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Abstract
We introduce a model that extends the standard vote choice model to encompass text. In our model,

votes and speech are generated from a common set of underlying preference parameters. We estimate the

parameters with a sparse Gaussian copula factor model that estimates the number of latent dimensions, is

robust tooutliers, andaccounts for zero inflation in thedata. To illustrate itsworkings,weapply our estimator

to roll call votes and floor speech from recent sessions of the US Senate. We uncover two stable dimensions:

one ideological and the other reflecting to Senators’ leadership roles. We then show how the method can

leverage common speech in order to impute missing data, recovering reliable preference estimates for

rank-and-file Senators given only leadership votes.

Keywords: multidimensional scaling, statistical analysis of texts, spatial voting model, discrete choice

models

1 Introduction

The spatial model is a staple of political analysis, and methodologists have grown adept at

estimating its parameters from roll call data (e.g., Poole and Rosenthal 1997; Clinton, Jackman,

and Rivers 2004). A more recent literature has worked to extract ideological locations from text

(e.g., Laver, Benoit, and Garry 2003; Slapin and Proksch 2008).

Political actors, though, will often generate both text and votes. We introduce a means by

which the two forms of data can be integrated into a single framework. First, we construct a

choice-theoreticmodel of both vote andword choice. Themodel applieswhen a single preference

structure underlies the political actors’ speaking and voting behavior. As our model extends the

voting model to word choice, we inherit both the strengths and shortcomings of the standard

spatialmodel (e.g., Ladha 1991; Clinton, Jackman, andRivers 2004).We then introducea statistical

method, sparse factor analysis (SFA), for estimating the spatial locations of legislators, votes, and

words. The method estimates the number of latent dimensions and links votes and speech in a

common factor analytic framework (e.g., Park and Casella 2008; Murray et al. 2013). As the formal

and statistical models are tightly connected, we refer to both as “SFA” throughout.

Our model deals with several challenges in estimating preferences from observed vote and

text data. First, our formal model allows us to estimate preferences that are jointly revealed

by both words and votes. This differs from earlier works that have modeled words and votes

as arising from separate processes (Gerrish and Blei 2011; Lauderdale and Clark 2014). Second,

rather than assume the number of latent dimensions as in (Blei, Ng, and Jordan 2003; Laver,

Benoit, and Garry 2003; Gentzkow and Shapiro 2010; Hopkins and King 2010; Spirling 2012), we

use shrinkage methods to estimate the number of latent dimensions (Park and Casella 2008).

Authors’ note: We thank Jong Hee Park, Alex Tahk, Brandon Stewart, Arthur Spirling, Ben Johnson, Tolya Levin, Michael

Peress, Kosuke Imai, and seminar audiences at PrincetonUniversity, theUniversidaddeDesarollo, and the annualmeeting

of the Society for Political Methodology for comments on this and an earlier draft. Replication data available through the

Harvard Dataverse doi:10.7910/DVN/AGUVBE.
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Third, our estimator implements a model of word counts that accounts for the problems of “zero

inflation” and extreme outliers in the data (Lowe and Benoit 2011).

We illustrate theproposedmethodsby applying them to eight recent sessions of theUSSenate.

We recover two stable dimensions. The first, running left–right, corresponds closely with the

dimension uncovered by standard methods such as DW-NOMINATE (Poole and Rosenthal 1997)

and IDEAL (Clinton, Jackman, and Rivers 2004). The second dimension we encounter is revealed

by the text data; it places the leaders of bothparties at oneendof the spectrum, and the chamber’s

rank-and-file members at the other.

To demonstrate the internal validity of combining speech and voting records, we reestimate

the model while suppressing voting data, first from a few Senators, and then from all but party

leadership. Our estimator nevertheless continues to recover their relative rankings on both of the

dimensions we uncover.

The paper proceeds as follows. In Section 2, we introduce our choice-theoretic model and

estimation strategy. We then compare the method to several existing alternatives. In Section 3,

we apply the method to recent sessions of the US Senate. The final section concludes. The open-

source software sparsefactoranalysis is available as an R package for implementing the proposed

methods.

2 SFA: The Proposed Method

In this section, we develop a choice-theoretic spatial model that establishes a basic homology

between voting and speech: the votes cast and words uttered by the same legislator are both

anchored to the same ideal point. In Section 2.1, we introduce our method sparse factor analysis

(SFA) for estimating these ideal points using vote data, word data, or a combination of the two.

Section 2.2 describes specific challenges thatweovercome in estimation.Wediscuss the key ideas

and assumptions embedded in our model and the SFA estimator in Section 2.3.

2.1 The model
Voting and speaking are two of the most studied and illuminating political acts. Often, the same

actors will do both. Yet it is common for exemplary academic studies to take advantage of only

one type of data, not both, thereby discarding useful information about the spatial orientation of

the speakers. These are works that either scale a binary choice and leave readily available text

alone or model text, but do not connect the text to easily accessible voting data. For example,

Barbera (2015) scales the choice to follow Twitter users but does not include the content of tweets

in the scaling. Similarly, Ho and Quinn (2008) scale newspaper editorials that register opinions

on Supreme Court cases, but the study does not include the content of the editorials. Conversely,

Quinn et al. (2010) estimate a topic model of Congressional debates, but they do not including

roll call voting data, while Elff (2013) and Lo, Proksch, and Slapin (2014) scale the text of election

manifestos, and yet do not include any vote data. Lauderdale and Clark (2014) condition their

analysis of voting on a set of estimated topics, but words do not enter actors’ choice set. We have

developed a model in which votes and speech are generated from a common set of underlying

preference parameters and a statistical method for estimating these parameters.

2.1.1 Observed data
For each member l ∈ {1, 2, . . . , L}, we register how that individual voted on proposal p ∈
{1, 2, . . . , P }:Vl p ∈ {0, 1}, whereVl p = 1 corresponds to an “Aye” vote, while “Nay” votes map to

Vl p = 0. We also observe each legislator’s count for termw :Tlw ∈ {0, 1, 2, . . .}. We operationalize
these terms as stemmed bigrams.
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2.1.2 Vote choice
Our latent spacemodel of voting parallels the development of Ladha (1991) andClinton, Jackman,

and Rivers (2004), where preferences and choices are embedded in a Euclidean space. We denote

by xl d the dimension d ∈ {1, 2, . . . ,D} coordinate of legislator l ’s most preferred outcome.

Likewise, each policy alternative subject to a vote is itself associated with a D -dimensional

location in the same latent spaceas the legislators’ locations.Wedenote the coordinate for thed th

dimension of the proposal by z
aye

pd
while we label the dimension d coordinate for the status quo

against which it is compared as z
nay

pd
. When a legislator chooses whether to vote for the proposal,

shecompares thesumof thesquareddistancesbetweenhermostpreferredcoordinatesand those

of the proposal with the comparable sum of squared distances for the status quo. We allow some

dimensions to be more important than others; ad � 0 denotes the weight placed on dimension

d . We join Clinton, Jackman, and Rivers (2004) in assuming that the dimension weights are the

same for all legislators. Higher values of ad are associatedwithmore important dimensions, while

dimensions with a weight of 0 are irrelevant. This gives us the propensity to vote “Aye”:

U vote
l

(
Aye ; {xl d }

D
d=1, {z

aye

pd
}Dd=1
)
−U vote

l

(
N ay ; {xl d }

D
d=1, {z

nay

pd
}Dd=1
)

= −1
2

D∑
d=1

ad (z
aye

pd
− xl d )2 − �

�
−1
2

D∑
d=1

ad (z
nay

pd
− xl d )2�

�
− ε̃votel p , (1)

where ε̃vote
l p

is a standard normal randomvariable. Clinton, Jackman, andRivers (2004) restrict the

nonzero dimension weights to all equal 1, whereas we allow more general weights; our model of

the decision whether to vote for the proposal is isomorphic with theirs.

Simplifying expression (1) and combining terms gives us the legislator’s latent disposition to

cast an “Aye” voteV ∗
l p
, such that larger values of the latent variable means the member is more

likely to favor the proposal.1

V ∗l p = cvotel + bvotep +
D∑
d=1

ad xl d g
vote
pd − εvotel p , (2)

where cvote
l

and bvotep are individual- and proposal-specific effects, ad and xl d are the dimension

weights and ideal points described above, and g vote
pd

is the signed distance between the “Aye” and

“Nay” alternatives. The terms cvote
l

and bvotep are amalgams of structural parameters that serve

to model the baseline propensity for a given proposal to receive support and a given member to

support any proposal.

2.1.3 Term choice
We now extend the voting model to the choice of terms. We take as the choice variable the

emphasis legislator l places on term w : T ∗
lw
. While we do not observe this emphasis directly,

it maps to an observed count for each term, Tlw . The member chooses T
∗
lw
on the basis of its

proximity to her ideal point, and various features of its pertinence: the aptness of the term to

the issues of the day, sw ; the verbosity of the legislator, vl ; and the degree to which the word

has become hackneyed from overuse. Ideological proximity is the distance from her ideal point

to the term’s spatial location. If the member only selected terms on the basis of ideology, then

she would simply utter her most preferred term ad infinitum, regardless of external circumstance.

But members do not choose terms this way. One countervailing concern is the aptness of a term

to the debate at hand (sw )—some terms are more appropriate in some years than others; for

example, we find discussion ofmortgage backed securities in 2009 that were not relevant in 1999.

1 For a specification of the utility functions and a full derivation, see the online supplemental materials.
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The frequency of word use is also a function of a legislator’s baseline verbosity (vl ). If ideological

proximity and aptness were the only factors at work then in each session each legislator would

monotonously repeat the political buzzword of her faction ad nauseam. Actual legislators do not

do this, because the value of emphasizing a given term diminishes as it becomes shopworn with

overuse. We build this into our model by inducing a negative quadratic term inT ∗
lw
. Formally, the

choice is taken frommaximizing:

U term
lw

(
T ∗lw ; {xl d }

D
d=1, {z

term
wd }Dd=1

)
= −1

2
T ∗lw

D∑
d=1

ad (xl d − g termwd )2

︸������������������������������︷︷������������������������������︸
Ideology

+T ∗lw

(
sw + vl − 1

2
T ∗lw − ε̃termlw

)
︸���������������������������������︷︷���������������������������������︸

Pertinence

.

(3)

Rearrangement and substitution give an optimal choice of the form:

T ∗lw = cterml + b termw +
D∑
d=1

ad xl d g
term
wd − εtermlw , (4)

where cterm
l

and b termw are individual- and term-specific effects. The ideal points and dimension

weights, ad and xl d , are precisely those from the vote equation.

While expression (4) is similar to the criterion given in expression (2) for choosing whether

to vote in favor of or against a bill, the choice of how intensely to emphasize a term depends

on the characteristics of that term, whereas the vote choice hinges on the difference between

the proposal and the status quo. That is, while it is well known among legislative scholars that

someonemight vote in favor of a badbill if it is presentedas the alternative to anevenworse status

quo, politicians are free to emphasize terms that express their most preferred positions, subject

to those terms being apt to the discussion at hand, and not having already become hackneyed by

overuse.

2.1.4 Placing votes and words in a common space
The lynchpin of the SFAmodel is the collection of legislator preference parameters {{xl d }

D
d=1}

L
l=1.

While it has become standard to use a latent space tomodel vote choice, see Ladha (1991), Clinton,

Jackman, and Rivers (2004) or a latent space for term choice (e.g., Elff 2013), SFA integrates both

sets of observed outcomes within a common latent space (e.g., Murray et al. 2013).

2.1.5 Operationalizing the model
We assume the error terms εvote

l p
and εterm

lw
, are independent and each follow a standard normal

distribution.As inClinton, Jackman,andRivers (2004)positivevaluesof thevotingpropensity (i.e.,

V ∗
l p
� 0) result in votes in favor of proposal p :Vl p = 1, while negative propensities (i.e.,V ∗

l p
< 0) are

associatedwith “Nay” votes:Vl p = 0. We connect the term use propensitiesT ∗
lw
with the observed

frequenciesTlw through a set of cutpoints; {τk }
∞
k=−1 such that the probability of observing a given

term count is the probability of the latent variable falling between two adjacent cutpoints:

Pr(Tlw = k �·) = Pr(τk−1 � T ∗lw < τk �·)

= Φ �
�
τk − cterml − b termw −

D∑
d=1

ad xl d g
term
wd

�
�
−Φ �

�
τk−1 − cterml − b termw −

D∑
d=1

ad xl d g
term
wd

�
�
(5)

with the convention that τ−1 = −∞ and Φ(·) denotes the distribution of the standard normal
density.
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2.2 Estimation
The SFA model embeds a sparse factor analytic model of choice in a Gaussian latent space that

combines the observed discrete data on votes and word counts. We now turn to the question of

estimation.

2.2.1 Statistical challenges
The model developed in the last section integrates voting and speech using a common set of

preference parameters inside a shared latent space; we must now estimate the connection of

this latent space with binary voting choices and, at the same time, with the term counts found in

legislators’ speeches. Next, we face the question of howmany dimensions in the latent space—to

assume an answer is to face the twin dangers of artificially truncating the latent space if one

conjectures too few dimensions, or of over fitting “nonsense dimensions” that add noise to the

estimator. Finally, term count data is characterized by “zero inflation”: the legislator-term matrix

contains a surfeit of zero counts compared with what Poisson models of speech would lead us to

expect.

To connect vote and speech data in a common space, we estimate a Gaussian copula factor

model formixed scaledata (e.g.,Murray etal.2013). This entails extending theBayesianestimation

frameworkofClinton, Jackman,andRivers (2004) toencompass textdata. Toaddress thequestion

of the dimensionality of the latent space, our estimator selects a sparse model of the number of

dimensions (Tibshirani 1996; Park and Casella 2008). We contend with the issue of zero inflation

that infests text data by estimating a flexible semiparametric cutpoint that accounts for and

adjusts to the zero counts one encounters in text.

For all the parameters except the cutpoints {τk }
∞
k=−1 and the dimension weights, ad , we

assume conjugate priors that are normal for mean parameters and inverse gamma for variance

parameters. The separate mean-zero normal priors over each of the term and individual specific

effects, whose number grows with the sample size, place us in a Bayesian framework where

the incidental parameter problem (Neyman and Scott 1948) does not arise. We likewise place a

Jeffreys hyperprior over the variance.

2.2.2 Gaussian copula factor models
Our paper joins the strand of literature on semiparametric Gaussian copulas for discrete data

spawned by Hoff (2007) and applied to factor analysis by Murray et al. (2013). Accordingly, the

error terms εvote
l p

and εterm
lw

are assumed independent and identically distributed standard normal

variables. The connection from the latent space to the voting data via a probit link is a standard

element of the Bayesian item response theory (IRT) model (see Jackman (2009)). Whereas the

probit link (Albert and Chib 1993; Clinton, Jackman, and Rivers 2004) imposes a cut point of 0 on

the choice of whether to vote in favor of a proposal, we estimate a richer set of cutpoints {τk }
∞
k=−1

using a flexible semiparametric model for the marginal distribution for term frequencies. The

model is semiparametric in that it uses a nonlinear function of the ranks to generate the cutpoints.

2.2.3 Estimating the number of dimensions
We place a Laplacian (LASSO) prior of Park and Casella (2008) over the dimension weights (for

similar work, see Pitt, Chan, and Kohn 2006; Hahn, Carvalho, and Scott 2012; Murray et al. 2013):

Pr(ad ) ∼ λ

2
exp(−λ�ad �). (6)

This prior provides aprincipledmeansof culling erroneousdimensions fromtheestimatedmodel.

As part of our estimation,we naturally recover themaximum likelihood estimate of ad , â
ML
d
. Given
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λ, the maximum a posteriori (MAP) estimate for ad is:

âMAP
d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

âML
d
− λ aML

d
> λ,

0 aML
d
� λ.

(7)

The threshold parameter λ is estimated within a Gibbs sampler (Park and Casella 2008). Our prior

over the dimension weights leads to ex post estimates of some weights as zero, as we describe

below. For earlier work using a variable selection prior for matrix subspace selection, see, in

particular, Mazumder, Hastie, andTibshirani (2010) (especially comparing their equation (9) to our

expression (7) above) and Witten, Tibshirani, and Hastie (2009) for extensions. Further technical

details on the estimation of SFA appear in the online supplemental materials.

For a discussion of variable selection on latent dimensions in a Gaussian copula framework,

see Pitt, Chan, and Kohn (2006), Hahn, Carvalho, and Scott (2012), Murray et al. (2013).2 Correctly

estimating the number of dimensions in the latent space is substantively important in its own

right. Imposing too fewdimensionswill attenuate themodels explanatorypower,while estimating

too many dimensions leaves the analyst interpreting chimerical dimensions, over fitting in

sample, and predicting poorly out of sample.

An alternative to our procedure would be to fit the model using maximum likelihood while

selecting the number of dimensions via some ancillary criterion. Doing so would raise the

metaquestion of which of a potpourri of statistics to choose,3 each of which may give different

results. Given that our model simultaneously provides us with a criterion to select the number

of dimensions while at the same time yielding a joint posterior density over dimensions and the

other parameters of the model, we believe that researchers will find the modest additional effort

to estimate the model worthwhile.

2.2.4 Zero inflation and robust cut point estimation
To cope with zero inflation in text data we must move beyond the Poisson to a more flexible

marginal density for term counts. If data are generated by a Poisson density, it should be the case

that the ratioof zero termcounts to single counts shouldapproximatelymatch the reciprocalof the

mean.4 For instance, using the text data for the Congressional example we consider in Section 3,

the ratio of zero counts to single counts is approximately 3
2 , fully twenty eight times the reciprocal

of the mean which is about 3
56 .

The map from the latent space to the marginal density presents another challenge. The link

between the emphasis chosen by speaker l for term w and the term frequency Tlw given by

expression (5) depends on the τk . To avoid having to estimate what are potentially thousands of

parameters, we insteadmodel these cutpoints in terms of amuch smaller number of parameters.

We take the empirical cumulative distribution function (CDF) for a given legislative session as our

point of departure:

F̂ (c) =
1

LW

L∑
l=1

W∑
w=1

1(Tlw � c). (8)

Except for ties, using the empirical CDF is equivalent to embedding ranks in the interval (0, 1) (Hoff

2007; Murray et al. 2013). Wemodel all cutpoints as depending on a fixed set of three parameters.

2 We differ, in particular, from Murray et al. (2013) in that the authors simply use the rank likelihood and do not estimate

underlying cutpoints but take them as determined wholly by the data marginals (see Murray et al. 2013, Section 2).

3 One could select among a likelihood-ratio test with a p-value cutoff, the AIC, BIC, or GCV, or yet one of several cross-

validation statistics.

4 For the Poisson with parameter λ the reciprocal of the mean is 1/λ, while p(0)/p(1) = 1/λ.
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The cth cut point is:

τc �β0, β1, β2 = β0 + β1F̂ (c − 1)β2 (9)

where:

F̂ (−1) = 0 (10)

β0 = τ0 = Φ−1(F̂ (0)) (11)

β1, β2 > 0. (12)

Modeling the cutpoints in terms of F̂ (c) instead of c leaves them less sensitive to extreme

outliers, as the observed frequencies constrain the extremes. Forcing the intercept, and hence

first cut point, to beΦ−1(F̂ (0)) addresses zero inflation directly: the probability density below the
intercept is equal to the proportion of zeros in the data. The quasilinear form of β1 and β2 allows

some flexibility in modeling the cutpoints while still ensuring that they are an increasing function

of c. We estimate the values of β1 and β2 through a Hamiltonian Monte Carlo sampler that we

implemented (Neal 2011).5

2.2.5 Motivation behind cut point model
Wenote that commonpractice in textmodeling involvesa“pre-estimation” stage inwhichanalysts

remove sparse and rarely used terms from their data. Different choices at this stage result in a

different total proportion of zeros in the term-document matrix, making it an example of what

Simmons, Nelson, and Simonsohn (2011) refer to as a “researcher degree of freedom:” a choice

madewhile collecting and formatting the data that is given only cursory discussion andmay have

a substantial impact on the results. Rather thanquietly adjusting thedata cleaning rule toproduce

a desired result, we believe strongly that consequential data processing decisions should be part

of the estimation process and so our cut point density includes a parameter that adapts to the

total number of zeros in the term-document matrix.

Thecountprobabilities impliedbyexpression (5)bearaclose formal resemblance toanordered

probit model with an infinitude of thresholds, though because ourmodel applies to count data, it

possessesnomaximal categoryandso, technically, it is notanorderedprobitmodel (seeMcKelvey

and Zavoina (1975) or Greene (2000), pp. 875–879). Because we observe counts from 0 to several

thousand, we do not fit a cut point for each value. Instead, we formulate amodel for the cutpoints

that reflects three attributes common to text data. First, the data is zero-inflated: most members

do not use most terms in a given year, and this is problematic for the Poisson model. Second, the

data is highly skewed: theobserved counts range from0 to the thousands. Third, the largest values

are highly variable from year to year.

While we have taken a semiparametric approach to the marginal distribution over term

frequencies, we note that Poisson densities (Chib and Winkelmann 2001) have also been used as

themarginal densities of Gaussian copulamodels. We prefer F̂ (c) because even compared with a

Poissonmodel that has been adjusted for zero inflation, F̂ (c) better accommodates the empirical

term frequencies thanwould Poissonmarginals. To illustrate, we fit both SFA and a latent Poisson

model, implemented using theWordfish algorithm of Slapin and Proksch (2008) and Lo, Proksch,

and Slapin (2014), to the term-documentmatrix for floor speeches from the 112th Senate. Though

we describe the data from our example more fully below, we bring it up now to compare the two

methods. Figure 1 presents boxplots of the fitted values for the 38,585 cases of an observed zero

count in the legislator-term matrix for a latent Poisson model (left) and SFA (right). Of these zero

counts, SFA gives a fitted value of below one for 23,532 of them, versus only 3037 for the Poisson

5 See the online supplemental materials for details.
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Figure 1. Accounting for zero inflation. This figure presents the fitted values for the 38,585 cases of an

observed zero count in the legislator-termmatrix for a Poisson density over term counts (left) and SFA (right).

Of these zero counts, SFA gives a fitted value of below one for 23,532 of them, versus 3037 for the Poisson

model. The marginal density used by SFA better fits the zeros in this data than does the Poissonmodel.

model.6 The more flexible marginal density allows SFA better to fit the in-truth-zero terms, a key

attribute of the data.

2.2.6 Prior sensitivity
The sensitivity of posterior inference to prior parameter specification is a generic concern for

Bayesianmodels. With the exception of parameters aboutwhich the existing scaling literature has

developed standard priors (e.g., Lauderdale andClark 2014, Section 3.2)we select noninformative

prior densities for our parameters. One component of our model, the Bayesian LASSO, uses two

hyperprior parameters set by the researcher.We take as our hyperprior parameters on theGamma

prior those used in the literature (Park and Casella 2008; Kyung et al. 2010), namely a shape of 1

and rate of 1.78. This prior expresses the expected size of effects we would expect to see, on a

z -scale. This prior captures the belief, before seeing the data, that wewill see effects of size about

1/1.78 ≈ 0.57. We encourage varying these parameters to assess posterior sensitivity, which our

software allows. We illustrate in the example below.

2.2.7 Balancing words and votes
As there are often an order of magnitudemore terms than votes, the researcher may fear that the

term data is swamping the vote data. We therefore introduce a parameter, α , that controls the

relative information coming from each source.7

At α = 0, all information on the scaled locations comes from votes; at α = 1, all information

on the scaled locations comes from words. Even when using information from only text or only

votes, SFA offers additional insight over existingmethods.When scaling off only the votes, SFAwill

place words in the same latent space as the votes, giving an ordering to terms driven by the vote

information. This can help the researcher interpret the latent dimension, through finding words

that are extreme in the vote dimension. Scaling the two datasets separately does not allow one

dataset to inform the other.

We suggest three ways to select α . The first involves fitting α at a range of values and present

the results, showing how they change along these shifts. This is the strategy we follow in our

6 As an additional exercise we consider the log likelihood of the two estimates. Using the framework of theWordfishmodel

the Poisson density induces a log likelihood of −2, 173, 875, substantially less than the value for SFA of −1, 709, 286.
7 As a Bayesian model, the sources could be averaged and weighted by their precisions. Since the latent space is standard

normal, the precision is 1 for each source. An unweighted average, though, will leave the words dominating the votes.
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example below, presenting results for α ∈ {0, 1/2, 1}. As a default, we suggest this strategy,

unless the researcher has a substantive reason to select α by one of the data-driven strategies

below.

As a second strategy, we suggest selecting α such that the ideal points are maximally

discriminatory.8 Denote as a function of α both the dimension weights ad (α ) and the most

preferred outcomes xl d (α ). Our criterion favors strong dimensions (large values of {ad (α )}
D
d=1) as

well as ideal points ({xl d }
(L,D )

(l ,d )=(1,1)
) that provide maximal discrimination among individuals. The

criterion we suggest is:

disc(α ) =
D∑
d=1

L∑
l=1

L∑
l ′=1

ad (α )
2(xl d (α ) − xl ′d (α ))2 (13)

with α chosen to make the left-hand side of equation (13) as large as possible. All the elements

needed to calculate disc(α ) are returned from the MCMC output, so our software returns the full

posterior density of this statistic, and the optimal value can be selected on the basis of which has

the highest mean discrimination.

As a third criterion, we also implement the WAIC statistic, a Bayesian approximation of cross-

validated prediction performance (Vehtari, Gelman, and Gabry 2017). Though we favor a default

of 1/2 and of presenting results fromα of both 0 and 1, our discrimination andWAIC statistic give a

means of a data-drivenmeans of selecting α . We illustrate the use of the discrimination andWAIC

statistics in the online supplemental materials.

2.2.8 Software
We offer two implementations of the software. The first is a full MCMC implementation, which

generates samples from the full posterior given the data. This allows the researcher to not only

estimate the spatial locations as well as the number of latent dimensions, but also to characterize

the uncertainty estimates. The second is an EM implementation. While it only returns point

estimates, it is faster than the MCMC implementation and often useful for preliminary results

during the process of practical modeling.9

2.2.9 Additional uses
We have focused on a situation where both votes and term counts are present. There are cases

where we observe legislative speech, but we either lack their votes or the votes are so heavily

whipped we do not trust them. In this case, as we show in the context of our Congressional data,

SFA can leverage words to recover reliable ideal point estimates even in the absence of reliable

vote data for nonparty leaders.

Moreover, SFA estimates the spatial location of terms. Existing studies estimate the political

affect of terms by attributing left leaning content to those used by Democrats, and rightward

import to those spoken by Republicans (Laver, Benoit, and Garry 2003; Gentzkow and Shapiro

2010), or modelers posit that terms and votes arise from two conditionally independent data

generating processes (Gerrish and Blei 2012; Lauderdale and Clark 2014). SFA scales terms and

votes simultaneously, providing natural structural estimates of word affect.

2.3 A discussion of our assumptions
Before considering any statistical method, the researcher should check that the assumptions of

the model seem plausible in the study at hand. SFA extends the standard quadratic-loss spatial

8 We are grateful to Brandon Stewart for suggesting this approach, by “maximally discriminatory” wemean “producing the

greatest variance in estimated spatial locations.”

9 See the online supplemental materials for the details of EM implementation.
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random utility model (Ladha 1991; Clinton, Jackman, and Rivers 2004) to encompass speech.10

Though SFA can be fit to any data combining votes and text, we next consider the assumptions

that allow us to interpret the results as estimates of preference parameters.

Behaviorally, our model assumes legislator l ’s votes and speech are both chosen as if she

sincerelyheldan idealpointof {xl d }
D
d=1. Itmaybe that thesepreferencesare in fact sincere, but the

positedbehavior is also entirely consistentwith the legislator seeking to convinceher constituents

that she behaves as if she held such preferences. Even if the agenda is structured so thatmembers

vote strategically on amendments, the ideal point estimates remain unbiased, though strategic

voting does affect the interpretation of the bill parameters (Poole and Rosenthal 1997, p. 228).

Likewise, the legislator speaks as though her preferred outcomewas {xl d }
D
d=1. This may in fact be

a tissue of lies, whatmatters for our purposes is that she speaks consistently as if she actually held

the beliefs she claims to, and in particular that her preference parameters are impervious to being

changed by persuasion.

SFA also requires two underlying structural assumptions. First, like the standard vote model,

the SFA vote model requires an exogenous agenda, while the term model requires that the

relevance of different terms be set exogenously. In both cases, the model assumes that all actors

are “agenda-takers” rather than “agenda-setters.” Second, also like the standard vote model,

the SFA vote model assumes that the legislators all agree about the spatial locations of the

exogenously given status quo and alternative positions associated with each vote (Ladha 1991,

esp. Section 2), and about the political content of each term they utter. Basically, words have to

mean something, everyone has to agree approximately on what they mean, and that meaning

cannot change over the period under study. This will typically be the case for people operating in

the same legislature during the same session. The assumption becomes more problematic when

applied across distinct contexts and widely different time periods. The payoff from placing the

latent speech and voting variables together in a common space is that we can use both sources of

information to obtain more precise estimates of legislators’ spatial preference parameters.

Even when these assumptions hold, the spatial preferences recovered by our estimator may

correspond to a nonideological attribute. Of course, the resulting estimated locations are no

less a reflection of preference for corresponding to nonideological traits. For example, in our

analysis below, the second dimension we identify reflects differences between the vocabulary of

party leaders and rank-and-file members. In this case the most preferred vocabulary of leaders is

consistent with conducting business, assigning bills to committees, and organizing votes, while

for other legislators it is not. Nevertheless, our framework captures this difference as a spatial

attribute.

SFA, or any scaling method for that matter, should only be applied in situations where the

assumptions seem reasonable given substantive knowledge. For example, we apply the method

to US Senate floor speeches, noting that members of Congress are notorious for “dying with their

ideological boots on” rather than changing positions on the issues (Poole 2007). Wewould be less

comfortable applying the method to judicial argument, in which case judges if not litigants likely

do change their views. In Section3,weapplyour estimator toCongress, andwe implement several

methods for assessing internal and external validity, methods that analysts might want to use as

checks when using SFA.

2.3.1 Topic models and relatedmethods
We note that our method differs from the popular topic model approach to text analysis (Blei, Ng,

and Jordan 2003; Grimmer 2010; Roberts et al. 2014). In brief, when a researcher is looking for an

underlying latent structure ordering actors and their choices, and they are comfortable making

10 Note that this framework differs from that of Poole and Rosenthal (1985, 1997), whose seminal work assumes Gaussian

utility.
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the model’s assumptions, then SFA should be implemented. In the absence of any structural or

behavioral assumptions, topic models will always return a summary of clusters within the data.

We emphasize that this is not an either/or distinction; SFA and topic models calibrate disparate

features of the data.

Lastly, we situate SFA in the context of several other related methods. Many scholars have

combined voting data with a topicmodel (Gerrish and Blei 2012; Wang et al. 2013; Lauderdale and

Clark 2014). Themethods, particularly when applied to courts, offer great insight: wemay think of

courts as voting on awide array of topics, and judicial preferencemay vary greatly fromone to the

next. These models differ from SFA in two crucial aspects. First, the topic model methods do not

give an ideological position to terms. Terms are not placed on, say, a left–right dimension shared

by the actors. The topic models capture what actors are voting about, but not the ideological

structure of the topics. Second, the models offer a disjointed relationship between words and

votes. Actors are choosing both words and votes, but only vote choice is grounded in a spatial

model. SFA differs by offering a tight, and formal, coupling of the ideological preferences that

generate terms and votes. SFA is a model for term selection that is fully compatible with the

standard and acceptedmodels of vote choice.

2.3.2 Comparison with additional methods
SFA is related to several existing methods for scaling votes, scaling text, and combining multiple

outcomes in a single factor analyticmodel. Ourmodel is an extension of Ladha (1991) and Clinton,

Jackman, and Rivers (2004) who model votes in a latent space, which they connect with binary

choice using a probit model, and of Slapin and Proksch (2008) and Lo, Proksch, and Slapin (2014)

who model spatial choice in a Poisson framework. Here we connect the latent space with count

as well as binary outcomes (Murray et al. 2013). Our estimation technique relies on probabilistic

principal components analysis (Tipping and Bishop 1999), whereby singular vectors and latent

factors correspond if the errors are assumed independent and identically Gaussian. The method

is factor analytic, as opposed to a singular value decomposition, because the scaling takes place

in a latent space rather than operating directly on the observed data. We connect the two spaces

using a Gaussian copula for mixed data.

Rather than matrix decompositions in a latent space, several works have turned to a Poisson

or negative binomial model in order to model term counts. For example, Wordfish of Slapin and

Proksch (2008), Lo, Proksch, and Slapin (2014) is similar to SFA, for terms, but under a Poisson or

negative binomial link instead of a probit link. SFA leads to an identical formulation for the latent

systematic component of word choice, except the latent component is exponentiated in order to

guarantee positivity (see also Elff 2013; Bonica 2014). SFA differs in that it places both word and

vote choice in the same latent z-space, allowing both types of data to be modeled jointly. Our cut

point model allows for a more flexible mapping from the latent to observed data space. We also

model the zero inflation directly and are robust to outliers, as described above. SFA also estimates

the underlying dimensionality.

The use of the Poisson by Slapin and Proksch (2008) notwithstanding, many analysts eschew

both the Poisson and the Negative Binomial in their analysis of text. Examples include: the widely

usedWordscores model of Laver, Benoit, and Garry (2003) or the nonparametric content analysis

ofHopkins andKing (2010); the text based “slant”measures usedbyGentzkowandShapiro (2010);

the LDA formulation of Blei, Ng, and Jordan (2003), Gerrish and Blei (2011) which converts term

counts to proportions, thereby admitting a Dirichlet prior; PCA or kernel PCA on the tf-idf matrix

Spirling (2012); and semiparametric copula models for mixed data Hoff (2007). Like these, SFA is

not based on a Poissonmodel; see Murray et al. (2013, esp. 2.1) for a formulation close to SFA’s.

Mixed factor analysismodels have turned to copulas to combinedataofdifferent types. In these

models, mixed data such as counts, binary, and continuous data, are placed on and analyzed on
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a common underlying latent scale. The Gaussian copula, which places all data on an underlying

common z -scale, is a typical choice. For example, Quinn (2004) converts observed continuous

data to a z -scale, and then combines it with ordinal and categorical data on the same scale; for

recent extensions, see Hoff (2007), Murray et al. (2013). Our model is closely related to that given

in Murray et al. (2013, Section 2.1). We differ in that we only have two types of data, text and

votes, and hence have to estimate only one set of cutpoints, whereas Murray et al. (2013) consider

the problem of generic types of data. Murray et al. (2013) work with the transformed ranks of

all variables, eschewing cutpoints entirely. For that reason, our method is more powerful when

modeling votes and text. SFA also introduces a cut point modeled tailored to several common

aspects of text data, as we describe above.

Other methods have estimated dimensionality (Heckman and Snyder 1997; Hahn, Carvalho,

and Scott 2012). Additionally, Aldrich, Montgomery, and Sparks (2014) show that sufficiently large

cross-party variance canmask important within-party dimensions.11

3 Illustrative Application: The US Senate, 1997–2012

In this section, we apply SFA to recent US Senate data. The analysis proceeds in three steps. First,

we describe the data and discuss the viability of SFA in this context. Second, we apply themethod

to the contemporary US Senate. Third, we simulate a “strong-party” system where we use SFA to

use text data to gain leverage on rank-and-file ideal points even in the presence of party line voting

and heavy missingness in the vote data.

3.1 Data
We apply SFA to the eight recent sessions of the US Senate. We scale using both votes and words,

returning both ideology estimates and our calibration of the underlying dimensionality. Our data

come from two sources. Rollcall data come from VoteView.12 For the text data, we rely on floor

speeches as gathered by the Sunlight Foundation.13 Following standard practice (e.g., Quinn

et al. 2010; Grimmer and Stewart 2013), we stem, eliminate stop words, and model unigrams and

bigrams. Both vote and speech data are polled over the full session. We trim all terms that are not

used by at least ten people at least ten times over the course of the session.14

Before applying the method, let us consider the applicability of SFA in this case. First, voting

is not always sincere in the US Senate, as there are always motions to recommit, etc. We note,

though, that ideal point estimates from the US Congress have been used extensively in other

studies and possess high face validity. To be particularly careful, if a bill is voted on several times

due to different motions, we only include the final vote in our analysis.

Second, we consider the sincerity when speaking. Previous work has shown, albeit in the US

House, that floor speeches are expressive rather than deliberative (Maltzman and Sigelman 1996;

Hill and Hurley 2002). Many floor speeches are not even read verbally, but simply entered into the

record, also suggesting that floor speeches are vehicles of expression rather than persuasion. For

that reason, we feel more comfortable applying the method to floor speeches rather than, say,

conference committee meetings.

3.2 Results
We present three sets of results. Each correspondswith the proportion of information in the votes

coming from votes instead of words (α ∈ {0, 1/2, 1}). We present results on the estimated number
of dimensions and interpretation of each.

11 We differ from these works in combing both vote (binary) and word (count) data.

12 http://www.voteview.com/. Last accessed October 27, 2014.

13 http://www.capitolwords.org/. Last accessed October 24, 2014. Replication scripts for creating the corpora and the

analyses available at Kim, Londregan, and Ratkovic (2017).

14 A complete summary of the data can be found in the online supplemental materials.
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Figure 2.Posterior density over number of underlying dimensions for the jointword and votemodel.We find

a pronouncedmode at two dimensions consistently across Senates. The average across all Senates appears

in the top left corner.

3.2.1 Scaling results informed only by votes (α = 0)
We begin with the model with information coming only from votes. This model places a posterior

mass estimate from 99.96% to 100% on one dimension for each Senate. Posterior means of ideal

point estimates correlate with DW-NOMINATE estimates ranging from 0.953 to 0.980 across the

eight Senates analyzed here (see the first dimension of Figure 4 below).

3.2.2 Scaling results informed by words and votes (α = 1/2)
We next move on to the model that gives equal weight to words and votes. First, we consider the

estimatednumber of dimensions, see Figure 2. The averagedensity over thenumber of dimension

parametersmerging all Senates is in the top left corner, while the successive sessions are depicted

from top to bottom and from left to right. A pronounced mode at two dimensions reappears

consistently across Senates.

Not only is the finding of two dimensions consistent, but the two dimensions themselves are

stableacross sessions. The first closely coincideswith the standard ideologydimensionuncovered

from scaling roll call votes. The second appears to be a leadership dimension, with party leaders

at one end while a variegated mix of rank-and-file partisans and ideological moderates populate

the other.
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Figure 3. Log density of term weights, after scaling votes and terms together. The weights are oriented such

that terms more likely to be spoken by Republicans are to the right. Each local mode is labeled by the terms

closest to that mode. The left figure presents results from the Republican controlled 108th Senate, the right

figure contains results from the Democratic-led 112th Senate.

Figure 3 presents the log density of term weights, after scaling votes and terms together. The

weights areoriented such that termsmore likely tobe spokenbyRepublicans are to the right. Each

local mode is labeled by the five terms closest to that mode. The left figure contains results from

the 108th Senate, a Republican-led session during President George W. Bush’s tenure. The right

figure contains results from the 112th Senate, a Democratic-led session during President Barack

Obama’s time as President.

We find a consistent pattern: for the majority party, the most extreme terms relate to

parliamentary control words (consent committee, author meet, meet session). For the minority

party, the first dimension identifies ideologically relevant terms. For the Democrats during

the 108th Senate, these terms included administr, as the Democrats soured on the current

Presidential administration, and health, a centerpiece of the Democratic policy agenda. In the

112th Senate, with the Democrats in the majority, parliamentary control terms switched their

ideological polarity, aligning with the Democrats (meet session, consent committee, author meet).

The Republican end of this first dimension reflects that party’s programmatic fiscal concerns

(budget, stimulus, debt, trillion).

Next, we look at the preferred outcomes of legislators from the 112th. Points in Figure 4 are

shaded in proportion to their first dimensional DW-NOMINATE score, showing the agreement

between SFA and DW-NOMINATE on the first dimension (ρ̂ ≈ 0.93). The left plot labels party

leaders, whips, and top chairmen, showing the close relationship between locations on the

seconddimensionand leadership. The first dimension captures thepolitical battle lines, reflecting

legislators left versus right policy differences, while the second, vertical, dimension reflects

differences in the terms selected by leaders versus the rank-and-file members.

The right plot of Figure 4 contains cutting lines for three terms: Boehner, student loan, and

fiscal cliff. The lines were constructed such that legislators on one side are expected to use the

phrase above the median number of its raw usage, and on the other side legislators are expected

to use theword below itsmedian number of times.We find leaders aremore likely to use theword

Boehner, the House Speaker during this session. Republicans were more likely to use the term

fiscal cliff, with leaders the most likely. Democrats were more likely to utter the phrase student

loan, again with leaders the most likely to employ the term. SFA identifies a group of Republican

moderates in the top V, here we label them by name. These moderates are not likely to use either

student loan or fiscal cliff.
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Figure 4. Latent dimensions estimated by SFA, 112th Senate. Legislators’ preferred outcomes on the first

dimension (x -axis) and the second (y -axis). The left plot labels party leaders, whips, and top chairmen. In

the right plot cutting lines separate frequent from infrequent users, of the terms: Boehner, student loan and

fiscal cliff.

Concerned about prior sensitivity, we also varied the LASSO prior parameters by a factor of

(0.25, 0.5, 1, 1.5), generating 16 different runs. We find similar results, with scaled locations across

the settings correlating above 0.95, on average.Whenwe select these parameters by theWAIC, we

find the same results as those presented here: two stable dimensions, and again scaled locations

correlating with those estimated below above 0.95.

3.2.3 Scaling results informed by only words (α = 1)
Wealso apply SFAusing only information fromwords. This is not our preferredmodel, as it ignores

vote data, yet SFA still uncovers structure in the text data. The posterior density of estimated

dimensionality for pooled floor speeches can be found in Figure 5. Results across all sessions are

in the top left cornerwhile the remaining sessions follow in order from top to bottomand from left

to right. In contrast with the high concentration of probability on two dimensions in our preferred

model, when we exclude the valuable information contained in votes and analyze oratory alone,

weobtain a somewhatmorediffusedensity that accords a 75%probability to there beingbetween

five and eight dimensions, and a probability of over 95% that the underlying dimensionality is

within the range [4, 11]. Looking at individual sessions, we find a similar dimensionality, albeit

with some year-to-year variation.

Figure 6 contains the top ten words at each of the first six dimensions of the 112th Senate. We

note that the positive and negative level distinction along the y -axis is wholly arbitrary, aswe only

identify term levels up to a sign. Looking at the first column, we find that the first dimension starts

with a set of noncontroversial terms. These include parliamentary procedural terms (as opposed

toparliamentary control terms) suchas todaywish,madamrise, and colleaguesupport. Alsoon the

noncontroversial side are martial terms with universally positive affect during this Congress such

as army, air forc, and deploy. On the other side are words that will be used to differentiate issues

in other dimensions, such as tax, vote, and peopl. The other dimensions have at their extremes

words connoting someunderlyingdimensionofpolicy. For example, the seconddimension ranges

from judiciary and women’s issues at one end to fiscal concerns at the other; the fourth goes

from a broad set of social welfare concerns to the consideration of judicial nominees. These lower

dimensions adapt to the issues of the day. Tobacco, for example is present in the 105th Senate;

Iraq comes and goes as an issue, and health care goes from dealing with seniors and Medicare in
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Figure 5. Estimated underlying dimensionality for Senate floor speeches. Results across all sessions are in

the top left corner and remaining sessions follow.

the 107th Senate to dealingwith students and families in the 112th. Evenwithout including votes in

our analysis, SFA selects a relatively parsimonious and informative representation of the Senate.

3.2.4 Extension: imputing estimates for members’ given only votes from leadership
We next offer a possible extension of SFA. In a strong-party system, legislators vote their party’s

rather than their own preferences (e.g., Kellerman 2012). In these cases, votes may not be a

trustworthymeasure of preference, but legislative speechmay help provide leverage. To simulate

this scenario, we coded all vote data except for the party leaders and whips as missing, while

maintaining all speech data. This left a vote record for less than 4% of the Senate. We then

compared the SFA ideal point estimates to the SFA estimates using everyone’s speech, but only

leaders’ votes.

Results are present in Figure 7. We again recover two dimensions, but as we have dropped over

95% of our observed vote data, the order has flipped. Our first dimension is now driven by words

and the second by votes. The left panel of the figure compares estimates for the voting dimension,

which is theseconddimensionestimatedwith theheavily censoreddata (plottedalong thevertical

y -axis) versus the first dimension of the uncensored estimates (along x -axis). Observations are

labeled by party, and leaders’ locations are solid.
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Figure 6. Extreme terms by dimension, 112th Senate. Extreme terms for the first six dimensions as estimated

bySFA fromthe 112thSenate. The type sizeof each term isproportional to theabsolutevalueof theassociated

coefficient; terms earning positive coefficients appear in the upper part of the panel, those assigned negative

coefficients are presented in the lower segment.

Figure 7. Estimated ideology when only leaders votes are informative. The voting dimension estimates

appear in the left panel, with the censored estimatesmeasured on the vertical (y -axis) while the uncensored

ones appear on the horizontal (x -axis). In the censored data the salience of the voting dimension drops,

so that it becomes the second dimension. The right hand panel exhibits the leadership dimension, again

the censored estimates correspond with the vertical (y -axis) and the uncensored ones coincide with the

horizontal (x -axis).

As expected, with so little voting data, recovery of the first dimension is far from perfect, but

remarkably the imputed scores correlate highly, at more than 0.79. This effect is not simply a

cross-party effect due to extreme partisanship; the within-party correlations are more than 0.4.

In Song Kim et al. � Political Analysis 226

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.7


The right hand panel compares estimates for the “leadership” dimension, the first dimension

in the censored data but the second in the full data. The censored estimates correspond closely

with their uncensored counterparts, as this dimension is drivenprimarily bywords and thesewere

not censored.

4 Conclusion

We propose a method, Sparse Factor Analysis, for combining votes and text data in a single

scaling procedure. The method models both word choice and vote choice in terms of the same

ideal points. Furthermore, we develop a statistical framework that allows us to estimate both

individuals’ most preferred outcomes and the underlying dimensionality of the joint word–vote

space. The resulting methodology provides a close linkage between the choice-theoretic models

of vote and word choice. This tight connection allows the extension of SFA to more complex

decision scenarios (e.g., Clinton and Meirowitz 2003). SFA allows the analyst to estimate the

underlying number of latent dimensions, rather than having to impose dimensionality a priori.

Substantively,weanalyze legislative speechand roll call voting fromeight recent sessionsof the

USSenate. Combiningbothdata sources reveals a consistentpictureof a two-dimensional Senate,

with the first dimension coinciding with the voting dimension, while the second distinguishes

leaders of both parties from the rank and file.

While SFA is designed to analyze individuals who both speak and cast votes, it allows

us to impute policy preferences to non-voting political speakers.15 This may prove useful in

confronting the perennial research problem of imputing the preferred policy outcomes of

legislative candidates. While analysts can impute the ideology of victorious candidates from their

subsequent congressional conduct, as they can infer the leanings of defeated incumbents from

their previous voting records,measuring the preferences of defeated challengers has proven to be

amore elusive goal. Yet every challenger spends time and energy generating political speech. SFA

offers the possibility of imputing the most preferred policy such a candidate would have pursued

had he been elected.

We hope the approach in this paper also finds purchase beyond the US Congress. For example,

in strong-party systems where votes are relatively uninformative, words may be used to help

clarify the within-party variance in ideal points. We are currently exploring applications of the

method in situations where voting is not perfectly reflective of underlying individual preference

or where ideal points are allowed to evolve over time.
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