
Geol. Mag. 148 (2 ), 2011, pp. 250–268. c© Cambridge University Press 2010 250
doi:10.1017/S0016756810000683

Petrogenesis and tectonic evolution of metaluminous sub-alkaline
granitoids from the Takab Complex, NW Iran
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Abstract – The Takab complex is composed of a variety of metamorphic rocks including amphibolites,
metapelites, mafic granulites, migmatites and meta-ultramafics, which are intruded by the granitoid.
The granitoid magmatic activity occurred in relation to the subduction of the Neo-Tethys oceanic
crust beneath the Iranian crust during Tertiary times. The granitoids are mainly granodiorite, quartz
monzodiorite, monzonite and quartz diorite. Chemically, the magmatic rocks are characterized by
ASI < 1.04, AI < 0.87 and high contents of CaO (up to ∼ 14.5 wt %), which are consistent with
the I-type magmatic series. Low FeOt/(FeOt+MgO) values (< 0.75) as well as low Nb, Y and
K2O contents of the investigated rocks resemble the calc-alkaline series. Low SiO2, K2O/Na2O and
Al2O3 accompanied by high CaO and FeO contents indicate melting of metabasites as an appropriate
source for the intrusions. Negative Ti and Nb anomalies verify a metaluminous crustal origin for the
protoliths of the investigated igneous rocks. These are comparable with compositions of the associated
mafic migmatites, in the Takab metamorphic complex, which originated from the partial melting of
amphibolites. Therefore, crustal melting and a collision-related origin for the Takab calc-alkaline
intrusions are proposed here on the basis of mineralogy and geochemical characteristics. The P–T
evolution during magmatic crystallization and subsolidus cooling stages is determined by the study
of mineral chemistry of the granodiorite and the quartz diorite. Magmatic crystallization pressure
and temperature for the quartz-diorite and the granodiorite are estimated to be P ∼ 7.8 ± 2.5 kbar,
T ∼ 760 ± 75 ◦C and P ∼ 5 ± 1 kbar, T ∼ 700 ◦C, respectively. Subsolidus conditions are consistent
with temperatures of ∼ 620 ◦C and ∼ 600 ◦C, and pressures of ∼ 5 kbar and ∼ 3.5 kbar for the
quartz-diorite and the granodiorite, respectively.
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1. Introduction

The Takab complex of northwest Iran is located
within the Alpine–Himalayan orogenic system. The
Takab complex has been assigned to various tectonic
subdivisions of Iran. It is included in the Central Iran
Zone by Berberian & King (1981), at the junction of the
Central Iran, the Alborz–Azerbaijan and the Sanandaj–
Sirjan zones (Babakhani & Ghalamgash, 1990) and in
the Sanandaj–Sirjan Zone (Gilg et al. 2006) (Fig. 1a).
Geological and lithological characteristics of the Takab
area show affinities to the Central Iran micro-continent
(Hajialioghli et al. 2007a,b). Zircon U/Pb dating of
granitic gneisses from the Takab area yields an age of
560 Ma (Stockli et al. 2004), which is comparable to
U/Pb ages of granitic augen gneisses from the Central
Iran micro-continent (c. 550 Ma: Ramezani & Tucker,
2003) and also similar rock types from the Menderes
Massif of Turkey, to the west of the area (520–570 Ma,
Loos & Reischmann, 1999). Tertiary magmatism
occurred in relation to the subduction of the Neo-
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Tethys (Şengör, 1984; Mohajjel & Fergusson, 2000;
Mohajjel, Fergusson & Sahandi, 2003). In the context
of the timing of closure of the Neo-Tethys and inception
of collision between the Arabian and Iranian plates,
different opinions are postulated. Berberian & King
(1981) and Alavi (1994) advanced a late Cretaceous age
for collision along the Zagros suture. Others describe a
Cenozoic continental collision (e.g. Eocene: Berberian
et al. 1982; J. Braud, unpub. Ph.D. thesis, Univ. de
Paris-Sud, 1987; Şengör et al. 1988; Şengör, Natal’in
& Burtman, 1993; Şengör & Natal’in, 1996; Mohajjel,
Fergusson & Sahandi, 2003; Ghasemi & Talbot, 2006;
Oligocene: Agard et al. 2005; and Miocene: Jackson
et al. 1995; Şengör et al. 2008). Based on palinspastic
and plate tectonic studies, McQuarrie et al. (2003)
suggested that the collision between the Iranian plate
and the Central Iran micro-continent took place at
20 Ma at the latest, in relation to the subduction of
the Neo-Tethys. Recent studies by Verdel et al. (2007)
support a Neogene collision between the Iranian plate
and the Central Iran micro-continent.

The focus of this study is the calc-alkaline granitoids
of the Takab area. This is the first study of the pet-
rology, geochemistry and petrogenesis of the Tertiary
granitoids in the area. The combination of the data will
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Figure 1. (a) Structural subdivision map of Iran from Gilg et al. (2006). The study area is shown by a rectangle. (b) Structural map
of the area. (c) Geological map of the study area, adapted from geological maps of Takht-e-Solyman (Babakhani & Ghalamgash,
1990) with some modifications. Dashed boxes are enlarged in Figure 2. (d, e) Cross-sections across profiles A–B and C–D to show the
relations between the rock units in the area.
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Figure 2. Larger map of the area showing rock units and the sample localities: (a) north of the area and (b) south of the area.

allow us to address the tectonic setting and geochemical
significance of these rocks.

The composition of coexisting minerals is used to
estimate the P–T conditions of equilibration during
magmatic crystallization and subsolidus cooling stages
of the magmatic rocks.

This study, along with ongoing studies on the
associated granulites, amphibolites, metapelites and
meta-ultramafic rocks (R. Hajialioghli, unpub. Ph.D.
thesis, Univ. Tabriz, 2007; Hajialioghli et al. 2007a;
Moazzen et al. 2009), will furnish a framework to
decipher the geodynamic history of the Takab and
the adjacent areas. This may elucidate the geological
history of NW Iran in relation to the Tethyan-related
events.

2. Geological setting and field relations

The Takab complex in NW Iran is located between
longitude 47◦45′ and 47◦05′ E and latitude 37◦30′

and 36◦30′ N. It occurs as a NW–SE-trending horst
which is thrust along the reverse faults (Figs 1, 2).
The eastern border is marked by the Pari basin. The
Qeynarj-e-Chartagh thrust fault forms the western
border with the Shirmard basin (Fig. 1b). It consists
of a variety of rocks including granulites, metabasites,
amphibolites, migmatites, calc-silicate rocks, meta-
ultramafics, gneisses, mica-schists and sporadically,
granitoids (Hajialioghli et al. 2007a,b; Moazzen et al.
2009; Saki, 2010). The oldest crustal protolith of the
Takab basement has been dated about 2961 ± 72 Ma
(206Pb/238U–207Pb/235U) and 2775–2875 Ma (204Pb cor-
rected 207Pb/206Pb) (R. Hajialioghli, unpub. Ph.D.
thesis, Univ, Tabriz, 2007; Moazzen & Hajialioghli,
2008), comparatively similar to the ages from the

Central Iran micro-continent (c. 2140 Ma, 207Pb/206Pb:
Ramezani & Tucker, 2003 and c. 2382 Ma, Rb/Sr
whole rock ages: Haghipour, 1974) and Bozburun of
southeastern Turkey, to the west of the study area
(c. 2522 Ma, 207Pb/206Pb: Kröner & Şengör, 1990).

The Takab complex experienced regional meta-
morphism in Precambrian times, overprinted by an-
other high-grade metamorphism during Tertiary times,
producing the migmatites and the granitoids (very
similar to Central Iran: Ramezani & Tucker, 2003). The
age for Precambrian metamorphism is documented by
dating on gneisses of the area by Stockli et al. (2004),
and the age for migmatization and resulted granitoids
is indicated by zircon SHRIMP dating (R. Hajialioghli,
unpub. Ph.D. thesis, Univ. Tabriz, 2007; Moazzen &
Hajialioghli, 2008).

Migmatization of the crustal rocks in the Takab
area occurred at c. 25 Ma (U/Pb dating on zircons
from the leucosome parts of the migmatites: R.
Hajialioghli, unpub. Ph.D. thesis, Univ. Tabriz, 2007;
Moazzen & Hajialioghli, 2008), corresponding to
the Alpine orogeny. The granitoids studied here are
small and scattered exposures within the metamorphic
rocks. They appear as voluminous leucosome parts of
migmatites in places and also as isolated granitic bodies
within the metamorphic rocks (Fig. 3), indicating
possible short-distance migration of the leucosome
parts, coalescence of the melt and formation of the
granitoid patches. The sizes of these granitic patches
are too small to be shown on the map. Only the sampling
locations are shown. The old metamorphic rocks and
the granitoids are unconformably overlain by the Oligo-
Miocene volcanic and sedimentary rocks (Fig. 1c–
e). The Oligo-Miocene sedimentary rocks include
basal conglomerate, marl and red sandstone. The
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Figure 3. Field photographs of the granitoids and the migmatitic rocks. (a) Limited outcrop of granitoids. The width of the photo
is ∼ 2 m. (b) Granitoid patches intruded the amphibolites with small amphibolite enclave. Visible portion of marker is 11 cm long.
(c) Leucosome portion of migmatite cross-cutting the rocks. Length of hammer is 33 cm. (d) Mesosome and melanosome parts
‘floating’ in the granitoid leucosome. Length of pen is 16 cm.

conglomerate is polygenetic, having various fragments
of metamorphic rocks (Babakhani & Ghalamgash,
1990). Alluviums and enormous deposits of travertine
along the thrust faults are Quaternary in age (Figs 1,
2).

Considering the lack of Palaeozoic and Mesozoic
sediments, Babakhani & Ghalamgash (1990) believed
that the Takab metamorphic basement most probably
was a high region during Palaeozoic and Mesozoic
times.

There is no published account on the radiometric
age of the granitoids, but as discussed below, a Tertiary
age can be considered for them. On the basis of field
relations, Lotfi (2001) considered the relative age of
the granitoids to be post-Cretaceous. Mazhari et al.
(2009) believed these granitoids to be Tertiary, and
Babakhani & Ghalamgash (1990) also considered the
granitoids to be Tertiary in age. The late Palaeozoic
and Mesozoic rocks are lacking in this area. In
addition, Oligo-Miocene sediments and volcanic rocks
unconformably cover the metamorphic basement rocks
and the granitoids. Fragments of amphibolites and
gneisses appear as enclaves in granodiorite in some
places. There are sharp contacts between amphibolite
and granodiorite in the SW Barut-Aghaji and north of

the village of Baglu-kandi (Figs 1, 3b). Mineralogically
the Takab granitoids are very similar to plutonic rocks
from the Sanandaj–Sirjan Zone of the Zagros belt
and the Central Iran Zone (e.g. Mazhari et al. 2009),
which are mainly Tertiary in age and are related to the
Neo-Tethys oceanic crust subduction and the sub-
sequent collision. U/Pb zircon dating on migmatites,
which are spatially associated with granitoid intrusions,
gives an age of c. 25 Ma (R. Hajialioghli, unpub.
Ph.D. thesis, Univ. Tabriz, 2007). Taking all these facts
together, a Tertiary age for the studied granitoids is
very likely. However, appropriate age dating studies
will furnish more information in this regard.

Faulting and folding of the Oligo-Miocene sediments
and volcanic rocks (Aghdareh anticline in the SW
of the study area, which consists of Oligo-Miocene
limestone, marl and andesite and Ghar-e-Tapa anticline
in the SW having folded Oligo-Miocene conglomerate
and sandstone; Fig. 1), refolding of the Precambrian
metamorphic complex (Lal-e-Kan anticline in south
and Chughoti anticline in the NW of the area; Fig. 1)
and occurrence of Miocene–Pliocene continental sed-
iments related to the collisional regime, are results
of Alpine orogeny in the area. All rock units in
the area show a NW–SE trend, parallel to the main
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Table 1. Mineral composition (modal %) of the granitoids and migmatitic leucosomes from the Takab area

Rock type Granite Granodiorite Qtz-monzodiorite Qtz-diorite Migmatitic leucosome
Rock sample R29-U, R-3, R-51, R3-E R3–1, R17-d, R8-K, R29-F, R8-J, R17-C R29-W, R29-Y, R17-A, R29–1

R-51A R29-G

K-feldspar 10–20 7–15 7–10 – 5–15
Plagioclase 25–40 30–50 45–50 35–45 45–60
Quartz 20–30 20–25 8–15 5–10 5–20
Amphibole 5–15 10–45 10–40 20–35 10–30
Biotite rare rare – – rare
Clinopyroxene – – – 15 –
Other minerals Ap+Zrn+Ttn+Ep+

opaque
Ap+Zrn+Ttn+Ep+
Ilm+Mgt

Ap+Zrn+Ttn Ttn+Ep+Ilm+Mgt Ap+Zrn+Ttn+Ep+
Ilm+Mgt

deformational features (e.g. gneissosity, schistosity
and foliation). The NW–SE trend is consistent with
the compression of the rocks between the Arabia
and Eurasia continents, corresponding to the clos-
ure of Neo-Tethys and the subsequent continental
collision.

3. Petrography

The petrography of the granitoids and the associated
migmatites is provided below. Modal amounts of
minerals in the granitoids and migmatitic leucosomes
are presented in Table 1. Mineral abbreviations are from
Kretz (1983), except for amphibole (Amp).

The studied granitoids are classified as granodiorites,
Qtz-monzodiorites and granites on the Streckeisen
(1974) diagram.

Granodiorites. Coarse to medium granular texture is
common in the granodiorites (Fig. 4a). The dominant
mineral assemblage is plagioclase (30–50 modal %),
K-feldspar (7–15 modal %), hornblende (10–45
modal %) and quartz (20–25 modal %). K-feldspar
occurs as small subhedral laths and anhedral grains
ranging from 0.2 to 0.4 mm in diameter. Plagioclase
displays polysynthetic and Karlsbad twinnings.

Coarse-grained plagioclase exhibits optical zoning
(Fig. 4a). Amphibole with greenish-brown to grey
and olive-green pleochroism displays well-developed
cleavages and is frequently twinned. In some horn-
blende crystals up to 2 cm in diameter, many zircons
and opaque minerals occur as inclusions. Epidote,
titanite and biotite are present in minor amounts.
Magmatic epidote, in textural equilibrium with other
magmatic phases, occurs as zoned and twinned
crystals. Secondary epidote, replacing plagioclase,
is seen sporadically in the rocks. Zircon, apatite
and opaque minerals are accessory phases. Actinolite
around hornblende is a late subsolidus crystallization
product (Fig. 4b). Coarse-grained plagioclase and
hornblende porphyroclasts in a fine-grained matrix are
characteristics of the brecciated granodiorites (SW of
Barut-Aghaji; Fig. 2). Plagioclase and quartz crystals
show undulatory extinction.

Qtz-diorite. The mineral assemblage of the rock
is plagioclase (35–45 modal %), hornblende (20–35
modal %), clinopyroxene (15 > modal %) and quartz

(5–10 modal %). Subhedral plagioclase (up to 4 mm
in diameter) is weakly zoned and shows polysynthetic
twinning. It is full of clinopyroxene inclusions and
has a poikilitic texture. Clinopyroxene with a granular
texture reaches up to 0.7 mm in diameter and is simply
twinned. Amphibole is crystallized at the margins
and parallel to the cleavage system of clinopyroxene
(Fig. 4c). The magmatic hornblende (0.6 mm in length)
is optically zoned and shows strong pleochroism.
Euhedral titanite (up to 1.2 mm in diameter) and
epidote are minor phases (Fig. 4d).

Qtz-monzodiorites. Plagioclase (45–50 modal %),
hornblende (10–40 modal %) and K-feldspar (< 10
modal %) with a granular texture are the main con-
stituent minerals of these rocks. Hornblende, 0.8 mm
in diameter, is simply twinned and plagioclase (up to
5 mm in diameter) shows weak optical zoning. Titanite
(0.4 mm in diameter) occurs in minor amounts. Apatite,
zircon and opaque phases are accessory minerals.

Granites. Dominant minerals are quartz (20–
30 modal %), plagioclase (25–40 modal %), K-
feldspar (10–20 modal %) and hornblende (5–15
modal %). Granular texture is dominant in the granites.
Hornblende reaches 1 mm in diameter. Plagioclase
contains hornblende as inclusions. Titanite and biotite
are minor phases. Accessory phases are zircon and
apatite.

Mafic migmatites. Mafic migmatites occur in associ-
ation with granitoids in the NW Ghar-e-Naz (Fig. 2;
R. Hajialioghli, unpub. Ph.D. thesis, Univ. Tabriz,
2007). Structurally the investigated migmatites are
very heterogeneous. Diatexite is the most common
structure of the Takab mafic migmatites. Foliation
in the mafic migmatites is marked by separation of
the alternating centimetre-scale light-coloured quartz-
feldspathic (leucosome) and dark hornblende-rich
(melanosome) layers. Melanosome is also formed as
thin selvages around leucosome. Schlieren structure
includes floating melonocratic fragments in leucosome
and is seen in some of the rocks (R. Hajialioghli,
unpub. Ph.D. thesis, Univ. Tabriz, 2007). Migmatitic
leucosomes have compositions consistent with gran-
odiorite, Qtz-monzodiorite and Qtz-diorite. Medium-
to fine-grained granular texture is common in the leu-
cosomes. Subhedral plagioclase, 0.7 mm in diameter,
is twinned (Fig. 4e). Quartz and K-feldspar occur with
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Figure 4. (a) Hornblende and plagioclase with granular texture in the granodiorite. Plagioclase shows compositional zoning. Crossed
nicols, field of view 4.8 mm. (b) Subsolidus actinolite around magmatic hornblende in the granodiorite. Plain polarized light, field of
view 2.4 mm. (c) Clinopyroxene, amphibole and plagioclase in the quartz diorite. Subsolidus amphibole is seen parallel to the cleavage
system of clinopyroxene. Plain polarized light, field of view 2.4 mm. (d) Magmatic titanite in the diorite. Amphibole as patches
within clinopyroxene and as products of deuteric alteration. Plain polarized light, field of view 2.4 mm. (e) The migmatitic leucosome
with granular texture. Interstitial quartz and K-feldspar are anhedral. Plain polarized light, field of view 2.4 mm. (f) Hornblende and
plagioclase with foliated texture in the mesosome. Plain polarized light, field of view 2.4 mm.

interstitial texture filling the spaces between plagio-
clase laths (Fig. 4e). Hornblende, biotite and titanite are
present in minor amounts. Hornblende (> 50 modal %)
and minor plagioclase are the essential minerals in
the melanosome. The mesosome is characterized by
foliated texture. It is composed of hornblende and
plagioclase together with minor K-feldspar and quartz

(Fig. 4f). Table 1 includes modal amounts of minerals
of the mafic migmatites in the Takab area.

4. Analytical methods

Well-defined samples from the granitoids were
analysed for major and trace elements at the
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GeoForschungsZentrum, Potsdam, Germany. In ad-
dition, the leucosome, mesosome and melanosome
portions of the migmatites were carefully separated
and analysed for major oxides and trace elements.
International rock standards were measured in the same
runs to monitor the precision and accuracy of the
XRF technique. The precision of the analyses is 1–
3 % for the major element oxides and < 5 % for the
trace elements. The results are presented in Table 2.
FeO/Fe2O3 ratio is calculated using the conventional
equation of Irvine & Baragar (1971) and SiO2 v.
(Na2O+K2O) diagram (Le Maitre, 1976). The amount
of Fe2O3 is very low. Total iron is shown as Fe2O3 in
Table 2.

Minerals from the granitoids were also analysed
for major element oxides by wavelength-dispersive
spectrometry using a CAMECA SX-100 microprobe
at the GeoForschungsZentrum, Potsdam, Germany.
The measuring conditions were 15 kv accelerating
voltage, 10–20 nA beam current. The spot size was
between 3 and 5 μm. A PAP correction procedure was
applied. Natural and synthetic standards ((Fe2O3 (Fe)),
rhodonite (Mn), rutile (Ti), MgO (Mg), wollastonite
(Si, Ca), fluorite (F), orthoclase (Al, K) and albite (Na))
were used for the calibration of the element oxides.
Representative mineral analyses are given in Table 3.

5. Whole-rock geochemistry

5.a. Major elements

Major element concentrations of the analysed rocks
are listed in Table 2. The granitoids span a wide range
of SiO2 content (54–74 wt %). MgO, CaO, TiO2 and
FeOt decrease with increasing SiO2 content. Na2O
concentration of the granitoids is high at intermediate
SiO2 contents but it decreases toward more felsic
compositions. CaO, Na2O, TiO2, MgO and Al2O3

variations versus SiO2 in the leucosome part of
migmatites show similar trends to those defined by
these oxides in the granitoids.

Classification based on the normative Ab–Or–An
scheme (Barker, 1979) identifies the analysed rocks
as quartz monzonite, granodiorite and tonalite. On the
total alkalis versus silica (TAS) diagram (Middlemost,
1994; Fig. 5a), the investigated granitoids are classified
as granite, granodiorite, quartz monzonite, monzonite
and quartz diorite. The rocks dominantly plot in the sub-
alkaline field of the diagram of Irvine & Baragar (1971)
(Fig. 5a). The agpaitic index (AI = mol (Na+K/Al))
shows that the samples are predominantly calc-
alkaline (AI < 0.87; Liégeois & Black, 1987). Based
on the discriminant diagram of Frost et al. (2001),
the granitoids indicate alkali-calcic, calc-alkalic and
calcic rock series (Fig. 5b). The analysed rocks
have normative diopside, hypersthene and titanite, but
normative corundum never exceeds 1 %. These features
most likely characterize an I-type nature (Nagudi,
Kobert & Kurat, 2003) for the source materials of the
investigated granitoids.

The aluminium saturation index (ASI: molecular
ratio of Al2O3/(Na2O+K2O+CaO)), ranging from 0.46
to 1.04, shows that the granitoids are metaluminous,
comparable with migmatitic leucosome compositions
(Fig. 5c). The diagram of Al2O3/(Na2O+K2O) (A/NK)
against Al2O3/(CaO+Na2O+K2O) (A/CNK) also in-
dicates a metaluminous characteristic for these rocks
(Fig. 5d).

5.b. Trace elements

Trace element concentrations of the Takab granitoids
and the associated migmatites are listed in Table 2,
and their variations versus SiO2 are plotted on Harker
diagrams (Fig. 6). Sr concentration decreases, whereas
Ba, Nb and Rb contents increase with increasing SiO2

content. Zirconium shows a considerably scattered
pattern (Fig. 6). Ni, Cr and V (transitional elements)
exhibit a negative correlation with silica content
since they behave as compatible elements. Samples
from migmatitic leucosomes have compositional trends
comparable with the trends for the granitoids.

The Rb/Zr–SiO2 diagram (Harris, Pearce & Tindle,
1986) is used to discriminate I- and A-type granitoids
from S-type rocks. The Takab granitoids and the
migmatitic leucosomes plot mainly in the I- and A-
type fields (Fig. 7a). The diagram of Zr versus SiO2

(Collins et al. 1982) verifies the distinct I-type nature
of these rocks (Fig. 7b).

The trace elements of the granitoids are normalized
to primitive-mantle values (Sun & McDonough, 1989;
Fig. 8). The composition of the leucosomes from the
Takab area is also represented for comparison (Fig. 8).
The trace element patterns of the different rock types
show almost similar trends (Fig. 8). Nb and Ti show
negative anomalies, but the Zr anomaly is positive.

6. Mineral chemistry

6.a. Feldspar

Representative electron microprobe analyses and the
structural formula of plagioclase are given in Table
3. The plagioclase is zoned with core compositions
of XAn ∼ 0.48 and XAn ∼ 0.35 and rim compositions
of XAn ∼ 0.38 and XAn ∼ 0.21 in the quartz diorite
and the granodiorite, respectively. The decrease of
Ca from the core to the rim is interpreted as normal
zoning during crystallization. The K2O content of the
plagioclase ranges between 0.03 and 0.05 (a.p.f.u.).
The chemical compositions of plagioclase from
granodiorite (Ab63–79An20–35Or1–4) and quartz diorite
(Ab51–62An38–48Or1.0–1.5) are oligoclase and andesine,
respectively.

6.b. Amphibole

Amphibole is the predominant mafic phase in the gran-
itoids. Ferrous and ferric iron in the amphibole formula
were calculated using the charge balance method. The
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Table 2. Major and trace element compositions of the representative rocks in the Takab area

Rock type Gran. Gran. Gran. Gran. Gran. Gran. Gran. Gran. Gran. Gran. Gran. Gran. Gran. Leuc. Leuc. Leuc. Meso. Meso. Meso.
Sample R29-w R29-y R17-A R8-j R17-c R29-f R8-k R17-d R3-1 R3-E R51-A R-3 R29-u R29-1 R29-1 R29-1 R29-1 R29-1 R29-1

SiO2 (wt%) 54.10 56.50 56.6 57.80 58.2 59.30 61.70 62.5 65.7 66.0 68.20 69.1 73.90 54.2 54.2 63.3 46.7 46.9 48.7
TiO2 0.45 0.69 0.73 0.71 0.23 0.56 0.15 0.63 0.33 0.53 0.35 0.19 0.10 0.52 0.50 0.61 1.71 1.22 1.14
Al2O3 22.10 19.30 16.7 18.60 12.3 18.20 22.00 15.4 17.60 15.20 16.30 15.6 14.50 24.0 22.0 17.4 18.5 18.5 17.3
Fe2O3

∗ 4.45 4.87 7.77 5.64 7.95 4.34 0.84 5.94 1.95 4.25 1.82 1.56 0.28 3.51 5.06 3.70 11.11 10.91 11.71
MnO 0.10 0.09 0.14 0.11 1.26 0.09 0.02 0.10 0.04 0.07 0.05 0.04 0.01 0.09 0.10 0.08 0.21 0.29 0.23
MgO 2.77 2.03 4.58 1.68 3.37 2.40 0.39 3.64 0.83 2.53 0.54 0.51 0.16 1.46 2.05 1.83 5.4 5.4 5.17
CaO 8.79 5.91 8.52 6.10 8.07 8.01 4.76 6.5 4.23 5.96 3.33 2.16 1.75 8.87 8.14 6.66 8.23 10.31 9.05
Na2O 5.44 5.68 3.05 5.99 3.25 4.11 7.97 3.85 5.31 4.03 4.45 3.52 2.84 5.52 5.71 4.15 3.09 3.38 4.1
K2O 0.45 2.72 0.48 1.58 3.59 0.99 0.75 0.26 2.53 0.22 3.72 5.93 5.62 0.39 0.45 0.75 2.31 0.7 0.59
P2O5 0.07 0.37 0.10 0.37 0.01 0.55 0.08 0.14 0.14 0.14 0.14 0.10 0.04 0.20 0.16 0.19 0.30 0.40 0.20
CO2 0.07 0.39 0.04 0.04 0.03 0.16 0.06 0.04 0.05 0.04 0.05 0.04 0.04 0.05 0.07 0.1 0.11 0.06 0.04
H2O 0.96 0.76 1.06 1.07 1.15 1.03 1.06 0.91 1.05 0.83 0.79 0.89 0.54 0.91 1.17 0.97 1.81 1.52 1.49
Sum 99.75 99.31 99.77 99.69 99.41 99.74 99.78 99.91 99.76 99.80 99.74 99.64 99.78 99.72 99.61 99.74 99.48 99.59 99.72
Ba (ppm) 112 2396 78.0 432 4824 291 92.0 130 661 142 875 1277 1778 151 141 220 621 103 125
Cr 14.0 < 10 57.0 < 10 23.0 29.0 11.0 113 < 10 47.0 < 10 < 10 < 10 12.0 19.0 28.0 120 255 40.0
Ga 22.0 18.0 18.0 22.0 10.0 20.0 21.0 17.0 16.0 15.0 16.0 16.0 13.0 21.0 19.0 19.0 22.0 24.0 18.0
Nb 6.00 13.0 2.00 14.0 5.00 12.0 13.0 < 2.0 15.0 6.00 28.0 15.0 13.0 6.00 5.00 15.0 21.0 12.0 6.00
Ni 22.0 < 10 23.0 < 10 38.0 17.0 < 10 35.0 < 10 15.0 < 10 < 10 < 10 16.0 14.0 23.0 101 98.0 28.0
Rb < 10 10.0 < 10 < 10 31.0 < 10 < 10 < 10 37.0 < 10 73.0 106 79.0 < 10 < 10 < 10 51.0 < 10 < 10
Sr 990 1924 187 891 325 698 1064 267 488 324 449 444 473 1083 989 703 545 643 619
V 86.0 107 192 84.0 73.0 91.0 22.0 134 30.0 110 43.0 35.0 12.0 61.0 121 78.0 279 187 385
Y 14.0 21.0 21.0 19.0 18.0 18.0 < 10 24.0 20.0 19.0 34.0 12.0 10.0 12.0 14.0 19.0 39.0 36.0 28.0
Zn 63.0 62.0 67.0 77.0 103 64.0 10.0 49.0 24.0 43.0 25.0 21.0 4.00 39.0 51.0 56.0 174 143 115
Zr 85.0 211 94.0 187 195 94.0 136 133 204 136 115 148 90.0 262 199 198 226 116 70.0
Norm(wt%)Ilm 0.86 1.32 1.38 1.34 0.45 1.06 0.05 1.20 0.09 1.00 0.11 0.09 0.03 0.36 0.95 0.41 3.25 2.32 2.17
Ttn 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.69 0.00 0.70 0.35 0.00 0.82 0.00 0.96 0.00 0.00 0.00
Di 6.74 5.10 8.90 7.16 27.17 5.64 0.47 5.79 1.82 4.55 0.85 0.35 0.00 1.58 4.72 2.70 6.8 12.19 13.45
Hy 2.22 3.03 13.39 3.54 6.47 4.10 0.76 9.64 1.22 4.79 0.95 1.11 0.40 2.90 3.60 3.31 0.00 0.00 0.00
Ol 2.19 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00 13.2 12.9 13.74
ASI=Al/Na+K+Ca 0.87 0.84 0.79 0.82 0.51 0.81 0.97 0.83 0.92 0.86 0.94 0.97 1.04 0.94 0.89 0.88 0.82 0.74 0.72
AI=Na+K/Al 0.43 0.63 0.30 0.62 0.33 0.43 0.63 0.75 0.65 0.45 0.69 0.78 0.74 0.43 0.45 0.39 0.41 0.34 0.43

Gran. – Granitoid; Leuc. – Leucosome; Meso. – Mesosome. ∗Fe total as Fe2O3.
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Table 3. Representative mineral analyses from the Takab granitoids

Quartz diorite (sample R29-G) Granodiorite (sample R-51-A)

Mineral Amp Amp core Amp rim Pl Pl rim Pl core Cpx Cpx Cpx Ttn Ttn Ilm Amp core Amp rim Amp Pl core Pl Pl rim Ep

SiO2 45.48 44.40 46.07 55.74 58.74 55.76 50.49 54.21 53.71 29.92 30.64 0.00 44.17 46.02 48.58 59.03 62.96 62.16 36.50
TiO2 1.63 5.38 0.58 0.00 0.02 0.04 0.26 0.24 0.08 36.80 38.28 53.01 1.07 0.44 0.24 0.01 0.01 0.00 0.06
Al2O3 10.47 7.44 10.57 29.14 27.23 29.09 6.43 0.35 1.41 1.54 1.41 0.00 10.05 8.28 6.11 26.53 24.43 24.54 22.69
Cr2O3 0.23 0.19 0.19 0.06 0.00 0.00 0.16 0.01 0.06 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00
FeO 14.03 12.97 14.23 0.08 0.06 0.01 13.48 6.57 7.87 1.47 0.71 29.97 17.91 18.30 17.23 0.07 0.07 0.01 0.00
MnO 0.27 0.26 0.27 0.01 0.01 0.00 0.32 0.31 0.31 0.10 0.07 17.05 0.49 0.49 0.50 0.00 0.00 0.00 0.17
MgO 13.20 11.84 13.45 0.00 0.00 0.00 15.59 15.51 14.52 0.00 0.00 0.03 11.17 11.58 12.79 0.00 0.01 0.00 0.03
CaO 11.94 14.30 12.20 10.35 8.37 10.49 12.66 24.52 23.83 27.05 27.89 0.00 11.53 11.72 11.81 7.61 4.84 4.83 23.11
Na2O 1.38 0.72 1.20 6.04 7.49 6.20 0.72 0.22 0.50 0.00 0.00 0.00 1.46 1.02 0.90 7.69 9.46 9.70 0.00
K2O 1.05 0.67 1.02 0.19 0.18 0.18 0.31 0.01 0.00 0.00 0.00 0.00 1.19 0.70 0.44 0.28 0.20 0.18 0.00
Sum 99.60 98.47 99.81 101.60 102.00 101.77 100.42 101.71 102.00 96.88 99.00 100.05 99.00 98.50 98.60 101.20 101.90 101.40 96.90
F 0.15 0.26 0.12 0.27 0.00 0.14 0.24 0.19 0.28 0.00 0.00 0.00 0.51 0.29 0.17 0.03 0.08 0.17 0.07
Cl 0.04 0.04 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.02 0.00 0.01 0.03 0.00
(O) 23 23 23 8 8 8 6 6 6 5 5 3 23 23 23 8 8 8 12.50
Si 6.51 6.57 6.56 2.47 2.58 2.74 1.86 1.97 1.95 1.00 1.00 0.00 6.46 6.73 7.03 2.61 2.74 2.74 2.94
Al 1.76 1.33 1.77 1.52 1.41 1.52 0.28 0.02 0.05 0.06 0.05 0.00 1.73 1.42 1.04 1.38 1.25 1.25 2.13
Fe3+ 0.61 0.00 0.72 0.00 0.00 0.00 0.05 0.07 0.08 0.04 0.02 0.00 0.86 0.95 0.86 0.00 0.00 0.00 0.95
Fe2+ 1.07 1.64 0.97 0.00 0.00 0.00 0.37 0.13 0.16 0.00 0.00 0.65 1.33 1.28 1.23 0.00 0.00 0.00 0.00
Ti 0.17 0.60 0.06 0.00 0.00 0.00 0.01 0.01 0.00 0.93 0.95 1.00 0.12 0.05 0.03 0.00 0.00 0.00 0.00
Cr 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mn 0.03 0.03 0.03 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.34 0.06 0.06 0.06 0.00 0.00 0.00 0.01
Mg 2.82 2.61 2.85 0.00 0.00 0.00 0.86 0.84 0.79 0.00 0.00 0.00 2.44 2.51 2.76 0.00 0.00 0.00 0.00
Ca 1.83 2.27 1.86 0.49 0.39 0.50 0.50 0.95 0.93 0.98 0.99 0.00 1.81 1.83 1.83 0.36 0.23 0.22 1.97
Na 0.38 0.21 0.33 0.52 0.64 0.53 0.05 0.02 0.03 0.00 0.00 0.00 0.41 0.29 0.25 0.66 0.80 0.82 0.00
K 0.19 0.13 0.18 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.22 0.13 0.08 0.02 0.01 0.01 0.00
Sum 15.40 15.37 15.38 5.02 5.03 5.03 4.00 4.02 4.00 3.01 3.01 1.99 15.44 15.25 15.16 5.03 5.03 5.04 8.00
Al[IV] 1.49 1.29 1.44 – – – 0.14 0.02 0.05 0.00 0.00 – 1.54 1.27 0.97 – – – –
Al[VI] 0.27 0.03 0.33 – – – 0.14 0.00 0.00 0.01 0.05 – 0.19 0.15 0.07 – – – 0.06
Mg/Mg+Fe 0.72 0.61 0.75 – – – 0.94 0.92 0.79 – – – 0.65 0.66 0.69 – – – 2.07
Al/Al+Fe3++Cr3+ 0.73 0.98 0.71 – – – 0.85 0.22 0.12 – – – 0.67 0.60 0.55 – – – –
(K+Na)A 0.41 0.34 0.38 – – – – – – – – – – – – – – – 0.69
Na/Na+K+Ca 0.16 0.08 0.14 0.51 0.61 0.51 0.09 0.02 0.03 0.00 0.00 – 0.09 0.13 0.12 0.64 0.77 0.77 –
K/Ca+K+Na 0.08 0.05 0.08 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 – 0.17 0.06 0.03 0.02 0.01 0.01 –
Ca/K+Na+Ca 0.76 0.87 0.78 0.48 0.38 0.48 0.89 0.98 0.97 1.00 0.00 – 0.74 0.81 0.85 0.35 0.22 0.22 –

Amp – amphibole; Pl – plagioclase; Cpx – clinopyroxene; Ttn – titanite; Ilm – ilmenite; Ep – epidote.
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Figure 5. Geochemical classification of the granitoids. (a) Total alkalis v. silica diagram (Middlemost, 1994). (b) Major element
discrimination diagrams of Frost et al. (2001). The analysed rocks range from alkali-calcic, calc-alkali to calcic rock series. (c) A/CNK
v. SiO2 (wt %) diagram (Chappell & White, 1974). (d) Plot of A/NK v. A/CNK for the granitoids and migmatitic leucosome in the
Takab area. A/NK = molar ratio of Al2O3/(Na2O+K2O); A/CNK = molar ratio of Al2O3/(CaO+Na2O+K2O). The analysed rocks
indicate dominantly metaluminous characteristics. The leucosome compositions are presented for comparison.

amphiboles are calcic using the classification of Leake
et al. (1997) ((Ca+Na)(M4) ≥ 1.34; Na(M1) < 0.67).
Core compositions are different, having higher TiO2

content. Hornblende inclusions in plagioclase have
chemical compositions indistinguishable from the core
compositions of the hornblende within the rock. The
Ti content of amphiboles from the granodiorite is
low compared to that of the quartz diorite. On the
classification diagram of Leake et al. (1997), the am-
phibole compositions are consistent with tschermakite
and hornblende with minor amounts of edenite and
tremolite end-members. Secondary tremolite has high
Mg and Si and low Al contents.

6.c. Clinopyroxene

Representative clinopyroxene analyses from the quartz
diorite are shown in Table 3. The clinopyroxene has
mainly high MgO (14.50–15.60 wt %), FeO (6.5–
13.5 wt %) and CaO (12.60–24.60 wt %) concentra-
tions but it is low in TiO2 (< 0.26wt %) and Na2O
(< 0.75 wt %) contents. In the classification diagram
of Morimoto et al. (1988), the analysed clinopyroxenes
plot in the ‘Quad’ field. Their compositions vary

in the range of En42–44Fs7–9Wo48–50. Clinopyroxene
compositions on En–Fs–Wo diagram (after Deer,
Howie & Zussman, 1978) are diopside. On the basis
of the Ti content, clinopyroxenes from the Takab area
plot in the low- and very low-Ti field of the diagram
by Beccaluva et al. (1989). Plotting on diagrams of Ti
(a.p.f.u.) against Ca+Na (a.p.f.u.) and Al2O3 against
silica content (Fig. 9) shows a sub-alkaline character
for the quartz diorite.

6.d. Titanite

Analysed titanite from the quartz diorites has Ti
and Ca contents of 0.94 (a.p.f.u.) and 0.99 (a.p.f.u.),
respectively. Al concentration is also low (0.06 a.p.f.u.).
ZnO and Cr2O3 contents are very low (0.07 and 0.05 to
0.10 wt %, respectively).

6.e. Epidote

The structural formula is calculated for 8 cations and
12.5 oxygens (Table 3). All iron is considered as Fe3+.
Al occupies the tetrahedral site only in small amounts
(up to 0.06 a.p.f.u.). AlVI/(AlVI+Fe3+) is 0.69. The
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Figure 6. Trace element variations for the granitoids from the Takab area. For details see text.

Figure 7. (a) Rb/Zr v. SiO2 diagram (Harris, Pearce & Tindle, 1986) discriminating I-and A-types granitoids from S-type rocks. (b) Zr
v. SiO2 diagram of Collins et al. (1982). Both verify I-type nature for the analysed rocks.
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Figure 8. Primitive mantle-normalized element patterns for
the granitoids from the Takab area. Normalization factors are
after Sun & McDonough (1989). The migmatitic leucosome
compositions are presented for comparison.

mean composition of the end-members in the analysed
epidote from the granodiorite is Cz11Ep79Fe–Ep10.

6.f. Ilmenite

The structural formula is calculated on the basis
of 2 cations and 3 oxygens (Table 3). All iron is
considered as Fe2+. Ilmenite (FeTiO3) and pyrophanite
(MnTiO3) are the dominant end-members, whereas the
end-member geikielite (MgTiO3) is absent. The mean
composition of the analysed ilmenite from the quartz
diorite is Ilm63Prh36.

Table 4. Mole fraction and ideal activity expressions used for
clinopyroxene geobarometry in the quartz diorite

Clinopyroxene activity–composition relationships (Wood, 1979)

Cation assignment (recalculated on the basis of 6 oxygens)
AlIV = 2−Si
XM1Al = Al−IVAl
XM2Ca = Ca
XIVSi = Si/2
XIVAl = (2−Si)/2
aCaTsCpx = 4.XM2Ca.XM1Al.XIVAl.XIVSi
Plagioclase activity–composition relationships (Holland & Powell,
1992)
XAn = Ca/(Ca+Na+K)
Xb = 0.12+0.00038.T
XAn(2Tmodel) = [XAn(1+XAn)21]/4
IAn = −RTLn(XAn(2T)/XAn)−(Wc−Wi)91−Xb)2

Wc = 1070.0 J mol−1, Wi = 9790.0 Jj mol−1

aAn(2T)
Pl = XAn(2T).exp{1/RT[Wc(1−XAn)2+IAn]}

T – temperature in K.

7. Magmatic and subsolidus pressures and
temperatures estimates

The composition of clinopyroxene was used to determ-
ine the crystallization pressure in quartz diorite, based
on the McCarthy & Patiño Douce (1998) barometer
which is calibrated for P–T ranges of ≥ 4 kbar and
≥ 700 ◦C. The crystallization pressure obtained for the
quartz diorite is 7.8 (±2.5) kbar, which is consistent
with a depth of about 24 km, reflecting crystallization
at a crustal level. The activity of the Ca-tschermak
component in clinopyroxene was calculated with the
ideal activity model. Table 4 shows mole fraction and
ideal activity expressions used for pressure estimations
by the clinopyroxene barometer of McCarthy & Patiño
Douce (1998).

The significant exchange vector for amphiboles
from the Takab granodiorites is Al2

IV�AMgVISiIV

(Na,K)−1
A(Fe3+, Al)−1

VI indicating a combination of
both the pressure- and temperature-sensitive substi-
tutions. Applying the Al in amphibole barometers
of Hollister et al. (1987) and Johnson & Rutherford
(1989) (considering the proper amphibole formula

Figure 9. (a) Ti (a.p.f.u.) against Na+Ca (a.p.f.u.) diagram (Leterrier et al. 1982). (b) Sub-alkaline characteristic of the granitoids on
the SiO2 (wt %)–Al2O3 (wt %) diagram. The positions of boundaries between sub-alkaline, alkaline and peralkaline magma types are
from Le Bas (1962).
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Table 5. Estimated temperatures and pressures for the Takab granitoids

Sample number Representative rock type Magmatic crystallization Subsolidus re-equilibrium

R51-A Granodiorite T ∼ 790 +75 ◦C (B&H), 700 ◦C (O) T ∼ 620 ◦C (O)
P ∼ 4.8(±3) kbar P ∼ 3.6(±3) kbar (H&Z), 3.6(±1) kbar (H),
(H&Z), 5(±1)kbar (H), 4.3 kbar (J&R) 3.3 kbar (J&R)

R29-G Qtz-diorites T ∼ 820 ±75 ◦C (B&H), 760 ◦C (O) T ∼ 600 ◦C (O)
P ∼ 7.8(±2.5) kbar (M&P) P ∼ 5.6(±3) kbar (H&Z), 6(±1) kbar (H),

5.1 kbar (J&R)

B&H – Blundy & Holland, 1990; O – Otten, 1984; H&Z – Hammarstrom & Zen, 1986; H – Hollister et al. 1987; M&P – McCarthy &
Patiño Douce, 1998; J&R – Johnson & Rutherford, 1989.

calculation for 13eCNK cations (13 cations excluding
Ca, Na, and K) and 23 oxygens) yields crystallization
pressure of P ∼ 5 (±1) kbar (Hollister et al. 1987) and
P ∼ 4.3 (±1) kbar (Johnson & Rutherford, 1989) for
the granodiorites. The aluminium in the amphibole
geobarometer of Hammarstrom & Zen (1986) gives a
pressure of 4.8 (±3) kbar. The estimated crystallization
pressure for the granodiorites is consistent with the
emplacement at a depth of about 13–15 km. Within
the uncertainty limits of the estimated pressures,
the existence of primary magmatic epidote in the
paragenesis of the Takab granodiorites and quartz
diorites supports the estimated pressures, since epidote
in magmatic rocks crystallizes at 6–8 kbar (e.g.
Naney, 1983; Zen & Hammarstrom, 1984, 1988).
Subsolidus recrystallization pressure of the quartz
diorite is determined using the Al barometer for the
composition of the secondary amphibole, which grows
around clinopyroxene. It is about 5 kbar (Table 5).
Al barometry for the amphibole rim composition of
the granodiorite yields a subsolidus pressure of about
3 kbar (Table 5).

Crystallization temperatures of the investigated
rocks were calculated for the core composition of the
amphiboles, using the plagioclase–amphibole calibra-
tion of Blundy & Holland (1990) as a reliable method
for geothermometry of granitoids (Moazzen & Droop,
2005), given that the reported uncertainty for Blundy &
Holland’s (1990) calibration is ± 75 ◦C (T ∼ 850 ◦C
± 75 ◦C for the quartz diorites and T ∼ 790 ◦C ± 75 ◦C
for the granodiorites). Estimated temperatures using
the Ti content of amphibole, calibrated by Otten (1984),
are consistent with crystallization at T ∼ 760 ◦C and
T ∼ 700 ◦C for the quartz diorite and the granodiorite,
respectively. The Ti content of the analysed amphiboles
in the quartz diorite and the granodiorite decreases
towards the rim. The Ti content of amphibole rims using
the Otten (1984) method gives subsolidus temperatures
of 620 ◦C and 600 ◦C for the quartz diorites and the
granodiorites, respectively. A study by Stern, Huang &
Wyllie (1975) showed that the solidus temperature
for andesitic melt is about 700 ◦C at 3 kbar under
water-saturated conditions. Since the studied rocks
here are more mafic than andesite, it is more likely
that they had higher solidus temperatures, therefore
the calculated temperatures indicate subsolidus re-
equilibration conditions.

8. Discussion and conclusions

Mineralogical characteristics (Ishihara, 1977; Whalen
& Chappell, 1988; Vyhnal, McSween & Speer, 1991)
were used to verify the I-type magmatic series for
the Takab granitoids. Some obvious mineralogical
indications supporting the I-type character of the
Takab granitoids are: (1) amphibole is the dominant
constituent mafic mineral, (2) minor titanite and epidote
occur in textural equilibrium with plagioclase and
hornblende with a granular texture, (3) magnetite and
ilmenite are the accessory opaque phases, (4) Al-rich
mineral phases such as garnet and muscovite are absent
in the investigated rocks, (5) the modal percentage of
plagioclase is greater than K-feldspar and quartz.

The granitoids show a low aluminium saturation
index (ASI), low concentration of SiO2 and high FeO,
MgO and CaO contents, which are typical features for I-
type granitoids. The K2O content varies from low-K to
high-K series (Rickwood, 1989). The low K2O content
in some of the analysed granitoids can be explained
by the K2O-poor nature of the source. Low Nb, Y, K2O
values and FeOt/(FeOt+MgO) < 0.75 for the granitoids
in the Takab area are analogous values to those of calc-
alkaline rocks (Guimarães et al. 1998; Guimarães &
Da Silva Filho, 2000).

Furthermore, the high-Si and low-Ti contents of the
analysed clinopyroxenes characterize the sub-alkaline
nature of the magmatic rocks (e.g. Nisbet & Pearce,
1977; Moazzen & Oberhansli, 2008). This feature may
have two interrelated explanations: (1) high aSiO2 in
the sub-alkaline magma causes a high proportion of
Si and hence a low proportion of Al in the tetrahedral
site of clinopyroxene, the charges being balanced by a
low proportion of Ti in the octahedral site (Nisbet &
Pearce, 1977); (2) low contents of Ti may reflect the
crystallization history of the melt (probably the earlier
crystallization of pyroxene in relation to plagioclase or
early crystallization of magnetite and/or slow rates of
cooling: e.g. Nisbet & Pearce, 1977). Ti and Al contents
of clinopyroxene are related to the silica activity of the
melt from which they crystallized (Kushiro, 1960; Le
Bas, 1962). Therefore, low Ti contents in the analysed
clinopyroxenes may characterize silica-saturated sub-
alkaline magmas (Verhoogen, 1962).

The geochemical variations of the Takab granit-
oids indicate that they were probably generated by
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fractionation of basic to intermediate calc-alkaline
compositions (e.g. Hall, 1987; Opiyo-Akech, Tarney &
Hoshino, 1999). The overall decrease in FeOt and MgO
contents of the Takab granitoids while SiO2 increases
can be related to the fractionation of the mafic minerals,
mainly hornblende. The Mg no. (Mg/(Mg+Fe)) of
the granitoids, ranging from 25 to 65, may support
this. Compatible elements such as Cr and Co are
strongly depleted in the silicic rocks, indicating lower
abundance of mafic minerals (Fig. 6). The decrease of
TiO2 content in the silicic compositions is more likely
due to crystallization of accessory minerals such as
titanite/rutile from the melt. The decrease of V content
with increasing SiO2 (Fig. 6) suggests fractionation
of Fe–Ti oxides. Negative correlation between Ca and
Sr versus SiO2 indicates crystallization of plagioclase
during differentiation. The steady increase in Rb and
K2O concentrations precludes alkali feldspar fractiona-
tion in the intermediate compositions. The P2O5 versus
SiO2 array displays an abrupt change in concentration
of P2O5 in the intermediate compositions, which may be
explained by the crystallization of apatite. The variation
of Zr content, with respect to SiO2 variation, is not
systematic (Fig. 6).

The major and trace element behaviour for the
migmatitic leucosomes is similar to the trends defined
by the granitoids (Fig. 6).

Primitive mantle normalized trace element patterns
for the Takab granitoids are shown in Figure 8. The
leucosome composition is also plotted to compare the
results. Ba anomalies and relatively high K in these sets
of rocks (Fig. 8) can be attributed to release of these
elements from hornblende and/or rare K-feldspar in
the source materials during partial melting (Rollinson,
1993). The Sr anomaly probably indicates contribution
of plagioclase as a dominant phase in the magma
evolution. Negative anomalies of P and Ti indicate
involvement of apatite and rutile as residual phases in
the magma source. Negative Nb and Ti anomalies in the
rocks can be considered as characteristic of the crustal
source and/or subduction-related magmatic effects, that
is, fluids (or melts) derived from subducted sediments
(Saunders, Tarney & Weaver, 1980).

8.a. Tectonic setting

In order to find the tectonic setting for the granitoid
magmatism in the Takab area, the compositions of
the granitoids and the leucosomes of migmatites are
plotted on appropriate diagrams. Both the granitoids
and leucosome parts of the migmatites show affinities
with volcanic arc granitoids (VAG) and syn-collisional
granitoids (syn-COLG) (Fig. 10a, b). The same result
is reached on the basis of major elements (FeO, MgO
and CaO wt %; Maniar & Piccoli, 1989), indicating
geochemical affinities similar to volcanic arc and
collisional granitoids (Fig. 10c). Most of the granitoids
and migmatitic leucosomes plot in the collision field
of the Zr versus (Nb/Zr)N diagram of Thiéblemont &
Tégyey (1994) (Fig. 10d). The collisional setting for

the studied granitoids cannot be proved unequivocally
and the volcanic arc origin cannot be ruled out easily,
but considering what is shown in Figure 10d, a
collisional setting for them is more likely. In addition,
the geochemical volcanic arc features can be attributed
to the nature of the materials inherited from previous
arc-related protoliths.

8.b. Crustal source material

Some field geological features such as the limited
volume of the granitoids and the lack of mantle
xenoliths, as well as the existence of metabasic enclaves
in the magmatic rocks and existence of the mafic
migmatites, lead to the proposition that the investigated
granitoids generated from partial melting of a crustal
source and are not mantle derived.

Chemically, the crustal source for the investigated
granitoids is deduced from their Nb/Y versus Rb/Y
data (Fig. 11a). The granitoids in the study area have
predominantly low Rb/Nb values (0.3–3.0) and plot
close to the lower crust values (Rudnick & Fountain,
1995) (Fig. 11a). High concentrations of CaO, MgO
and FeOt and low K2O/Na2O values classify the source
of the investigated rocks as metabasites. To constrain
the source material, they were plotted in the partial
melts from the metabasaltic source field diagram of
Altherr & Siebel (2002) (Fig. 11b–d). The ternary
plot of CaO–ASI/30–2K2O (molar) (Christofides et al.
2007) verifies the results.

8.c. Tectonic model for the Takab complex

Geological and lithological characteristics of the Takab
metamorphic complex show affinities to the Central
Iran micro-continent (Hajialioghli et al. 2007a). An
intrusion age of the gneiss in the Takab complex is
dated at 560 Ma (U/Pb zircon: Stockli et al. 2004),
which is similar to a U/Pb date from basement rocks of
the Saghand area in the Central Iran Zone (Ramezani
& Tucker, 2003), related to the Pan-African orogeny.
Migmatization of the metamorphic rocks in both
the Takab area (U/Pb zircon dating, c. 25 Ma: R.
Hajialioghli, unpub. Ph.D. thesis, Univ. Tabriz, 2007;
Moazzen & Hajialioghli, 2008) and the Central Iran
Zone (U/Pb zircon dating, c. 40 Ma: Ramezani &
Tucker, 2003) occurred in relation to the Alpine
orogeny. If, as we have argued, the Takab metamorphic
basement correlates with equivalent rocks in the
Central Iran Zone, it seems reasonable to compare
granitoids in the study area with those in the Central
Iran Zone related to the subduction of Neo-Tethys
oceanic crust during Alpine orogeny. Considering the
field evidence as well as U/Pb isotope geochemistry
ages of the mafic migmatites from the Takab area
(c. 25 Ma; R. Hajialioghli, unpub. Ph.D. thesis, Univ.
Tabriz, 2007), a Tertiary age for the Takab granitoids
is very likely. Although the accurate timing of collision
between the Arabian plate and the Iranian block and
associated magmatic activity is highly controversial
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Figure 10. (a, b) Discrimination diagrams of Y v. Nb and SiO v. Y (wt %) (after Pearce, Harris & Tindle, 1984) classify the Takab
granitoids as volcanic arc and syn-collisional rocks. VAG – volcanic arc granitoids; COLG – collisional granitoids; syn-COLG –
syn-collisional granitoids; ORG – ocean ridge granitoids; WPG – within-plate granitoids. (c) Major discrimination diagram of Maniar
& Piccoli (1989), indicating geochemical affinities similar to volcanic arc and collisional granitoids. (d) On the Zr v. (Nb/Zr)N diagram
(Thiéblemont & Tégyey, 1994) the granitoids from the study area mostly plot in the continental collision field. Volcanic arc features
in some samples are most likely related to the features inherited from previous arc-related protoliths. The migmatitic leucosomes are
presented for comparison. A – volcanic and plutonic rocks from subduction zones (island arcs or continental margins) setting; B – rocks
emplaced in continent–continent collision zone; C – lavas and plutons from within-plate continental alkaline to transitional provinces
and oceanic islands; D – peraluminous rocks of continent–continent collision zones. Nb/Zr ratio normalized to the primordial mantle
value (Hoffman, 1988). IAG – island arc granitoids; CAG – continental arc granitoids; CCG – continental collision granitoids; POG –
post-orogenic granitoids; RRG – rift-related granitoids; CEUG – continental epeirogenic uplift granitoids; OP – oceanic plagiogranites.

(see Section 1), recent studies based on structural and
metamorphic data suggest that continental collision
occurred during Oligocene times (Agard et al. 2005).
Widespread Neogene volcanic activities related to the
extensional phase of the Alpine orogeny and U/Pb data
from the migmatites provide evidence that the time of
collision was Oligocene in the Takab area.

The heat required for partial melting of the crustal
rocks may have been supplied from two possible
sources. (1) The first is upwelling of mantle plume and
advective heating of the crust by deep-seated magma
chambers. This can occur in an extensional system
with lithospheric thinning (breaking-off of a downward
oceanic slab) or may be related to delaminating events
in the area (e.g. Ghasemi & Talbot, 2006). Such a
model requires crystallization of an unreasonably large
volume of mafic magma generated after cessation
of subduction and crustal thickening, which is in

disagreement with the scarcity of exposed mafic suites
in the study area and so is ruled out on the basis
of field and lithological evidence in the Takab area.
(2) The heat required for partial melting of the crust
has been provided by the continental collision causing
crustal thickening (e.g. Agard et al. 2005). The second
possibility seems to be responsible for generation of
the metaluminous granitoids in the Takab area. The
ultimate nature of the crustal materials involved and
melting conditions are significant factors which caused
formation of the collisional sub-alkaline granitoids in
the study area.

Melting experiments on basalts demonstrate that
H2O-saturated melting occurs between 750 ◦C and
800 ◦C at 5 kbar (Helz, 1976). Rapp (1995) stated that
melts formed by dehydration melting of amphibolites
are increasingly metaluminous beyond the amphibole-
out boundary. Studies by Jung, Hoernes & Mezger
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Figure 11. (a) Nb/Y v. Rb/Y diagram for the Takab granitoids. The lower and middle crustal compositions are from Rudnick &
Fountain (1995), and the upper crustal compositions are from Taylor & McLennan (1985). (b–d) According to Altherr & Siebel (2002),
high concentrations of CaO and low K2O/Na2O ratio classify parental rocks as metabasalts. The fields on the diagram are chemical
composition of melts from experimental studies of dehydration melting.

(2002), Saleh, Dawood & Abdel-Naby (2002) and
Suda (2004) indicate that dehydration melting of
amphibolites at temperatures of 900 ◦C –1100 ◦C
produces 10–60 % mafic magma (SiO2 ∼ 50 wt %) to
form tonalite, depending on bulk composition. Based
on the experimental data, production of magma with
compositions analogous to that of the Takab granitoids
takes place under dehydration melting conditions due to
hornblende breakdown in amphibolites at a temperature
of 900 ◦C and a pressure range of 5–10 kbar (cf. Wolf &
Wyllie, 1991; Wyllie & Wolf, 1993; Rushmer, 1991).
Considering field evidence and analogous geochemical
characteristics and P – T relations between the
granitoids and the migmatitic leucosomes, it seems
that the melt which originated from the partial melting
of metabasites may have accumulated and the calc-
alkaline granitoids of the Takab area have been formed
from this melt.
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