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For an increasing monotone graph property P the local resilience of a graph G with respect

to P is the minimal r for which there exists a subgraph H ⊆ G with all degrees at most r,

such that the removal of the edges of H from G creates a graph that does not possess P .

This notion, which was implicitly studied for some ad hoc properties, was recently treated

in a more systematic way in a paper by Sudakov and Vu. Most research conducted with

respect to this distance notion focused on the binomial random graph model G(n, p) and

some families of pseudo-random graphs with respect to several graph properties, such

as containing a perfect matching and being Hamiltonian, to name a few. In this paper

we continue to explore the local resilience notion, but turn our attention to random and

pseudo-random regular graphs of constant degree. We investigate the local resilience of the

typical random d-regular graph with respect to edge and vertex connectivity, containing a

perfect matching, and being Hamiltonian. In particular, we prove that for every positive

ε and large enough values of d, with high probability, the local resilience of the random

d-regular graph, Gn,d, with respect to being Hamiltonian, is at least (1 − ε)d/6. We also prove

that for the binomial random graph model G(n, p), for every positive ε > 0 and large enough

values of K , if p > K ln n
n then, with high probability, the local resilience of G(n, p) with

respect to being Hamiltonian is at least (1 − ε)np/6. Finally, we apply similar techniques to

positional games, and prove that if d is large enough then, with high probability, a typical
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random d-regular graph G is such that, in the unbiased Maker–Breaker game played on

the edges of G, Maker has a winning strategy to create a Hamilton cycle.

1. Introduction

Let P be some graph property. A basic question in extremal combinatorics asks to

compute or to estimate the ‘distance’ of a graph G from possessing (or not possessing)

the property P . The following definition comes to mind.

Definition 1.1. The global resilience of a graph G = (V , E) with respect to P is

rg(G,P) = min

{
r : ∃F ⊆

(
V

2

)
such that |F | = r and G′ = (V , E�F) /∈ P

}
.

Hence, the global resilience of G with respect to P is the minimal number of additions

and removals of edges from G such that the resulting graph does not possess P . This is

in fact the edit distance of G with respect to P , and using this terminology, one can state

the celebrated theorem of Turán [38] (in the case that r divides n) as ‘The complete graph

Kn on n vertices has global resilience n
2
( n
r

− 1) with respect to being Kr+1-free.’

For some graph properties such as being connected or being Hamiltonian, the removal

of all edges incident to a vertex of minimum degree is enough to destroy them, hence

supplying a trivial upper bound on the global resilience. For such properties the notion

of global resilience does not seem to convey what one would expect from such a distance

measure. In a recent paper, Sudakov and Vu [37] initiated the systematic study of the

following related notion, which conditions not on the maximal number of edges in the

graph H but on its maximum degree Δ(H).

Definition 1.2. The local resilience of a graph G = (V , E) with respect to P is

r�(G,P) = min

{
r : ∃H ⊆

(
V

2

)
such that Δ(H) = r and G�H /∈ P

}
.

So, for local resilience, an additional constraint of a bounded number of editions done

on edges incident to a single vertex is required. Using this definition, for example, the

classical theorem of Dirac (see, e.g., [10, Theorem 10.1.1]) can be rephrased as ‘Kn has local

resilience �n/2	 with respect to being Hamiltonian.’ As has already been pointed out in

[37], there seems to be a duality between the global or local nature of the graph property

at hand and the type of resilience that is more natural to consider. More specifically,

global resilience seems to be a more appropriate notion for studying local properties (e.g.,

containing a Kk subgraph), whereas for global properties (e.g., being Hamiltonian), the

study of local resilience appears to be more natural.

In this paper we will focus on the local resilience of monotone increasing graph

properties P (i.e., properties that are kept under the addition of edges). This implies that

one should only consider the removal of edges, as addition of edges cannot eliminate P .
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Definition 1.2 hence takes the following simpler form:

r�(G,P) = min{r : ∃H ⊆ G such that Δ(H) = r and G \ H /∈ P}.

Our results will mostly deal with local resilience of random graphs. The most widely

used random graph model is the binomial random graph, G(n, p). In this model we start

with n vertices, labelled, say, by {1, . . . , n} = [n], and select a graph on these n vertices

by going over all
(
n
2

)
pairs of vertices, deciding independently with probability p for a

pair to be an edge. The model G(n, p) is thus a probability space of all labelled graphs

on the vertex set [n] where the probability of such a graph, G = ([n], E), to be selected

is p|E|(1 − p)(
n
2)−|E|. This product probability space gives us a wide variety of probabilistic

tools to analyse the behaviour of various random graph properties of this probability

space. (See monographs [5] and [21] for a thorough introduction to the subject of random

graphs.) In this paper we will mostly consider a different random graph model. Our

probability space, which is denoted by Gn,d (where dn is even), is the uniform space of all

d-regular graphs on n vertices labelled by the set [n]. In this model, one cannot apply the

techniques used to study G(n, p) as these two models do not share the same probabilistic

properties. Whereas the appearances of edges in G(n, p) are independent, the appearances

of edges in Gn,d are not. Nevertheless, many results obtained thus far for the random

regular graph model Gn,d are in some sense ‘equivalent’ to the results obtained in G(n, p)

with suitable expected degrees, namely, d = np. This relation between the two random

graph models was partially formalized by Kim and Vu in [24]. The main results of this

current paper are yet further examples of this connection between the two random graph

models, as will become apparent in the subsequent sections and in the Appendix. The

interested reader is referred to [40] for a thorough survey of the random regular graph

model Gn,d. We will sometimes abuse notation a bit by using the same notation for both

the distribution over graphs on a set of vertices and a random graph sampled from this

distribution, but which of the two is meant should be clear from the context.

1.1. Previous work

A similar notion to that of local resilience of graph properties was first mentioned in a

paper of Kim and Vu [24] where their main incentive was to prove some formal relation

that ties the classic binomial random graph model G(n, p) and Gn,d when d = np and p is

large enough. Local resilience as defined in Definition 1.2 was implicitly used in a paper of

Kim, Sudakov and Vu [22], where it was proved that both typical random graphs G(n, p)

and Gn,d, for appropriate values of p and d, do not have non-trivial automorphisms, thus

settling a conjecture of Wormald.

Recently, the third author and Vu in [37] initiated a systematic study of the local

resilience of graph properties, for it was apparent that this notion plays a central role

in several classical results in extremal graph theory and deserves some attention on its

own right. In a relatively short period of time quite a few research papers on the subject

followed (see, e.g., [9], [14], [26]). All of the above-mentioned papers dealt more specifically

with the local resilience of random graphs with respect to several graph properties. We

note that some of the following results were actually proved with respect to pseudo-

random graphs, as will be done in the current paper, but in order to omit some technical
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definitions, we will solely state the results for random graphs. In this context one is

looking at the typical behaviour of r�(G), where G is some random-graph model. We will

specifically cite some of the above-mentioned results which are closely related to the type

of questions that this paper deals with, and, in fact, were the main motivation for it.

Let PM denote the graph property of containing a perfect matching. In their paper,

Sudakov and Vu [37] proved that there exists an absolute constant C > 0 such that if

p � C log n
n

and n is even, then for every ε > 0 with high probability (or w.h.p. for brevity)1

|r�(G(n, p),PM) − np
2

| � εnp, hence pretty much settling the local resilience question of

random graphs with respect to this property. Another natural property to consider is the

graph property of being Hamiltonian, which we denote by HAM. Note that for every

graph G we have the following trivial lower bound:

r�(G,HAM) � r�(G,PM). (1.1)

Remark 1.3. When n is odd one can define the property PM as containing a matching

that misses one vertex, and an analogous result to the one just mentioned can be similarly

derived.

Still in [37], Sudakov and Vu showed that there exists an absolute constant C such

that, for every δ, ε > 0, if p � C log2+δ n
n

then w.h.p. r�(G,HAM) � (1 − ε)np/2. Frieze and

Krivelevich in [14] studied this problem for the range of p ‘right after’ G(n, p) becomes

Hamiltonian w.h.p., but the lower bound they obtained in this range is weaker. They

proved that there exist absolute constants α, C > 0 such that for every p � C log n
n

w.h.p.

r�(G(n, p),HAM) � αnp. It is plausible that for every ε > 0 w.h.p. |r�(G(n, p),HAM) −
np
2

| � εnp as soon as p 
 log n
n

, but the above-mentioned results still leave a gap to fill. In

this work we make some progress on this front, but, alas, we are unable to close the gap

completely.

1.2. Our results

As previously mentioned, in this work we continue to explore the notion of local resilience

of random and pseudo-random graphs, but our focus is shifted to the regular case. Our

first result deals with the connectivity property. Recall that for the G(n, p) model we need

p � log n
n

for the graph to be w.h.p. connected, whereas in the regular case, Gn,d, taking

d � 3 suffices for the random d-regular graph to be w.h.p. connected. We start by showing

that, in this same range, not only is Gn,d w.h.p. connected but it is also somewhat resilient

with respect to this property. Let ECk and VCk denote the graph properties of being k-edge

connected and k-vertex connected, respectively. We start with the edge connectivity case.

Theorem 1. For every fixed d � 3, the following holds w.h.p.

(a) If d
2

+
√
d � k � d, then r�(Gn,d, ECk) = d − k + 1.

1 In this context we mean that the mentioned event holds with probability tending to 1 as n, the number of

vertices, goes to infinity.
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(b) If 1 � k < d
2

+
√
d, then d

2
−

√
d < r�(Gn,d, ECk) � min{d − k + 1, d

2
+ 4

√
d ln d}.

Theorem 1 demonstrates an interesting threshold phenomenon that happens as we

decrease k from d to 1 at around k = d
2
. It is apparent that if we want our graph to stop

being k-edge connected for k � d/2 +
√
d, then the best we can do is to remove the edges

incident to a single vertex, but when k goes below d/2 − 4
√
d ln d that is no longer the

case, as one can find cuts where each vertex does not participate in ‘too many’ edges of

the cut. The same phenomenon happens in the case of vertex connectivity.

Theorem 2. There exists an integer d0 > 0 such that, for every fixed d � d0, the following

holds w.h.p.

(a) If d
2

+
√
d � k � d, then r�(Gn,d,VCk) = d − k + 1.

(b) If 1 � k < d
2

+
√
d, then d

2
−

√
d < r�(Gn,d,VCk) � min{d − k + 1, d

2
+ 4

√
d ln d}.

The next property we investigate is that of containing a perfect matching. This result,

in fact, is inspired by the corresponding results for G(n, p) of Sudakov and Vu in [37],

although some modifications of their proof were needed for it to apply to the case of

fixed values of d. We show that for large enough fixed d, the local resilience of the

typical random regular graph with respect to the containment of a perfect matching is

concentrated around the value d/2.

Theorem 3. There exists an integer d0 > 0 such that, for every fixed d � d0, w.h.p.

d

2
− 10

√
d ln d − 4

√
d < r�(G2n,d,PM) � d

2
+ 2

√
d ln d + 2.

Actually, Theorems 1, 2 and 3 are proved in a stronger setting, that of (n, d, λ)-graphs

(which we define in Section 2.2). The results above, cited in the context of random regular

graphs, are just simple implications when plugging in the known bounds on the second

eigenvalue of the typical random regular graph.

We move to the main result of this paper, namely, a lower bound on the local resilience

of the typical random regular graph of constant degree with respect to being Hamiltonian.

Theorem 4. For every ε > 0 there exists an integer d0(ε) > 0 such that, for every fixed

integer d � d0, w.h.p.

r�(Gn,d,HAM) � (1 − ε) d/6.

Following the footsteps traced by the proof of Theorem 4, we are able to prove the

‘corresponding’ result in the case of the random graph model G(n, p), hence improving the

non-explicit constant value α of [14] to 1
6

− ε for any ε > 0.

Theorem 5. For every ε > 0 there exists a constant K(ε) > 0 such that, if p � K log n/n,

then w.h.p.

r�(G(n, p),HAM) � (1 − ε) np/6.
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1.3. Positional games played on Gn,d

Let G = (V , E) be a graph and consider the following game played on the set of edges

E(G). The game is played by two players, Maker and Breaker , who alternately take turns

occupying a previously unclaimed edge of E(G). We assume that Breaker moves first

and that the game ends when all edges of the graph have been claimed by either of the

players. The game is a win for Maker if and only if the graph spanned by the edges

selected by Maker possesses some predefined graph property P . The graph G is called a

Maker’s win if, no matter how Breaker plays, Maker has a strategy (that can be adaptive

to Breaker’s choices) such that the game ends as a win for Maker, and we denote the

family of winning boards for Maker by MP . Although the above game is described in

game-theoretic terms, it should be noted that these games are perfect-information games

and MP is some graph property. It clearly satisfies MP ⊆ P , and if P is monotone

increasing (decreasing) then MP is also monotone increasing (decreasing). Furthermore,

in the case of monotone increasing graph properties, the game can be terminated once the

graph spanned by Maker’s edges possesses the property regardless of whether all edges

have been claimed. This game is a particular case of a general family of combinatorial

games called positional games. Positional games have attracted more and more attention

in the past decade, and a thorough introduction with a plethora of results can be found

in a recent monograph of Beck [2].

One of the seminal results in this field is due to Chvátal and Erdős [8], who proved

that Kn ∈ MHAM for large enough values of n (Hefetz and Stich [19] proved that n � 29

suffices). The monotonicity of HAM leads to the natural question of how sparse a graph

G ∈ MHAM can be. Hefetz, Krivelevich, Stojaković and Szabó [16, 17] addressed this

problem twice. First, they proved that there exists a positive constant � such that w.h.p.

G(n, p) ∈ MHAM for every p � ln n+(ln ln n)�

n
. Note that this result is very close to being

optimal, for if p = ln n+3 ln ln n−ω(1)
n

then w.h.p. δ(G(n, p)) < 4, which directly implies that

G(n, p) /∈ MHAM (Breaker, having the advantage of the first move, will start by taking

more than half of the edges incident to a vertex of degree at most 3 which exists with high

probability, leaving Maker’s graph with a vertex of degree at most 1 and thus without

a Hamilton cycle). Second, they showed that for large enough values of n there exists a

graph G ∈ MHAM on n vertices with e(G) � 21n.

We study the Hamiltonicity game played on the edges of random regular graphs. It

turns out that using very similar ideas to the ones used in the proof of Theorem 4 can

help demonstrate that a typical graph sampled from Gn,d for large enough constant values

of d is Maker’s win for this game.

Theorem 6. There exists an integer d0 > 0 such that, for every fixed integer d � d0, w.h.p.

Gn,d ∈ MHAM.

It should be noted that, in contrast to the result of [17], Theorem 6 gives a very large

and natural family of graphs on which Maker wins the Hamiltonicity game. Moreover, a

typical graph in this family will be locally sparse, whereas the construction of the graph

of [17] contains many cliques of large constant size.
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Finally, we would like to pinpoint the ideological connection between Maker–Breaker

games and the notion of local resilience, and specifically the similar nature of Theorems 4

and 6. Both theorems imply that, even for constant (albeit large) values of d, a typical

graph sampled from Gn,d is not only Hamiltonian (see [4, 11, 13, 35, 36]), but even an edge-

deleting adversary (of somewhat limited power) cannot make the graph non-Hamiltonian.

This connection ‘in spirit’ of these two notions also leads to similar ideas and techniques,

which we show can be applied in the proofs in both settings.

1.4. Organization

The rest of the paper is organized as follows. We start with Section 2, where we state all

the needed preliminaries that are used throughout the proofs of our results. Section 3 is

devoted to the proofs of Theorems 1, 2 and 3, which share common ideas. In Section 4

we give in detail the full proof of Theorem 4, which is somewhat more involved than

the previous proofs and requires a delicate investigation of the random graph model. As

the main focus of this current paper is on random regular graphs of constant degree,

we relegate the full proof of Theorem 5 to the Appendix, where the proof itself follows

quite closely that of Theorem 4. Section 5 is devoted to the proof of Theorem 6, and we

conclude the paper with some final remarks and open questions in Section 6.

2. Preliminaries

In this section we provide the necessary background information needed in the course

of the proofs of the main results of this paper. We choose the algebraic approach to

pseudo-randomness (although this can be readily replaced by many other qualitatively

equivalent definitions of pseudo-random graphs), as the transition from (n, d, λ)-graphs

with a large enough spectral gap to random regular graphs is quite standard. We then

move on to describe in detail some previous results regarding the random graph model

Gn,d when d is fixed. We will also need to introduce the more general setting of random

graphs of a specified degree sequence, and although our main results are not stated in

this general setting, our proofs of the Hamiltonicity result will rely heavily on this setting.

We start with the (mostly standard) notation that will be used throughout this paper.

2.1. Notation

Although this paper mainly deals with graphs where neither loops nor parallel edges are

allowed, it will be more convenient to define some of the notation in a more general

setting where parallel edges and loops may exist. In order to remove any ambiguity, we

refer to an object in the more general setting as a multigraph , whereas the term graph is

strictly reserved for the case where no loops nor parallel edges appear.

Given two multigraphs M1 = (V , E1) and M2 = (V , E2) on the same vertex set, we

denote by M1 + M2 = (V , E) the multigraph over the same vertex set, V , with an edge

multiset E taken as the union as multisets of E1 and E2.

Given a graph G = (V , E), the neighbourhood NG(U) of a subset U ⊆ V of vertices is

the set of vertices defined by NG(U) = {v /∈ U : ∃u ∈ U. {v, u} ∈ E}, and the degree of a

vertex v is dG(v) = |NG({v})|. We denote by EG(U) the set of edges of G that have both
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endpoints in U, and by eG(U) its cardinality. Similarly, for two disjoint subsets of vertices

U and W , EG(U,W ) denotes the set of edges with an endpoint in U and the other in W ,

and eG(U,W ) its cardinality. We will sometimes refer to eG({u},W ) by dG(u,W ). We use

the usual notation of Δ(G) and δ(G) to denote the respective maximum and minimum

degrees in G. We say that H is a subgraph of G, and write H ⊆ G if the graph H = (V , F)

has the same vertex set as G and its edge set satisfies F ⊆ E. If V = V1 ∪ V2 is a partition

of the vertex set, we let GV1 ,V2
= (V1 ∪ V2, EG(V1, V2)) be the induced bipartite subgraph of

G with parts V1 and V2. We denote the maximal density of sets of vertices of cardinality

at most k by ρ(G, k) = max{ eG(U)
|U| : U ⊆ V s.t. |U| � k}. Lastly, we will denote by �(G) the

length of a longest path in G.

The main research interest of this paper is the asymptotic behaviour of some properties

of graphs, when the graph is sampled from some probability measure G over a set of graphs

on the same vertex set [n], and the number of vertices, n, grows to infinity. Therefore,

from now on and throughout the rest of this work, when needed we will always assume

n to be large enough. We use the usual asymptotic notation. For two functions of n, f(n)

and g(n), we denote f = O(g) if there exists a constant C > 0 such that f(n) � C · g(n) for

large enough values of n; f = o(g) or f 
 g if f/g → 0 as n goes to infinity; f = Ω(g) if

g = O(f); f = Θ(g) if both f = O(g) and g = O(f).

Throughout the paper we will need to employ bounds on large deviations of random

variables. We will mostly use the following well-known bound on the lower and the upper

tails of the binomial distribution due to Chernoff (see, e.g., [1, Appendix A]).

Theorem 2.1 (Chernoff bounds). Let X ∼ Bin(n, p). Then, for every Δ > 0:

(a) P
[
X > (1 + Δ)np

]
< exp(−np((1 + Δ) ln(1 + Δ) − Δ)),

(b) P
[
X < (1 − Δ)np

]
< exp(− Δ2np

2
),

(c) P
[
|X − np| > Δnp

]
< 2 exp(−np((1 + Δ) ln(1 + Δ) − Δ)).

Lastly, we stress that throughout this paper we may omit floor and ceiling values when

these are not crucial, to avoid cumbersome exposition.

2.2. (n, d, λ)-graphs

The adjacency matrix of a d-regular graph G on n vertices labelled by {1, . . . , n} is the

n × n binary matrix, A = A(G), where Aij = 1 if and only if (i, j) ∈ E(G). As A is real and

symmetric, it has an orthogonal basis of real eigenvectors and all its eigenvalues are real.

We denote the eigenvalues of A in descending order by λ1 � λ2 · · · � λn, where λ1 = d

and its corresponding eigenvector is 1n (the n × 1 all ones vector). Finally, let λ = λ(G) =

max{|λ2(G)|, |λn(G)|}, and call such a graph G an (n, d, λ)-graph. For an extensive survey

of fascinating properties of (n, d, λ)-graphs the reader is referred to [28]. The celebrated

expander mixing lemma (see, e.g., [1] or [7]) states roughly that the smaller λ is, the more

random-like is the graph.
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Lemma 2.2 (Expander Mixing Lemma: Corollary 9.2.5 in [1]). Let G = (V , E) be an

(n, d, λ)-graph. Then every pair of disjoint subsets of vertices U,W ⊆ V satisfies∣∣∣∣eG(U,W ) − |U||W |d
n

∣∣∣∣ � λ

n

√
|U|(n − |U|)|W |(n − |W |).

We state two corollaries of the above (see, e.g., [7, Section 4.2]), which will be applied

in the succeeding sections.

Corollary 2.3. Let G = (V , E) be an (n, d, λ)-graph. Then every subset of vertices U ⊆ V

satisfies

e(U,V \ U) � (d − λ)|U|(n − |U|)
n

.

Corollary 2.4. Let G = (V , E) be an (n, d, λ)-graph. Then every subset of vertices U ⊆ V

satisfies

e(U) � d

n

(
|U|
2

)
+

λ

n
|U|

(
n − |U|

2

)
.

2.3. Random regular graphs

When thinking about a random regular graph model, a natural choice of probability

space, which we denote by Gn,d, is to fix a base set of n vertices and to sample uniformly

a d-regular graph over this vertex set. This random graph model has attracted much

attention, and several techniques have been developed in order to explore its properties.

In this section, we will simply state some of the known results for this model without

discussing them nor their proofs (which can be found in [40]). We start with the following

easy observation. By symmetry, for every pair of vertices u, v ∈ V ,

P
[
{u, v} ∈ E(Gn,d)

]
=

d

n − 1
. (2.1)

In light of Section 2.2, a possible way to go about proving results on the random graph

model Gn,d is to compute or to estimate the typical value of λ(Gn,d) and then to use the

properties of (n, d, λ)-graphs. In our context, in light of Lemma 2.2, we would like to have

d-regular graphs with spectral gap, d − λ(G), as large as possible. Friedman, confirming

a conjecture of Alon, showed that a typical random d-regular graph has a spectral gap

which closely matches the upper bound provided by the Alon–Boppana bound (see, e.g.,

[33]), hence providing an accurate evaluation of the second eigenvalue λ(G).

Theorem 2.5 (Friedman [12]). For every ε > 0 and fixed d � 3, w.h.p.

λ(Gn,d) � 2
√
d − 1 + ε. (2.2)

With Lemma 2.2 and Theorem 2.5 at hand, the following theorem is an immediate

consequence.
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Theorem 2.6. For every fixed integer d � 3, if G = (V , E) is sampled from Gn,d, then w.h.p.

every pair of subsets of vertices A,B ⊆ V satisfies∣∣∣∣e(A,B) − |A||B|d
n

∣∣∣∣ � 2
√
d|A||B|. (2.3)

The probability space Gn,d may be a natural probability space to consider, but

unfortunately, the inherent dependence of the appearance of edges in a graph sampled

from this space creates many technical difficulties. It is sometimes more convenient to

work with a different probability space that is in some sense equivalent (for our purposes)

to Gn,d, where this equivalence is defined as follows.

Definition 2.7. Let A = (An)
∞
n=1 and B = (Bn)

∞
n=1 be two sequences of probability meas-

ures, such that for every natural n, An and Bn are defined on the same measurable space

(Ωn,Fn). We say that A and B are contiguous if, for every sequence of sets Xn ∈ Fn,

lim
n→∞

An(Xn) = 0 ⇐⇒ lim
n→∞

Bn(Xn) = 0.

Our probability measure will be the one induced by some random graph distribution

over a fixed set of vertices. Following the notation of [21, Chapter 9.5] we denote

contiguity of two random graphs Gn and Qn (on the same vertex set) by Gn ≈ Hn. By

Gn + Qn we mean the random multigraph obtained by the union of the two graphs, and

by Gn ⊕ Qn the random graph obtained by taking the union conditioned on the resulting

graph being simple. In particular, we will make use of the following results (which were

later generalized in a uniform way in [15]) on the contiguity of the random regular graph

probability measure Gn,d and of the sums of random regular graphs of appropriate degrees.

Theorem 2.8 (Janson [20]). For every two fixed integers d1, d2 � 3,

Gn,d1
⊕ Gn,d2

≈ Gn,d1+d2
.

Theorem 2.9 (Kim and Wormald [25]). Let Hn denote the uniform probability space of all

Hamiltonian cycles on a set of n fixed vertices. Then

Hn ⊕ Hn ≈ Gn,4.

We move on to the more general setting of random graphs with a given degree sequence.

Let Gn,d be the uniform probability space over all graphs on vertex set V of size n with

degree sequence d = {dv}v∈V . We call such a sequence d graphic if there exists at least

one graph with this degree sequence. Note that not all degree sequences are graphic. For

one, the sum of degrees must always be even. Although our main focus in this paper is

the random regular graph model, we will resort to the study of this more general setting

towards proving some of our results below. Denote by d̄ = 1
n

∑
v∈V dv the average degree,

and by D the maximum degree in this degree sequence. The following result, due to
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McKay [32], estimates the probability that a random graph with a given degree sequence

is edge-disjoint from some given bounded degree graph on the same vertex set.

Theorem 2.10 (McKay [32]). For every graphic degree sequence d with 1 � D 

√
n, if

G0 is a graph on n vertices of maximum degree Δ(G0) = O(1), then

(1 − o(1)) exp
(
−γ − γ2 − ν + o(1)

)
� P

[
E(Gn,d) ∩ E(G0) = ∅

]
� (1 + o(1)) exp

(
−γ − γ2 − ν + o(1)

)
,

where γ = 1
d̄n

∑
v∈V

(
dv
2

)
and ν = 1

d̄n

∑
uv∈E(G0) dudv .

As a direct consequence we get the following corollary, which states that events that

occur with negligible probability in Gn,d1
+ Gn,d2

will occur with negligible probability in

Gn,d1
⊕ Gn,d2

.

Corollary 2.11. For every two integers d1, d2 � 3, if P is a graph property such that

P
[
Gn,d1

+ Gn,d2
∈ P

]
= o(1), then

P
[
Gn,d1

⊕ Gn,d2
∈ P

]
= o(1).

The proof of Corollary 2.11 is immediate from Theorem 2.10, as it guarantees that

conditioning on the event that the graphs sampled from Gn,d1
and Gn,d2

are edge-disjoint

can increase the probability of such an event by a constant (that depends on d1 and d2)

multiplicative factor. In turn, applying Theorem 2.8 enables us to study the properties of

random regular graphs (of fixed degree) by generating the graph in two phases, where

in each phase we generate a random regular graph (of smaller degree), and we can also

‘disregard’ multiple edges, as we will be interested only in events which appear with

probability tending to 0 as n grows (or their complement).

The following is a well-known asymptotic property of Gn,d (see, e.g., [40]) which states

that w.h.p. any constant size subset of vertices contains at most one cycle. Recall that for

any graph G = (V , E) we let

ρ(G, τ) = max

{
eG(U)

|U| : U ⊆ V s.t. |U| � τ

}
.

Theorem 2.12. Let d = {dv}v∈V be a graphic degree sequence such that D = O(1) and let

τ = O(1). Then w.h.p. ρ(Gn,d, τ) � 1.

We would like to compute P
[
{u, v} ∈ E(Gn,d)

]
for two fixed vertices u, v ∈ V similarly to

(2.1). We start with the following definition.

Definition 2.13. Let G = (V , E) and G′ = (V , E ′) be two graphs on the same vertex set.

We write

G ∼ G′ ⇔ ∃{v1, v2}, {u1, u2} ∈ E,

E ′ = E \ {{v1, v2}, {u1, u2}} ∪ {{v1, u1}, {v2, u2}},
(2.4)

that is, G ∼ G′ if G and G′ differ only by a single simple switch of edges.
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Note that a simple switch operation does not affect the degree sequence of the vertices.

Proposition 2.14. Let d = {dv}v ∈ V be a graphic degree sequence such that D = O(1).

Then, for every distinct u, v ∈ V ,

(1 − o(1))
dudv − du − dv

d̄n + dudv − 2du − 2dv
� P

[
{u, v} ∈ E(Gn,d)

]

� dudv

d̄n + dudv − (D + 1)(du + dv)
.

(2.5)

Proof. Fix a pair of vertices u and v, and let

A = {G ∈ Gn,d : {u, v} ∈ E(G)},
B = {G ∈ Gn,d : {u, v} /∈ E(G)}.

Let F denote the auxiliary bipartite graph with vertex set A ∪ B, where two vertices of

this graph are connected by an edge if the corresponding graphs differ by a simple switch.

The graph F is undirected, as a simple switch is clearly reversible. For every G ∈ Gn,d we

denote by r(G) its degree in F , and thus∑
G∈A

r(G) =
∑
G∈B

r(G). (2.6)

To count the number of simple switches that transform a graph in A to a graph in B, we

need to find all ordered pairs of vertices (x, y) such that {x, y} ∈ E(G) and {u, x}, {v, y} /∈ E,

as this will allow us to perform the switch G′ = G − {u, v} − {x, y} + {u, x} + {v, y}, where

the resulting graph is in B. So for every x /∈ NG(u) ∪ {u} we have dx − |NG(x) ∩ NG(v)| −
1{x,v}∈E(G) options for choosing the vertex y (where 1ϕ denotes the indicator variable of

the event ϕ):

∀G ∈ A, r(G) =
∑

x/∈NG(u)∪{u}

(dx − |NG(x) ∩ NG(v)| − 1{x,v}∈E(G)).

Similarly, to count the number of simple switches that transform a graph in B to a graph

in A, we need to find all ordered pairs of vertices (x, y) such that {u, x}, {v, y} ∈ E(G)

but {x, y} /∈ E, as this will allow us to perform the switch G′ = G − {u, x} − {v, y} +

{u, v} + {x, y}, where the resulting graph is in A. So for every x ∈ NG(u) ∪ {u} we have

dv − |NG(x) ∩ NG(v)| − 1{x,v}∈E(G) options for choosing the vertex y:

∀G ∈ B, r(G) =
∑

x∈NG(u)

(dv − |NG(x) ∩ NG(v)| − 1{x,v}∈E(G)).

To prove the upper bound of (2.5) we establish a lower bound on the left-hand side of

(2.6):∑
G∈A

r(G) =
∑
G∈A

∑
x/∈NG(u)∪{u}

(dx − |NG(x) ∩ NG(v)| − 1{x,v}∈E(G))

�
∑
G∈A

(∑
x∈V

dx − du −
∑

x∈NG(u)

dx −
∑
x∈V

|NG(x) ∩ NG(v)| −
∑
x∈V

1{x,v}∈E(G)

)
.
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All the above summations are bounded as follows:∑
x∈V

dx = d̄n,
∑

x∈NG(u)

dx � D · du,

∑
x∈V

|NG(x) ∩ NG(v)| =
∑

x∈NG(v)

dx � D · dv,
∑
x∈V

1{x,v}∈E(G) = dv.

Putting it all together yields the following lower bound on
∑

G∈A r(G):∑
G∈A

r(G) � |A|(d̄n − (D + 1)(du + dv)).

On the other hand, we have that the right-hand side of (2.6) satisfies∑
G∈B

r(G) � |B|du · dv.

Putting the two together implies

|A|
|B| � dudv

d̄n − (D + 1)(du + dv)
,

and therefore

|A|
|A| + |B| � dudv

d̄n + du · dv − (D + 1)(du + dv)
.

Let G ′ denote the family of graphs with the given degree sequence d such that the

assertion of Theorem 2.12 holds; then P
[
Gn,d ∈ G ′] = 1 − o(1). We note that if G ∈ G ′ then

any two non-adjacent vertices can have at most two common neighbours, and any two

adjacent vertices can have at most one common neighbour.

Let A′ = A ∩ G ′ and B′ = B ∩ G ′. By the upper bound just proved and our assumption

that D = O(1), we have that P
[
Gn,d ∈ A′] � P

[
Gn,d ∈ A

]
= o(1). This clearly implies that

P
[
Gn,d ∈ B′] = (1 − o(1)) and in particular |B′| � (1 − o(1))|B|.
To get the lower bound of (2.5), we upper-bound the left-hand side of (2.6),∑

G∈A
r(G) =

∑
G∈A

∑
x/∈NG(u)∪{u}

(dx − |NG(x) ∩ NG(v)| − 1{x,v}∈E(G))

�
∑
G∈A

∑
x �=u,v

dx = |A|(d̄n − du − dv),

and lower-bound the right-hand side of (2.6) by going over only the graphs in B′,∑
G∈B

r(G) �
∑
G∈B′

r(G) =
∑
G∈B′

∑
x∈NG(u)

(dv − |NG(x) ∩ NG(v)| − 1{x,v}∈E(G))

� |B′|du · (dv − 2).

Since u and v can be interchanged, we can similarly infer that
∑

G∈B r(G) � |B′|dv · (du − 2).

Averaging the last two inequalities implies
∑

G∈B r(G) � |B′|(dudv − du − dv). Recalling that

|B| = (1 + o(1))|B′| and plugging in the above results in

|A|
|B| � (1 − o(1))

|A|
|B′| � (1 − o(1))

dudv − du − dv

d̄n − du − dv
.
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Finally, the lower bound of (2.5),

|A|
|A + |B| � (1 − o(1))

dudv − du − dv

d̄n + dudv − 2du − 2dv
,

follows.

As a corollary of Proposition 2.14 we upper bound the probability that a predetermined

set of edges is contained in a random regular graph. It should be noted that a similar

result has already appeared in [23], but this result applies only when the set of edges is

of constant cardinality, which will not be sufficient for our purposes.

Corollary 2.15. For every fixed positive ε > 0 and fixed integer d � 3, there exists a constant

C = C(ε, d) such that, if V is a fixed set of n vertices and E0 ⊆
(
V
2

)
is a set of m � (1 − ε) nd

2

pairs of vertices from V , then

P
[
E0 ⊆ E(Gn,d)

]
�

(
Cd

n

)m

.

Proof. Let G ∼ Gn,d and assign some arbitrary ordering on the pairs of E0 =

{e1, e2, . . . , em}. Let F = (V , E0) be the graph composed of the edges of E0 with V as

the vertex set. For every 1 � i � m, let Fi = (V , {e1, . . . , ei}), and let F0 be the empty graph

on V . Note that if Δ(F) > d then the claim is trivially true, hence we can and will assume

Δ(F) � d. We bound the event that all pairs in E0 are in G by bounding the probability

that ei ∈ E(G) conditioned on the event that the previous edges {e1, . . . , ei−1} were selected

in the random graph, G:

P
[
E0 ⊆ E(G)

]
=

m∏
i=1

P
[
ei ∈ E(G) | E(Fi−1) ⊆ E(G)

]
.

For 1 � i � m, let di denote the degree sequence {d − dFi−1
(v)}v∈V . The maximum degree in

di is clearly bounded by d = O(1), and the degree sum of di is dn − 2(i − 1) > dn − 2m �
εdn. Let Gi ∼ Gn,di . Then

P
[
ei ∈ E(G) | E(Fi−1) ⊆ E(G)

]
= P

[
ei ∈ E(Gi) | E(Gi) ∩ E(Fi−1) = ∅

]

�
P
[
ei ∈ E(Gi)

]
P
[
E(Gi) ∩ E(Fi−1) = ∅

] .
Using Proposition 2.14 we have that

P
[
ei ∈ E(Gi)

]
� d2

εdn − 2d(d + 1)
� d

2εn
.

To lower-bound the denominator P
[
E(Gi) ∩ E(Fi−1) = ∅

]
we resort to Theorem 2.10. Let

γ and ν be as defined in Theorem 2.10. Then

γ =
1

dn − 2(i − 1)

∑
v∈V

(
d − dFi−1

(v)

2

)
� 1

εdn
· n ·

(
d

2

)
=

d − 1

2ε
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and

ν =
1

dn − 2(i − 1)

∑
uv∈Fi−1

(d − dFi−1
(u))(d − dFi−1

(v)) � 1

εdn
· (i − 1)d2 � dm

εn
� d2(1 − ε)

2ε
.

Plugging it in, we have

P
[
Gi ∩ Fi−1 = ∅

]
� (1 − o(1)) · exp

(
−γ2 − γ − ν + o(1)

)
� C ′(ε, d),

where C ′ is a constant that depends on ε and d. The claim follows from putting together

both bounds.

The following is a well-known concentration result for Gn,d which makes use of

martingales and the Azuma–Hoeffding inequality (see, e.g., [1], [31]).

Theorem 2.16 ([40]). For every graphic degree sequence d = {dv}v∈V with D = O(1) and

positive constant c > 0, if X is a random variable defined on Gn,d such that |X(G) − X(G′)| �
c for every pair of graphs G ∼ G′, then for all ε > 0

P
[
X � (1 − ε)E[X]

]
� exp

(
− ε2

E[X]2

d̄nc2
+ γ(γ + 1) + o(1)

)

� exp

(
− ε2

E[X]2

Dnc2
+

D2 − 1

4
+ o(1)

)
,

where d̄ = 1
n

∑
v dv and

γ =
1

d̄n

∑
v

(
dv

2

)
=

1

2

(∑
v d

2
v∑

v dv
− 1

)
� D − 1

2
.

Remark 2.17. Theorem 2.16 appears in [40] as a concentration result for the random

regular graph model Gn,d, but the proof of this more general result can be derived using

exactly the same arguments and plugging in the probability of the event of generating a

simple graph in the configuration model with the given degree sequence d (see, e.g., [32]),

instead of the probability of this event for the regular case.

3. Connectivity and perfect matching

In this section we proceed to prove Theorems 1, 2 and 3, where our main technical

ingredient will be the Lovász local lemma.

3.1. Edge and vertex connectivity

For every integer k � 1, a graph G = (V , E) is k-edge connected if the removal of any

k − 1 edges from G does not result in a disconnected graph, or alternatively, if there is

no partition of the vertex set V = V1 ∪ V2 satisfying e(V1, V2) < k. Similarly, G is k-vertex

connected if the removal of every k − 1 vertices does not result in a disconnected graph, or

equivalently, if every subset of vertices U of cardinality at most |V |/2 satisfies |NG(U)| � k.
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Note that for every graph G, if k′ < k then

r�(G, ECk) � r�(G, ECk′ ), (3.1)

r�(G,VCk) � r�(G,VCk′ ). (3.2)

Clearly, if G is d-regular, then the removal of d − k + 1 edges incident to the same

vertex results in a graph that is neither k-edge connected nor k-vertex connected, and

hence the following trivial upper bound for the local resilience of d-regular graphs with

respect to being k-edge connected and k-vertex connected is established.

Claim 3.1. For every pair of integers 3 � d � n − 1 and 1 � k � d, and every d-regular

graph G,

r�(G, ECk) � d − k + 1,

r�(G,VCk) � d − k + 1.

Applying the Lovász local lemma produces a different upper bound on the local

resilience of any d-regular graph with respect to being k-edge connected or k-vertex

connected for every integer k � 1.

Proposition 3.2. For every integer 3 � d � n − 1, if G = (V , E) is a d-regular graph on n

vertices, then there exists a subgraph H with Δ(H) � d/2 + 4
√
d ln d such that the graph

G − H is disconnected.

Proof. Partition V into two sets V1 and V2 by choosing for each vertex a side uniformly

at random. For every vertex v ∈ V the random variable dGV1 ,V2
(v) is distributed according

to the binomial distribution with d trials and success probability 1/2. Let Av denote the

event dGV1 ,V2
(v) > d/2 + 4

√
d ln d. Then, setting Δ = 8

√
ln d/d � 5 in Theorem 2.1(a), and

using the fact that (Δ + 1) ln(Δ + 1) − Δ > Δ2/10, P[Av] < exp
(
− d

2
· ε2

10

)
� d−3. If u is a

vertex of distance at least 3 from v, then clearly the events Av and Au are independent,

hence Av is dependent on fewer than d2 other such events. For d � 3 we have that

e · d2 · d−3 < 1, and hence the Lovász local lemma (see, e.g., [1, Corollary 5.1.2]) asserts

that there exists a partition of V into V1 and V2 such that dGV1 ,V2
(v) � d/2 + 4

√
d ln d for

every vertex v ∈ V . Taking H = GV1 ,V2
completes the proof.

Proposition 3.2 therefore implies that for every pair of integers 3 � d � n − 1 and

1 � k � d we have

r�(G, ECk) � d/2 + 4
√
d ln d, (3.3)

r�(G,VCk) � d/2 + 4
√
d ln d. (3.4)

Note that in light of Claim 3.1, Proposition 3.2 provides an improved upper bound only

for k � d/2 − 4
√
d ln d + 1.

To get a lower bound on the local resilience with respect to k-edge connectivity, we

turn to (n, d, λ) pseudo-random graphs.
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Proposition 3.3. For every integer 3 � d � n − 1, if G = (V , E) is an (n, d, λ)-graph with

λ � d · n−4
3n−4

, then for every subgraph H ⊆ G satisfying Δ(H) � d−λ
2

(
1 − 4

n

)
, the subgraph

G − H is (d − Δ(H))-edge connected.

Proof. Let V = V1 ∪ V2 be some partition of the vertex set of G where |V1| � |V2|, and

let Δ = Δ(H). Corollary 2.3 implies that eG−H (V1, V2) � eG(V1, V2) − |V1| · Δ � fG,Δ(|V1|),
where fG,Δ : [�n/2	] → R is a function defined by fG,Δ(1) = d − Δ and fG,Δ(t) = t(d − λ −
Δ) − t2 · d−λ

n
for every 2 � t � n/2. Note that with the assumptions on λ and Δ, and by

using standard tools to analyse the extrema of fG,Δ, the function fG,Δ attains its minimum

at t = 1, and hence eG−H (V1, V2) � fG,Δ(1) = d − Δ, which completes the proof.

Using the bound on the typical second eigenvalue of Gn,d for fixed values of d given by

Theorem 2.5, we get the following corollary.

Corollary 3.4. For every fixed d � 3 and for every d
2

+
√
d � k � d, if G ∼ Gn,d, then w.h.p.,

for every subgraph H ⊆ G satisfying Δ(H) � d − k, the subgraph G − H is k-edge connected.

We proceed to explore the local resilience of an (n, d, λ)-graph with respect to vertex

connectivity. To this end, we will state our result under some additional assumptions on

the graph. Specifically, we require the graph to be locally ‘sparse’. Although this constraint

may seem somewhat artificial, it arises naturally in the setting of random d-regular graphs

as stated in Theorem 2.12.

Proposition 3.5. There exists an integer d0 > 0 such that, for every ε > 0 and integer d0 �
d � n − 1, if G is an (n, d, λ)-graph satisfying ρ(G, d + d2/ε) � 1, then for every subgraph

H ⊆ G satisfying Δ(H) � d−λ
2

− ε, the subgraph G − H is (d − Δ(H))-vertex connected.

Proof. Set Δ = Δ(H), and let U be a subset of vertices of cardinality u � d − Δ − 1.

Assume U is a minimal separating set in G − H , and let A ⊆ V \ U be the vertex set

of a smallest connected component after the removal of U. Then V \ U = A ∪ B, where

eH (A,B) = eG(A,B) and a = |A| � |B| = n − a − u. By the minimality of U we can also

assume U = NG−H (A), and therefore a � 2, since the removal of at most d − Δ − 1 vertices

cannot disconnect a single vertex from G − H .

Clearly, eH (A,B ∪ U) � Δa and eG−H (A,B ∪ U) = eG−H (A,U) � du. On the other hand,

Corollary 2.3 implies a(n−a)(d−λ)
n

� eG(A,B ∪ U) � Δa + du. Noting that a < n
2

and Δ �
d−λ

2
− ε, we have that a(n−a)(d−λ)

n
> a(d−λ)

2
and Δa � a(d−λ)

2
− εa. It follows that a < du

ε
=

O(1).

Let Uk = {v ∈ U : dG−H (v, A) = k}. Since (G − H)[A] is connected we have eG−H (A) �
a − 1. On the other hand, since |A ∪ U| = a + u � d2

ε
+ d, from our assumption on the

density of small sets in G (and hence in G − H) we have that k|Uk| = eG−H (A,Uk) �
eG−H (A ∪ Uk) − eG−H (A) � a + |Uk| − (a − 1) = |Uk| + 1. This implies that |U2| � 1 and

that |Uk| = 0 for every k > 2. This assumption on G also implies that eG(A,B ∪ U) = da −
2eG(A) � (d − 2)a, and thus a(d − 2 − Δ) � eG−H (A,B ∪ U) = eG−H (A,U) � d − Δ, since

every vertex in U is a neighbour of some vertex in A and there is at most one with
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Figure 1. The local resilience of edge connectivity.

two neighbours. Now Δ � d
2
, which in turn implies a � 1 + 2

d−2−Δ
� 1 + 4

d−4
< 2 for large

enough d, which is a contradiction.

We use the bound for a typical graph in Gn,d of Theorem 2.5 and Theorem 2.12 to

guarantee that a typical graph in Gn,d satisfies the density requirements of Proposition 3.5,

to infer the following.

Corollary 3.6. There exists an integer d0 > 0 such that, for every fixed d � d0 and d
2

+√
d � k � d, if G ∼ Gn,d then w.h.p. for every subgraph H ⊆ G satisfying Δ(H) � d − k, the

subgraph G − H is k-vertex connected.

We now derive Theorems 1 and 2 from Claim 3.1, Proposition 3.2, and Corollaries 3.4

and 3.5. Clearly, the conjunction of Claim 3.1 and Corollary 3.4 implies Theorem 1(a)

and the conjunction of Claim 3.1 and Corollary 3.6 implies Theorem 2(a). Both these

items state that for high enough values of k the local resilience of G with respect to being

k-edge-connected or k-vertex-connected is exactly d − k + 1. Set k0 = d
2

+
√
d. Then, using

(3.1) and (3.2), Corollaries 3.4 and 3.6 also provide a lower bound of d
2

−
√
d for every

k < k0, hence establishing the lower bound of the other items in Theorems 1 and 2. The

upper bound in all these items follows from Claim 3.1 and Proposition 3.2. Both theorems

demonstrate an interesting threshold phenomenon for both k-connectivity properties that

occurs around d/2, as is plotted in Figure 1.

3.2. Perfect matching

Let G = (V , E) be a graph. We say that a subset of edges M ⊆ E is a matching if no two

edges in M share a vertex. M is a perfect matching if the edges of M cover all of the

vertices of G. Clearly, in order for G to contain a perfect matching, |V | must be even.

To derive the lower bound of the local resilience of a typical random d-regular graph

with respect to containment of a perfect matching, we resort to the following lemma,

which states that every (not necessarily regular) graph with an even number of vertices
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and a large enough maximum degree can be partitioned into two equal sets, such that the

induced bipartite subgraph between these sets has a minimum degree not much smaller

than half the minimum degree of the original graph.

Lemma 3.7. For every graph G = (V , E) on 2n vertices with maximum degree Δ(G) �
3, there exists a partition of its vertex set V = V1 ∪ V2 such that |V1| = |V2| = n and

δ(GV1 ,V2
) � δ(G)/2 − 5

√
Δ(G) ln Δ(G).

Proof. Fix an arbitrary partition of the vertex set V into n pairs. Add the vertices of each

pair to two opposing sets, V1 and V2, uniformly at random, and let H = GV1 ,V2
. Clearly,

for every v ∈ V , the random variable dH (v) is binomially distributed with expectation
dG(v)

2
� E[dH (v)] = dG(v)

2
+ ηv � dG(v), where ηv ∈ {0, 1/2} depending on whether or not

the vertex paired with v is a neighbour of v. Set δ = δ(G), Δ = Δ(G), and ζ =
√

Δ ln Δ.

Then, by Theorem 2.1(b),

P
[
dH (v) < δ/2 − 5ζ

]
� exp

(
−dG(v)

4
· 25ζ2

dG(v)2

)
� exp

(
−25ζ2

4Δ

)
= Δ−25/4.

For every vertex v, let Av denote the event dH (v) � δ/2 − 5ζ. The event Av depends on at

most 2(Δ + 1)2 other events Au (all other vertices of distance at most 2 from v or v′ along

with their pairs, where v′ is the vertex paired with v). Recalling that Δ � 3, we have that

e · 2(Δ + 1)2 · Δ−25/4 < 1, and by the symmetric version of the Lovász local lemma (see,

e.g., [1, Corollary 5.1.2]) there exists a partition of the vertex set into two equal parts V1

and V2 such that δ(GV1 ,V2
) � δ(G)/2 − 5

√
Δ(G) ln Δ(G).

By using the expansion properties of (n, d, λ)-graphs, we can use Hall’s criterion to

deduce a lower bound of the local resilience of these graphs with respect to containment

of a perfect matching.

Proposition 3.8. If d � 3 and G is an (2n, d, λ)-graph, then for every subgraph H ⊆ G

satisfying Δ(H) � d/2 − 10
√
d ln d − 2λ, the graph G − H contains a perfect matching.

Proof. Fix G = (V , E) and H ⊆ G as in the proposition, and let G′ = G − H . Then G′ has

2n vertices and satisfies δ(G′) � d/2 + 10
√
d ln d + 2λ and 3 � Δ(G′) � d. By Lemma 3.7

there exists a partition of its vertex set V = V1 ∪ V2 where |V1| = |V2| = n such that

δ′ = δ(G′
V1 ,V2

) � d/4 + λ.

Let m = � n
2
�, fix an integer 1 � s � m and let S ⊆ V1 (without loss of generality) be a set

of cardinality s. Let T = NG′
V1 ,V2

(S), and assume that |T | = t � s − 1 < n
2
. By Lemma 2.2

we have that

s · δ′ � eG′
V1 ,V2

(S, T ) � eG(S, T ) � s

(
td

2n
+ λ

√
t

s

)
< s

(
d

4
+ λ

)
,

which is a contradiction. If on the other hand s > m, then t � m, as otherwise there exists

a subset of vertices S ′ ⊆ S of cardinality s′ = m such that |NG(S ′)| � t < m, contradicting
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the previous case. Now, let S ′ = V2 \ NG(S) and note that |S ′| = n − t � m and |NG(S ′)| �
|V1 \ S | = n − s. By the previous case, n − t � n − s, and thus t � s. The proposition

follows from Hall’s criterion.

Applying Theorem 2.5 to bound the typical value of the second eigenvalue of Gn,d, we

deduce the following corollary, which establishes the lower bound of Theorem 3

Corollary 3.9. For every fixed d � 3, if G ∼ G2n,d then w.h.p., for every subgraph H ⊆ G

satisfying Δ(H) � d/2 − 10
√
d ln d − 4

√
d, the graph G − H contains a perfect matching.

The following proposition, which is quite similar to Lemma 3.7, will imply the upper

bound of Theorem 3 by considering H = G[U] as the subgraph removed from G such

that G − H contains no perfect matching, as it contains an independent set with more

than half of the vertices.

Proposition 3.10. There exists an integer d0 > 0 such that, for every integer d0 � d � 2n −
1, if G = (V , E) is a d-regular graph on 2n vertices, then there exists a subset U ⊆ V of

n + 1 vertices such that Δ(G[U]) � d/2 + 2
√
d ln d + 2.

Proof. Fix an arbitrary partition of the vertex set V into n pairs. Remove from G

all edges spanned by these pairs and denote the resulting graph by G′ = (V , E ′). Add

the vertices uniformly at random to opposing sets, V1 and V2, and let H = G′
V1 ,V2

. For

any vertex v ∈ V , dH (v) is a random variable binomially distributed with expectation

E[dH (v)] = dG′ (v)/2. Setting ε = 4
√
d ln d

dG′ (v)
� 1 for large enough d, then by Theorem 2.1(c)

and noting that (ε + 1) ln(ε + 1) − ε > ε2/3, we have

P

[
|dH (v) − dG′ (v)/2| > εdG′(v)

2

]
� 2 · exp

(
− ε2dG′ (v)

6

)
= 2 exp

(
−8 ln d

3

)
= 2 · d−8/3.

For every vertex v, let Av denote the event |dH (v) − dG′ (v)/2| > εdG′ (v)
2

. There exists a

positive constant C such that this event depends on at most C · d2 other events Au (all

other vertices of distance at most 2 from v, where the original pairs chosen are considered

as edges). As e · Cd2 · 2d−8/3 < 1 for large enough d, by the symmetric version of the

Lovász local lemma (see, e.g., [1, Corollary 5.1.2]), there exists a partition of the vertex

set into two equal parts V1 and V2 such that, for every v ∈ V , |dH (v) − d
2
| � 2

√
d ln d + 1.

Now, fix some vertex v ∈ V2 and set U = V1 ∪ {v}, implying

Δ(G[U]) � max{Δ(G[V1]) + 1, d − Δ(GV1 ,V2
)} � d

2
+ 2

√
d ln d + 2,

as claimed.

4. Resilience of Hamiltonicity

In this section we proceed to prove a lower bound on the local resilience of random

graphs with respect to being Hamiltonian. We start with a simple proposition, which will
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lie at the heart of the proof of Theorem 4 (and that of Theorem 5 as well); it motivates

several computations in this section.

Definition 4.1. For every graph G we say that a non-edge {u, v} /∈ E(G) is a booster with

respect to G if G + {u, v} is Hamiltonian or �(G + {u, v}) > �(G). Moreover, for any vertex

v ∈ V we set

BG(v) = {w /∈ NG(v) ∪ {v} : {v, w} is a booster}. (4.1)

Lemma 4.2. Let r � 1 and let G0 and G1 be two graphs on the same vertex set V of

cardinality |V | = n such that, for every E ′ ⊆ E(G1) of cardinality |E ′| � n, there exists a

vertex v ∈ V satisfying |NG1
(v) ∩ BG0∪E′(v)| > r. Then, for every H ⊆ G1 of maximum degree

Δ(H) � r, the graph G0 + (G1 − H) is Hamiltonian.

Proof. Fix a subgraph H ⊆ G1 satisfying Δ(H) � r, and let G′ denote the graph G1 − H .

We will prove that there exists an edge set of G′ such that its addition to G0 creates a

Hamiltonian graph. Start with E ′
0 = ∅. Assume that E ′

i is a subset of i edges of E(G′).

If the graph G0 ∪ E ′
i is Hamiltonian we are done. Otherwise, by the assumption of the

lemma, there exists a vertex vi ∈ V such that |NG1
(vi) ∩ BG0∪E′

i
(vi)| > r, and hence there

exists at least one neighbour of vi in G1, which we denote by wi, such that the pair {vi, wi}
is still an edge in G′, and is a booster with respect to G0 ∪ E ′

i . It follows that either the

graph G0 + E ′
i + {vi, wi} is Hamiltonian or �(G0 + E ′

i + {vi, wi}) > �(G0 + E ′
i ). Finally, set

E ′
i+1 = E ′

i ∪ {{vi, wi}}. Note that there must exist an integer i0 � n such that G0 + E ′
i0

is

Hamiltonian, as the length of a longest path on the vertex set of |V | is at most n − 1.

Remark 4.3. The above is actually a local resilience statement. Fix a graph G0 and let

HAMG0
denote the property of a graph being Hamiltonian when the edges of G0 are

added to it. Lemma 4.2 states that, for every r � 1, if G1 is such that for every E ′ ⊆ E(G1)

of cardinality |E ′| � n there exists a vertex v ∈ V satisfying |NG1
(v) ∩ BG0∪E′(v)| > r, then

r�(G1,HAMG0
) > r.

4.1. Pósa’s rotation–extension technique

In this subsection we describe and apply a crucial technical tool, originally developed by

Pósa [34], which lies at the foundation of many Hamiltonicity results for random and

pseudo-random graphs. This technique, which has come to be known as Pósa’s rotation–

extension, relies on the following basic operation on a longest path in a graph. We use

the following two definitions.

Definition 4.4. Let G = (V , E) be a graph, and let P = (v0, v1, . . . , vt) be a longest path in

G. If {vi, vt} ∈ E for some 0 � i � t − 2, then an elementary rotation of P along {vi, vt} is

the construction of a new longest path

P ′ = P − {vi, vi+1} + {vi, vt} = (v0, v1, . . . , vi, vt, vt−1, . . . , vi+1).

We say that the edge {vi, vi+1} is broken by this rotation.
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Definition 4.5. We say that a graph G = (V , E) on n vertices is an (n, ε)-expander if:

Q1 every V0 ⊆ V of cardinality |V0| < εn satisfies |NG(V0)| � 10|V0|,
Q2 every V0 ⊆ V of cardinality εn � |V0| � 2εn satisfies |NG(V0)| � (1 + 12ε)n/2.

Remark 4.6. We note that if G = (V , E) is an (n, ε)-expander, then every H = (V , F) for

F ⊇ E is also an (n, ε)-expander.

Moreover, it is immediate to see that any (n, ε)-expander is connected.

Claim 4.7. If G = (V , E) is an (n, ε)-expander for some ε > 0, then G is connected.

Proof. Assume otherwise and let U ⊆ V be a connected component of cardinality

|U| � n/2. Properties Q1 and Q2 imply that every subset of vertices of at most 2εn

vertices has a non-empty neighbour set, hence we can further assume that |U| > 2εn. Let

U ′ ⊆ U be of cardinality �εn�. Then, by property Q2 of G, |NG(U ′)| > n/2 and hence

cannot be contained in U, a contradiction.

Using these elementary rotations we proceed to show that any (n, ε)-expander, G, must

be Hamiltonian or that the subset of vertices v with ‘large’ BG(v) must also be large. Our

proof uses ideas similar to those found in [18].

Lemma 4.8. If G = (V , E) is an (n, ε)-expander for some ε > 0, then G is Hamiltonian or

must satisfy |{v ∈ V : |BG(v)| � n/4 + εn}| � n/4 + εn.

Proof. Take a longest path P = (v0, . . . , vt) in G. Since P is a longest path, NG(v0) ∪
NG(vt) ⊆ P . Taking any vi ∈ NG(vt), we can perform an elementary rotation along {vt, vi}
keeping v0 fixed, resulting in a longest path P ′ in G. For every i � r = �log2(εn)�, let

Si be a subset of all endpoints of longest paths in G obtained by performing a series

of i elementary rotations starting from P while keeping v0 fixed such that, at the jth

rotation, the non-v0 endpoint is in Sj . We construct the sequence of sets {Si}ri=0 such

that |Si| = 2i, and prove it inductively. S0 = {vt} and hence the base of the induction is

satisfied trivially. Now, taking i < r we assume that the hypothesis is satisfied for all j � i

and we prove it for i + 1. First we note that, by property Q1 of G, |NG(Si)| � 10 · 2i. Let

I = {vk ∈ NG(Si) : vk−1, vk, vk+1 /∈
⋃i

j=0 Sj}, where each vk ∈ I is a candidate to be added to

Si+1. Let vk ∈ I , and x ∈ Si such that {x, vk} ∈ E, and let Q denote the longest path from

v0 to x obtained from P by i elementary rotations fixing v0. By the definition of I , none of

{vk−1, vk, vk+1} is an endpoint of one of the sequence of longest paths starting from P and

yielding Q, hence neither edge {vk−1, vk} nor {vk, vk+1} were broken and both are therefore

present in Q. Rotating Q along the edge {x, vk} will make one of the vertices {vk−1, vk+1}
an endpoint in the resulting path, so we assume without loss of generality that it is vk−1,

and hence add it to the set S ′
i+1. Note that the vertex vk−1 can also be added to the set
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S ′
i+1 if the vertex vk−2 in I , therefore

|S ′
i+1| � 1

2
|I | � 1

2

(
|NG(Si)| − 3

i∑
j=0

|Sj |
)

� 1

2

(
10 · 2i − 3(2i+1 − 1)

)
= 2i+1 +

3

2
.

We set Si+1 to be any subset of S ′
i+1 of 2i+1 vertices.

We construct similarly the set S ′
r+1, where this time we note that εn � |Sr| < 2εn, hence

by property Q2 of G, |NG(Sr)| � (1 + 12ε)n/2:

|S ′
r+1| � 1

2

(
|NG(Sr)| − 3

r∑
j=0

|Sj |
)

� 1

2

(
n

2
(1 + 12ε) − 6εn

)
=

n

4
.

Let Ŝ = Sr ∪ S ′
r+1. Then, as Sr and S ′

r+1 are disjoint, we have that |Ŝ | � n
4

+ εn. Assume

Ŝ ∩ NG(v0) �= ∅. Then G must contain a cycle of length �(G). This implies that G is

Hamiltonian, as otherwise �(G) < n, and since G is connected there is an edge emitting

out of this cycle and thus creating a path of length �(G) + 1 in G, which is a contradiction.

This implies that Ŝ ⊆ BG(v0). Now, taking any endpoint u0 in Ŝ so obtained and taking

a longest path P ′ starting from u0 (which must exist since all vertices of Ŝ are endpoints

of longest paths starting in v0) and repeat the same argument, while rotating P ′ and

keeping u0 fixed. This way we obtain the desired set |BG(u0)| of n/4 + εn endpoints for

every u0 ∈ Ŝ , thus completing the proof.

4.2. Proof of Theorem 4

We can now provide the full proof of the main result of this paper, namely the proof of

Theorem 4. Our goal is to prove that if G ∼ Gn,d for large enough values of d, then the

probability that there exists a subgraph H ⊆ G of maximum degree r = r(d) such that the

graph G − H is not Hamiltonian is o(1), where the optimization of r to be (1 − ε)d/6 is

deferred to the end of the proof. First, note that by Theorem 2.8 and Corollary 2.11 it is

enough to prove this claim for G ∼ (Gn,d1
+ Gn,d2

), where d1, d2 � 3 and d1 + d2 = d. So, let

G1 ∼ Gn,d1
and G2 ∼ Gn,d2

, such that G is their union as a multigraph (where the same edge

can appear in G twice). The probability that there exists such a subgraph H ⊆ G1 + G2

is clearly upper-bounded by the probability that there exist two subgraphs H1 ⊆ G1 and

H2 ⊆ G2, both of maximum degree Δ(H1),Δ(H2) � r, such that ((G1 − H1) + (G2 − H2))

is not Hamiltonian, and that is the event we prove has probability o(1). As a first phase

we show that w.h.p. G1 is such that, even after the deletion of the edges of H1, the

resulting graph, G1 − H1, still retains some expansion properties. Next, we will resort to

a ‘thinning’ of the graph G1 − H1. We will actually prove that not only is G1 − H1 a

‘good’ expander but it also contains a subgraph Γ ⊆ G1 − H1 with a small fraction of the

edges, which is a ‘good’ expander (where what a ‘good’ expander is in both cases will

be quantitatively measured). Note that the ‘thinning’ of G1 − H1 is a deterministic claim.

The ultimate goal of this ‘thinning’ claim is to enable the application of a union bound

argument over a smaller set of possible graphs. We will elaborate on this matter further

down the proof. Lastly, we show that w.h.p., no matter what graph Γ we have after the

‘thinning’, there are enough edges from G2 − H2 that will make the graph Γ + (G2 − H2)

Hamiltonian. Specifically, we will start with the graph Γ and add boosters sequentially
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until Hamiltonicity is reached, where we will argue that, due to Lemma 4.8, at each step

the random graph G2 contains a booster even after the deletion of H2.

In the computations below there will be many dependencies on the value of some

arbitrarily small ε > 0, so we start by defining two constant values, that depend solely on

ε, which will remove some clutter in the descriptions below. So, set

μ = μ(ε) = ε3 and β = β(ε) = μ/160. (4.2)

Definition 4.9. We say that a graph G = (V , E) on n vertices is (n, d, ε)-quasi-random if it

satisfies the following properties:

P0 d/2 � δ(G) � Δ(G) � 2d,

P1 every U ⊆ V of cardinality |U| < μn/14 satisfies eG(U) � μd|U|/14,

P2 every two disjoint subsets U,W ⊆ V , where βn � |U| < 2βn and |W | � n
2

(
1 − ε

2
− 4β

)
,

satisfy

eG(U,W ) � d(1 − ε/4)

n
|U||W | − (1 − ε)

d

2
|U|.

Remark 4.10. Although in the proof of Theorem 4 the requirement of P0 can be replaced

by Δ(G) � d (and is more natural), this less strict condition will enable us to re-use this

definition in the course of the proof of Theorem 5 of the binomial graph model G(n, p),

where in that case d = np.

The following lemma is a local resilience claim for (n, d, λ)-graphs with large enough

spectral gap with respect to being (n, d, ε)-quasi-random.

Lemma 4.11. For every 0 < ε � 1 there exists a constant d0 = d0(ε) such that if G = (V , E)

an (n, d, λ)-graph for some d � d0 with λ < μd/28, then for any subgraph H ⊆ G of maximum

degree Δ(H) � (1 − ε)d/2, the graph G − H is (n, d, ε)-quasi-random.

Proof. P0 is satisfied trivially by our assumption on Δ(H). Let U ⊆ V of cardinality

|U| � μn/14. Corollary 2.4 implies that

eG−H (U) � eG(U) � d

n

(
|U|
2

)
+ λ|U|

(
1 − |U|

2n

)
� μd|U|/14,

and hence P1 is satisfied. Taking two disjoint subsets U,W ⊆ V of cardinality βn � |U| <
2βn and |W | � n

2

(
1 − ε

2
− 4β

)
, P2 clearly follows from Lemma 2.2, as

eG−H (U,W ) � eG(U,W ) − Δ(H) · |U|

� d|U||W |
n

− λ

n

√
|U||W |(n − |U|)(n − |W |) − (1 − ε)

d

2
|U|

� d|U||W |
n

(
1 − λn

d
√

|U||W |

)
− (1 − ε)

d

2
|U|

� d(1 − ε/4)

n
|U||W | − (1 − ε)

d

2
|U|.
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Lemma 4.11 in conjunction with Theorem 2.5 implies that w.h.p. for every 0 < ε � 1

the local resilience of random d-regular graphs (for constant but large enough values of

d) with respect to being (n, d, ε)-quasi-random is at least (1 − ε)d/2.

Corollary 4.12. For every 0 < ε � 1 there exists a constant d0 = d0(ε) such that, if G ∼ Gn,d

for some d � d0, then w.h.p., for every subgraph H ⊆ G of maximum degree Δ(H) � (1 −
ε)d/2, the graph G − H is (n, d, ε)-quasi-random.

Corollary 4.12 implies that if we take

r � (1 − ε)d1/2 (4.3)

for some 0 < ε � 1, then w.h.p. for every H1 ⊆ G1 of maximum degree Δ(H1) � r the

graph G1 − H1 is (n, d1, ε)-quasi-random. If G1 is such a graph that the above is not

satisfied, we say that G1 is corrupted. Assume G1 is not corrupted and fix a subgraph

H1 ⊆ G1 as above. Then G′ = G1 − H1 is an (n, d1, ε)-quasi-random graph. We proceed to

show that every (n, d1, ε)-quasi-random graph contains a subgraph which retains strong

expansion properties but with an arbitrarily small constant fraction of the edges.

Before proceeding to the next phase, which we call the ‘thinning’ of G′, we describe a

natural attempt one may try to prove the theorem. Lemma 4.2 can be used to ‘eliminate’

the need to consider H2 explicitly, and instead bound the probability that there exists a

subgraph H1 ⊆ G1 of maximum degree r and a set E0 ⊆ E(G2) of cardinality |E0| � n for

which every vertex v ∈ V satisfies |NG2
(v) ∩ B(G1−H1)∪E0

(v)| � r. Then, one may try to use

the union bound by going over all possibilities for H1, that is, graphs of maximum degree

r, on the vertex set V , and then bounding the probability of the aforementioned event

by conditioning on H1 ⊆ G1. Although for every such H1 the probability is exponentially

small, there are also exponentially many such graphs, implying a very weak lower bound

on r. In what follows, we try and improve on this idea so that we can ‘boost’ r up to

almost d/6. Basically, we need to do a ‘union bound’ argument over a much smaller set

of graphs.

Proposition 4.13. For every 0 < ε � 1 there exists an integer d0(ε) > 0 such that if G′ is an

(n, d1, ε)-quasi-random graph for some d1 � d0 then G′ contains an (n, β)-expander subgraph

Γ satisfying μnd1/2 � e(Γ) � μnd1 edges.

Proof. Let G′ = (V , E) be an (n, d1, ε)-quasi-random graph, and denote by Γ = (V , E ′)

the random subgraph of G′ generated by selecting for every v ∈ V independently and

uniformly at random a set Ev of μd1 incident edges to v (and leaving a single copy of a

edge if it is chosen by both of its endpoints). Clearly

μnd1/2 � e(Γ) � μnd1. (4.4)

To prove the proposition it is enough to show that Γ is an (n, β)-expander with positive

probability. We will in fact show that it is such with high probability.

We start by proving that Γ satisfies Q1, namely that every U ⊆ V of cardinality

|U| < βn satisfies |NΓ(U)| � 10|U|. Let U ⊆ V be some subset of cardinality |U| <
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βn, and assume that |NΓ(U)| < 10|U|. By P1 it follows that eG′ (U) � μd1|U|/14, and

therefore eΓ(U,NΓ(U)) � μd1|U| − 2eΓ(U) � μd1|U| − 2eG′ (U) � 6μd1|U|/7. On the other

hand, set W = U ∪ NΓ(U). Then |W | < 11|U| < μn/14. By P1 eΓ(U,NΓ(U)) � eG′(W ) <

11μd1|U|/14, which is a contradiction.

We proceed to show that w.h.p. Q2 is satisfied. Fix a subset of vertices U ⊆ V of

cardinality βn � |U| < 2βn, set t = d1β
2

(
ε
4

− 4β
)

and let Z = {v ∈ V \ U : dG′ (v, U) < t}.

Assume |Z | > n
2

(
1 − ε

2
− 4β

)
, then on one hand, eG′ (U,Z) < t|Z | � |U|t

β
, and on the other,

by P2 it follows that

eG′ (U,Z) � d1(1 − ε/4)

n
|Z ||U| − (1 − ε)

d1

2
|U| � d1|U|

2

(
ε

4
− 4β

)
=

|U|t
β

,

a contradiction. It therefore follows that

|Z | + |U| � n/2(1 − ε/2). (4.5)

Set W = V \ (Z ∪ U) = {v ∈ V \ U : dG′ (v, U) � t}, and note that by (4.5) |W | � n/2(1 +

ε/2). For every w ∈ W , let Aw be the event that Ew has no endpoint in U. Recalling that

dG′ (w) � 2d1 and that d1 is large enough, property P0 of G′ implies

P
[
Aw

]
=

(
dG′ (w)−dG′ (w,U)

μd1

)
(
dG′ (w)
μd1

) �
(
dG′ (w) − μd1

dG′ (w)

)t

�
(

1 − μ

2

)t

� exp

(
−μt

2

)
� ε/100,

where the first inequality follows from the fact that
(
a
c

)
�

(
a−b
c

)
·
(

a
a−c

)b
(see, e.g., [5,

Chapter I.1]) for every three integers a � b and c � a − b, and that t � dG′ (w,U). Let X =

{w ∈ W : Aw holds}; then its cardinality |X| =
∑

w∈W 1Aw
is the sum of |W | independent

indicator random variables, each of expectation E[1Aw
] � ε/100, and |X| is therefore

stochastically dominated by a random variable with distribution Bin(n, ε/100). It follows

by Theorem 2.1(a) that

P
[
|X| > εn/5

]
� exp

(
− (20 ln 20 − 19)εn

100

)
< exp(−εn/5).

As the graph Γ contains the edges of Eu, for all u ∈ U we have that NΓ(U) ⊇
NΓ(U) ∩ W ⊇ W \ X, and by the above we know that with probability at least exp(−εn/5)

the set W \ X has cardinality greater than n
2

(
1 + ε

2

)
− εn

5
= n

2

(
1 + ε

10

)
> n

2
(1 + 12β). Re-

call that β = ε3/160 � ε/160. Then, applying the union bound over all relevant sub-

sets U, we can upper-bound the probability that Γ does not satisfy property Q2,

as follows:

2βn∑
u=βn

(
n

u

)
e−εn/5 �

2βn∑
u=βn

exp

(
u ln

en

u
− εn/5

)
� n · exp(εn/10 − εn/5) = o(1),

which completes the proof.

Returning to the context of the proof, Proposition 4.13 implies that, if G1 is not

corrupted, then for every H1 ⊆ G1 satisfying Δ(H1) � r � (1 − ε)d1/2, the graph G1 − H1

contains an (n, β)-expander subgraph.
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Recall that in Remark 4.3 we defined that a graph satisfies the property HAMΓ if the

addition of the edge set of Γ to the graph results in a Hamiltonian graph. We continue to

the next phase of our proof, namely, showing that for every fixed (n, β)-expander graph,

Γ, and every ε > 0, if d2 = d2(ε) is large enough then r�(Gn,d2
,HAMΓ) > (1 − ε)d2/4 with

probability exponentially close to 1.

Lemma 4.14. For every 0 < ε � 1 there exists a large enough constant d0 = d0(ε) such that,

if G2 ∼ Gn,d2
for some d2 � d0 and Γ is an (n, β)-expander on the same vertex set, then the

probability that there exists a set of edges E0 ⊆ E(G2) of cardinality |E0| � n for which

every v ∈ V satisfies |NG2
(v) ∩ BΓ∪E0

(v)| � (1 − ε)d2/4 is at most e−Θ(ε2nd2).

Proof. We will assume that ε is small enough and d2 is large enough (as a function of ε),

without giving explicit bounds on them. Fix a choice of at most n pairs of vertices E0 ⊆
(
V
2

)
,

and set Γ2 = Γ ∪ E0. Our goal is to bound the probability that G2 ∼ Gn,d2
contains the edges

of E0 and that for every vertex v ∈ V we have |NG2
(v) ∩ BΓ2

(v)| � (1 − ε)d2/4, in which

case we say that E0 ruins G2. This clearly implies that it suffices to consider only choices

of E0 such that the graph F = (V , E0) satisfies Δ(F) � d2, and hence we proceed with

this assumption. Furthermore, if E0 ⊆ E(G2), then the graph Ĝ = G2 − F is distributed

according to Gn,d with degree sequence d = {d2 − dF (v)}v∈V , conditioned on the event that

there are no overlapping edges with E0. Recalling Remark 4.6 we have that Γ2 is an

(n, β)-expander, and by Lemma 4.8 the set A = {v ∈ V : |BΓ2
(v)| � n

4
(1 + 4β)} must satisfy

|A| � n
4
(1 + 4β). As |E0| � n, the set U = {v ∈ V : dF (v) � 4

β
} satisfies |U| � βn/2. Let

A′ = A \ U; then |A′| � n
(

1
4

+ β
2

)
and, moreover, for every v ∈ A′ the set B′(v) = BΓ2

(v) \ U

satisfies |B′(v)| � n
(

1
4

+ β
2

)
.

For every v ∈ A′, let Xv be the random variable equal to |NGn,d
(v) ∩ B′(v)|. Then, by

Proposition 2.14,

E[Xv] � |B′(v)| · (1 − o(1))
(d2 − 4/β)(d2 − 4/β − 2)

nd2 + d2
2 − 4d2

� d2

4
,

where the last inequality follows by taking d2 to be large enough as a function of β(ε).

Now, set X to be the random variable
∑

v∈A′ Xv . Then the difference in the value of X of

any two graphs in Gn,d on the same vertex set that differ by a single switch can be at most

4 (every endpoint can contribute 1), and we can therefore apply Theorem 2.16 to derive

that

P

[
X(Gn,d) � (1 − ε)|A′|d2

4

]
� e−Θ(ε2nd2).

Hence, with probability exponentially close to 1, the random variable X does not deviate

much from its expectation. We now estimate X = X(Ĝ) for Ĝ ∼ Gn,d conditioned on the

event that Ĝ shares no edge with F . Recalling that Δ(F) � d2, Theorem 2.10 guarantees

that conditioning on this event can affect the probability that X(Ĝ) is too small by only

a constant factor (that depends on d2). It follows that

P

[
X(Ĝ) � (1 − ε)|A′|d2

4

∣∣∣∣ E(Ĝ) ∩ E0 = ∅
]
�

P
[
X(Gn,d) � (1 − ε)|A′| d2

4

]
P
[
E(Gn,d) ∩ E0 = ∅

] � e−Θ(ε2nd2).
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We now apply the union bound by going over all possible choices of E0 and bounding

the probability that it is contained in Gn,d2
using Corollary 2.15. So, recalling that d2 is

large enough as a function of ε, the probability that G2 contains a subset E0 that ruins it

is upper-bounded by

n∑
m=1

((
n
2

)
m

)(
Cd2

n

)m

e−Θ(ε2nd2) �
n∑

m=1

exp

(
m ln

eCnd2

2m
− Θ(ε2nd2)

)
= exp(−Θ(ε2nd2)).

Lemmas 4.2 and 4.14 imply the following corollary.

Corollary 4.15. For every ε > 0 there exists a positive integer d0(ε) such that if d2 � d0 and

Γ is a fixed (n, β)-expander, then P
[
r�(Gn,d2

,HAMΓ) < (1 − ε)d2/4
]

� e−Θ(ε2nd2).

Lemma 4.14 implies our second constraint on the value of r,

r � (1 − ε)d2/4. (4.6)

After having proved all of the above, we have all the building blocks needed to complete

the proof of Theorem 4. Since by Corollary 4.12 the probability that G1 is corrupted is

o(1), we can and will condition on the event that G1 is not corrupted. A simple, yet crucial,

observation is that if (G1 − H1) + (G2 − H2) is not Hamiltonian then Γ + (G2 − H2) is not

Hamiltonian for every subgraph Γ ⊆ G1 − H1. So, in particular, if there exists such a pair

H1 and H2, then by Proposition 4.13 there must exist an (n, β)-expander Γ which spans at

most μnd1 edges (recalling that G1 − H1 is (n, d1, ε)-quasi-random by our assumption on

G1) for which Γ + (G2 − H2) is not Hamiltonian. Now we apply Lemma 4.2, and we can

upper-bound the probability of the existence of H1 and H2 by the probability that there

exists an (n, β)-expander Γ ⊆ G1 which spans at most μnd1 edges, for which there exists

a set E0 ⊆ E(G2) (E0 may depend on Γ) of cardinality |E0| � n, for which every vertex

v ∈ V satisfies |NG2
(v) ∩ BΓ∪E0

(v)| � r. The crux of the proof lies in the fact that now we

can apply a union bound argument over a much smaller set of graphs, as the graphs

we need to go over are much sparser (and hence there are much fewer of them). As a

last note before proceeding to the actual computations we optimize the value of r. By

(4.3) and (4.6), r can be taken to be any constant strictly less than min{d1/2, d2/4}. Since

d1 + d2 = d we choose d1 = d/3 and d2 = 2d/3, which validates the value of d
6
(1 − ε) in

the statement of the theorem.

Let S denote the set of all (n, β)-expanders on the vertex set V which have between μnd/6

and μnd/3 edges. We only need to recall that the edges of G1 and G2 are independent. Then,

putting everything together implies that P
[
r�(Gn,d,HAM) � (1 − ε)d/6

]
is upper-bounded

by

P
[
G1 is corrupted

]
+ P

[
∃Γ ∈ S , Γ ⊆ G1 ∧ r�(G2,HAMΓ) � (1 − ε)

d

6

∣∣∣∣ G1 not corrupted

]
.
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Applying the union bound over all possible Γ ∈ S and using the fact that the edges of G1

and G2 are independent, the above is upper-bounded by

o(1) +
∑
Γ∈S

P
[
Γ ⊆ G1 | G1 not corrupted

]
·P

[
r�(G2,HAMΓ) � (1 − ε)

d

6

]

� o(1) +
∑
Γ∈S

P
[
Γ ⊆ G1

]
P
[
G1 not corrupted

] · P

[
r�(G2,HAMΓ) � (1 − ε)

d

6

]
. (4.7)

Using Corollary 2.15 we bound the probability that a fixed graph Γ spanning m � μnd

edges is contained in Gn,d/3 by
(
Cd
3n

)m
. The probability that G1 is not corrupted is 1 − o(1),

and lastly, we use Corollary 4.15 to bound the right multiplicand in the sum of (4.7) as

follows:

o(1) + (1 + o(1))

μnd/3∑
m=μnd/6

((
n
2

)
m

)
·
(
Cd

3n

)m

· exp(−Θ(ε2nd))

� o(1) + (1 + o(1))

μnd/3∑
m=μnd/6

(
Cend

6m

)m

· exp(−Θ(ε2nd))

� o(1) + exp

(
Θ

(
μnd · ln

1

μ

)
− Θ

(
ε2nd

))
= o(1),

which completes the proof of the theorem. �

5. The Hamiltonicity game played on Gn,d

As a closing note for this paper we describe in this short section a new result for the

Hamiltonicity game played on the edge set of a random regular graph of constant degree.

This can be viewed as a different type of resilience of the random regular graph with

respect to being Hamiltonian. We will need a new definition and some additional structural

statements of a typical random regular graph.

Definition 5.1. For every positive k, � we say that graph G = (V , E) is a (k, �)-magnifier

if every subset of vertices U ⊆ V of cardinality |U| � k satisfies |NG(U)| � � · |U|.

Much as in Remark 4.6, we note that if G = (V , E) is a (k, �)-magnifier, then every

H = (V , F) for F ⊇ E is also a (k, �)-magnifier. Recalling Definition 4.1 of boosters, we

have the following well-known property of (k, 2)-magnifiers (see, e.g., [14]).

Lemma 5.2. Let G be a connected non-Hamiltonian (k, 2)-magnifier. Then G has at least

k2/2 boosters.

Next, we continue with some structural properties of random regular graphs. The

following two lemmas will follow immediately from Lemma 2.2 and Corollaries 2.3

and 2.4.
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Lemma 5.3. There exists a positive integer d0 > 0 such that if G ∼ Gn,d1
for some d1 � d0

and H is a subgraph of G of minimum degree δ(H) � d1/5, then w.h.p. H is an (n/100, 2)-

magnifier.

Proof. By Theorem 2.5 we know that if d1 is large enough then w.h.p. λ(G) � d1

60
, and we

hence assume that this holds. Let U ⊆ V be a subset of |U| � n
100

vertices, and assume

that |NH (U)| < 2|U|. Let W = U ∪ NH (U). Then our assumption on the minimum degree

of H implies that eH (W ) � d1|U|
10

. On the other hand, Corollary 2.4 implies that

eH (W ) � eG(W ) � d1

n

(
3|U|

2

)
+ λ · 3|U| � d1|U|

(
9|U|
2n

+
1

20

)
<

d1|U|
10

,

a contradiction, which completes the proof of the the lemma.

For every graph G, let BG denote the set of boosters with respect to G. Given a graph H

on the vertex set of G, we say that the set of edges E0 ⊆ E(G) (H, α)-destroys G if H ∪ E0

is non-Hamiltonian and |E(G) ∩ BH∪E0
| < α · |E(G)|. The following lemma is reminiscent

of Lemma 4.14 and can be proved in quite a similar manner.

Lemma 5.4. There exists an integer d0 > 0 such that if G2 ∼ Gn,d2
for some fixed d2 � d0

and Γ is a connected non-Hamiltonian
(

n
100

, 2
)
-magnifier on the same vertex set V , then the

probability that there exists a set of at most n edges E0 ⊆ E(G2) that (Γ, 2
107 )-destroys G2

is at most e
− nd2

1015 .

Proof. We will assume throughout that d2 is large enough (but constant) without

computing it explicitly. Fix a choice of at most n pairs of vertices E0 ⊆
(
V
2

)
such that

the graph Γ2 = Γ ∪ E0 is non-Hamiltonian. Our goal is to bound the probability that

G2 ∼ Gn,d2
contains the edges of E0 and that |E(G2) ∩ BΓ2

| < 2
107 · |E(G2)| = nd2

107 . This

clearly implies that it suffices to consider only choices of E0 such that the graph F =

(V , E0) satisfies Δ(F) � d2, and hence we proceed with this assumption. Furthermore, if

E0 ⊆ E(G2), then the random graph Ĝ = G2 − F is distributed according to Gn,d with degree

sequence d = {d2 − dF (v)}v∈V , conditioned on the event that there are no overlapping edges

with E0. Lastly we recall that Γ2 is a connected non-Hamiltonian
(

n
100

, 2
)
-magnifier. Let

X = X(Ĝ) be the random variable equal to |E(Ĝ) ∩ BΓ2
|. As |E0| � n, the set U = {v ∈

V : dF (v) � d2

2
} satisfies |U| � 4|E0|

d2
� 4n

d2
, and hence the set B′ = BΓ2

∩ {{u, v} : u, v /∈ U}
of boosters with no endpoint in U satisfies |B′| � n2

20000
− 4n2

d2
> n2/105 by Lemma 5.2.

Note that the average degree in Ĝ clearly satisfies d̄ � d2. Let u, v /∈ U be a pair of distinct

vertices, by Proposition 2.14:

P
[
{u, v} ∈ E(Ĝ)

]
� (1 − o(1))

dĜ(u) · dĜ(v) − dĜ(u) − dĜ(v)

d̄n + dĜ(u) · dĜ(v) − 2dĜ(u) − 2dĜ(v)
�

d2
2

5

2nd2
=

d2

10n
.

We can hence lower-bound the expectation of X as follows:

E[X] � |B′| · d2

10n
� n2

105
· d2

10n
=

nd2

106
.

https://doi.org/10.1017/S0963548310000453 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548310000453


Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs 203

Note that the difference in the value of X for any two graphs with degree sequence d on

the same vertex set that differ by a single switch can be at most 2, and we can therefore

apply Theorem 2.16 to derive that

P

[
X(Gn,d) <

nd2

107

]
� P

[
X(Gn,d) <

E[X]

10

]

� exp

(
−

(
9
10

)2
E[X]2

4nd2
+

d2
2 − 1

4
+ o(1)

)
� exp

(
− nd2

1013

)
.

Hence, with probability exponentially close to 1, the random variable X does not deviate

much from its expectation. We now estimate X = X(Ĝ) for Ĝ ∼ Gn,d conditioned on the

event that Ĝ shares no edge with F . Recalling that Δ(F) � d2, Theorem 2.10 guarantees

that P
[
E(Gn,d) ∩ E0 = ∅

]
= O(1) (as γ = O(1) and ν = O(1)), and therefore conditioning

on this event can affect the probability that X(Ĝ) is too small by only a constant factor

as follows:

P

[
X(Ĝ) <

nd2

107

∣∣∣∣ E(Ĝ) ∩ E0 = ∅
]
�

P
[
X(Gn,d) < nd2

107

]
P
[
E(Gn,d) ∩ E0 = ∅

] � exp

(
− nd2

1014

)
.

To complete the proof we apply the union bound by going over all possible choices for

the set E0 and bounding the probability that it is contained in G2 using Corollary 2.15.

Note that although some restrictions are set on E0 (i.e., creating a non-Hamiltonian Γ2

and satisfying Δ(F) � d2), these are not taken into account in the union bound, where

we simply go over all possible subsets of at most n pairs of vertices from V . So, given

a fixed Γ as above, the probability that G2 contains a subset of at most n edges that

(Γ, 2
107 )-destroys it is upper-bounded by

n∑
m=1

((
n
2

)
m

)(
Cd2

n

)m

· exp

(
− nd2

1014

)
�

n∑
m=1

exp

(
m ln

eCnd2

2m
− nd2

1014

)
� exp

(
− nd2

1015

)
.

Corollary 5.5. There exists an integer d0 > 0 such that if G1 ∼ Gn,d1
and G2 ∼ Gn,d2

(sampled

on the same vertex set) for some fixed d1 and d2 and where d0 � d1 
 d2, then w.h.p.

G1 does not contain a connected non-Hamiltonian
(

n
100

, 2
)
-magnifier subgraph Γ satisfying

e(Γ) � n(d1+1)
5

for which there exists a set of at most n edges E0 ⊆ E(G2) that
(
Γ, 2

107

)
-

destroys G2.

Remark 5.6. In the above lemma, by d1 
 d2 we mean that we can choose those two

values such that the (constant) ratio d2/d1 is chosen to be large enough for the argument

to go through.

Proof. We note that there are at most
((n2)
m

)
graphs on this vertex set that span m edges,

and if m � n(d1+1)
5

, by Corollary 2.15 the probability that each of these graphs is contained

in G1 is at most
(
Cd1

n

)m
. To get the above-mentioned result we apply the union bound

over all the possible connected non-Hamiltonian
(

n
100

, 2
)
-magnifier graphs on the specified

vertex set with the specified number of edges (in our computation below we will actually

just go over all possible choices of m � n(d1+1)
5

pairs of vertices from V ). For every such
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graph, Γ, we upper-bound the probability that it is both contained in G1 and that there

exists some E0 of at most n edges that
(
Γ, 2

107

)
-destroys G2. The latter probability is

upper-bounded using Lemma 5.4, and we note that the above two events are independent

(due to the independence of the edges of G1 and G2). So, recalling that d2 
 d1, the

probability that the conditions of the lemma are not satisfied is upper-bounded by

n(d1+1)

5∑
m=1

((
n
2

)
m

)
·
(
Cd1

n

)m

· exp

(
− nd2

1015

)
�

n(d1+1)

5∑
m=1

exp

(
m ln

eCnd1

2m
− nd2

1015

)
= o(1),

as claimed.

Before we proceed to the proof of Theorem 6 we quote the following results in the

context of Maker–Breaker games. Denote by δk the graph property of having minimum

degree at least k.

Lemma 5.7 (Hefetz, Krivelevich, Stojaković and Szabó [16], Lemma 10). For any positive

integer k and graph G on n vertices, if δ(G) � 4k then G ∈ Mδk . Moreover, Maker can win

this game in at most kn moves.

Theorem 5.8 (Lehman [30]). For every graph G, it holds that G ∈ MVC1
if and only if G

admits two edge-disjoint spanning trees.

Having acquired all the necessary building blocks, we move on to describe the proof of

Theorem 6.

Proof of Theorem 6. We assume d is large enough and set ε = 10−7. Let d0 denote

the constant from Corollary 5.5 and let d1 − 4 � d0 be such that d2 = d − d1 > d1+6
5ε

.

Let G ∼ Gn,d1
⊕ Gn,d2

≈ Gn,4 ⊕ Gn,d1−4 ⊕ Gn,d2
and recall that Theorem 2.8 implies that it

suffices to prove the statement in this probability space. We can assume that G can be

decomposed into two graphs G = G1 + G2, with disjoint edge sets such that G1 and G2

are d1-regular and d2-regular graphs, respectively, that satisfy the property described by

Corollary 5.5. Moreover, we can also assume, using Theorems 2.8 and 2.9, that in turn

G1 can be decomposed into two graphs G1 = G1,1 + G1,2, where G1,1 is 4-regular and is

composed of two disjoint Hamilton cycles and G1,2 is (d1 − 4)-regular and satisfies the

property described by Lemma 5.3.

Maker’s strategy is thus quite natural. Let ei denote the edge selected by Maker in

the ith turn and let Mi = (V , {e1, . . . , ei}) be the graph Maker possesses after i turns. For

the first t1 � n(d1 − 4)/5 + n = n(d1 + 1)/5 turns of the game, Maker plays solely on the

edges of G1. During this phase, Maker plays two games in parallel, one on the edge set of

G1,1 and the other on the edge set of G1,2, i.e., if Breaker takes an edge from G1,x in turn

i � t1, then Maker responds by taking an edge from the same graph, and if Breaker takes

an edge from G2 then Maker responds by taking an edge from G1, which advances him to

his goal in either of the games. The goal of Maker playing on G1,1 is to create a connected

graph. As G1,1 is composed of two edge-disjoint Hamilton cycles, by Theorem 5.8 Maker
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can win this game using at most n moves. The goal of Maker playing on G1,2 is to build

a graph H of minimum degree δ(H) � (d1 − 4)/5, and using Lemma 5.7 Maker can win

this game using at most n(d1 − 4)/5 moves. By Lemma 5.3 Maker obtains in this way a(
n

100
, 2

)
-magnifier. It follows by the properties of G1 that the graph Mt1 (which contains

the union of the graph in Maker’s possession after having won the two games) is both

connected and an
(

n
100

, 2
)
-magnifier.

After having completed the construction of Mt1 , Maker moves to the second phase

of his strategy. For the next t2 � n turns Maker will select edges from G2 which are

boosters with respect to the graph he possesses at each turn. Let t1 < i � t1 + t2, and let

Ei = {et1+1, . . . , ei−1} ⊆ E(G2) denote the set of edges chosen by Maker in the i − 1 − t1
rounds of the second phase. By this turn Breaker (who moves first) has taken i � t1 + n �
n(d1 + 6)/5 < εnd2 edges from G2. The assumption that G2 satisfies the condition of

Corollary 5.5 implies that the set Ei does not (Mt1 , 2ε)-destroy G2, and hence the graph Mi

has at least 2ε · e(G2) = εnd2 boosters among the edges of G2. As Breaker could not have

taken them all by this turn, Maker can freely choose a booster in the ith turn. This implies

that either Mi is Hamiltonian or that �(Mi) > �(Mi−1). Maker can continue playing this

second phase for at least n turns, and hence will finish by creating a Hamilton cycle before

Breaker can stop him.

6. Discussion and concluding remarks

In this paper we have considered the local resilience of the typical random regular graph

of fixed degree with respect to several graph properties, and studied the Hamiltonicity

game played on the edges of a random d-regular graph. The ideological similarities of the

local resilience of the Hamiltonicity property and the Maker–Breaker game played for

this property enabled us to tackle both using similar techniques. The following are some

additional related issues, extensions, and open problems we believe would be interesting

to study further in this context.

(1) A natural way to extend Theorem 4 would be to not restrict d to be constant but

to let it grow with n. In [37] Sudakov and Vu proved that if G is an (n, d, λ)-graph with

d/λ � log1+δ n for any δ > 0, then r�(G,HAM) � (1/2 − ε)n for any ε > 0. Although this

spectral gap cannot be attained for d = O(log2(1+o(1)) n) by the Alon–Boppana theorem

[33], when d = Ω(log2+δ n) for any δ > 0 this (quite moderate) condition on the second

eigenvalue in a typical graph of Gn,d
2 is satisfied. We believe that techniques similar

to those applied in the current paper can be used to show that in the missing range

1 
 d 
 log2(1+o(1)) n the local resilience of Gn,d is w.h.p. at least (1 − ε)d/6.

(2) It would be interesting to further investigate the local resilience of the typical graph in

both Gn,d for constant values of d and G(n, p) with p = K ln n
n

. We believe, as was previously

2 See [6] and [29] to cover most of this range of d. The range not covered by the previous citations can be

dealt with using standard techniques for bounding eigenvalues of random graphs (see, e.g., [27]).
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conjectured by Sudakov and Vu for the G(n, p) case in [37], that the true order of this

parameter is closer to the upper bound than to the lower bound.

Conjecture 6.1. For every ε > 0 there exists an integer d0(ε) > 0 such that, for every fixed

integer d � d0, w.h.p. ∣∣∣∣r�(Gn,d,HAM) − d

2

∣∣∣∣ � εd.

Conjecture 6.2. For every ε > 0 there exists an integer K(ε) > 0 such that, for every p �
K ln n

n
, w.h.p. ∣∣∣∣r�(G(n, p),HAM) − np

2

∣∣∣∣ � εnp.

(3) Theorem 6 does not find the minimal value of d for which it is true that w.h.p.

Gn,d ∈ MHAM. It follows from a result of Hefetz, Krivelevich, Stojaković and Szabó [17]

that d is at least 5 (while recalling that Gn,d ∈ HAM for all fixed d � 3), but computing

this minimal value exactly seems to require new ideas.

(4) The positional game result in this work deals specifically with the Hamiltonicity game,

but there are quite some other natural properties for which one could ask the same

question: for example, edge and vertex connectivity. One of the first and fundamental

results about the Gn,d model is that of Bollobás [3], and Wormald [39] states that for fixed

d � 3 w.h.p. Gn,d ∈ VCd. Theorem 6 clearly implies that for large enough values of fixed d

w.h.p. Gn,d ∈ MVC2
, although this is far from being optimal. An interesting question is as

follows.

Problem 6.3. Determine the maximal k = k(d) for which w.h.p. Gn,d ∈ MVCk
.

Using techniques somewhat similar to the proof of Theorem 6 (i.e., splitting the base

graph into two random graphs and playing on the first one to get some expansion

properties which guarantee that small sets have large enough neighbourhoods, and playing

on the second one to guarantee linear size sets have large enough neighbourhoods) should

imply that k � cd for some universal constant c > 0, but finding the optimal value of k

may require some further research.
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Appendix: Local resilience of G(n, p); proof of Theorem 5

This subsection is devoted to demonstrating how to establish a lower bound on the local

resilience with respect to Hamiltonicity in the case of G(n, p). The proof of this case follows
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closely the steps of the proof of Theorem 4. We will be using the same notation as in the

proof of Theorem 4 and our focus will be on the adaptations needed for the G(n, p) case.

So, we may be somewhat brief in the explanation of the arguments to avoid repetition.

We start by proving some expansion properties that a typical graph in G(n, p) satisfies.

Lemma A.1. For every 0 < ε � 1 there exists a constant K = K(ε) such that, if G ∼ G(n, p1)

for some p1 � K ln n/n, then w.h.p. for any subgraph H ⊆ G of maximum degree Δ(H) �
(1 − ε)np1/2, the graph G − H is (n, np1, ε)-quasi-random.

Proof. The lemma will follow from the following series of claims.

Claim A.2. With high probability, δ(G − H) � (1 − ε)np1/2.

Proof. For every v ∈ V , dG(v) ∼ Bin(n − 1, p1). Clearly, by Chernoff (Theorem 2.1(b))

P
[
dG−H (v) < (1 − ε)np1/2

]
� P

[
dG(v) < (1 − ε)np1

]
= o(1/n),

and using the union bound over all vertices completes the proof.

Claim A.3. With high probability, Δ(G) � (1 + ε)np1.

Proof. Similarly, for every v ∈ V , dG(v) ∼ Bin(n − 1, p1). Again, by Chernoff

P
[
dG(v) < (1 + ε)np1

]
= o(1/n),

and using the union bound over all vertices completes the proof.

Claim A.4. With high probability, every U ⊆ V of cardinality |U| < μn/14 satisfies

eG−H (U) � μ|U|np1/14.

Proof. Fixing such a subset of vertices U, we have that eG(U) ∼ Bin
((|U|

2

)
, p1

)
, and hence

by Theorem 2.1(a) we get that

P
[
eG−H (U) > μ|U|np1/14

]
� P

[
eG(U) > μ|U|np1/14

]
� e−Θ(μ|U|np1).

To upper-bound the probability of the existence of a subset of vertices for which the

assertion of the claim does not hold, we use the union bound (and recall that K is large

enough):

μn/14∑
t=1

(
n

t

)
e−Θ(μtnp1) �

μn/14∑
t=1

exp

(
t

(
ln

en

t
− Θ(μnp1)

))

� μn/14 · exp

(
μn/14

(
ln

14e

μ
− Θ(μnp1)

))
= o(1).

Claim A.5. With high probability, every two disjoint subsets U,W ⊆ V , where βn � |U| <
2βn and |W | � n/3 satisfy eG−H (U,W ) � (1 − ε/4)p1|U||W | − (1 − ε) np1

2
|U|.
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Proof. Fixing two such subsets of vertices U and W , we have eG(U,W ) ∼ Bin(|U||W |, p1)

and hence by Chernoff (Theorem 2.1(b)) we get that

P
[
eG(U,W ) < (1 − ε/4)|U||W |p1

]
� e−Θ(ε2|U||W |p1) = e−Θ(ε2μn2p1) = o(4−n),

and as eG−H (U,W ) � eG(U,W ) − Δ(H) · |U|, applying the union bound completes the

proof.

Recalling Definition 4.9 completes the proof of the lemma.

If G1 ∼ G(n, p1) does not satisfy the statement of the Lemma A.1 we say that G1 is

corrupted. Recalling the definitions of μ(ε) and β(ε) in (4.2), Proposition 4.13 implies that

if G1 is not corrupted, then for every H1 ⊆ G1 of maximum degree Δ(H1) � (1 − ε)np1/2

the graph G1 − H1 contains an (n, β)-expander subgraph that spans at most μn2p1 edges.

We continue to the next phase of our proof, namely, showing that, for large enough values

of p2, adding on top of a fixed (n, β)-expander the edges of G(n, p2), the resulting graph

will be Hamiltonian with probability exponentially close to 1.

Lemma A.6. For every 0 < ε � 1 there exists a large enough constant K = K(ε) such that,

if p2 � K ln n/n and Γ is a fixed (n, β)-expander on the same vertex set, then

P
[
r�(G(n, p2),HAMΓ) < (1 − ε)np2/4

]
� e−Θ(ε2n2p2).

Proof. Throughout we assume that ε is small enough and K is large enough (as a

function of ε), without giving explicit bounds on them. Fix a choice of at most n

pairs of vertices E0 ⊆
(
V
2

)
, and let G2 ∼ G(n, p2). By setting d2 = np2, we say that E0

ruins G2 as defined in Lemma 4.14. Let Γ2 = Γ ∪ E0. Then by Lemma 4.8 the set

A0 = {v ∈ V : |BΓ2
(v)| � n/4} must satisfy |A0| � n/4, and hence the random variable

X =
∑

v∈A |NG2
(v) ∩ BΓ2

(v)| satisfies E[X] � n2p2

16
. Note that for any two graphs on the

vertex set V that differ by a single edge, their value of X can change by at most 2 (1

for every endpoint of the edge), and hence we can apply the Azuma–Hoeffding inequality

for martingales of bounded variance (see, e.g., [1, Theorem 7.4.3]), to prove that X is

concentrated around its expectation. In the process of ‘exposing’ the edges of the graph,

it suffices to expose only the edges from vertices in v ∈ A0 to their respective sets BΓ2
(v).

This implies that the total variance of the martingale is upper-bounded by n2

16
p2(1 − p2),

and hence

P

[
X(G2) � (1 − ε)

n2p2

16

]
� exp

(
−Θ(ε2n2p2)

)
.

We stress the fact that after fixing E0, the value of X(G2) and the event that E0 ⊆ E(G2)

are independent. We conclude by applying the union bound over all possible choices
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of E0,

P
[
∃E0 ruins G2

]
�

∑
E0

P
[
E0 ⊆ E(G2)

]
· P

[
X(G2) � (1 − ε)

n2p2

16

]

�
n∑

m=1

((
n
2

)
m

)
· pm2 · e−Θ(ε2n2p2) �

n∑
m=1

exp

(
m ln

en2p2

2m
− Θ(ε2n2p2)

)

= exp(−Θ(ε2n2p2)),

and Lemma 4.2 completes the proof.

We conclude this section by providing the proof of Theorem 5, which we restate here

for clarity.

Theorem A.7. For every ε > 0 there exists a large enough constant K = K(ε) such that if

G = (V , E) is a graph sampled from G(n, p) for some p � K ln n/n, then w.h.p., for every

subgraph H ⊆ G satisfying Δ(H) � (1 − ε)np/6, the graph G − H is Hamiltonian.

Proof. It is immediate to see that the graph G can be generated from the G(n, p)

distribution as follows. Let 1 − p = (1 − p1)(1 − p2), and for every pair of vertices {u, v}
select it to be in the graph G1 with probability p1 and independently in the graph p2 with

probability p2. Clearly, G1 ∼ G(n, p1) and G2 ∼ G(n, p2) and taking G = G1 + G2 (where

the edge set is taken as a union of sets, i.e., parallel edges are taken as one edge) we get

a graph distributed according to G(n, p). It thus suffices to prove the claim under these

settings. Much as in the proof of Theorem 4 we optimize the values of p2 = 2p1, and

we get p = 3p1(1 + o(1)). Let S denote the set of all (n, β)-expanders on the vertex set

V which have at most μn2p1 edges. Lastly, we stress that the edges of G1 and G2 are

independent. Combining all of the above, we have that P
[
r�(G(n, p),HAM) � (1 − ε)np/6

]
is upper-bounded by

P
[
G1 is corrupted

]
+

∑
Γ∈S

P

[
Γ ⊆ G1 ∧ r�(G2,HAMΓ) � (1 − ε)

np2

4

∣∣∣∣ G not corrupted

]

= o(1) +
∑
Γ∈S

P
[
Γ ⊆ G1 | G not corrupted

]
·P

[
r�(G2,HAMΓ) � (1 − ε)

np2

4

]

� o(1) +
∑
Γ∈S

P
[
Γ ⊆ G1

]
P
[
G1 not corrupted

] · P

[
r�(G2,HAMΓ) � (1 − ε)

np2

4

]

� o(1) + (1 + o(1))

μn2p1∑
m=1

((
n
2

)
m

)
· pm1 · exp(−Θ(ε2n2p2))

� o(1) + (1 + o(1))

μn2p1∑
m=1

(
en2p1

2m

)m

· exp(−Θ(ε2n2p2))

� o(1) + exp

(
Θ(μn2p1 ln

1

μ

)
− Θ(ε2n2p2)) = o(1).
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