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We consider a Jackson network with two nodes,with no exogenous input, but instead
an infinite supply of work at each of the nodes:Whenever a node is empty, it pro-
cesses a job from this infinite supply+We obtain an explicit expression for the steady
state distribution of this system, as an infinite sum of product forms+

1. INTRODUCTION

We consider a Jackson network with two nodes~Fig+ 1!, numberedi 5 1,2+ Pro-
cessing times at the nodes are independent, and those at nodei are exponentially
distributed with ratesµi , and jobs completing processing at nodei move to node
3 2 i with probability pi and leave the system otherwise+ There is no exogenous
input to the system+ However, whenever one of the nodes is empty, it will process
a job from an infinite supply of jobs+ This system can be described by a two-
dimensional Markov jump process, X~t ! 5 ~X1~t !, X2~t !!, the state space of
which consists of the pairs of nonnegative integers~n1, n2!, wheren1 indicates the
number of jobs at node 1 andn2 indicates the number of jobs at node 2+Whenever
ni . 0, nodei will process one of the jobs at the node+ This introduces the transitions
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~n1, n2! r ~n1 2 1, n2 1 1! at rateµ1 p1, n1 . 0,

~n1, n2! r ~n1 2 1, n2! at rateµ1~12 p1!, n1 . 0,

~n1, n2! r ~n1 1 1, n2 2 1! at rateµ2 p2, n2 . 0,

~n1, n2! r ~n1, n2 2 1! at rateµ2~12 p2!, n2 . 0+

(1.1)

Whenever nodei is empty, it will process a job from its infinite supply, at the same
rateµi , and upon completion, this job will move to the other node with probability
pi and leave the system with probability 12 pi + This introduces the additional
transitions:

~0, n2! r ~0, n2 1 1! at rateµ1 p1,

~n1,0! r ~n1 1 1,0! at rateµ2 p2+
(1.2)

Note that jobs from the infinite supply of each buffer are indistinguishable from
jobs queued at the nodes, but queued jobs have preemptive priority over jobs in the
infinite supply+ The transitions~1+2! constitute arrivals into the system+

The two nodes in this system are processing jobs all the time+ Hence, there are
four independent Poisson streams in this system: Jobs depart the system in two
Poisson streams with ratesµ1~1 2 p1! andµ2~1 2 p2!, and jobs arrive at the two
nodes in two Poisson streams, with ratesµ1p1 andµ2p2+ The queue at nodei there-
fore behaves as anM0M01 queue, with arrival rateµ32i p32i and service rateµi + The
system is stable if

ri 5
µ32i p32i

µi

, 1, i 5 1, 2,

with marginal steady state distributions

Pi ~n! 5 lim
tr`

P~Xi ~t ! 5 n! 5 ~12 ri !ri
n, n $ 0, i 5 1, 2+ (1.3)

Figure 1. A two-node Jackson network with infinite supply of work+
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However, the queue lengths at the two nodes in steady state are not independent;
the joint steady state distribution is not a product form:

P~n1, n2! 5 lim
tr`

P~~X1~t !,X2~t !! 5 ~n1, n2!! Þ P1~n1!P2~n2!, n1, n2 $ 0+

In this note, we derive explicit expressions for the joint steady state distribution of
the two-node system+We use the compensation approach, developed by Adan,Wes-
sels, and Zijm @2# to obtain an expression that is an infinite sum of product forms+

This two-node Jackson network with an infinite supply of work describes quite
a useful model of cooperative service by two servers+ Consider jobs that require a
sequence of tasks; the first task is performed by one of the servers and the remain-
ing tasks are performed by alternating servers+ Serveri performs tasks at rateµi ,
and the job then requires an additional task with probabilitypi , or else it is complete
and leaves the system+We assume that each of these servers has an infinite supply
of jobs to start+ However, each server gives preemptive priority to tasks that it
received from the other server+ Each server then has a queue of jobs that are “in
process” and the analysis of these queues tells us how much storage for WIP~work
in process! is needed and what is the cycle time of a job from first task to completion+

The concept of infinite supply of work, in contrast to the usual queuing assump-
tion that jobs arrive randomly, is in fact very common in many systems:Whenever
a server is expensive and it is desired not to keep it idle, one tries to monitor the
server and control the inputs, so that the server never runs out of work+ This is the
case for an expensive machine, a highly trained server, or a high-performance com-
munication link+ In each case, work is shunted to such servers to prevent them from
idling+

As we will see in Section 3, infinite-supply Jackson nodes provide much better
performance than standard Jackson nodes+

Multiclass queuing networks with infinite supplies of jobs in some of the classes,
also called infinite virtual queues, were introduced by Adan and Weiss@1# , Kopzon
and Weiss@8,9# , and Weiss@12–14#; see also Levy and Yechiali@10# + They repre-
sent monitored control over job arrivals, as it often exists in manufacturing and
communication systems+ Jackson networks are described by Jackson@6# and Kelly
@7# +Weiss@14# has discussed Jackson networks with virtual infinite buffers: He has
derived flow rates, stability conditions, and partial steady state distributions+ This
work is also closely related to the results of Goodman and Massey@5# + The analysis
in the current article provides one example of such networks, which is highly
tractable+

2. MAIN THEOREM

The two-node Jackson network with an infinite supply of work is described by a
Markov jump process moving on the two-dimensional nonnegative integer grid+
The Markov process performs a two-dimensional simple random walk on the
positive-integer grid, with transitions only to neighboring states, and with reflect-
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ing barriers on the horizontal and vertical axes+ Furthermore, in the interior of the
positive quadrant, the random walk has no transitions to the north, the northeast,
and the east directions+ The transition rates for this random walk are described in
Figure 2+

For such Markov jump processes, it is possible to obtain a closed-form expres-
sion of the steady state distribution, by the compensation method developed in the
work of Adan et al+ @2# + The random walk in Figure 2 has the property that the
transition rates at the vertical boundaryn1 5 0, n2 . 0 and the horizontal boundary
n1 . 0, n2 5 0 are projections of the ones in the interiorn1, n2 . 0+ Boxma and van
Houtum@3# showed that this property considerably simplifies the expression of the
steady state distribution+ See also@11# +

The main steps in the derivation of the steady state probabilities are as follows:
The balance equations for the interior are satisfied by product form expressions
an1bn2, wherea andb are solutions of a quadratic equationQ~a,b! 5 0+ Solutions
of this form do not as a rule satisfy the equations for the horizontal or vertical
boundaries+ However, it is possible to find compensating product forms such that
the linear combinationan1bn2 1 c Jan1bn2 satisfies the balance equations for the
interior and the vertical boundary of the quadrant+ Similarly, it is possible to find
compensating product forms such thatan1bn2 1 dan1 Dbn2 satisfies the balance equa-
tions for the interior and the horizontal boundary of the quadrant+ Then, starting
with a product forman1bn2 with a andb satisfyingQ~a,b! 5 0, one can construct
an infinite linear combination by adding product forms to alternately compensate
for the horizontal and vertical boundary+ The resulting solution formally satisfies
all of the balance equations+One then needs to choose the parameters of the product
forms and their coefficients such that the solution is absolutely convergent+ This
method does indeed work for our system+

Figure 2. Transition rates for the two-node system+
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In Section 4, we will present the detailed derivation of the steady state distri-
bution, without invoking the results in@2,3# + In the derivation, we make use of the
steady state marginal distributions~1+3!+ This yields a particularly elegant and sim-
ple expression:

Theorem 2.1: The steady state distribution of the two-node Jackson network with
infinite supply of work, whenr1,r2 , 1, is given, for all~n1, n2! Þ ~0,0!, by

P~n1, n2! 5 (
k51

`

~21!k11 @~12 ak!ak
n1~12 bk11!bk11

n2 1 ~12 ak11!ak11
n1 ~12 bk!bk

n2# ,

(2.1)

where, for k$ 1,

ak11
21 5

µ1 1 µ2

µ2 p2

bk
21 2 ak21

21 2
12 p2

p2

,

bk11
21 5

µ1 1 µ2

µ1 p1

ak
21 2 bk21

21 2
12 p1

p1

,

(2.2)

with initially a0 5 b0 5 1,a1 5 r1, and b1 5 r2. The steady state probability
P~0,0! is

P~0,0! 5 12 r1 2 r2 1 (
k51

`

~21!k11~ak bk11 1 ak11bk!+ (2.3)

The closed-form expression in Theorem 2+1 immediately leads to similar expres-
sions for the distribution of the total number in the system and for the~factorial!
moments of the queue lengths at node 1 and 2+ Let Xi denote the queue length of
nodei in steady state+ Then we have the following:

Corollary 2.2:

(i) For all n . 0,

P~X1 1 X2 5 n!

5 (
n11n25n
n1, n2$0

P~n1, n2!

5 (
k51

`

~21!k11F~12 ak!~12 bk11!
ak

n11 2 bk11
n11

ak 2 bk11

1 ~12 ak11!~12 bk!
ak11

n11 2 bk
n11

ak11 2 bk
G + (2.4)
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(ii) For all m, n $ 0 and m1 n . 0,

ESSX1

mDSX2

nDD
5 (

k51

`

~21!k11F ak
m

~12 ak!m

bk11
n

~12 bk11!n 1
ak11

m

~12 ak11!m

bk
n

~12 bk!nG+
(2.5)

Note that exact formulas forak and bk can be obtained from the difference
equation~2+2! but are not particularly illuminating+ The asymptotic behavior ofak

andbk is derived in Proposition 4+14+

3. COMPARISON WITH STANDARD JACKSON NETWORK

We compare our two-node system with an infinite supply of work and a standard
Jackson network, with exogenous random inputs+ Throughout this section we label
our system as “̀ -supply” and the Jackson network with random exogenous input
as “standard+” For the comparison, we consider two nodes in a standard Jackson
network as shown in Figure 3+ Here, we have two nodes with the same processing
ratesµi , and with the same probabilities 12 pi to complete a job,which then departs
the system+ The total inputs into the nodes are at ratesl i , and they consist of both
exogenous arrivals and feedback from other nodes+ Recall that theinput streams
are not Poisson+ The outflow in steady state is also at ratel i and includes aPoisson
output stream of departures from the systemat ratel i ~12 pi !+As is well known, the
steady state joint distribution of the jobs in the two nodes is the product form

P~n1, n26standard! 5 S12
l1

µ1
DSl1

µ1
Dn1S12

l2

µ2
DSl2

µ2
Dn2

+

This is only stable ifl i , µi ; therefore, the output rate of the standard nodes is
always less than the rate~1 2 pi !µi achieved by thè -supply system, and if one
tries to approach this rate, the queue length explodes+

µ2µ1

out
1 - p

1 2

out
1 - p

λ λ1 2

Figure 3. Standard Jackson network nodes+
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It is interesting to compare the two systems in the case that both have the same
traffic intensities+ For the remainder of this section, we takeri 5 l i 0µi 5 µ32i p32i 0
µi + We compare the total number in the two nodes for the two systems+ The mar-
ginal steady state distributions in the nodes of the two systems are the same, namely
Geometric, with P~Xi $ n! 5 ri

n+ In particular, it follows that the mean number in
the system is the same for both networks+ However, the steady state distribution of
the total number in the system is different+

In Figure 4, we show the distribution of the total number in the system for
µ1 5 2, µ2 5 3, p1 5 0+8, p2 5 0+5 ~top! andµ1 5 µ2 51, p1 5 p2 5 0+8 ~bottom!+We
also plot the standard product form probabilities for comparison+

Figure 4. Probabilities of total number in the system+
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The correlation betweenX1 and X2, calculated from formula~2+5!, equals
20+2976 for the first example of an asymmetric system and20+3873 for the sec-
ond example of a symmetric system+ In fact, it can be shown that the correlation is
always negative; see Section 4+8+ Negative correlation reduces the variance of the
total number in the system compared to independent nodes+ In Figure 5, we show
the correlation betweenX1 andX2 for the symmetric systemµ15 µ2 andp15 p25 p+
Clearly, the negative correlation gets stronger asp tends to 1; the limiting value for
p 5 1 is equal to2

3
_p2 2 7 ~see Section 4+8!+

We can also get the asymptotic tail probabilities ofX1 1 X2, from ~2+4!+ We
will show that the sum is absolutely convergent and that the parametersak andbk

monotonously decrease+ The values for largen therefore behave like the largest
geometric term,

P~X1 1 X2 $ n6`-supply! ; 5
12 b2

12 b20r1

r1
n, r1 . r2

S 12 b2

12 b20r1

1
12 a2

12 a20r1
Dr1

n, r1 5 r2+

(3.1)

The corresponding asymptotics for the product form standard Jackson network are

P~X1 1 X2 $ n6standard! ; 5
12 r2

12 r20r1

r1
n, r1 . r2

n~12 r1!r1
n, r1 5 r2+

Figure 5. Correlation betweenX1 andX2 for the symmetric systemµ1 5 µ2 and
p1 5 p2 5 p+
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Hence, the asymptotic ratio of the two is

P~X1 1 X2 $ n6standard!

P~X1 1 X2 $ n6`-supply!
; 5

12 r2

12 r20r1

12 b2

12 b20r1

, r1 . r2

F 12 r1

12 b2

12 b20r1

1
12 a2

12 a20r1

Gn, r1 5 r2+

(3.2)

In Table 1, we summarize various quantities for the two examples and the com-
parison of the total number in the system for the`-supply and standard systems+

The most interesting part here is the strong form of variance reduction and tail
probability ~i+e+, overflow probabilities in practice! obtained in the infinite-supply
network, when the two nodes are symmetric+

Table 1. Comparison of Infinite-Supply and Standard
Jackson Networks

Asymmetric
Example

Symmetric
Example

Data
µ1 2 1
µ2 3 1
p1 0+8 0+8
p2 0+5 0+8
r1 0+75 0+8
r2 0+533 0+8

Moments
E~X1! 3 4
E~X2! 1+14 4
V~X1! 12 20
V~X2! 2+45 20
Cov~X1,X2! 21+61 27+75
Corr~X1,X2! 20+2976 20+3873

V~X1 1 X26standard!

V~X1 1 X26`-supply!
1+287 1+633

;
P~X1 1 X2 $ n6standard!

P~X1 1 X2 $ n6`-supply!
1+33445 0+07143n
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4. DERIVATION OF STEADY STATE DISTRIBUTION

In this section, we prove Theorem 2+1+ We first derive the expression as a formal
solution to the balance equations and then prove that this solution is absolutely
convergent+

4.1. Balance Equations

The balance equations for the steady state probabilities in this system are obtained
by equating the flow out and into each state, yielding the following:

~µ1 1 µ2!P~n1, n2! 5 µ1 p1 P~n1 1 1, n2 2 1! 1 µ1~12 p1!P~n1 1 1, n2!

1 µ2 p2 P~n1 2 1, n2 1 1! 1 µ2~12 p2!P~n1, n2 1 1!,

n1, n2 . 0, (4.1)

~µ1 1 µ2 p2!P~n1,0! 5 µ2 p2 P~n1 2 1,0! 1 µ1~12 p1!P~n1 1 1,0!

1 µ2 p2 P~n1 2 1,1! 1 µ2~12 p2!P~n1,1!,

n1 . 0, (4.2)

~µ1 p1 1 µ2!P~0, n2! 5 µ1 p1 P~0, n2 2 1! 1 µ2~12 p2!P~0, n2 1 1!

1 µ1 p1 P~1, n2 2 1! 1 µ1~12 p1!P~1, n2!,

n2 . 0, (4.3)

~µ1 p1 1 µ2 p2!P~0,0! 5 µ1~12 p1!P~1,0! 1 µ2~12 p2!P~0,1!+ (4.4)

In the next section, we will characterize the product formsan1bn2 satisfying
the balance equations in the interior of the quadrant+

4.2. Product Form Trial Solutions in the Interior of the Quadrant

Consider first~4+1! in the interior of the quadrant and a product form trial solution
an1bn2+ Substituting this trial solution in~4+1! and cancelingan121bn221, we see
immediately the following:

Proposition 4.1: The product forman1bn2 solves (4.1) for every n1, n2 5 0,
61,62, + + + , if and only ifa andb are on the curve:

~µ1 1 µ2!ab 5 a2~µ1 p1 1 µ1~12 p1!b! 1 b2~µ2 p2 1 µ2~12 p2!a!+ (4.5)

Curve~4+5! is shown in Figure 6+ The pairs of values~a,b! 5 ~0,0! and~a,b! 5
~1,1! are on this curve+ We also illustrate on the curve how the special roots that
appear in the solution~2+1,2+2!, ak,bk, are calculated, for k 5 0,1,2,3+

For every fixed value of 0, a # 1, ~4+5! yields a quadratic equation forb:

@µ2 p2 1 µ2~12 p2!a# b2 2 @~µ1 1 µ2!a 2 µ1~12 p1!a2# b 1 @µ1 p1a2# 5 0+

(4.6)
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Proposition 4.2: The quadratic equation (4.6) has two real roots for all0 ,
a # 1. For a 5 1, the roots are Nb 5 1 and nb 5 r2. For 0 , a , 1, the larger root
is Nb . a and the smaller root is0 , nb , a.

Proof: For the fixed valuea 5 a0 5 1, the quadratic equation~4+6! for b is

µ2 b2 2 ~µ1 p1 1 µ2!b 1 µ1 p1 5 0,

with the two roots Nb 5 1 and nb 5 b1 5 µ1p10µ2 5 r2+ For 0, a , 1, if we sub-
stituteb 5 a in the right-hand side of the quadratic equation~4+6!, we get

a2~a 2 1!~µ1~12 p1! 1 µ2~12 p2!! , 0+

Hence, the quadratic equation~4+6! has two roots, one of them larger and the other
smaller thana+ The product of the two roots isµ1p10µ2; hence, both are positive+

n

Similarly, for every fixed value 0, b # 1, ~4+5! yields a quadratic equation
for a:

@µ1 p1 1 µ1~12 p1!b# a2 2 @~µ1 1 µ2!b 2 µ2~12 p2!b2# a 1 @µ2 p2 b2# 5 0,

(4.7)

Proposition 4.3: The quadratic equation (4.7) has two real roots for all0 ,
b # 1. For b 5 1, the roots are Ta 5 1 and ta 5 r1. For 0 , b , 1, the larger root
is Ta . b and the smaller root is0 , ta , b.

Figure 6. Curve~4+5! for µ1 5 2,µ2 5 3 andp1 5 0+8, p2 5 0+5+
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It is convenient to divide the quadratic equations~4+6! and~4+7! by a2b2 and
to consider quadratic equations fora21, b21:

@µ1 p1# ~b21!2 2 @~µ1 1 µ2!a21 2 µ1~12 p1!# ~b21!

1 @~a21!~µ2~12 p2! 1 µ2 p2a21!# 5 0 (4.8)

@µ2 p2# ~a21!2 2 @~µ1 1 µ2!b21 2 µ2~12 p2!# ~a21!

1 @~b21!~µ1~12 p1! 1 µ1 p1b21!# 5 0+ (4.9)

4.3. Compensating for the Vertical and Horizontal Boundaries

Let a andb satisfy~4+5!, so thatan1bn2 solves the balance equations~4+1! for all
n1, n2 5 0,61,62, + + + + We want to find a compensating term such thatan1bn2 1
c Jan1 Dbn2 will , in addition, solve the horizontal boundary equations~4+2!+

We first subtract~4+2! from ~4+1! to obtain

µ2~12 p2!P~n1,0! 1 µ2 p2 P~n1 2 1,0! 5 µ1 p1 P~n1 1 1,21!, n1 . 0+

(4.10)

Since our trial solutionan1bn2 1 c Jan1 Dbn2 solves~4+1!, it will solve ~4+2! if and only
if it solves ~4+10!+We substitute the trial solution in~4+10!, yielding

@µ2~12 p2! 1 µ2 p2a21 2 µ1 p1ab21#an1

1 c@µ2~12 p2! 1 µ2 p2 Ja21 2 µ1 p1 Ja Db21# Jan1 5 0+ (4.11)

To satisfy~4+11! for all n1 . 0, we are forced to takeJa 5 a; thus, to solve~4+1!,
we need to take Db as the second root of the quadratic equation~4+6!+ Using the
quadratic equation~4+8!, we get the second rootDb21 in terms ofa and the first
root b21:

Db21 5
µ1 1 µ2

µ1 p1

a21 2 b21 2
12 p1

p1

+

We also get the product of the roots of~4+8!:

µ1 p1b21 Db21 5 a21~µ2~12 p2! 1 µ2 p2a21!+ (4.12)

By cancelingan111 in ~4+11!, we obtain an equation forc:

~11 c!a21~µ2~12 p2! 1 µ2 p2a21! 5 µ1 p1~b21 1 c Db21!+ (4.13)

We now use~4+12! to cancelµ1p1b21 Db21 on both sides and obtain

c 5 2
12 Db
12 b

+

Multiplying the linear combination by the constant~1 2 a!~1 2 b!, we may con-
clude that~12 a!an1~12 b!bn2 2 ~12 a!an1~12 Db! Dbn2 solves the balance equa-
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tions~4+1! and~4+2!+The procedure to compensate for the vertical boundary equations
is symmetric+

Proposition 4.4: Let a and b satisfy (4.5). Then~1 2 a!an1~1 2 b!bn2 2
~12 a!an1~1 2 Db! Dbn2 solves the balance equations~4+1! and ~4+2! in the interior
and the horizontal boundary if we take

Db21 5
µ1 1 µ2

µ1 p1

a21 2 b21 2
12 p1

p1

+ (4.14)

Similarly,~12 a!an1~12 b!bn2 1 ~12 Ja! Jan1~12 b!bn2 solves the balance equa-
tions ~4+1! and ~4+3! in the interior and thevertical boundary if we take

Ja21 5
µ1 1 µ2

µ2 p2

b21 2 a21 2
12 p2

p2

+ (4.15)

4.4. Infinite Sequences of Compensations

Motivated by the marginal distribution~1+3!, we start from a product form solution
with a1 5 r1+ The roots of~4+6! areb0 5 1 andb2 , r1+ Since we need conver-
gence, we start from the trial solutiona1

n1 b2
n2+ To conform with our desired final

form, we multiply this trial solution by a constant+

Proposition 4.5: The trial solution~1 2 a1!a1
n1~1 2 b2!b2

n2 with a1 5 r1 and
b2

21 5 @~µ1 1 µ2!0µ1 p1#r1
21 2 1 2 @~1 2 p1!0p1# solves (4.1) and (4.2) for all

n1 . 0 and n2 $ 0.

Proof: In this case, the compensating term would haveDb 51, but then 12 Db 5 0,
so the compensating term disappears+ n

We next add a compensating term to solve~4+1! and~4+3!+According to~4+15!,
we choose

a3
21 5

µ1 1 µ2

µ2 p2

b2
21 2 a1

21 2
12 p2

p2

to obtain a two-term trial solution

~12 a1!a1
n1~12 b2!b2

n2 2 ~12 a3!a3
n1~12 b2!b2

n2+ (4.16)

In this solution, the first term alone solves~4+1! and~4+2!, and the two terms together
solve~4+1! and~4+3!+

From now on, we continue to add compensating terms to satisfy~4+2! and to
satisfy~4+3! alternately+ In the next step, we need to compensate the second term of
~4+16! to solve~4+2! again, and we chooseb4 according to~4+14!+We continue these
compensating steps indefinitely+
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Proposition 4.6: For all k $ 1, let

b2k
21 5

µ1 1 µ2

µ1 p1

a2k21
21 2 b2k22

21 2
12 p1

p1

,

a2k11
21 5

µ1 1 µ2

µ2 p2

b2k
21 2 a2k21

21 2
12 p2

p2

,

(4.17)

with initially b0 5 1 anda1 5 r1. Then trial solution

(
k51

`

@~12 a2k21!a2k21
n1 ~12 b2k!b2k

n2 2 ~12 a2k11!a2k11
n1 ~12 b2k!b2k

n2# (4.18)

solves the balance equations for all~n1, n2! Þ ~0,1!, ~1,0!, ~0,0!.

Proof: We show in Section 4+7 that the infinite sum~4+18! is absolutely conver-
gent for every~n1, n2! Þ ~0,0!+We will also show that the summation of~4+18! over
all the values of~n1, n2! Þ ~0,0! converges absolutely+ In the rest of the proof, we
take this statement as proved+

The pair~a1,b0! is on the curve~4+5!+Hence, using~4+14! and~4+15! and induc-
tion, so are all the pairs~a2k21,b2k! and~a2k11,b2k!+ Hence, all the terms in~4+18!
solve~4+1!, and by absolute convergence, so does the infinite sum forn1 . 0 and
n2 . 0+

In the sum~4+18!, each negative term compensates the preceding positive term
so that their sum solves~4+3!; see Proposition 4+4+ Hence, for all K,

(
k51

K

@~12 a2k21!a2k21
n1 ~12 b2k!b2k

n2 2 ~12 a2k11!a2k11
n1 ~12 b2k!b2k

n2#

solves~4+3!+ By absolute convergence, ~4+18! solves~4+3!, whenever the equations
do not involve~n1, n2! 5 ~0,0!+ Hence, ~4+18! solves~4+3! for all ~0, n2!,n2 . 1+

We saw that~1 2 a1!a1
n1~1 2 b2!b2

n2 solves~4+2!+ Each positive term~1 2
a2k11!a2k11

n1 ~1 2 b2k12!b2k12
n2 compensates the preceding negative term2~1 2

a2k11!a2k11
n1 ~1 2 b2k!b2k

n2 in the sum, so that their sum solves~4+2!+ Hence, for
all K,

~12 a1!a1
n1~12 b2!b2

n2

1 (
k51

K

@2~12 a2k11!a2k11
n1 ~12 b2k!b2k

n2 1 ~12 a2k11!a2k11
n1 ~12 b2k12!b2k12

n2 #

solves~4+2!+ By absolute convergence, ~4+18! solves~4+2!, whenever the equations
do not involve~n1, n2! 5 ~0,0!+ Hence, ~4+18! solves~4+2! for all ~n1,0!, n1 . 1+

n
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Analogously, we can start from the~1,r2! on the curve~4+5! and get another
solution:

Proposition 4.7: For all k $ 1, let

a2k
21 5

µ1 1 µ2

µ2 p2

b2k21
21 2 a2k22

21 2
12 p2

p2

,

b2k11
21 5

µ1 1 µ2

µ1 p1

a2k
21 2 b2k21

21 2
12 p1

p1

+

(4.19)

with initially a0 5 1 andb1 5 r2. Then trial solution

(
k51

`

@~12 a2k!a2k
n1~12 b2k21!b2k21

n2 2 ~12 a2k!a2k
n1~12 b2k11!b2k11

n2 # (4.20)

solves the balance equations for all~n1, n2! Þ ~0,1!, ~1,0!, ~0,0!.

4.5. The Complete Solution

The two solutions in Propositions 4+6 and 4+7 were not defined for~n1, n2! 5 ~0,0!+
The reason is that, for n1 5 n2 5 0, the sums are not~absolutely! convergent, and
so they are meaningless+ As a result, we could not check for~n1, n2! 5 ~1,0! or
~n1, n2! 5 ~0,1!+

To obtain a solution for all~n1, n2!, we do the following: For all ~n1, n2! Þ
~0,0!, we take the sum of the two solutions~4+18! and~4+20!+ This yields

P~n1, n2! 5 (
k51

`

~21!k11 @~12 ak!ak
n1~12 bk11!bk11

n2 1 ~12 ak11!ak11
n1 ~12 bk!bk

n2# +

(4.21)

For ~n1, n2! 5 ~0,0!, we take

P~0,0! 5 12 a1 2 b1 1 (
k51

`

~21!k11~ak bk11 1 ak11bk!+ (4.22)

Proposition 4.8: The expressions for P~n1, n2! in (4.21) and (4.22) solve all of the
balance equations.

Proof: We will show in Section 4+7 that the sum inP~0,0! is also absolutely con-
vergent+We shall take that as well as absolute convergence of all the otherP~n1, n2!
and their sum over alln1 andn2 as proved+

We already know by the previous two propositions thatP~n1, n2! defined by
~4+21! satisfy the balance equations~4+1!, ~4+2!, and~4+3! for n11 n2 . 1+ It remains
to consider the balance equations for~1,0!, ~0,1!, and~0,0!+ For allK, we have seen
in the proof of Proposition 4+6 that the sum
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~12 a1!a1
n1~12 b2!b2

n2

1 (
k51

K

@2~12 a2k11!a2k11
n1 ~12 b2k!b2k

n2 1 ~12 a2k11!a2k11
n1 ~12 b2k12!b2k12

n2 #

(4.23)

solves~4+2!+ Also, for all K, we have seen in the proof of Proposition 4+7 that the
sum

(
k51

K

@~12 a2k!a2k
n1~12 b2k21!b2k21

n2 2 ~12 a2k!a2k
n1~12 b2k11!b2k11

n2 # (4.24)

solves~4+2!+ Hence, the sum of~4+23! and ~4+24! also solves~4+2!+ Consider, in
particular, the balance equation for~n1, n2! 5 ~1,0!:

~µ1 1 µ2 p2!P~1,0! 5 µ2 p2 P~0,0! 1 µ1~12 p1!P~2,0! 1 µ2 p2 P~0,1!

1 µ2~12 p2!P~1,1!+ (4.25)

It is satisfied by the sum of~4+23! and~4+24!+We now look at the sum of~4+23! and
~4+24! for n1 5 n2 5 0:

~12 a1!~12 b2!

1 (
k51

K

@2~12 a2k11!~12 b2k! 1 ~12 a2k11!~12 b2k12!#

1 (
k51

K

@~12 a2k!~12 b2k21! 2 ~12 a2k!~12 b2k11!#

5 (
k51

2K

~21!k11 @~12 ak!~12 bk11! 1 ~12 ak11!~12 bk!#

1 ~12 a2K11!~12 b2K12!

5 12 a1 2 b1 1 (
k51

2K

~21!k11~ak bk11 1 ak11bk!

2 b2K12 1 a2K11b2K12+

As we will see, ak,bk r 0 ask r `+ This property and absolute convergence of
the sum(k51

` ~21!k11~ak bk11 1 ak11bk! shows that~4+25! is satisfied byP~1,0!,
P~0,1!, P~1,1!, andP~2,0! as defined in~4+21! andP~0,0! as defined by~4+22!+
The proof for the balance equation of~0,1! is symmetric+

Finally, by the absolute convergence of the sum over alln1 andn2 of ~4+21!, we
get that~4+4! is redundant and is satisfied automatically by the expressions for
P~n1, n2! in ~4+21! and~4+22!+ n
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4.6. Normalizing the Sum of Probabilities

We again take absolute convergence as proved+ Based on that, we can calculate
various quantities+We first obtain marginal probabilities, which are consistent with
~1+3!+

Proposition 4.9: For ni . 0,

(
n32i50

`

P~n1, n2! 5 ~12 ri !ri
ni +

Proof: We make heavy use of the absolute convergence to change the order of
summations and group sums of positive and negative terms+ For n1 . 0, the sum is

(
n250

`

P~n1, n2!

5 (
n250

`

(
k51

`

~21!k11 @~12 ak!ak
n1~12 bk11!bk11

n2 1 ~12 ak11!ak11
n1 ~12 bk!bk

n2#

5 (
k51

`

~21!k11F~12 ak!ak
n1 (

n250

`

~12 bk11!bk11
n2

1 ~12 ak11!ak11
n1 (

n250

`

~12 bk!bk
n2G

5 (
k51

`

~21!k11 @~12 ak!ak
n1 1 ~12 ak11!ak11

n1 #

5 ~12 a1!a1
n1 2 ~12 a2!a2

n1 1 ~12 a2!a2
n1 2 ~12 a3!a3

n1 1 {{{

5 ~12 a1!a1
n1+

The case ofi 5 2 is symmetric+ n

We next calculateP~n1 5 0, n2 . 0! andP~n1 . 0, n2 5 0!+

Proposition 4.10:

(
n251

`

P~0, n2! 5 r2 1 (
k51

`

~21!k~ak bk11 1 ak11bk!,

(
n151

`

P~n1,0! 5 r1 1 (
k51

`

~21!k~ak bk11 1 ak11bk!+
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Proof: We again make heavy use of the absolute convergence:

(
n251

`

P~0, n2!

5 (
n251

`

(
k51

`

~21!k11 @~12 ak!~12 bk11!bk11
n2 1 ~12 ak11!~12 bk!bk

n2#

5 (
k51

`

~21!k11F~12 ak! (
n251

`

~12 bk11!bk11
n2 1 ~12 ak11! (

n251

`

~12 bk!bk
n2G

5 (
k51

`

~21!k11 @~12 ak!bk11 1 ~12 ak11!bk#

5 (
k51

`

~21!k11~bk 1 bk11! 1 (
k51

`

~21!k~ak bk11 1 ak11bk!

5 b1 1 (
k51

`

~21!k~ak bk11 1 ak11bk!+

The other case is symmetric+ n

Finally, we have the following proposition+

Proposition 4.11: The probabilities P~n1, n2! in (4.21) and (4.22) sum up to1.

Proof: By the previous two propositions and~4+22!,

(
n1, n2

P~n1, n2! 5 (
n151

`

(
n250

`

P~n1, n2! 1 (
n251

`

P~0, n2! 1 P~0,0! 5 1+ n

4.7. Absolute Convergence

In the previous sections, we made heavy use of the absolute convergence of the
sums in~4+21! and~4+22!+ This will be proved next+

Proposition 4.12:

(
~n1, n2!Þ~0,0!

(
k51

`

@~12 ak!ak
n1~12 bk11!bk11

n2 1 ~12 ak11!ak11
n1 ~12 bk!bk

n2# , `+
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Proof:

(
~n1, n2!Þ~0,0!

(
k51

`

@~12 ak!ak
n1~12 bk11!bk11

n2 1 ~12 ak11!ak11
n1 ~12 bk!bk

n2#

5 (
k51

` F~12 ak! (
n251

`

~12 bk11!bk11
n2 1 ~12 ak11! (

n251

`

~12 bk!bk
n2G

1 (
k51

`

(
n151

` F~12 ak!ak
n1 (

n250

`

~12 bk11!bk11
n2

1 ~12 ak11!ak11
n1 (

n250

`

~12 bk!bk
n2G

5 (
k51

`

~~12 ak!bk11 1 ~12 ak11!bk! 1 (
k51

`

~ak 1 ak11!

, 2 (
k51

`

~ak 1 bk!+

In the next proposition, we show that the sequencesak andbk decrease geometri-
cally, and, hence, the last sum converges+ n

Proposition 4.13: For all k $ 0,

ak11 # r1bk, bk11 # r2ak+

Proof: For k 5 0, we havea0 5 b0 5 1,a1 5 r1, andb1 5 r2 and this is the only
case of equality+ For k $ 1, by ~4+15!,

ak11
21 5 ~ p2

21 1 r1
21!bk

21 2 ak21
21 2

12 p2

p2

. ~ p2
21 1 r1

21 2 1!bk
21 2 p2

21 1 1

. r1
21 bk

21,

where the first inequality follows frombk
21 . ak21

21 and the second frombk
21 . 1+

The proof forbk11 is symmetric+ n

We can also get the asymptotic rate of decay ofak andbk:

Proposition 4.14: As kr `,

ak11

ak21

,
bk11

bk21

r
µ1 1 µ2 2 M ~µ1 1 µ2!2 2 4µ1µ2 p1 p2

µ1 1 µ2 1 M ~µ1 1 µ2!2 2 4µ1µ2 p1 p2

+

Proof: The parametersak11 andak21 are the roots of~4+5! with b 5 bk+ Dividing
~4+5! by bk

2, we get thatak110bk andak210bk are the roots of

@µ1 p1 1 µ1~12 p1!b#g2 2 @~µ1 1 µ2! 2 µ2~12 p2!b#g 1 µ2 p2 5 0, (4.26)
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with b 5 bk+ As k r `, thenbk r 0 by Proposition 4+13 and, thus,

ak11

bk

r g1,
ak21

bk

r g2,

where 0, g1 , 1 , g2 are the roots of~4+26! with b 5 0+ Hence,

ak11

ak21

r
g1

g2

5
µ1 1 µ2 2 M ~µ1 1 µ2!2 2 4µ1µ2 p1 p2

µ1 1 µ2 1 M ~µ1 1 µ2!2 2 4µ1µ2 p1 p2

+

The proof forbk110bk is similar+ n

From the geometric decay of the sequencesak andbk, we can further conclude
the following:

Corollary 4.15:

(i) The sum that defines P~0,0! in (4.22) is absolutely convergent.
(ii) For all m, n $ 0,m1 n . 0, the sum definingESSX1

mDSX2

n DD in (2.5) is abso-
lutely convergent.

4.8. Nonnegativity and Ergodicity

From Propositions 4+8, 4+11, and 4+12 it follows thatP~n1, n2! given by~4+21! and
~4+22! are a nonnull, absolutely convergent solution of the balance equations,which
sums up to 1+ From Theorem 1 in Foster@4# , we can immediately conclude the
following:

Corollary 4.16: The Markov jump process X~t ! 5 ~X1~t !,X2~t !! is ergodic when
r1,r2 , 1, and its equilibrium probabilities are given by the solution P~n1,n2! defined
by (4.21) and (4.22).

4.9. Queue Length Correlation

In this subsection, we show that the correlation betweenX1 andX2 is always neg-
ative, which is equivalent to

E~X1 X2! 5 (
k51

`

~21!k11F ak

~12 ak!

bk11

~12 bk11!
1

ak11

~12 ak11!

bk

~12 bk!G
,

r1

12 r1

r2

12 r2

+ (4.27)

The terms in the infinite sum~4+27! are alternating and decreasing in magnitude,
sincea1 . b2 . a3 . {{{ andb1 . a2 . b3 . {{{+ Hence, it suffices to show that

a1

~12 a1!

b2

~12 b2!
1

a2

~12 a2!

b1

~12 b1!
,

r1

12 r1

r2

12 r2

,
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which can be verified by straightforward calculations+ This proves the following
proposition:

Proposition 4.17: If r1,r2 , 1, thenCorr~X1,X2! , 0.

Figure 5 displays the correlation for the symmetric systemµ1 5 µ2 5 µ and
p1 5 p2 5 p+ To find the limiting value of the correlation asp F 1, note that in the
symmetric case,

ak 5 bk 5 1 2
1

2
k~k 1 1!~12 p! 1 O~12 p!2,

which can be derived from the recursive relations for the sequencesak and bk+
Hence, from ~4+27! and using that

E~X1! 5 E~X2! 5
p

12 p
, V~X1! 5 V~X2! 5

p

~12 p!2 ,

we obtain

lim
pF1

Corr~X1,X2! 5 lim
pF1

E~X1 X2! 2 E~X1!E~X2!

MV~X1!V~X2!
5 8 (

k51

` ~21!k11

k~k 1 1!2~k 1 2!
2 1

5
2

3
p2 2 7+

Note that exactly the same asymptotic correlation value appears in the calculations
of Boxma and van Houtum@3, p+ 488# , which is curious, since the two models are
quite different+
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