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Abstract In this paper, we study the singularities of a general hyperplane section H of a
three-dimensional quasi-projective variety X over an algebraically closed field of characteristic p > 0.

We prove that if X has only canonical singularities, then H has only rational double points. We also

prove, under the assumption that p > 5, that if X has only klt singularities, then so does H .
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1. Introduction

Reid proved in his historic paper [29] that if a quasi-projective variety over an

algebraically closed field of characteristic zero has only canonical singularities, then its

general hyperplane section has only canonical singularities, too. This can be deduced from

the Bertini theorem for base point free linear systems, and the same argument works for

other classes of singularities in the minimal model program such as terminal, klt and log

canonical singularities. Then what if the variety is defined over an algebraically closed

field of positive characteristic? As a test case, we consider the following question:

Question 1.1. Let X be a three-dimensional quasi-projective variety over an algebraically

closed field k of positive characteristic and H be a general hyperplane section of X . If

X has only terminal singularities, is H smooth? If X has only canonical (resp. klt, log

canonical) singularities, does H have only rational double points (resp. klt singularities,

log canonical singularities)?

Since the Bertini theorem for base point free linear systems fails in positive

characteristic, Reid’s argument does not work in this setting. Thanks to the recent

https://doi.org/10.1017/S1474748018000166 Published online by Cambridge University Press

HTTPS://ORCID.ORG/0000-0002-3940-9175
mailto:ktsato@ms.u-tokyo.ac.jp
mailto:stakagi@ms.u-tokyo.ac.jp
https://doi.org/10.1017/S1474748018000166


648 K. Sato and S. Takagi

developments in birational geometry, we are able to find a resolution of singularities

of X [6, 7] and, if the characteristic of k is larger than 5, run the minimal model program

[3, 4, 14, 22], but we do not know in general how to overcome the difficulty arising from

the lack of the Bertini theorem.

The terminal case in Question 1.1 is proved affirmatively by the fact that

three-dimensional terminal singularities are isolated singularities. The other cases are

much more subtle. For example, Reid proved, as a corollary of the result mentioned

above, that all closed points of a complex canonical threefold, except finitely many of

them, have an analytic neighborhood which is nonsingular or isomorphic to the product

of a rational double point and A1
C. This does not hold in positive characteristic: Hirokado

and Ito and Saito [21] and Hirokado [20] gave counterexamples in characteristic two and

three, respectively. However, the canonical case in Question 1.1 has remained open.

In this paper, we give an affirmative answer to the canonical and klt cases

in Question 1.1, using jet schemes and F-singularities, with the proviso that the

characteristic of k is larger than 5 in the klt case. In both cases, we look at every

codimension two point x of X . The normal surface singularity SpecOX,x is canonical

or klt but is not defined over an algebraically closed field. In the canonical case, we

observe, as in the case where the base field is algebraically closed, that SpecOX,x is a

hypersurface singularity. In the klt case, we deduce from the following theorem, which is

a generalization of a result of Hara [15], that SpecOX,x is strongly F-regular when the

characteristic of k is larger than 5.

Theorem 1.2 (Proposition 2.8, Theorem 5.7). Let (s ∈ S) be an F-finite normal surface

singularity (not necessarily defined over an algebraically closed field) of characteristic

p > 5 and B be an effective Q-divisor on S whose coefficients belong to the standard set

{1− 1/m |m ∈ Z>1}. Then (s ∈ S, B) is klt if and only if (s ∈ S, B) is strongly F-regular.

In the canonical case, we see from the above observation that X is MJ-canonical except

at finitely many closed points. MJ-canonical singularities, also called Mather–Jacobian

canonical singularities, are defined in terms of Mather–Jacobian discrepancies instead

of the usual discrepancies and can be viewed as a jet scheme theoretic counterpart of

canonical singularities (see [8, 10] for further details). Similarly, in the klt case, we see that

if the characteristic of k is larger than 5, then X is strongly F-regular except at finitely

many closed points. Strongly F-regular singularities are defined in terms of Frobenius

splitting and can be viewed as an F-singularity theoretic counterpart of klt singularities

(see, for example, [34]). Applying the Bertini theorem for MJ-canonical singularities due

to Ishii and Reguera [24] to the canonical case and the Bertini theorem for strongly

F-regular singularities due to Schwede and Zhang [32] to the klt case, we obtain the

assertion. To be precise, we can prove a more general result involving a boundary divisor,

which is stated as follows.

Main Theorem (Proposition 4.1, Theorems 4.2 and 5.9). Let X be a three-dimensional

normal quasi-projective variety over an algebraically closed field k of characteristic p > 0
and 1 be an effective Q-divisor on X such that K X +1 is Q-Cartier. Let H be a general

hyperplane section of X .
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(1) If (X,1) is terminal, then (H,1|H ) is terminal.

(2) If (X,1) is canonical, then (H,1|H ) is canonical.

(3) Suppose in addition that p > 5 and the coefficients of 1 belong to the standard set

{1− 1/m |m ∈ Z>1}. If (X,1) is klt, then (H,1|H ) is klt.

Notation. Throughout this paper, all rings are assumed to be commutative and with a

unit element and all schemes are assumed to be noetherian and separated. A variety over

a field k means an integral scheme of finite type over k.

2. Preliminaries

2.1. F-singularities

In this subsection, we recall the basic notions of F-singularities, which we will need in § 4.

Let X be a scheme of prime characteristic p > 0. We say that X is F-finite if the

Frobenius morphism F : X −→ X is a finite morphism. When X = Spec R is an affine

scheme, R is said to be F-finite if X is F-finite. For example, a field k of positive

characteristic p > 0 is F-finite if and only if [k : k p
] <∞. It is known by [26] that every

F-finite scheme is locally excellent.

Suppose in addition that X is a normal integral scheme. For an integer e > 1 and a

Weil divisor D on X , we consider the following composite map:

OX
(Fe)#

−−−→ Fe
∗OX

Fe
∗ ι
−−→ Fe

∗OX (D),

where Fe
: X −→ X is the e-th iteration of Frobenius and ι : OX −→ OX (D) is the natural

inclusion.

Strong F-regularity is one of the most basic classes of F-singularities.

Definition 2.1. Let (R,m) be an F-finite normal local ring of positive characteristic p > 0
and 1 be an effective Q-divisor on X = Spec R. Then the pair (R,1) is said to be strongly

F-regular if for every nonzero element c ∈ R, there exists an integer e > 1 such that the

map

OX −→ Fe
∗OX (d(pe

− 1)1e+ divX (c))

splits as an OX -module homomorphism. When y is a point in an F-finite normal integral

scheme Y and B is an effective Q-divisor on Y , we say that (y ∈ Y, B) is strongly F-regular

if (OY,y, By) is strongly F-regular. We also say that (y ∈ Y ) is strongly F-regular if

(OY,y, 0) is strongly F-regular.

Remark 2.2. We have the following hierarchy of properties of normal singularities:

regular H⇒ strongly F-regular H⇒ Cohen–Macaulay.

Global F-regularity is defined as a global version of strong F-regularity.

Definition 2.3. Let X be an F-finite normal integral scheme and 1 be an effective

Q-divisor on X . Then (X,1) is said to be globally F-regular if for every Cartier divisor
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D on X , there exists an integer e > 1 such that the map

OX −→ Fe
∗OX (d(pe

− 1)1e+ D)

splits as an OX -module homomorphism.

Remark 2.4. If X is an affine scheme, then (X,1) is globally F-regular if and only if

(x ∈ X,1) is strongly F-regular for all x ∈ X . However, in general, the former is much

stronger than the latter. For example, a smooth projective variety of general type over an

algebraically closed field of positive characteristic is not globally F-regular but strongly

F-regular at all points.

2.2. Singularities in the minimal model program

In this subsection, we recall the definition of singularities in the minimal model program.

Note that we do not assume that the singularities are defined over an algebraically closed

field. We start with the definition of canonical divisors on normal schemes.

Suppose that π : Y −→ X is a separated morphism of finite type between schemes.

If X has a dualizing complex (see [18, Chapter V, § 2] for the definition of dualizing

complexes), then ω•Y := π
!ω•X is a dualizing complex on Y , where π ! is the twisted inverse

image functor associated to π obtained in [18, Chapter VII, Corollary 3.4(a)]. Since any

F-finite affine scheme has a dualizing complex by [12], any scheme of finite type over an

F-finite local ring has a dualizing complex.

Let X be an excellent integral scheme with a dualizing complex ω•X . The canonical sheaf

ωX associated to ω•X is the coherent OX -module defined as the first nonzero cohomology

module of ω•X . It is well known that ωX satisfies Serre’s second condition (S2) (see for

example [1, (1.10)]). If X is a variety over an algebraically closed field k with structure

morphism f : X −→ Spec k, then the canonical sheaf associated to f !k coincides with the

classical definition of the canonical sheaf of X . When X is a normal scheme, a canonical

divisor K X on X associated to ω•X is any Weil divisor K X on X such that OX (K X ) ∼= ωX .

Suppose that X is a normal scheme with a dualizing complex ω•X and fix a canonical

divisor K X on X associated to ω•X . Given a proper birational morphism π : Y −→ X from

a normal scheme Y , we always choose a canonical divisor KY on Y which is associated to

π !ω•X and coincides with K X outside the exceptional locus of f .

Definition 2.5. (i) We say that (x ∈ X) is a normal singularity if X = Spec R is an

affine scheme with a dualizing complex where R is an excellent normal local ring

and if x is the unique closed point of X .

(ii) A proper birational morphism f : Y −→ X between schemes is said to be a

resolution of singularities of X , or a resolution of X for short, if Y is regular.

Suppose that X is a normal integral scheme and 1 is a Q-divisor on X . A resolution

f : Y −→ X is said to be a log resolution if the union of f −1(Supp(1)) and the

exceptional locus of f is a simple normal crossing divisor.

We are now ready to state the definition of singularities in the minimal model program.
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Definition 2.6. (i) Suppose that (x ∈ X) is a normal singularity with a dualizing

complex ω•X and 1 is an effective Q-divisor on X such that K X +1 is Q-Cartier.

Given a proper birational morphism π : Y −→ X from a normal scheme Y , we

choose a canonical divisor KY on Y associated to π !ω•X such that

KY +π
−1
∗ 1 = π∗(K X +1)+

∑
i

ai Ei ,

where π−1
∗ 1 is the strict transform of 1 by π , the ai are rational numbers and

the Ei are π -exceptional prime divisors on Y . We say that (x ∈ X,1) is terminal

(respectively canonical, klt, plt) if all the ai > 0 (respectively all the ai > 0, all

the ai > −1 and b1c = 0, all the ai > −1) for every proper birational morphism π :

Y −→ X from a normal scheme Y . We say that (x ∈ X) is terminal (resp. canonical,

klt, plt) if so is (x ∈ X, 0).

(ii) Let X be an excellent integral normal scheme with a dualizing complex and 1 be

an effective Q-divisor on X such that K X +1 is Q-Cartier. Then (X,1) is terminal

(resp. canonical, klt, plt) if so is the normal singularity (x ∈ X = SpecOX,x ,1x ) for

every x ∈ X .

Remark 2.7. (i) If X is defined over a field of characteristic zero or dim X 6 3, then it

is enough to check the condition in Definition 2.6 only for one f , namely, for a log

resolution of (X,1).

(ii) We have the following hierarchy of properties of Q-Gorenstein normal singularities:

regular H⇒ terminal H⇒ canonical H⇒ klt.

Strong F-regularity implies being klt.

Proposition 2.8 [17, Theorem 3.3]. Let (x ∈ X) be an F-finite normal singularity and 1

be an effective Q-divisor on X such that K X +1 is Q-Cartier. If (x ∈ X,1) is strongly

F-regular, then it is klt.

3. Brief review on surface singularities

In this section, we briefly review the theory of surface singularities. All results are well

known if the singularity is defined over an algebraically closed field. Some of the results

may be known to experts (even if it is not defined over an algebraically closed field),

but we include their proofs here, because we have not been able to find any reference to

them.

Definition 3.1. We say that a scheme X is a surface if X is a two-dimensional excellent

separated integral scheme with a dualizing complex ω•X and that a normal singularity

(x ∈ X) is a surface singularity if dimOX,x = 2.

Remark 3.2. From now on, we often use the results in [25] and [33]. We remark that

the base scheme is assumed to be regular in these references, but this assumption is

https://doi.org/10.1017/S1474748018000166 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000166


652 K. Sato and S. Takagi

unnecessary in our framework, because our base scheme is a normal surface singularity

and its dualizing complex is unique up to isomorphism.

First we recall the definition and basic properties of intersection numbers. Let (x ∈ X)
be a normal surface singularity and f : Y −→ X be a proper birational morphism from

a normal surface Y with exceptional curves E =
⋃

i Ei . For a Cartier divisor D on Y and

a Weil divisor Z =
∑

i ai Ei on Y , We define the intersection number D · Z as follows:

D · Z =
∑

i

ai degEi /k(x)(OY (D)|Ei ),

where degEi /k(x) : Pic(Ei ) −→ Z is the degree morphism defined as in [11, Definition 1.4].

Proposition 3.3 [11, Proposition 2.5], [25, Theorem 10.1]. With the notation above, the

following hold.

(1) The intersection pairing

Div(X)×
⊕

i

ZEi −→ Z, (D, Z) 7−→ D · Z

is a bilinear map, where Div(X) denotes the group of Cartier divisors on X .

(2) If Z is Cartier and Supp D ⊆ E, then D · Z = Z · D.

(3) If Y is regular, then the intersection matrix (Ei · E j )i, j is a negative-definite

symmetric matrix.

Definition 3.4. Let (x ∈ X) be a normal surface singularity with a dualizing complex ω•X .

A resolution f : Y −→ X with exceptional curves E =
⋃

i Ei is said to be minimal if

a canonical sheaf KY on Y associated to the dualizing complex f !ω•X is f -nef, that is,

KY · Ei > 0 for every i . A minimal resolution of X always exists by [25, Theorem 2.25].

We also recall the definition of rational singularities. A normal surface singularity

(x ∈ X) is said to be a rational singularity if R1 f∗OY = 0 for every resolution f : Y −→ X .

Proposition 3.5. Let (x ∈ X) be a normal surface singularity.

(1) [27, Proposition 1.2] (x ∈ X) is a rational singularity if and only if R1 f∗OY = 0 for

some resolution f : Y −→ X .

(2) [25, Proposition 2.28] If there exists an effective Q-divisor 1 on X such that (x ∈
X,1) is plt, then (x ∈ X) is a rational singularity.

In the rest of this section, we work in the following setting.

Setting 3.6. Suppose that (x ∈ X) is a normal surface singularity with a dualizing complex

ω•X and f : Y −→ X is a (nontrivial) resolution with exceptional curves E =
⋃

i Ei . Let

KY denote a canonical divisor on Y associated to f !ω•X . Let Z f denote the fundamental

cycle of f , that is, a unique minimal nonzero effective divisor Z on Y such that
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Supp Z ⊆ E and −Z is f -nef (such a divisor always exists by [25, Definition and

Claim 10.3.6] and we have Supp Z f = E by [25, Claim 10.3.5]).

Let D be a divisor on Y and Z be a nonzero effective divisor on Y such that Supp Z ⊆ E .

The Euler characteristic χ(Z , D) is defined by

χ(Z ,OY (D)|Z ) = dimk(x) H0(Z ,OY (D)|Z )− dimk(x) H1(Z ,OY (D)|Z ).

The following is the Riemann–Roch theorem for curves embedded in a regular surface.

Proposition 3.7. For each divisor D on Y and each nonzero effective divisor Z =
∑

i ai Ei
on Y such that Supp Z ⊆ E, we have

χ(Z , D) =
(2D− KY − Z) · Z

2
= χ(Z , 0)+ D · Z .

Proof. We will prove the assertion by induction on a :=
∑

i ai . If a = 1, then Z = Ei for

some i and the assertion immediately follows from [33, Theorem 2.5(1) and Theorem 2.7]

(see also Remark 3.2). Suppose that a > 2. Then there exists i such that ai > 1, so set

Z ′ := Z − Ei and consider the exact sequence

0 −→ OEi (−Z ′) −→ OZ −→ OZ ′ −→ 0.

By the additivity of the Euler characteristic and applying the induction hypothesis to Z ′

and Ei , one has

χ(Z , D) = χ(Z ′, D)+χ(Ei , D− Z ′)

=
(2D− KY − Z ′) · Z ′

2
+
(2(D− Z ′)− KY − Ei ) · Ei

2

=
(2D− KY − Z) · Z

2
.

Proposition 3.8 [2]. Suppose that (x ∈ X) is a rational singularity. Let mx denote the

maximal ideal on X corresponding to x and e(x ∈ X) be the Hilbert–Samuel multiplicity

of OX,x . Then the following hold for each integer n > 0.

(1) mn
x = H0(Y,OY (−nZ f )).

(2) dimk(x)m
n/mn+1

= −nZ2
f + 1.

(3) e(x ∈ X) = −Z2
f .

Proof. First note that mn
xOY = OY (−nZ f ), which follows from essentially the same

argument as for [2, Theorem 4], where X is assumed to be defined over an algebraically

closed field. Since in a rational surface singularity, the product of integrally closed ideals

is again integrally closed (see [27, Theorem 7.2]), mn
x is integrally closed. Therefore,

mn
x = H0(Y,mn

xOY ) = H0(Y,OY (−nZ f )).
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For (2), we consider the exact sequence

0 −→ OY (−(`+ 1)Z f ) −→ OY (−`Z f ) −→ OZ f (−`Z f ) −→ 0

for each integer ` > 0. Since H1(Y,OY (−`Z f )) = H1(Y,OY (−(`+ 1)Z f )) = 0 by [25,

Proposition 10.9(1)] and H2(Y,OY (−(`+ 1)Z f )) = 0 by [19, Chapter III, Corollary 11.2],

which is valid for any proper morphism, we have H1(Z f ,OZ f (−`Z f )) = 0. Therefore,

χ(Z f ,−`Z f ) = dimk(x) H0(Z f ,OZ f (−`Z f ))

= dimk(x) H0(Y,OY (−`Z f ))/H0(Y,OY (−(`+ 1)Z f ))

= dimk(x)m
`
x/m

`+1
x ,

where the last equality follows from (1). In particular, χ(Z f , 0) = 1. Thus, wee see from

Proposition 3.7 that

dimk(x)m
n
x/m

n+1
x = χ(Z f ,−nZ f ) = 1− nZ2

f .

Finally, (3) immediately follows from (2), because

dimk(x)OX,x/m
n
x =

n−1∑
i=0

dimk(x)m
i
x/m

i+1
x =

−Z2
f

2
n2
+ O(n).

We will use the following result to prove the canonical case of the main theorem in § 3.

Proposition 3.9. A normal surface singularity (x ∈ X) is canonical if and only if (x ∈ X)
is either a regular point or a rational double point. In particular, a canonical surface

singularity is a hypersurface singularity.

Proof. We may assume by Proposition 3.5 that (x ∈ X) is a rational singularity. Since

the assertion is obvious when X is regular, we can also assume that (x ∈ X) is not regular.

Suppose that f : Y −→ X is a minimal resolution, and let 1 = f ∗K X − KY . Then 1

is an anti- f -nef Q-divisor on Y , so 1 > 0 by [25, Claim 10.3.5]. On the other hand, it

follows from Proposition 3.7 that

2 = 2χ(Z f , 0) = −(KY + Z f ) · Z f = −KY · Z f − Z2
f = 1 · Z f − Z2

f ,

which implies that 1 · Z f = Z2
f + 2.

If (x ∈ X) is a canonical singularity, then we have 1 = 0 and hence Z2
f = −2. We see

by Proposition 3.8(3) that e(x ∈ X) = 2, that is, (x ∈ X) is a rational double point. Using

Proposition 3.8(2), (3), we can verify that every rational double point is a hypersurface

singularity.

Conversely, if (x ∈ X) is a rational double point, then Z2
f = −2 by Proposition 3.8(3)

and therefore 1 · Z f = 0. Since −1 is f -nef and Supp Z f = E , the intersection number

1 · Ei has to be zero for all i . This means by [25, Claim 10.3.5] that 1 = 0. It then

follows from the fact that KY +1 = f ∗K X and (Y,1) = (Y, 0) is canonical that (x ∈ X)
is a canonical singularity.
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4. Terminal and canonical singularities

The terminal case of the main theorem is an immediate consequence of a Bertini theorem

for Hilbert–Samuel multiplicity.

Proposition 4.1. Let X be a three-dimensional normal quasi-projective variety over an

algebraically closed field of characteristic p > 0 and 1 be an effective Q-divisor on X
such that K X +1 is Q-Cartier. Suppose that the pair (X,1) is terminal. Then (H,1|H )
is terminal for a general hyperplane section H of X . In particular, H is smooth.

Proof. Let U be the locus of the points x ∈ X such that X is regular at x and

multx (1) < 1. Since the regular locus of X is open and Hilbert–Samuel multiplicity is

upper semicontinuous, U is an open subset of X . Then every codimension two point x ∈ X
lies in U by [25, Theorem 2.29(1)], because (SpecOX,x ,1x ) is a two-dimensional terminal

pair. Hence, X \U consists of only finitely many closed points and a general hyperplane

section H of X is contained in U . It follows from a Bertini theorem for Hilbert–Samuel

multiplicity [9, Proposition 4.5], which holds in arbitrary characteristic, that H is

smooth and multx (1|H ) = multx (1) < 1 for all x ∈ Supp1|H . Thus, applying [25,

Theorem 2.29(1)] again, we see that (H,1|H ) is terminal.

The canonical case of the main theorem can be deduced from a Bertini theorem for

MJ-canonical singularities. The proof was inspired by a discussion with Shihoko Ishii,

whom we thank.

Theorem 4.2. Let X be a three-dimensional normal quasi-projective variety over an

algebraically closed field k of characteristic p > 0 and 1 be an effective Q-divisor on X
such that K X +1 is Q-Cartier. Suppose that the pair (X,1) is canonical. Then (H,1|H )
is canonical for a general hyperplane section H of X . In particular, H has only rational

double points.

Proof. First we will show the case where 1 = 0. Since X has only canonical singularities,

SpecOX,x is a two-dimensional scheme with only canonical singularities for every

codimension two point x ∈ X . It then follows from Proposition 3.9 that the local ring

OX,x is a hypersurface for every codimension two point x ∈ X . Since the l.c.i. locus of

X is open by [13], X is a l.c.i. except at finitely many closed points. By the fact that

l.c.i. canonical singularities are MJ-canonical (see for example [24, Remark 2.7(iv)]), X
has only MJ-canonical singularities except at finitely many closed points. Thus, applying

a Bertini theorem for MJ-canonical singularities [24, Corollary 4.11], we see that H has

only rational double points.

Next we consider the case where 1 6= 0. Let U1 be the locus of the points x ∈ X
such that X is regular at x and multx (1) 6 1, and U2 = X \Supp1. Note that U1 and

U2 are both open subsets of X (the openness of U1 follows from the openness of the

regular locus of X and the upper semicontinuity of Hilbert–Samuel multiplicity). Then

every codimension two point x ∈ X lies in U1 ∪U2 by [25, Theorem 2.29(2)], because

(SpecOX,x ,1x ) is a two-dimensional canonical pair. Hence, we may assume that X = U1 ∪

U2. We have already seen that the assertion holds when 1 = 0, so (H ∩U2,1|H∩U2) =

(H ∩U2, 0) is canonical for a general hyperplane section H of X . On the other hand, it
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follows from a Bertini theorem for Hilbert–Samuel multiplicity [9, Proposition 4.5] that

H ∩U1 ( U1 is smooth and multx (1|H∩U1) = multx (1) 6 1 for all x ∈ Supp1|H∩U1 . Thus,

applying [25, Theorem 2.29(2)] again, we see that (H ∩U1,1|H∩U1) is canonical.

Corollary 4.3. Let X be a three-dimensional quasi-projective variety over an algebraically

closed field k of characteristic p > 5 with only canonical singularities. Then there exists

a zero-dimensional closed subscheme Z ⊂ X with the following property: for every closed

point x ∈ X \ Z , the maximal-adic completion ÔX,x of the local ring of X at x is either

regular or isomorphic to the formal tensor product k[[u, v, w]]/( f )⊗̂kk[[t]] of a rational

double point k[[u, v, w]]/( f ) and the one-dimensional formal power series ring k[[t]].

Proof. An immediate application of Theorem 4.2 to [21, Theorem 3] yields the desired

result.

Remark 4.4. When the characteristic p is less than 5, there exist counterexamples to

Corollary 4.3 due to Hirokado and Ito and Saito [21] and Hirokado [20]. In particular, in

characteristic three, an exhaustive list of examples is given in [21, Theorem 3].

5. Klt singularities

In this section, we will prove the klt case of the main theorem. Since we often use the

results of [25] and [33] in this section, the reader is referred to Remark 3.2.

First we prove some lemmas needed for the proof of Theorem 1.2.

Definition 5.1. Let I ⊆ [0, 1] be a subset. We define the subset D(I ) ⊆ [0, 1] by

D(I ) :=

{
m− 1+

∑n
j=1 i j

m

∣∣∣∣ m ∈ Z>1, n ∈ Z>0, i j ∈ I for j = 1, . . . , n

}
∩ [0, 1].

In particular, D(∅) = {1− 1/m |m ∈ Z>1} is the set of standard coefficients.

Lemma 5.2 (cf. [28, Lemma 4.3]). Let X be a normal surface and 1 be an effective

Q-divisor on X such that (X,1) is plt. Let C be a regular curve which is an

irreducible component of b1c and DiffC (B) be the different of B := 1−C on C (see [25,

Definition 2.34] for the definition of the Q-divisor DiffC (B)). If the coefficients of B
belong to a subset I ⊂ [0, 1] ∩Q, then the coefficients of DiffC (B) belong to D(I ).

Proof. We may assume that (x ∈ X) is a surface singularity, that is, X = Spec R for a

two-dimensional normal local ring. Let f : Y −→ X be a minimal log resolution of (X,C)
with exceptional curves E =

⋃
i Ei defined as in [25, Definition 2.25 (b)] and m be the

determinant of the negative of the intersection matrix of the Ei . Then by [25, (3.36.1)],

DiffC (B) =
m− 1

m
[x] + B|C .

Let B =
∑

j b j B j be the irreducible decomposition of B. Since m D is Cartier for every

Weil divisor D on X by [25, Proposition 10.9(3)], we see that ord[x](m B j )|C is an integer.
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Thus,

ord[x]DiffC (B) =
m− 1

m
+

∑
j

b j

m
ord[x](m B j )|C ∈ D(I ),

which completes the proof of the proposition.

A log Fano pair (X,1) is a pair of a normal projective variety over a field k and an

effective Q-divisor on X such that −(K X +1) is ample and (X,1) is klt.

Proposition 5.3 (cf. [5, Corollary 4.1], [36, Theorem 4.2]). Let I ⊆ [0, 1] ∩Q be a finite

set. There exists a positive constant p0(I ) depending only on I with the following property:

if k is an F-finite field of characteristic p > p0(I ) and (P1
k, B =

∑m
i=1 ai Pi ) is a log Fano

pair such that every coefficient ai belongs to D(I ) and every point Pi is a k-rational point

of P1
k , then (P1

k, B) is globally F-regular. Moreover, when I = ∅, we may take the constant

p0(I ) to be 5.

Proof. The proof is essentially the same as in the case where k is algebraically closed.

When k is algebraically closed, the first assertion is nothing but [5, Theorem 4.1] and the

second one follows from [36, Theorem 4.2].

Definition 5.4. A curve X over a field k is a one-dimensional integral scheme of finite

type over k. The arithmetic genus g(X) of a complete curve X over k is defined to be

dimk H1(X,OX )/ dimk H0(X,OX ). We remark that g(X) is independent of the choice of

the base field k.

We extend Proposition 5.3 to the case of an arbitrary curve of genus zero.

Proposition 5.5. Let I ⊆ [0, 1] ∩Q be a finite set. There exists a positive constant p1(I )
depending only on I with the following property: if k is an F-finite field of characteristic

p > p1(I ) and (C, B) is a log Fano pair such that C is a complete curve over k and the

coefficients of B belong to D(I ), then (C, B) is globally F-regular. Moreover, when I = ∅,
we may take p1(I ) to be 5.

Proof. Let p0(I ) be the constant as in Proposition 5.3. Set a(I ) = min{a ∈ D(I ) | a 6= 0}
and p1(I ) = max{p0, d2/a(I )e}. If I = ∅, then a(I ) = 1/2, so we can take p1(∅) = 5 by

Proposition 5.3. We say that a pair (C, B) satisfies the condition (?) if C is a complete

curve over an F-finite field of characteristic p > p1(I ) and (C, B) is a log Fano pair such

that the coefficients of B belong to D(I ). Note that if (C, B) satisfies (?), then C is a

complete regular curve with g(C) = 0 by [33, Corollary 2.6].

Let (C, B) be a log Fano pair over a field k satisfying the condition (?). First, we will

show that we can reduce to the case where C ∼= P1
k . Replacing k by its finite extension

if necessary, we may assume that k = H0(C,OC ). Suppose that C 6∼= P1
k . Then C is

isomorphic to a conic in P2
k by [25, Lemma 10.6(3)], and hence there exists a closed

point P ∈ C whose residue field k(P) is a quadratic extension of k. Let l := k(P) and

consider the pullback f : Cl := C ×Spec k Spec l −→ C of C . Note that Cl is connected,

because [l : k] = 2 and l is not contained in the function field K (C) of C , so K (C)⊗k l
is a domain. Since p > p1 > 2 = [l : k], the pullback f is a surjective étale morphism. It
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follows from [25, Lemma 10.6(3)] again, together with the fact that a regular conic with an

l-rational point is isomorphic to P1
l , that Cl ∼= P1

l . By the fact that being klt is preserved

under surjective étale morphisms [25, Proposition 2.15], the pair (Cl , Bl := f ∗B) satisfies

the condition (?). On the other hand, a pair is globally F-regular if and only if its affine

cone is strongly F-regular [30, Proposition 5.3], and strong F-regularity is preserved under

finite étale morphisms of degree not divisible by p ([16, Theorem 3.3], [31, Corollary 6.31

and Proposition 7.4]). Therefore, (C, B) is globally F-regular if and only if so is (Cl , Bl).

Thus, replacing k by l and C by Cl , we may assume that C = P1
k .

Next, we will show that we can reduce to the case where every point in Supp B is

a k-rational point. Let B =
∑

i ai Pi be the irreducible decomposition of B. Since (C =
P1

k, B) is log Fano, we have
∑

i ai [k(Pi ) : k] = degP1
k/k(B) < 2. In particular, [k(Pi ) : k] <

2/a(I ) 6 p1(I ) < p for every i . Hence, there exists a Galois extension K/k such that

k(Pi ) ⊆ K for every i and p does not divide [K : k]. Since the condition (?) and global

F-regularity are preserved under finite Galois base field extensions of degree not divisible

by p as we have seen above, replacing k by K and (P1
k, B) by (P1

K , BK ) if necessary, we

may assume that every point in Supp B is a k-rational point. The assertion is now an

immediate consequence of Proposition 5.3.

Lemma 5.6 (cf. [5, Proposition 2.13]). Let (x ∈ X) be a normal surface singularity with a

dualizing complex ω•X and B be an effective Q-divisor on X such that K X + B is Q-Cartier.

If (x ∈ X, B) is klt, then there exists a proper birational morphism f : Y −→ X from a

normal surface Y such that

(1) the exceptional locus C of f is a complete regular curve with g(C) = 0;

(2) (Y, BY +C) is plt, where BY = f −1
∗ B is the strict transform of B by f ; and

(3) −(KY + BY +C) is f -ample, where KY is a canonical divisor on Y associated to

the dualizing complex f !ω•X .

Proof. We can apply essentially the same argument as in the case where X is defined

over an algebraically closed field [5, Proposition 2.13], using the minimal model program

for excellent surfaces [33, Theorem 1.1] instead of that for surfaces over an algebraically

closed field. Then (2) and (3) are easily verified. Hence, it is enough to check (1). Since

(Y, BY +C) is plt, the complete curve C has to be regular by [25, Theorem 2.31]. The pair

(Y, BY +C) being plt also implies by Proposition 3.5 that Y has only rational singularities,
from which it follows that g(C) = 0 (see [25, Lemma 10.8(3)]).

Theorem 1.2 is a consequence of Proposition 2.8 and the following theorem, which gives

a generalization of [5, Theorem 1.1] (see also [15]) to the case where the base field is not

necessarily algebraically closed.

Theorem 5.7 (cf. [15], [5, Theorem 1.1]). Let I ⊆ [0, 1] ∩Q be a finite set. There exists

a positive constant p1(I ) depending only on I with the following property: if (x ∈ X) is

an F-finite normal surface singularity of characteristic p > p1(I ) and (x ∈ X, B) is a klt

pair such that the coefficients of B belong to D(I ), then (x ∈ X, B) is strongly F-regular.

Moreover, when I = ∅, we can take p1(I ) to be 5.
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Proof. We employ the same strategy as the proof of [5, Theorem 1.1]. Let p1(I ) be the

constant as in Proposition 5.5. Suppose that (x ∈ X, B) is a klt pair such that (x ∈ X)
is an F-finite normal surface singularity of characteristic p > p1(I ) and the coefficients

of B belong to D(I ). Take a proper birational morphism f : Y −→ X with exceptional

prime divisor C as in Lemma 5.6, and let BY = f −1
∗ B be the strict transform of B by

f and BC = DiffC (BY ) be the different of BY on C . Note that by Lemma 5.2 and [28,

Lemma 4.4], the coefficients of BC belong to D(D(I )) = D(I )∪ {1}. Since (C, BC ) is log

Fano by adjunction [25, Theorem 3.36 and Lemma 4.8], the coefficients of BC are less than

1, and then (C, BC ) is globally F-regular by Proposition 5.5. Applying the same argument

as in the case where X is defined over an algebraically closed field ([5, Proposition 2.11]

and [14, Lemma 2.12]), we can conclude that (X, B) is strongly F-regular.

Example 5.8 (cf. [25, 2.26]). Let k be a non-algebraically closed field of characteristic

p > 0 with an element a ∈ k that is not a cubic power in k. Let (0 ∈ X) be the origin

of the hypersurface (x2
= y3

− az3
+ y4
+ z4) ⊂ A3

k , which is a klt surface singularity. Its

minimal resolution has two exceptional curves C1,C2 and their dual graph is

2
1

2
3
,

where the numbers above the circles are the dimk H0(Ci ,OCi ) and the numbers inside

the circles are the −C2
i / dimk H0(Ci ,OCi ). Note that this graph does not appear in the

list of the dual graphs of exceptional curves for the minimal resolutions of klt surface

singularities over an algebraically closed field (see [35]). On the other hand, (0 ∈ X) is

strongly F-regular if and only if p > 3.

We are now ready to prove the klt case of the main theorem.

Theorem 5.9. Let X be a three-dimensional normal quasi-projective variety over an

algebraically closed field of characteristic p > 5 and 1 be an effective Q-divisor on X
whose coefficients belong to the standard set {1− 1/m |m ∈ Z>1}. Suppose that K X +1

is Q-Cartier and (X,1) is klt. Then (H,1|H ) is klt for a general hyperplane section H
of X .

Proof. Let U be the locus of the points x ∈ X such that (X,1) is strongly F-regular.

Note that U is an open subset of X (the 1 = 0 case was proved in [23, Theorem 3.3]

and the general case follows from a very similar argument). Every codimension two point

x ∈ X lies in U , because (SpecOX,x ,1x ) is strongly F-regular by Theorem 5.7. Hence,

X \U consists of only finitely many closed points and a general hyperplane section H
of X is contained in U . It then follows from a Bertini theorem for strongly F-regular

pairs [32, Corollary 6.6] that (H,1|H ) is strongly F-regular. Since strongly F-regular

pairs are klt by Proposition 2.8, we obtain the assertion.
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