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SUMMARY
This paper proposes a novel design of a reconfigurable
parallel kinematic manipulator used for a machine tool. After
investigating the displacement and inverse kinematics of the
proposed manipulator, it is found that the parasitic motions
along x-, y-, and θz-axes can be eliminated. The system
stiffness of the parallel manipulator is conducted. In order to
locate the highest system stiffness, single and multiobjective
optimizations are performed in terms of rotation angles in x-
and y-axes and translation displacement in z-axis. Finally, a
case study of tool path planning is presented to demonstrate
the application of stiffness mapping. Through this integrated
design synthesis process, the system stiffness optimization
is conducted with Genetic Algorithms. By optimizing the
design variables including end-effector size, base platform
size, the distance between base platform and middle moving
platform, and the length of the active links, the system
stiffness of the proposed parallel kinematic manipulator has
been greatly improved.

KEYWORDS: Design; Parallel manipulators; Stiffness
optimization; Stiffness control; Kinematic modeling.

1. Introduction
A serial robot is an open-loop mechanical arm consisting of a
number of links connected with prismatic or revolute joints,
which is very commonly used in industry. One of the most
significant advantages of serial robots is the large workspace.
However, they still have some unavoidable drawbacks, such
as the low stiffness due to the open-loop mechanism, errors
accumulated by joints, and the heavy actuators’ weight they
have to carry while working. In the contrary, a parallel
manipulator has closed-loop kinematic chains to connect an
end-effector platform and a base by at least two kinematic
chains.1 The parallel kinematic manipulators have significant
advantages over traditional serial robots.2,3 First of all, the
actuators can be mounted on the base, which can significantly
reduce the moving mass, resulting in higher load capacity.
Furthermore, parallel manipulators have higher stiffness,
since the end-effector is supported by several legs. Parallel
manipulators also have higher accuracy, since there is no
error accumulation.4 However, the main disadvantage of the
parallel manipulators is the limited workspace.
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Research and development in parallel robotic machines
generally focus on 6 degrees of freedom (6-DOF) and
recently focus more on 3-DOF manipulators. The former
study is based on the Steward platform.5,6 Since most
machining tasks require a maximum of five axes, 3-
DOF parallel robotic machine design with three axes is
becoming popular. Combination of a 3-DOF structure with
a gantry system forms a five-axis machine with both large
workspace and dexterity. Therefore, more and more 3-DOF
parallel manipulators have been proposed in recent years.
There are structures with 3-PUU (for prismatic, universal,
and universal joints),7 3-UPU (for universal, prismatic,
and universal joints),8 3-PRS (for prismatic, revolute, and
spherical joints),9–12 and 3-CRR (for cylindrical, revolute,
and revolute joints),13 etc. Among which the 3-PRS becomes
one of the popular designs since it provides two rotational
and one translational motions. Li and Xu9–12 have done an
intensive research on 3-PRS parallel manipulator. However,
research on a 3-PRS reconfigurable parallel manipulator is
quite few.

Reconfigurable manufacturing system is designed at the
outset for rapid change in structure, as well as in hardware and
software components, in order to quickly adjust production
capacity and functionality.14 In general, the reconfigurability
of Parallel Kinematic Machines (PKM) system can be
realized at modular level, which is the idea using one or
more off the shelf modules to configure different structures
or even a manufacturing cell15,16 and its configuration design
includes the selections of modules and the determination
of geometric dimensions in some specific modules.17,18 In
contrast to the modular reconfigurable system, the continuous
reconfigurable system has an adjustable mechanical system,
which can provide continuous various configurations to the
parallel kinematic manipulator. Apart from its low cost, high
flexibility, good dynamics, and large workspace, it is also
desirable that the continuous reconfigurable PKMs will not
have many modular parts and do not need to be reinstalled. In
this paper, the reconfigurable manipulator is implemented by
a middle moving platform driven by motors, thus to provide
continuous configurations.

Stiffness is one of most important performance
specification of parallel kinematic machines (PKM)
particularly for the use of machine tools.19–21 Therefore, it
is quite necessary to perform the stiffness modeling and to
evaluate the PKM in the early design stage.22 In this paper, the
stiffness models are established based on inverse kinematics,
and stiffness optimization is discussed.
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Fig. 1. (Colour online) 3-DOF reconfigurable parallel kinematic manipulator.

Fig. 2. (Colour online) Simplified schematic diagram of a 3-DOF
reconfigurable PKM.

2. Design Description of a Reconfigurable Parallel
Kinematic Machine
The Compter-Aided Design (CAD) model of a 3-PRS PKM is
shown in Fig. 1. This manipulator consists of a fixed base and
two mobile platforms. Among the two mobile platforms, the
bottom one is a end-effector. The motions of the end-effector
are generated by three motors with leadscrews mounted
between the base platform and middle mobile platform
connected by three legs having PRS. This is a traditional
PRS manipulator design. The spindle located in end-effector
can hold various tools for drilling, milling, or deburring.

In traditional design, the middle platform is always fixed,
but in this novel design, the middle mobile platform is
actuated by a motor mounted on the top of the base
platform, which can create different configurations of the
PKM. When this manipulator is do drilling, milling, or
deburring, generally the top motor is not working, only the

Fig. 3. Simplified schematic diagram of the reconfigurable drive
section.

three side motors give the motions the manipulator, which can
enable specify inverse kinematics, workspace, and stiffness
mapping. But if various workspace and stiffness mapping
are required, the top motor can adjust the displacement
between base platform and middle mobile platform, which
give various angles of the three motors. Compared with
traditional modular reconfigurable PKM, this novel design
can provide continuous reconfiguration of this PKM and get
rid of reinstallation.

3. Kinematic Analysis

3.1. Displacement representation
As shown in Fig. 2, this system can be simplified into a
simple 3-RPS (for revolute, prismatic, and spherical joints)
parallel manipulator, which has two platforms including the
adjustable middle platform expressed by N1N2N3 and the
end-effector labeled by P1P2P3. The coordinate system of
the inertial frame is denoted as On − XnYnZn, in which
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Fig. 4. (Colour online) Parasitic motion along X-axis.

Yn-axis is aligned with the OnN2, and while those of the
moving frame is labeled by Op − XpYpZp where Yp-axis is
coincident with the point P2.

The following parameters define other details of the
structure:

� αi and βi define the OiNi and OiPi directions, which are
measured from xn and xp.

� ln and lp are denoted by the sizes of the base and end-
effector platform.

� α is the direction of actuators to the base platform.
� l1i is the length of the active link.

The simplified schematic diagram of the reconfigurable
drive section is represented in Fig. 3. The displacement
between base platform B1B2B3 and middle platform N1N2N3

is denoted by d, which is actuated by a prismatic
actuator, and the radius of the middle platform is rn. The
relationship between reconfigurable displacement d and
system parameters angle γ and link length li2 can be revealed
by Eq. (1) from Fig. 3

γ = arccos
d

2li2
. (1)
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Fig. 5. (Colour online) Parasitic motion along Y-axis.
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Fig. 6. (Colour online) Parasitic motion along θz.

The motion of end-effector of Op can be denoted by
(θx, θy, θz, xp, yp, zp), where θx, θy, θz are the rotations and
xp, yp, zp are the translations. The rotation representation is
defined as (1) rotation by an angle θz about z-axis followed
by (2) rotation by an angle θy about y-axis, and (3) rotation
by an angle θz about z-axis. This yields the rotation matrix:

Rp = Rp(x, θ)Rp(y, θ)Rp(z, θ),

=

⎡
⎢⎣

1 0 0

0 cθx −sθx

0 sθx cθx

⎤
⎥⎦
⎡
⎣ cθy 0 sθy

0 1 0

−sθy 0 cθy

⎤
⎦
⎡
⎣cθz −sθz 0

sθz cθz 0

0 0 1

⎤
⎦,

=
⎡
⎣ cθycθz −cθysθz sθy

sθxsθy + cθxsθz −sθxsθysθz + cθxcθz −sθxcθy

−cθxsθycθz + sθxcθz cθxsθysθz + sθxcθz cθxcθy

⎤
⎦,

(2)

where c, s denote the cosine and sine functions, respectively.
Therefore, the pose of the end-effector with respect to the
coordinate system op − xpypzp can be expressed as

T n
p =

[
Rp Pp

0 1

]

=

⎡
⎢⎢⎣

cθycθz −cθysθz sθy

sθxsθy + cθxsθz −sθxsθysθz + cθxcθz −sθxcθy

−cθxsθycθz + sθxcθz

0

cθxsθysθz + sθxcθz

0

cθxcθy

0

xp

yp

zp

1

⎤
⎥⎥⎦.

(3)

The location of the connection of the end-effector and link
l1i

pn
pi

= Rppp
pi

+ pn
p, (4)

where pn
pi

is the vector from On, the base platform to Pi . pp
pi

is the Pi point vector from Op, the moving platform
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn
pi

=
[
xn

pi
yn

pi
zn
pi

]T
,

pp
pi

= [lpcβi lpsβi 0 ]T,

pn
p = [xp yp zp ]T,

Rp =

⎡
⎢⎣

cθycθz −cθysθz sθy

sθxsθy + cθxsθz −sθxsθysθz + cθxcθz −sθxcθy

−cθxsθycθz + sθxcθz cθxsθysθz + sθxcθz cθxcθy

⎤
⎥⎦.

(5)

Substituting Eq. (5) to Eq. (4) yields

P n
pi =

⎡
⎣ cθycθz −cθysθz sθy

sθxsθy + cθxsθz −sθxsθysθz + cθxcθz −sθxcθy

−cθxsθycθz + sθxcθz cθxsθysθz + sθxcθz cθxcθy

⎤
⎦

×
⎡
⎣lpcβi

lpsβi

0

⎤
⎦ +

⎡
⎣xp

yp

zp

⎤
⎦. (6)

Therefore,⎡
⎣xn

pi

yn
pi

zn
pi

⎤
⎦

=
⎡
⎣ lpcθycθzcβi − lpcθysθzsβi + xp

lp(sθxsθycθz + cθxsθz)cβi + lp(−sθxsθysθz + cθxsθz)sβi + yp

lp(−cθxsθycθz + sθxcθz)cβi + lp(cθxsθysθz + sθxcθz)sβi + zp

⎤
⎦.

(7)

3.2. Constraint of the revolution joints
The mechanism analyzed above has translation and rotation
motions with respect to the reference frame, and it requires
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Fig. 7. (Colour online) θx stiffness distribution along θx and θy (when z = 500 mm).

six variables, namely, xp, yp, zp, θx, θy, and θz. However,
this PKM is a 3-DOF device as described above that means
there are only three independent parameters chosen as
θx, θy, zp and the others θz, zx, zy are selected as dependant
parameters. These dependant parameters can be found by
the constrain of the revolution joints Di , which means the
points Op, Pi, Di and Ni are in the same plane, which
gives

xn
pi = yn

ei

tan βi

. (8)

From Eq. (7), where

⎧⎨
⎩

xn
pi = lpcθycθzcβi − lpcθysθzsβi + xp,

yn
pi = lp(sθxsθycθz + cθxsθz)cβi

+ lp(−sθxsθysθz + cθxcθz)sβi + yp.

(9)

Thus,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
3lpcθycθz − lpcθysθz + 2xp

−3lp(sθxsθycθz + cθxsθz) − √
3lp(−sθxsθysθz + cθxcθz) + 2

√
3yplpcθysθz + xp = 0,

= 1,

−√
3lpcθycθz + lpcθysθz + 2xp

−3lp(sθxsθycθz + cθxsθz) − √
3lp(−sθxsθysθz + cθxcθz)sβi + 2

√
3yp

= 1.

(10)
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Fig. 8. (Colour online) θx stiffness distribution along θx and z (when θy = 0).

Solving Eq. (10) by xp, yp, θz gives the constraint equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θz = arctan

( −sθxsθy

cθx + cθy

)
,

xp = −
√

3

3
lpcθycθz,

yp =
√

3

6
(cθxcθz − cθyθz − sθxsθysθz).

(11)

The motions along the x, y, and θz can be deemed as
parasitic motions, which occur only specified with θx, θy

and independent with z-axis from Eq. (11). As illustrated in
Fig. 4, when there are rotations about x- and y-axes at range
of −0.2–0.2 radians, the parasitic motion along x is only
from –2 to 2 mm. The similar conclusion of parasitic motion
along y can be revealed from Fig. 5, which shows that when
the rotations about x- and y-axes are −0.2 to 0.2, the motion

along y is from −1 1 mm. Figure 6 shows that at the same
range of rotation motion about x and y, the translation along
z is from −0.01 to 0.01 m. Therefore, the parasitic motions
of x, y, and θz can be neglected.

3.3. Inverse kinematics
The inverse kinematics is the problem to determine the
displacement of the actuated variables for a known position
and orientation of the end-effector. The joint motions can be
derived from another loop

∣∣−−→OnP i

∣∣ = ∣∣−−→
OnNi + −−→

NiDi + −−→
DiPi

∣∣ (i = 1, 2, 3) , (12)⎧⎪⎨
⎪⎩

xn
pi = lncαi + vicγ cαi + lx1i ,

yn
pi = lnsαi + vicγ sαi + ly1i ,

zn
pi = visγ + lz1i .

(13)
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Fig. 9. (Colour online) θx stiffness distribution along θy and z (when θx = 0).

Substituting Eq. (7) to Eq. (13) allows⎧⎪⎨
⎪⎩

lx1i = lpcθycβi − lncαi − vicγ cαi,

ly1i = lpcβisθxsθy + lpsβicθx − lnsαi + vicγ sαi,

lz1i = −lpcβicθxsθy + lpsβisθx + zp − visγ.

(14)

From the constrain of the fixed length of the links DiEi , the
following equation can be derived:

l2
x1i + l2

y1i + l2
z1i = l2

1i . (15)

From Eq. (13) ⎧⎪⎨
⎪⎩

lx1i = xAi + xBivi,

ly1i = yAi + yBivi,

zlz1i = zAi + zBivi,

(16)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xAi = xn
pi − lncαi,

xB1 = −cγ cαi,

yA1 = yn
pi − lnsαi,

yB1 = −cγ sαi,

zA1 = zn
pi,

zB1 = −sγ.

(17)

Substituting Eqs. (16) and (17) to Eq. (15) yields

va1v
2
1 + vb1v1 + vc1 = 0, (18)
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Fig. 10. (Colour online) θy stiffness distribution along θx and θy (when z = 500 mm).

where ⎧⎪⎨
⎪⎩

vai = x2
Bi + y2

Bi + z2
Bi,

vBi = 2(xAixBi + yAiyBi + zAizBi),

vci = x2
Ai + y2

Ai + z2
Ai − l2

1i .

(19)

The inverse kinematics can be derived by

vi =
−vb1 ±

√
v2

b1 − 4va1vc1

2va1
. (20)

3.4. Jacobian equation
Jacobian matrix can be defined as the matrix of all first-order
partial derivatives of a vector valued function as shown in

Eq. (21), in which the motions of this PKM are represented
by the independent parameters

⎡
⎢⎣

δxn
pi

δyn
pi

δzn
pi

⎤
⎥⎦ = [Ji]

⎡
⎢⎣

∂θx

∂θy

∂zp

⎤
⎥⎦. (21)

The Jacobian matrix for vector P n
pi can be obtained by

differentiating Eq. (7) yields

Ji =

⎡
⎢⎣

0 −lpsθycβi 0

lpcβicθxsθy − lpsβisθx lpcβisθxcθy 0

lpcβisθxsθy + lpsβicθx −lpcβicθxcθy 1

⎤
⎥⎦. (22)
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Fig. 11. (Colour online) θy stiffness distribution along θx and z (when θy = 0).

Differentiating Eq. (15) yields

2lx1i

δlx1i

δxn
pi

+ 2ly1i

δly1i

δxn
pi

+ 2lz1i

δlz1i

δxn
pi

= 0. (23)

Substituting Eq. (13) to Eq. (23) gives
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δvi

δxn
pi

= lx1i

cγ cαilxli + cγ sαilyli + sγ lz1i

,

δvi

δyn
pi

= ly1i

cγ cαilxli + cγ sαilyli + sγ lz1i

,

δvi

δzn
pi

= lz1i

cγ cαilxli + cγ sαilyli + sγ lz1i

.

(24)

Thus,

[δvi] =
[
lx1i

�i

ly1i

�i

lz1i

�i

]
·

⎡
⎢⎣

δxb
pi

δyb
pi

δzb
pi

⎤
⎥⎦ (i = 1, 2, 3) , (25)

where

�i = lxi1cγ cαi + lyi2cγ sαi − lzi2sγ. (26)

Therefore, the Jacobian matrix for the actuator can be
represented by

[Jvi
] =

[
lxi1

�i

lyi2

�i

lzi3

�i

]
. (27)

Substituting Eq. (21) to Eq. (25)

⎡
⎢⎣

∂v1

∂v2

∂v3

⎤
⎥⎦ =

⎡
⎢⎣

Jv1

Jv2

Jv3

⎤
⎥⎦

⎡
⎢⎣

δxb
pi

δyb
pi

δzb
pi

⎤
⎥⎦ =

⎡
⎢⎣

Jv1

Jv2

Jv3

⎤
⎥⎦ [Ji]

⎡
⎢⎣

∂θx

∂θy

∂zp

⎤
⎥⎦. (28)
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Fig. 12. (Colour online) θy stiffness distribution along θy and z (when θx = 0).

Finally, we get

J =

⎡
⎢⎣

Jv1

Jv2

Jv3

⎤
⎥⎦ [Ji]. (29)

Here, J is called the Jacobian of actuations.

4. Stiffness Analysis

4.1. Stiffness modeling
The stiffness of a parallel mechanism is dependent on the
actuator’s stiffness, the leg’s structure and material, the
platform and base’s stiffness, the geometry of the structure,
the topology of the structure, and the end-effector position
and orientation. To simplify this problem, the joints and links
of this system are assumed to be a rigid.

The stiffness of a PKM is related to a wrench acting on
the moving platform including the forces and moments to its
deformation

w = Kδx, (30)

where w is the wrench vector showing the torques and forces
acting on the moving platform, which can be represented as
w = [τx τy τz Fx Fy Fz ]T, while δx is the vector
representing the angular and linear deformation of the
platform, shown as δx = [θ̇x θ̇y θ̇z ẋ ẏ ż ]T and K
is the generalized stiffness matrix.

The wrench acting on the moving platform is related to the
forces and moments at the actuators by the transpose of the
Jacobian matrix J

w = JT f , (31)

δq = Jδx, (32)
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Fig. 13. (Colour online) z stiffness distribution along θx and θy (when z = 500 mm).

where f is the vector showing the actuators forces and
moments, while δq is the deformation of the actuators.
The actuator forces and displacements can be expressed by
Hooke’s law as shown in Eq. (33)

f = K jδq, (33)

where KJ = diag[k1 k2 k3 ] is the actuator’s stiffness
matrix of the parallel manipulator, while k1, k2, and k3

represent the joint stiffness of each actuator. Substituting
Eqs. (32) and (33) to Eq. (31) yield

w = Kδx, (34)

where the generated stiffness matrix K can be given as

K = JT K J J . (35)

4.2. Stiffness evaluation of the tripod parallel kinematic
machines
The architecture parameters of this tripod PKM are shown in
Table I.

From Eq. (34), the stiffness can be expressed by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τx

τy

τz

Fx

Fy

Fz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̇x

θ̇y

θ̇z

ẋ

ẏ

ż

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Due to the constrain of revolution joints, the motions in x, y,

and θz are constrained. Thus, the stiffness matrix can be
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Fig. 14. (Colour online) z stiffness distribution along θx and z (when θy = 0).

Table I. Architecture parameters.

lp 204 mm
ln 178 mm
l1i 245 mm
d 250 mm
αi (−30◦, 90◦, 120◦)
βi (−30◦, 90◦, 120◦)

simplified into a 3 × 3 matrix

⎡
⎢⎣

τx

τy

Fz

⎤
⎥⎦ =

⎡
⎢⎣
k11 k12 k13

k21 k22 k23

k31 k32 k33

⎤
⎥⎦

⎡
⎢⎣

θ̇x

θ̇y

ż

⎤
⎥⎦. (37)

The stiffness matrix can be generated from Eq. (35), in which
the Jacobian matrix and inverse kinematics can be obtained
from Sections 3.3 and 3.4. The units of terms in stiffness
matrix are N/mm for k33, N mm/rad for k11, k12, k21, and

k22, N mm/mm for k13 and k23, and N/rad for k31 and k32.
Here, k11, k22, and k33 are pure stiffness, which represent
the torques or forces are affected by the deformation at the
same directions, which are the dominant terms in the stiffness
matrix, while other terms are less important, so they can be
neglected.

The distribution of k11—the stiffness in θx caused by the
deformation of θx—along θx and θy is shown in Fig. 7.
Numerical simulation results show that θx stiffness decreases
with the increase of θx . The stiffness is symmetry distributed
along θy = 0, the stiffness has minimum values when θy = 0.
Figures 8 and 9 reveal θx stiffness distribution along θx , z
directions and θy , z directions, which show the PKM has
higher θx stiffness as z increases.

Figures 10–12 represent the distributions of θy stiffness
k22 along θx, θy, and z directions. Similar as θx stiffness, the
θy stiffness increases with the growth of θx , until arrives the
maximum point at bounds. While it reaches the bottom at
θy = 0. As for the distributions along z-axis, the θy stiffness
increases when z has higher values.
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Fig. 17. (Colour online) Effect of design variables on increasing the stiffness of PKM.

From Figs. 13–15, the z stiffness gets minimum point when
θx = θy = 0, while along z, it grows as z increases.

5. Optimization
By the analysis above, the stiffness distribution is revealed in
the domain with two variables, when the third one is supposed
to be fixed. If the three variables are to be considered
simultaneously, it is very hard to predict the trends of the
stiffness changes. Therefore, the optimization method should
be used to find the optimal parameters of the PKM including
the sizes of the base and end-effector, length of the legs, and
the angle of the actuators based on stiffness control.

The Genetic Algorithms (GAs) are selected as
optimization method. The GAs are global search methods
that are based on the Darwin’s principle of natural selection
and genetic modification, which operates with a population of
possible solutions (individuals) of the optimization problem.
These solutions are evaluated with respect to their degree
of fitness that indicates how well the individuals will fit the
optimization problem. In the stiffness matrix, the dominant
elements are k11, k22, and k33, which can be considered as the
main stiffness effects in θx, θy, and z. Here, they are denoted
by kθx, kθy, and kz. Thus, the design optimization problem
can be described as
Maximize:

k = trace(k) = k11 + k22 + k33 = f (lp, ln, d, l1), (38)

Subject to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

204 mm ≤ lp ≤ 224 mm,

130 mm ≤ ln ≤ 143 mm,

130 mm ≤ d ≤ 160 mm,

245 mm ≤ l ≤ 270 mm.

(39)

Table II. Optimal design variables based on GA for maximizing k.

Optimal values 1st 2nd 3rd

k 1.8115e9 1.8117e9 1.8089e9
lp (mm) 223.996 223.997 224.000
ln (mm) 130.014 130.002 130.010
d (mm) 158.453 159.082 157.892
l1 (mm) 245.000 245.002 245.019

The MATLAB GA toolbox is selected to implement this
design optimization. After 64 generations, the objective
function(38) is convergent to maximum point as shown in
Fig. 16 and the best variables are revealed in Table II.

As shown in Fig. 17, increasing end-effector size lp from
214 to 224 mm leads to a growth of stiffness by 18.99%, while
optimizing the base platform size ln from 136.5 to 130 mm
and the distance between base platform and middle moving
platform from 145 to 151 mm raises the stiffness by 7.6 and
8.55%, respectively. The most effective way is to reduce the
length of the active links, which leads to an increase of the
stiffness by 22.05%.

6. Conclusion
This paper develops a new reconfigurable tripod parallel
manipulator design that aims to increase the accuracy and
stiffness of the machine. The stiffness model is derived
based on the inverse kinematic analysis and Jacobian matrix
considering all the links are rigid bodies and the parasitic
motions can be neglected. Also, the stiffness distributions
in three different directions θx, θy, and z are performed in
two-dimensional workspaces. On the basis of the stiffness
analysis, the stiffness optimization is generated. By revising
the machine parameters, the stiffness of this reconfigurable
PKM is greatly improved.
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