired final
form, we multiply this trial solution by a constant

ProposiTION 4.5: The trial solution(1 — aq)a*(1 — B»)B52 with @y = p, and

Bzt = [(M + M2)/Mpilpr™ — 1 = [(1 — py)/p,] solves (4.1) and (4.2) for all
n,>0andn=0.

Proor: In this casethe compensating term would hage= 1, but then 1— 8 = 0,
so the compensating term disappears u

We next add a compensating term to sal#d) and(4.3). According to(4.15),
we choose

+ 1-
ayt = M1 T Mo Bil—arl- P2

M2 P2 2 P2

to obtain a two-term trial solution
(11— ap)ar™(1—B2)B2 — (L— az)az(1— B,)B52. (4.16)

In this solution the first term alone solved.1) and(4.2), and the two terms together
solve(4.1) and(4.3).

From now on we continue to add compensating terms to sat{gfg) and to
satisfy(4.3) alternatelylIn the next stepwe need to compensate the second term of
(4.16) to solve(4.2) again and we choosg, according td4.14). We continue these
compensating steps indefinitely
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ProrosITION 4.6: For all k =1, let

_ M1+ M _ 1-p
2|<1 = L P 2012k1—1_,32k1—2_ D 1,
1P1 1
(4.17)
_ Mo+ M2 _ 1-p
a2k1+1 == zﬁzkl_ Q-1 — 2,

M2 P2 P2

with initially 8o = 1 and «; = p;. Then trial solution

Zl [(1 - azk—l)agi,l(l - ﬁzk)ﬁgi -(1- 0l2k+1) a;ﬁﬂ(l - sz)ﬁgi (4-18)

solves the balance equations for &fl;, n,) # (0,1),(1,0),(0,0).

Proor: We show in Section Z that the infinite sum4.18) is absolutely conver-
gent for every(ny, n,) # (0,0). We will also show that the summation @.18) over
all the values ofny, n,) # (0,0) converges absolutelin the rest of the progiwe
take this statement as proved

The pair(a4, Bo) is on the curveé4.5). Hence using(4.14) and(4.15) and induc-
tion, so are all the pairéa,_ 1, Box) and( s 1, Bok). Hence all the terms in4.18)
solve(4.1), and by absolute convergena® does the infinite sum far, > 0 and
n, > 0.

In the sum(4.18), each negative term compensates the preceding positive term
so that their sum solved.3); see Proposition.4. Hence for all K,

Zl [(1 - a’zk—l) a£§71(1 - BZk)BQE - (1 - 02k+1)a;§+1(1 - BZK)IBSE

solves(4.3). By absolute convergengét.18) solves(4.3), whenever the equations
do not involve(ny, ny) = (0,0). Hence (4.18) solves(4.3) for all (0,n,),n, > 1.

We saw that(l — a;)ai*(1 — B,)B%52 solves(4.2). Each positive term{1 —
aai1) b, (1 — Bakio) B2, , COMpensates the preceding negative teriil —
aar1)abt, (1 — Ba)By2 in the sum so that their sum solvegt.2). Hence for
all K,

(1— ay)ai*(1— B2)B7?
K
+ kZl [-(1- a2k+1)a;§+1(1 - sz)B§.§ +(1- a2k+1)012§+1(1 - Bzmz)ﬁgﬁu]

solves(4.2). By absolute convergengét.18) solves(4.2), whenever the equations
do not involve(ny, ny) = (0,0). Hence (4.18) solves(4.2) for all (n,,0),n; > 1.
| |
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Analogously we can start from thél, p,) on the curvg4.5) and get another
solution

ProrosiTION 4.7: For all k = 1, let

_ Mit Mo _ 1-p;
azt = L —apt,— :
2K Lo Ps Ba1 2k—2 D,
. (4.19)
_ Mo+ Mo _ —p
,32k1+1 = :11 p12 a2k1 - BZkl—l - Dy 1-

with initially g = 1 and B, = p». Then trial solution

Z [(1 - a2k) a;&(l - ,32k—1),3;§,1 - (1 - a2k) a;&(l - ,32k+1),3;§+1 (4-20)
k=1
solves the balance equations for afl;, n,) # (0,1),(1,0),(0,0).

4.5. The Complete Solution

The two solutions in Propositions&tand 47 were not defined fo¢ny, n,) = (0,0).
The reason is thafor n, = n, = 0, the sums are ndiabsolutely convergentand
so they are meaninglesAs a resulf we could not check fotn,,n,) = (1,0) or
(nl’ n2) = (0’1)

To obtain a solution for al(n;,n,), we do the following For all (n;,n,) #
(0,0), we take the sum of the two solutiof%18) and(4.20). This yields

P(n,ny) = k}_:l (DML~ a) (1 = Bra1) Bz + (1= ) o1 (1= Bi) Bez].

(4.21)

For (ny, n,) = (0,0), we take

P(0,0) =1—a; — B+ 2 (_1)k+1(ak,3k+1 + ak+1:3k)- (4.22)

ProrosITION 4.8: The expressions for(R, n,) in (4.21) and (4.22) solve all of the
balance equations.

Proor: We will show in Section & that the sum ifP(0,0) is also absolutely con-
vergent We shall take that as well as absolute convergence of all the Btingm,)
and their sum over ah, andn, as proved

We already know by the previous two propositions tRam,, n,) defined by
(4.21) satisfy the balance equatio(#1l), (4.2), and(4.3) for n, + n, > 1. It remains
to consider the balance equations fb0), (0,1), and(0,0). For allK, we have seen
in the proof of Proposition 4 that the sum
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1-ay) a?l(l - 52)[322

+ 2 [~ = aner) gt (L= Ba) Bz + (1 — aner) gt (L= Boki2) Bz, o)

(4.23)

solves(4.2). Also, for all K, we have seen in the proof of Proposition? 4hat the
sum

K
2 [(1 — ag) a;i(l - ,82k71),3;|§71 -(1- a2k) a;i(l - ,82k+1)182|§+1 (4-24)
k=1
solves(4.2). Hence the sum of(4.23) and (4.24) also solveq4.2). Consideyin
particular the balance equation f@n,, n,) = (1,0):
(Mg + H2p2)P(1,0) = W p, P(0,0) + py(1 — py)P(2,0) + pp, P(0,1)
+ W(1—p)P(L1). (4.25)

It is satisfied by the sum d#.23) and(4.24). We now look at the sum d#.23) and
(4.24) forn;=n, = 0:

(1 - al)(l - ,32)

i kZ [~ (1= ) (1= Ba) + (1= azira) (1= Bai2)]
i kgl [(1— aa) (1= Box-1) = (1= @z) (1 — Bas1)]

2K
= 1;::1 (_1)k+1[(1 —a)(1— ,3k+1) + (11— ) (A — ,Bk)]
+ (1 - a2K+1)(1 - BZK+2)
2K
=l-a; =B+ Zl(_l)k+l(akﬁk+1 + a1Bx)

— Bok+2 T ok1Bok2-

As we will see «ay, Bk — 0 ask — oo. This property and absolute convergence of
the sumX 1 (— 1) (e Brs1 + s 18x) Shows tha(4.25) is satisfied byP(1,0),
P(0,1), P(1,1), andP(2,0) as defined in(4.21) andP(0,0) as defined by4.22).
The proof for the balance equation (1) is symmetric

Finally, by the absolute convergence of the sum ovengdindn, of (4.21), we
get that(4.4) is redundant and is satisfied automatically by the expressions for
P(ny,ny) in (4.21) and(4.22). u

https://doi.org/10.1017/50269964805050102 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964805050102

TWO-NODE JACKSON NETWORK 207

4.6. Normalizing the Sum of Probabilities

We again take absolute convergence as proBeded on thatwe can calculate
various quantities/Ne first obtain marginal probabilitiesvhich are consistent with
(1.3).

ProposiTiON 4.9: For n, > 0,
E P(n,ng) = (1 —p)p.
nz_j=0

Proor: We make heavy use of the absolute convergence to change the order of
summations and group sums of positive and negative tdfor, > 0, the sum is

> P(ng,ny)
n,=0
= 2 Z kﬂ[(l_ ) (L= Bir1) Biz1 + (1 — e 1) it (1 — Bi) Bi?]
=2 D A -ada D) (1— Bre) Bt
k=1 n,=0
+(1-a)aft; X (1— BB
n,=0
2 DL - a) o + (1= s 1) ety ]
=(l-a)a*—(1-ar)az + (1-az)az* — (1 - az)ag* + -
= (1— ai)aj".
The case of = 2 is symmetric n

We next calculaté(n, = 0,n, > 0) andP(n; > 0,n, = 0).

ProrosiTION 4.10:

> P(O,ny) = p, + kzl(_l)k(akﬁk+l + ayi18)s

ny=1

21 P(ny,0) = p; + 21(_1)k(ak:8k+1 + 18-
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Proor: We again make heavy use of the absolute convergence

2 P(0,ny)

Il
MMS

2 ( 1)k+1[(1 - ak)(l - Bk+1),3|'<21 + (1 - ak+1) (1 - IBK)BI?Z]

( DA (1 - ay) Z (1= Bis) Bz + (L— 1) X (1= BBz

n,=1

Il
HMS

I
Ms

(=D (1 = o) Burr + (1= ares1) Bi]

~
Il

1

8

= 2 (- )kH(,Bk + Brr1) T E (= 1) (o Brr1 T s1Bx)

=

=p1t Zl(_l)k(akﬁkﬂ + ay18x)-

The other case is symmetric |
Finally, we have the following proposition
ProposITION 4.11: The probabilities Pny, n,) in (4.21) and (4.22) sum up th

PrOOF: By the previous two propositions ard.22),

E P(ny,ny) = i i P(ng,ny) + i P(0,n;) + P(0,0) = 1. u

ng, Ny n;=1n,=0 n,=1

4.7. Absolute Convergence

In the previous sectionsve made heavy use of the absolute convergence of the
sums in(4.21) and(4.22). This will be proved next

PrOPOSITION 4.12:

> 2 (1 - ) (1 = B ) Biza + (1= ane 1) a1 (1= Bi) Bi2] < oo

(ny, ny)#(0,0) k=1
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PRrROOF:

2 2 [(1— ) g (1= BBz + (1 — ) oyt (1 — Bk)ﬁ?z]

(ng,n)#(0,0) k=1

k=1 n,=1 n,=1

=> {(1 —a) D (1= BBz + (1= arq) > (1— ,Bk),Bl?Z]

+ > > [(1_ ) oyt 2:0(1_Bk+1),8|?3—1

k=1n;=1

+ (1= o)ty 20(1 - IBk)BI?Z:|
= gl((l — )BT (1— oy 1)Bi) + kgl(ak + 1)

<2 (a+ Bu)-
k=1
In the next propositionwe show that the sequencegandB, decrease geometri-
cally, and hence the last sum converges |
ProrosiTioN 4.13: For all k = 0,

A1 = p1Bis Bii1= poay.

Proor: Fork = 0, we haveay = Bo = 1, @y = p,, andB; = p, and this is the only
case of equalityFork = 1, by (4.15),

_ _ 1\ o _ 1-p; _ _ _ _
o= (P2t + pr Bt —ac — >(pttprt DBt —pt L
2
> prt Bt
where the first inequality follows fromg, * > a, %, and the second fromd, * > 1.
The proof forfy. 1 is symmetric u

We can also get the asymptotic rate of decaw,péndpy:

ProprosSITION 4.14: As k— oo,

A1 Pt N M1+ Ho — \/(P-l + H2)? — 4y Mo Pr P2
a1 Bre1 My + Mo + \/(Hl + Up)? — 4H1 Mo P12

ProoF: The parameters, ., anday_, are the roots of4.5) with 8 = By. Dividing
(4.5) by B2, we get thatw.,/8x anday_1/Bx are the roots of

[H1p1 + M1 = p)Bly? — [(M1+ H2) — Wo(1— p2) Bly + H2p2 = 0, (4.26)
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with 8 = By. As k — oo, thenB, — 0 by Proposition 4.3 and thus

Qv dy—1
4 FY1’

Bk B

where 0< vy, < 1 < v, are the roots 0f4.26) with 8 = 0. Hence

— Y2,

Qv . Yi_ Mt He— V(g + H2)? — 4P o pr po
Qk-1 Y2 Pt M2t \/(Ul + H2)® — 4py Mo Py P2

The proof forBy. /By is similar [ |

From the geometric decay of the sequenggeandp,, we can further conclude
the following

COROLLARY 4.15:

(i) The sum that defines(B,0) in (4.22) is absolutely convergent.
(i) Forallm,n=0,m+ n> 0, the sum definin@((ﬁ)(ﬁz» in (2.5) is abso-
lutely convergent.

4.8. Nonnegativity and Ergodicity

From Propositions 8, 4.11, and 412 it follows thatP(n,, n,) given by(4.21) and
(4.22) are a nonnujlabsolutely convergent solution of the balance equatiwhich
sums up to 1From Theorem 1 in Fostdd], we can immediately conclude the
following:

CorOLLARY 4.16: The Markov jump process(X) = (Xy(t), X5(t)) is ergodic when
p1, P2 <1, and its equilibrium probabilities are given by the solutiomB n,) defined
by (4.21) and (4.22).

4.9. Queue Length Correlation

In this subsectionwe show that the correlation betwe&n andX, is always neg-
ative, which is equivalent to

X, X,) = S )kt @k Bri1 Q1 B
E(X1X5) Zl( ) 1-a) 1-B1) (A—aq1) (1=
< (4.27)
1=-pi1-po

The terms in the infinite sur.27) are alternating and decreasing in magnitude
sincea; > B, > a3 > --- andB; > a, > B3 > ---. Hence it suffices to show that

a B2 n a B1 < P1 P2
(1-ay) (1-582) (1-az) (1_,31) 1-p 1_P2,
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which can be verified by straightforward calculatiofi$iis proves the following
proposition
PRrOPOSITION 4.17: If p1, p» < 1, thenCorr(Xy, X,) < 0.

Figure 5 displays the correlation for the symmetric systens p, = g and
p. = p» = p. To find the limiting value of the correlation asT 1, note that in the
symmetric case

= Be=1 5 k(k+ L) + O~ P2

which can be derived from the recursive relations for the sequemgcasd B,.
Hence from (4.27) and using that

_ __P _ __ P
E(Xy) = E(Xz) 1-p V(X1) = V(X) 1-p?
we obtain
E(Xy Xz) = E(Xy)E(Xz) 8 & (=Dt B
A k(K+D2(k+ 2)

lim Corr(Xy, X,) = lim

pT1 pT1 \/V(X1)V(X2)

2
=—72—T7.

3

Note that exactly the same asymptotic correlation value appears in the calculations
of Boxma and van HouturiB, p. 488], which is curioussince the two models are
quite different
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