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Blanco Viel 596, Cerro Barón, Valparaı́so, Chile
(e-mail: carlos.vasquez@ucv.cl)

(Received 20 January 2016 and accepted in revised form 4 January 2017)

Abstract. In this work, we study the class of mostly expanding partially hyperbolic
diffeomorphisms. We prove that such a class is Cr -open, r > 1, among the partially
hyperbolic diffeomorphisms and we prove that the mostly expanding condition guarantees
the existence of physical measures and provides more information about the statistics of
the system. Mañé’s classical derived-from-Anosov diffeomorphism on T3 belongs to this
set.

1. Introduction
Physical measures may be thought of as capturing the asymptotic statistical behavior of
large sets of orbits under a dynamical system. There is a strong and well-known connection
between the existence of physical measures and abundance, in some proper sense, of non-
zero Lyapunov exponents. This is particularly true in the setting of dissipative partially
hyperbolic diffeomorphisms, where non-zero central Lyapunov exponents are a crucial
ingredient in nearly all of the known results (see [24] and [8] for two exceptions). During
the last 15 years, considerable effort has been made towards an understanding of the
statistical behavior of partially hyperbolic diffeomorphisms with non-vanishing central
Lyapunov exponents.

In the case studied by Dolgopyat [11] and Bonatti and Viana [7], they assumed
abundance of negative Lyapunov exponents along the center direction (mostly contracting
condition). The mostly contracting condition was later shown to be C2 robust, with
most of its members satisfying a strong kind of statistical stability: all physical measures
persist and vary continuously with small deterministic perturbations of the dynamics
[3]. Recently, Dolgopyat, Viana and Yang [12, 28] gave a detailed explanation of how
bifurcations occur and they gave an exhaustive set of examples. They have also proved a
form of continuity of the basins of physical measures.
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The present work deals with the analogous but considerably harder case of
diffeomorphisms whose central direction exhibits an abundance of positive Lyapunov
exponents. We introduce a new notion of mostly expanding diffeomorphisms (different
from the one introduced in [1]) and we prove that they constitute a C2 open set. Moreover,
we show that mostly expanding diffeomorphisms exhibit a finite number of physical
measures and provide more information about the statistics of the system. In particular, we
study a notion of ergodic stability in a non-conservative setting for such diffeomorphisms.

1.1. Mostly expanding diffeomorphisms. Let M be a closed Riemannian manifold.
We denote the norm obtained from the Riemannian structure by ‖ · ‖ and the Lebesgue
measure on M by Leb . If V , W are normed linear spaces and A : V →W is a linear map,
we define

‖A‖ = sup{‖Av‖/‖v‖, v ∈ V \ {0}}

and
m(A)= inf{‖Av‖/‖v‖, v ∈ V \ {0}}.

A diffeomorphism f : M→ M is partially hyperbolic if there exists a continuous D f -
invariant splitting of T M ,

T M = E s
⊕ Ec

⊕ Eu,

and if there exist constants C ≥ 0 and

0< λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3

with µ1 < 1< λ3 such that, for all x ∈ M and every n ≥ 1,

C−1λn
1 ≤m (D f n(x)|E s(x))≤ ‖D f n(x)|E s(x)‖ ≤ Cµn

1, (1.1)

C−1λn
2 ≤m (D f n(x)|Ec(x))≤ ‖D f n(x)|Ec(x)‖ ≤ Cµn

2, (1.2)

C−1λn
3 ≤m (D f n(x)|Eu(x))≤ ‖D f n(x)|Eu(x)‖ ≤ Cµn

3 . (1.3)

We always assume that dim Eσ ≥ 1, σ = s, c, u unless stated otherwise. We also point out
that the set of Cr -partially hyperbolic diffeomorphisms, r ≥ 1, is Cr -open [13, Corollary
2.17]. For partially hyperbolic diffeomorphisms, it is a well-known fact that there are
foliations Fσ tangential to the distributions Eσ for σ = s, u [14]. The leaf of Fσ

containing x will be called W σ (x) for σ = s, u.
An f -invariant probability measure µ is a Gibbs u-state or u-measure if the conditional

measures of µ with respect to the partition into local strong unstable manifolds are
absolutely continuous with respect to Lebesgue measure along the corresponding local
strong unstable manifold. Section 2 will be devoted to providing more properties of Gibbs
u-states.

Definition 1.1. A partially hyperbolic diffeomorphism f : M→ M f with D f -invariant
splitting T M = E s

⊕ Ec
⊕ Eu is mostly expanding along the central direction if f has

positive central Lyapunov exponents almost everywhere with respect to every Gibbs u-
state for f .

There are several notions of asymptotic expansion along the center direction in the
literature and we will explain briefly the relationship between mostly expanding and the
other similar conditions introduced.
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Definition 1.2. A partially hyperbolic diffeomorphism f : M→ M is strongly mostly
expanding along the central direction if

λc(x)= lim inf
n→+∞

1
n

log m(D f n
|Ec

x ) > 0 (1.4)

for a positive Lebesgue measure set of points x in every disk Du contained in a strong
unstable local manifold.

The notion above is a mimic of the mostly contracting notion introduced in [7] and it is
not the same as in [1], where the term mostly expanding was coined.

We prove that if f is mostly expanding in a strong sense, then it is mostly expanding
(see Proposition 3.1). We do not know if the reciprocal is true.

As mentioned above, Alves, Bonatti and Viana [1] use a different definition of mostly
expanding. Their definition is more general than ours. In particular, they allow the
strong unstable direction Eu to be trivial, working with a splitting of type E s

⊕ Ecu . In
our setting, we write Ecu

= Ec
⊕ Eu and state their notion of mostly expanding with a

different name.

Definition 1.3. We say that f is non-uniformly expanding along the center-unstable
direction (for short f satisfies the NUE-condition) if there exists c0 > 0 and H ⊂ M of
positive Lebesgue measure such that

lim sup
n→∞

1
n

n−1∑
j=0

log ‖D f −1
|Ecu

f j (x)‖ ≤ −c0 < 0 (1.5)

holds for every x ∈ H .

Recently, condition (1.5) was weakened by Alves, Dias, Luzzatto and Pinheiro in [2].

Definition 1.4. A partially hyperbolic diffeomorphism f , as above, is weakly non-
uniformly expanding along the center-unstable direction (or it satisfies the wNUE-
condition for short) if there exists c0 > 0 and H ⊂ M of positive Lebesgue measure such
that

lim inf
n→∞

1
n

n−1∑
j=0

log ‖D f −1
|Ecu

f j (x)‖ ≤ −c0 < 0. (1.6)

We remark that the lim inf in (1.6) implies that the growth only needs to be verified on
a subsequence of iterates, in contrast to the lim sup in (1.5), where the condition needs to
be verified for all sufficiently large times.

Our first result reveals the motivation of this work and the reason for introducing a new
notion of mostly expanding: properties (1.5) and (1.6) are not robust.

THEOREM A. Satisfying the NUE-condition (or wNUE-condition) on a set H ⊆ T3 with
full Lebesgue measure is not a robust property among the set of partially hyperbolic Cr -
diffeomorphisms on T3, r > 1.

The statement above holds also if we replace ‘full measure’ by ‘positive measure’.
In fact, in §5, we exhibit examples where each property in the statement above is not
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robust. The examples are inspired by a construction due to Dolgopyat, Hu and Pesin [4,
Appendix B]. They provide an example of a non-uniformly hyperbolic volume-preserving
diffeomorphism on T3 with countably many ergodic components.

Even though our notion is more restrictive than the NUE-condition or the wNUE-
condition (see §4 for details), to be mostly expanding is a robust property, so mostly
expanding diffeomorphisms are a good setting in which to looking for robust statistical
properties.

THEOREM B. The class of mostly expanding partially hyperbolic diffeomorphisms
constitutes a Cr -open subset of Diffr (M), r > 1.

1.2. Mostly expanding condition and existence of physical measures. Physical
measures may be thought of as capturing the asymptotic statistical behavior of large sets
of orbits under a dynamical system. Recall that if µ is an f -invariant measure, then the
basin of µ is the set

B(µ)=
{

z ∈ M : lim
n→∞

1
n

n−1∑
k=0

ϕ( f k(z))=
∫

M
ϕ d µ, for all ϕ ∈ C0(M, R)

}
.

It is well known that if µ is ergodic, then B(µ) has full µ-measure. The measure µ is a
physical or Sinai–Ruelle–Bowen measure if Leb (B(µ)) > 0.

There is a strong and well-known connection between the existence of physical
measures and abundance, in some proper sense, of non-zero Lyapunov exponents. This
is particularly true in the setting of dissipative partially hyperbolic diffeomorphisms,
where the asymptotic expansion (or contraction) on the central subbundle is a crucial
ingredient in nearly all of the known results. For instance, Alves, Bonatti and Viana
[1] as well as Alves, Dias, Luzzatto and Pinheiro [2] showed that if f is a Cr - partially
hyperbolic diffeomorphism satisfying the NUE-condition (respectively, wNUE-condition)
for H = M , then it exhibits finitely many physical measures and the union of their basins
covers a full Lebesgue measure subset of M . Nevertheless, the techniques and methods
that were used by Alves, Dias, Luzzatto and Pinheiro in [2] to deal with these weaker
assumptions are completely different from those used in Alves Bonatti and Viana in [1].

In [1], Alves, Bonatti and Viana ask if is it possible to conclude the existence of physical
measures if the non-uniform expansion condition (1.5) is replaced by condition (1.4). Our
next theorem gives essentially a positive answer to such a question, although instead of
requiring that the condition hold on a positive Lebesgue measure set, we require it to hold
on a positive leaf volume subset of every unstable disk.

THEOREM C. If f is a mostly expanding partially hyperbolic diffeomorphism, then f has
a finite number of physical measures whose basins together cover Lebesgue almost every
point in M.

We point out, however, that there is no possibility of having the phenomenon of
intermingled basins of attraction in the mostly expanding case (see Lemma 4.5 and
also [25]).
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1.3. Mostly expanding and stable ergodicity. We now consider the question of
uniqueness of physical measures, not just for f , but also for its small perturbations. This
is related to the stable ergodicity problem in a dissipative setting studied in [3, 9, 10]
for mostly contracting diffeomorphisms and by [27] in the case of mostly expanding
diffeomorphisms. Our examples in §5 show that, in contrast to the mostly contracting
case, where it was shown in [3] that uniqueness of the physical measure implies robust
uniqueness of the physical measure, having the NUE- or wNUE-condition satisfied on a
set of full Lebesgue measure does not imply that uniqueness of the physical measure is
a robust property. We refer the reader to [18, 19] and the references therein for more
exhaustive information.

Recall that a foliation is minimal if its leaves are dense. The strongly stable foliation
F s( f ) of a partially hyperbolic diffeomorphism f : M→ M is Cr -robustly minimal if
there exists a Cr -neighborhood U of f such that F s(g) is minimal for every g ∈ U .

THEOREM D. Assume that f is a mostly expanding partially hyperbolic Cr -
diffeomorphism, r > 1. Suppose that the strongly stable (respectively, unstable) foliation
F s( f ) f is Cr -robustly minimal. Then any Cr diffeomorphism g close enough to f in
the Cr topology has a unique physical measure µg whose basin B(µg) has full volume in
whole manifold M.

The above result holds if we replace the hypothesis of strongly stable (respectively,
unstable) foliation by robust transitivity. Conditions under which one of the strong
foliations of a partially hyperbolic diffeomorphism is robustly minimal were provided by
Pujals and Sambarino [22], Bonatti, Diaz and Ures [5] and Nobili [17].

The work is organized as follows. Section 2 is devoted to recalling known results which
will be used later. In §3, we prove Theorem B. Theorem C and Theorem D are proved
in §4. As we mentioned previously, in §5, we show examples where the NUE-condition
and the wNUE-condition fail to be robust, proving the statement of Theorem A. Finally,
in §6, and following the ideas developed in [7], we show that the classical example of
a non-hyperbolic robustly transitive partial hyperbolic diffeomorphism due to Mañe [15]
is mostly expanding along the central direction. In particular, the previous result can be
applied to such a class of examples.

2. Preliminaries
We will now summarize the main results related to the existence of a physical measure
in the setting of partially hyperbolic diffeomorphisms. The key ingredients are the Gibbs
u-states.

In this section, f is a partial hyperbolic diffeomorphism. We denote by M(M) the
set of probability measures defined on M provided with the weak* topology and denote
by M( f ) the set of invariant probability measures by f . It is well known that M( f )
is a convex compact subset of M(M) and, moreover, that every invariant measure has a
decomposition into ergodic measures (cf. [16]).

An f -invariant probability measure µ is a Gibbs u-state or u-measure if the conditional
measures of µ with respect to the partition into local strong unstable manifolds are
absolutely continuous with respect to Lebesgue measure along the corresponding local
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strong unstable manifold. More precisely, given a point z ∈ M , we define a foliated box
of z in the following way. Pick a strong unstable disk D with center at z and take a
cross section 6 to the strong unstable foliation through the center point z. Then there
exists φ : D ×6→ M , which is a homeomorphism onto its image such that φ maps each
horizontal D × {y} diffeomorphically to an unstable domain through y. We may choose
φ such that φ(z, y)= y for all y ∈6 and φ(x, z)= x for all x ∈ D. In what follows, we
identify D ×6 and each D × {y}with their images under this chart φ. Given any measure
ξ on D ×6, we denote by ξ̂ the measure on 6 defined by

ξ̂ (B)= ξ(D × B). (2.1)

An f -invariant probability measure µ is a Gibbs u-state or u-measure if, for every foliated
neighborhood D ×6 such that µ(D ×6) > 0, the conditional measures of µ|(D ×6)
with respect to the partition into strong unstable plaques {D × {y} : y ∈6} are absolutely
continuous with respect to Lebesgue measure along the corresponding plaque.

Gibbs u-states play a key role in the theory. If µ is a physical measure for a partially
hyperbolic diffeomorphism, then µ must be a Gibbs u-state [6, §11.2.3].

In the early nineteen-eighties, Pesin and Sinai [20] proved that the set of the Gibbs
u-states of f is non-empty for Cr - partially hyperbolic diffeomorphisms, r > 1. More
precisely, denote by u the dimension of the bundle Eu . If Du is a u-dimensional disk
inside a strong unstable leaf, and Leb Du denotes the volume measure induced on Du

by the restriction of the Riemannian metric to Du , then every accumulation point of the
sequence of probability measures

µn =
1
n

n−1∑
j=0

f j
∗

(
LebDu

LebDu (Du)

)
is a Gibbs u-state with densities with respect to Lebesgue measure along the strong
unstable plaques uniformly bounded away from zero and infinity. It is possible to extend
the result obtained by Pesin and Sinai [6, Theorem 11.16].

PROPOSITION 2.1. There exists E ⊆ M intersecting every unstable disk on a full Lebesgue
measure subset such that, for any x ∈ E, every accumulation point ν of

νn,x =
1
n

n−1∑
j=0

δ f j (x) (2.2)

is a Gibbs u-state.

The support of any Gibbs u-state consists of entire strong unstable leaves [6, Corollary
11.14]. Moreover, a convex combination of Gibbs u-states is a Gibbs u-state. Conversely,
if µ is a Gibbs u-state, its ergodic components are Gibbs u-states whose densities are
uniformly bounded away from zero and infinity [6, Lemma 11.13].

Denote by Gu( f )⊆M( f ) the set of Gibbs u-states of f . The assertion above implies
that Gu( f ) is convex. Furthermore, the set Gu( f ) provided with the weak* topology is
closed in M( f ) and so compact [10, Theorem 5]. Moreover, given any sufficiently small
Cr -neighborhood U of f , r > 1, the set

Gu(U , M)= {(g, µ) : g ∈ U and µ a Gibbs u-state of g} (2.3)

is closed in U ×M(M) [6, Remark 11.15] when we consider the product topology.
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In the partial hyperbolic setting, notions like physical measures, Gibbs u-states, non-
zero Lyapunov exponents and stable ergodicity are closely related. We will explain some
known relationships useful for our purposes. We refer the reader to [6, 18, 19, 29], and the
references therein, for a complete discussion about the relationships to be discussed now.

As mentioned above, physical measures are Gibbs u-states in the setting of partially
hyperbolic diffeomorphisms, but the converse is not true even in the uniformly hyperbolic
setting, as the reader will notice from the example at the end of this section. It is well
known that if µ is an ergodic Gibbs u-state with negative central Lyapunov exponents, that
is, if

lim sup
n→+∞

1
n

log ‖D f n
|Ec

x‖< 0

for µ-almost every point x ∈ M , then µ is a physical measure (see [29, Theorem 3] and
the references therein). The statement follows from classical arguments [21].

This is a good motivation for introducing the notion of mostly contracting. A partially
hyperbolic diffeomorphism f is mostly contracting along the center subbundle if

lim sup
n→+∞

1
n

log ‖D f n
|Ec

x‖< 0 (2.4)

for a positive Lebesgue measure set of points x in every disk Du contained in a strong
unstable local manifold. In such cases, it was proved in [7] that if f is partially hyperbolic
and strongly mostly contracting along the center subbundle, then f admits finitely many
ergodic physical measures, and the union of their basins covers a full Lebesgue measure
subset of the basin of M . A related notion of mostly contracting was studied by Dolgopyat
in [11]. Ten years later, in [3], it was proved that the mostly contracting property (2.4) is
equivalent to every (ergodic) Gibbs u-state having negative central Lyapunov exponents.

In the setting of partially hyperbolic diffeomorphisms with the absence of strong
unstable direction, that is, when f : M→ M is a Cr -diffeomorphism, r > 1, with
decomposition of the tangent bundle T M = E s

⊕ Ec, it makes no sense to speak of
Gibbs u-states. For this setting, Alves, Bonatti and Viana [1] introduced the notion of the
Gibss cu-state using the fact that, in the presence of positive Lyapunov exponents, there
are Pesin invariant unstable manifolds. Thus Gibbs cu-states correspond to non-uniform
versions of Gibbs u-states. An invariant probability measure µ is a Gibbs cu-state if the
m largest Lyapunov exponents are positive µ-almost everywhere, where m = dim Ec, and
the conditional measures of µ along the corresponding local unstable Pesin manifolds
are almost everywhere absolutely continuous with respect to Lebesgue measure on these
manifolds.

Alves, Bonatti and Viana showed that a Cr -non uniformly expanding partially
hyperbolic diffeomorphism (recall Definition 1.3), r > 1, exhibits (ergodic) Gibbs cu-
states which are physical measures [1]. Moreover, if H = M , then f admits finitely many
(ergodic) physical measures, and the union of their basins covers a full Lebesgue measure
subset of M . The same conclusion was reached by Alves, Dias, Luzzatto and Pinheiro
in [2] under the wNUE-condition (recall Definition 1.4). We record the precise statement
obtained by the authors above for future reference.
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PROPOSITION 2.2. [2, Theorem A] Let f : M→ M be a Cr , r > 1, partially hyperbolic
diffeomorphism with decomposition T M = E s

⊕ Ecu . Assume that there exists a subset
H ⊆ M of positive Lebesgue measure on which f is weakly non-uniformly expanding
along Ecu . Then:
(i) there exist closed invariant transitive sets�1, . . . , �` such that, for Lebesgue almost

every x ∈ H, ω(x)=� j for some 1≤ j ≤ `; and
(ii) there exist (ergodic) Gibbs cu-states µ1, . . . , µ` supported on the sets�1, . . . , �`,

whose basins are open up to a zero Lebesgue measure set, such that, for Lebesgue
almost every x ∈ H, x ∈ B(µ j ) for some 1≤ j ≤ `.

In [26], the author established several properties of Gibbs cu-states which are similar to
the ones for Gibbs u-states: that is, [26, Theorem 2.1] the ergodic components of a Gibbs
cu-state µ are Gibbs cu-states whose densities are uniformly bounded away from zero and
infinity. Conversely, a convex combination of Gibbs cu-states is a Gibbs cu-state. The
support of any Gibbs cu-state consists of entire center-unstable leaves. In the setting of
partially hyperbolic diffeomorphisms with non-uniform expansion, every ergodic physical
measure is a Gibbs cu-state.

In the case where f is a non-uniformly expanding partially hyperbolic diffeomorphism
with decomposition of the tangent bundle T M = E s

⊕ Ec
⊕ Eu , every Gibbs cu-state is,

in fact, a Gibbs u-state with positive central Lyapunov exponents. The converse is not true,
even in the case of Anosov diffeomorphisms.

Example. Consider two linear Anosov diffeomorphisms A1, A2 over the torus T2

with splittings Eu
1 ⊕ E s

1 and Eu
2 ⊕ E s

2, respectively, and with (unstable) eigenvalues
λ1 > λ2 > 1, respectively. Now consider f : T2

× T2
→ T2

× T2, defined by f = A1 ×

A2. If we consider the decomposition Eu
= Eu

1 , Ec
= Eu

2 and E s
= E s

1 ⊕ E s
2 of the

tangent bundle of T2
× T2, then f is a partially hyperbolic diffeomorphism with positive

central Lyapunov exponent at every point. Consider the measure µ= µ1 × µ2, where µ1

is an Gibbs u-state for A1 and µ2 is the Dirac measure supported on a periodic orbit of A2.
Then µ is a Gibbs u-state for f whose central Lyapunov exponents are positive, but it is
not a Gibbs cu-state.

3. Proof of Theorem B
For every f ∈ Diffr (M) partially hyperbolic and x ∈ M , denote

λc(x, f ) := lim inf
n→+∞

1
n

log m(D f n
|Ec

x ). (3.1)

The diffeomorphism f is strongly mostly expanding (cf. Definition 1.2) if λc(x, f ) > 0
for a positive Lebesgue measure set of points x in every disk Du contained in a strong
unstable local manifold. If x ∈ M is a regular point, the number above is the minimum of
the Lyapunov exponents of x whose Osedelec splitting is contained in the central direction.
According to Osedelec’s theorem (see [16, Theorem 10.1]), the set of regular points is a
Borel set with total measure. In particular, the set of regular points has full measure with
respect to every Gibbs u-state. Note that the function defined by (3.1) is f invariant. Then
λc(x, f )=: λc(µ, f ) is constant for µ-almost every x when µ is ergodic.
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PROPOSITION 3.1. Let f : M→ M be a strongly mostly expanding partially hyperbolic
diffeomorphism. Then f is mostly expanding.

Proof. Assume that f is strongly mostly expanding. It is enough to prove the assertion
for ergodic Gibbs u-states and, in such cases, to prove that all central Lyapunov exponents
are positive on a set of positive µ-measure. Pick a foliated neighborhood D ×6 such
that µ(D ×6) > 0. By the definition of Gibbs u-states, the conditional measures of
µ|(D ×6) with respect to the partition into strong unstable disks {D × {y} : y ∈6} are
absolutely continuous with respect to Lebesgue measure along the corresponding unstable
disks. From such disintegration and absolutely continuity, we conclude that, for ξ̂ -almost
every point y ∈6 (recall that ξ̂ was defined in (2.1)), the central Lyapunov exponents
are well defined in a set of Lebesgue full measure in each of the strong unstable disks
D × {y}. Since f is strongly mostly expanding, such central Lyapunov exponents must be
positive. �

Recall that M(M) denotes the set of probability measures on M provided with the
weak* topology and Gu( f )⊆M(M) denotes the set of Gibbs u-states of f . Let
S ⊆ Diffr (M)×M(M) be the set of pairs ( f, µ), where f is a Cr partially hyperbolic
diffeomorphism and µ is a Gibbs u-state for f . We consider S endorsed with the product
topology induced from Diffr (M)×M(M).

Let us consider the function 3c
: S→ R defined as

3c( f, µ) :=
∫

M
λc(x, f ) dµ(x).

Now let µ be any Gibbs u-state. By convexity of the set of Gibbs u-states of f ,
µ is a convex combination of ergodic Gibbs u-states (µx )x∈M . Therefore, the ergodic
decomposition theorem implies that

3c( f, µ) :=
∫
λc(x, f ) dµ(x)=

∫ ∫
λc(x, f ) dµx dµ(x)=

∫
λc(µx ) dµ(x). (3.2)

The next lemma will be useful in the proof of Proposition 3.5.

LEMMA 3.2. A partially hyperbolic diffeomorphism f is mostly expanding if and only if
3c( f, µ) > 0 for every µ ∈ Gu( f ).

Proof. Assume that f is mostly expanding. If ν is an ergodic Gibbs u-state,

λc(x, f ) := λc(ν, f ) > 0

for ν-almost every point x ∈ M . Then

3c( f, ν)=
∫

M
λc(x, f ) dν(x)= λc(ν, f ) > 0.

If ν is not ergodic, then, from (3.2),

3c( f, ν) :=
∫
λc(x, f ) dν(x)=

∫ ∫
λc(x, f ) dνx dν(x)=

∫
λc(νx , f ) dν(x) > 0,

since every νx is an ergodic Gibbs u-state and then λc(νx , f ) > 0.
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Now we assume that3c( f, µ) > 0 for every µ ∈ Gu( f ). If µ is ergodic, then it follows
from 3c( f, µ)= λc(µ, f ) that µ has positive central Lyapunov exponents. If µ is non-
ergodic and λc(x, f )≤ 0 for every x ∈ A, where A is a set of positive µ-measure, then, by
the ergodic decomposition theorem, there exists an ergodic component µx of µ such that
x ∈ A, µx (A) > 0 and λc(x, f )= λc(µx , f )≤ 0, which is a contradiction. �

For every n ≥ 1, define Ln : S→ R by

Ln( f, µ) :=
∫

log m(D f n
|Ec

x ) dµ(x). (3.3)

Recall that the set S is endowed with the product topology induced from Diffr (M)×
M(M). Therefore Ln : S→ R is continuous for every n ≥ 1. Moreover, for a fixed
( f, µ) ∈ S, the sequence (Ln( f, µ))n≥1 is super additive, that is, for every integer n,
m ≥ 1,

Ln+m( f, µ)≥ Ln( f, µ)+ Lm( f, µ). (3.4)

This implies that the following limit exists (or is equal to +∞).

α = α( f, µ)= lim
n→+∞

1
n

Ln( f, µ)= sup
{

1
n

Ln( f, µ) : n ∈ N
}
.

LEMMA 3.3. For every ( f, µ) ∈ S,

3c( f, µ)= lim
n→+∞

1
n

Ln( f, µ). (3.5)

Proof. This lemma is a direct consequence of the dominated convergence theorem. In fact,
fix ( f, µ) ∈ S and let us consider the sequence of µ-integrable functions on M defined by
9n(x)= (1/n) log m(D f n

|Ec
x ), x ∈ M , n ≥ 1. Then 9n converges µ-almost every point

to λc(·, f ) and, by partial hyperbolicity, 9n(x)≤ (1/n) log C−1
+ log λ3, where C ≥ 0

and λ3 > 1 are the constants in (1.3). Hence,

3c( f, µ)=
∫
λc(x, f ) dµ(x)= lim

n→+∞

∫
9n(x)

= lim
n→∞

1
n

∫
log m(D f n

|Ec
x ) dµ= lim

n→+∞

1
n

Ln( f, µ). �

PROPOSITION 3.4. The function 3c
: S→ R is lower semi-continuous.

Proof. Let ( f, µ) ∈ S and fix ε > 0 arbitrarily. From Lemma 3.3, we can take n0 ≥ 1 large
so that

1
n0

Ln0( f, µ) > 3c( f, µ)− ε.

Continuity of Ln0 allows us choose, thereafter, a neighborhood N of ( f, µ) in S small
enough for

1
n0

Ln0(g, µg) > 3
c( f, µ)− ε

to hold for any pair (g, µg) ∈N . Again from Lemma 3.3,

3c(g, µg)= lim
1
n

Ln(g, µg)= sup
n

1
n

Ln(g, µg)≥
1
n0

Ln0(g, µg)≥3
c( f, µ)− ε,

which proves the proposition. �
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The next proposition corresponds to the statement in Theorem B.

PROPOSITION 3.5. The class of mostly expanding partially hyperbolic diffeomorphisms
constitutes a Cr -open subset of Diffr (M), r > 1.

Proof. Let Diffr (M), r > 1, be a mostly expanding partially hyperbolic diffeomorphism.
Since partial hyperbolicity is a C1-open property (and hence it is Cr -open for every r ≥ 1),
we need to prove the existence of a small neighborhood where every partially hyperbolic
diffeomorphism is mostly expanding. We argue by contradiction. Assume that there is a
sequence ( fn)n≥1 of Cr -diffeomorphisms converging to f in the Cr -topology, r > 1, such
that, for every fn , n ≥ 1, there is a Gibbs u-state µn such that 3c( fn, µn)≤ 0.

Taking a subsequence, if necessary, we may assume that µn converges to µ. As already
pointed out (see [6, Remark 11.15]), µ is a Gibbs u-state for f . Since f is mostly
expanding, 3c( f, µ) > 0. By the lower semi-continuity of 3c,

0≥ lim inf
n→+∞

3c( fn, µn)≥3
c( f, µ) > 0,

which is a contradiction. �

4. Proof of Theorem C and Theorem D
We prove Theorem C by showing that if f is mostly expanding, then it has an iterate that
satisfies the weakly expanding condition (1.6) along the center direction. We do this in
several steps. Thereafter, we use the weakly expanding condition to show that f has a
finite number of physical measures whose basins cover Lebesgue almost every point in the
ambient manifold.

LEMMA 4.1. Let f ∈ Diff r (M), r > 1, be partially hyperbolic and mostly expanding.
Then there exists an integer n0 ≥ 1 such that∫

log m(D f n0 |Ec
x ) dµ(x) > 0 (4.1)

for every Gibbs u-state µ of f .

Proof. For any n ≥ 1, consider the set

Gn = {µ ∈ Gu( f ) : Ln( f, µ) > 0}. (4.2)

Because each Ln is continuous, n ≥ 1, Gn is open in Gu( f ). Since f is mostly expanding,
it follows that, given any µ ∈ Gu( f ), there exists n ≥ 0 such that µ ∈ Gn (see Lemmas 3.2
and 3.3). Hence the family {Gn}n∈N is an open covering of Gu( f ) and, by compactness,
there exist integers n1, . . . , nk such that Gu( f )=

⋃k
j=1 Gn j .

Let n0 := n1 · · · nk . Since the sequence (Ln( f, µ))n is super additive,

Lrs( f, µ)≥ r Ls( f, µ) for every integers r, s ≥ 1. (4.3)

If µ ∈ Gu( f ), then µ ∈ Gn j for some 1≤ j ≤ k. Taking s = n j and r = n0/n j in (4.3)
proves that Ln0(µ) > 0 for every µ ∈ Gu( f ). �

Note that, for n0 ≥ 1, we always have Gu( f )⊆ Gu( f n0), and it may be that Gu( f ) is a
proper subset of Gu( f n0). Lemma 4.1 states that (4.1) holds for every µ ∈ Gu( f ). We do
not know whether it holds for every µ ∈ Gu( f n0).
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LEMMA 4.2. Let f ∈ Diffr (M), r > 1, be mostly expanding. Then there exists an integer
n0 ≥ 1 such that f n0 satisfies the wNUE-condition on a set H ⊆ M.

Moreover, H ∪ f −1(H) ∪ · · · ∪ f −(n0−1)(H) has full Lebesgue measure in M.

The proof of Lemma 4.2 makes use of an auxiliary result regarding the lim sup of
general sequences.

LEMMA 4.3. Let {an}n∈N be a sequence of real numbers and let N ≥ 1 be some integer.
Then

lim sup
n→∞

1
nN

nN−1∑
k=0

ak ≤ max
0≤`≤N−1

lim sup
n→∞

1
n

n−1∑
k=0

ak N+`. (4.4)

Proof. Let A =max0≤`≤N−1 lim supn→∞ (1/n)
∑n−1

k=0 ak N+`. Assume that A <+∞;
otherwise, there is nothing to prove. For each `= 0, . . . , N − 1, let

A` = lim sup
n→∞

1
n

n−1∑
k=0

ak N+`.

Fix ε > 0. For every `= 0, . . . , N − 1, there exist m` ≥ 1 such that

1
n

n−1∑
k=0

ak N+` < A` + ε for every n ≥ m`.

Let m :=max{m0, . . . , m N−1}. Then

1
n

n−1∑
k=0

ak N+` < A` + ε for every n ≥ m, and `= 0, . . . , N − 1.

Hence,
1
n

N−1∑
`=0

n−1∑
k=0

ak N+` <

N−1∑
`=0

A` + ε ≤ N (A + ε)

and
1

nN

nN−1∑
k=0

ak ≤ A + ε for every n ≥ m,

which proves the lemma. �

We need to remark that it is not possible to change lim sup to lim inf in Lemma 4.3. It
is due to this limitation that we are only able to prove a priori that an iterate of f , g = f n0

satisfies the wNUE-condition on the set of positive Lebesgue measure H . Of course, as
a consequence of the existence of a physical measure for g = f n0 , a posteriori g satisfies
also the NUE-condition on H . In fact, it follows from Proposition 2.2 that H contains
the basin of the physical measures of g, so we can change the lim sup to lim inf on points
belonging to one of such basins.

Proof of Lemma 4.2. Recall that if f is partially hyperbolic, we denote Ecu
= Ec

⊕ Eu .
Let n0 be as in Lemma 4.1 and write g = f n0 . Let

c0 := inf
µ∈Gu( f )

∫
log m(Dg|Ecu) dµ. (4.5)
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Then c0 > 0 according to Lemma 4.1. Let E(g) be the set of points x ∈ M such that every
accumulation point of the measure

νx,n =
1
n

n−1∑
k=0

δgk (x) (4.6)

belongs to Gu(g). Then E(g) has full Lebesgue measure in M according to Proposition
2.1. Note that if x ∈ E(g), then νx,n accumulates on µ ∈ Gu(g) if and only if ν f (x),n

accumulates on f∗µ ∈ Gu(g). So E(g) is f -invariant. Note also that if ν ∈ Gu(g), then

1
n0
(ν + f∗ν + · · · + f n0−1

∗ ν) ∈ Gu( f ).

In particular, every accumulation point µ̃ of

µx,n =
1
n0

n0−1∑
`=0

ν f `(x),n (4.7)

is a Gibbs u-state for f .
Fix some x ∈ E(g) and, for any integer n ≥ 1, set

an = log m(Dg|Ecu
f n(x)). (4.8)

For every 0≤ `≤ n0 − 1 fixed,∫
log m(Dg|Ecu

x ) dν f `(x),n =
1
n

n−1∑
k=0

log m(Dg|Ecu
gk ( f `(x)))

=
1
n

n−1∑
k=0

log m(Dg|Ecu
f kn0+`(x)

)

=
1
n

n−1∑
k=0

akn0+`.

So ∫
log m(Dg|Ecu

x ) dµx,n =
1
n0

n0−1∑
`=0

∫
log m(Dg|Ecu

x ) dν f `(x),n

=
1
n0

n0−1∑
`=0

1
n

n−1∑
k=0

akn0+`.

For every sufficiently large n ≥ 1 it must be that

1
nn0

n0−1∑
`=0

n−1∑
k=0

akn0+` =

∫
log m(Dg|Ecu

x ) dµx,n

>
1
2

inf
µ∈Gu( f )

∫
log m(Dg|Ecu) dµ= c0/2.
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In particular,

lim sup
n→∞

1
nn0

n−1∑
k=0

n0−1∑
`=0

akn0+` ≥ c0/2. (4.9)

Hence, applying Lemma 4.3 with N = n0, we conclude that there exists some 0≤ `≤
n0 − 1 such that

lim sup
n→∞

1
n

n−1∑
k=0

akn0+` ≥ c0/2. (4.10)

We have now proved that f `(x) ∈ H for some 0≤ `n0 − 1. Since x ∈ E was chosen
arbitrarily, this implies that E = H ∪ f −1(H) ∪ · · · ∪ f −(n0−1)(H). To finish the proof,
note that H corresponds to the set of points x ∈ M for which

lim sup
n→∞

1
n

n−1∑
k=0

log m(Dg|Ecu
gk (x))= lim sup

n→∞

1
n

n−1∑
k=0

log m(Dg|Ecu
f n0k (x)

)≥ c0/2> 0,

which is equivalent to

lim inf
n→∞

1
n

n−1∑
k=0

log ‖(Dg|Ecu
gk (x))

−1
‖ ≤ −c0/2< 0, (4.11)

so g = f n0 satisfies the wNUE-condition on H .

The next lemma allows us to conclude Theorem C.

LEMMA 4.4. Let f ∈ Diffr (M), r > 1, be partially hyperbolic and mostly expanding.
Then there exist finitely many ergodic Gibbs cu-statesµ1, . . . , µ` all of which are physical
measures. The union of their basins has full Lebesgue measure in M.

Proof. From Lemma 4.2, there exists an integer n0 ≥ 1 such that f n0 satisfies the wNUE-
condition on a set H ⊆ M . So we can apply Proposition 2.2 to g = f n0 and then we
conclude that there exist finitely many ergodic Gibbs cu-states (of g) ν1, . . . , ν` whose
basins have non-empty interior and are such that

Leb
(

H
∖ ⋃̀

j=1

B(ν j )

)
= 0.

As we noted above, if ν j is a Gibbs cu-state for g = f n0 , j ∈ {1, . . . , `}, then

µ j :=
1
n0
(ν j + f∗ν + · · · + f n0−1

∗ ν j )

is a Gibbs cu-state for f . Of course, each B(µ j ) is contained in H ∪ f −1(H) ∪ · · · ∪
f −(n0−1)(H) and

Leb
(n0−1⋃

k=0

f −k(H)
∖ ⋃̀

j=1

B(µ j )

)
= 0.

Since
⋃n0−1

k=0 f −k(H) has full Lebesgue measure in M (see Lemma 4.2), then, for almost
every x ∈ M , x ∈ B(µ j ) for some 1≤ j ≤ `. �

The following remark is a key ingredient in the proof of Theorem D.
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LEMMA 4.5. Let f ∈ Diffr (M), r > 1, be partially hyperbolic and mostly expanding. Let
µ be a physical measure for f . Then its basin is open in M up to a zero Lebesgue measure
subset.

Proof. We prove the Lemma for completeness, even though it is contained in the second
statement of Proposition 2.2 (see also [2]). Since µ is ergodic, µ-almost every point
belongs to B(µ). Moreover, since µ is a Gibbs cu-state, µ-almost every point lies in an
unstable leaf F on which LebF -almost every point also belongs to B(µ). More precisely,
there exists a set L(µ) of unstable leaves such that:
(i) µ

(⋃
F∈L(µ) F

)
= 1; and

(ii) B(µ) has full LebF -measure for every F ∈ L(µ).
For each F ∈ L(µ), let A(F) be the s-saturated set consisting of the union of all strong
stable manifolds of points in F . Then A(F) is an open set and, by absolute continuity
of the stable foliation, B(µ) ∩A(F) has full Lebesgue measure in A(F). Let A=⋃

F∈L(µ) A(F). Since B(µ) has full Lebesgue measure in each A(F), it has full Lebesgue
measure in A. Note that A is a neighborhood of supp µ. Therefore, given any point
x ∈ B(µ), there is an iterate f n(x) that belongs to A. But A is invariant, so, in fact, we
must have x ∈A. Hence A is an open set containing B(µ) and B(µ) has full Lebesgue
measure in A. �

The next lemma implies Theorem D.

LEMMA 4.6. Let f ∈ Diffr (M), r > 1, be transitive, partially hyperbolic and mostly
expanding. Then f has a unique physical measure whose basin has full Lebesgue measure
in M.

Proof. Assume that there are two physical measures µ and ν for f . The basins B(µ) and
B(ν) are open up to a zero Lebesgue measure subset. From topological transitivity, there
is a non-negative integer n such that f n(B(µ)) ∩ B(ν) 6= ∅. Hence µ= ν. �

5. Dolgopyat–Hu–Pesin blocks
In [4, Appendix B], Dolgopyat, Hu and Pesin provide an example of a non-uniformly
hyperbolic volume-preserving diffeomorphism on T3 with countably many ergodic
components. As a key step in the construction, they consider a linear Anosov diffeomor-
phism A on T2 and the map F : [0, 1] × T2

→ [0, 1] × T2 defined by F = I × A, where
I is the identity map. Then, by a suitable perturbation of F , they construct a C∞

diffeomorphism g on M = [0, 1] × T2, with the following properties.
• g is a partially hyperbolic volume-preserving diffeomorphism on M .
• The connected components of the boundary, Wi := {i} × T2, i = 0, 1 are left

invariant by g and g|Wi = F |Wi is a linear Anosov map.
• g is ergodic with respect to Lebesgue measure and has positive central Lyapunov

exponents almost everywhere.
• g can be chosen to be as Cr close to F as desired, for any r ≥ 2.

The meaning of the first item above, that is, that g is partially hyperbolic, could
potentially be confusing, as we are dealing with a manifold with boundary, and no
definition of partial hyperbolicity has been provided in this case. In fact, there is no
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need for that. The diffeomorphism g is constructed so that it becomes a C∞ partially
hyperbolic diffeomorphism on T3 when identifying {0} × T2 with {1} × T2 in the natural
manner. This is what enables them to glue two or more copies of g together.

We observe that if µ is a Gibbs u-state for A, then δ0 × µ is a u-measure for g with zero
central Lyapunov exponent, where δ0 is the Dirac measure concentrated on zero. Therefore
g is not mostly expanding, although it does satisfy the NUE-condition along the center (or
center-unstable) direction (1.5).

Although the construction of the diffeomorphism g by Dolgopyat, Hu, and Pesin was
done as an intermediate step in providing an example of a diffeomorphism with non-
zero Lyapunov exponents almost everywhere and yet having countably many ergodic
components, it turns out to be useful when thinking about the NUE-condition of [1] and
how it compares with our notion of mostly expanding along the central direction.

Gluing copies of g together is an easy matter. Indeed, given 0< λ < 1 and 0≤ τ <
1− λ, we define the squeezing and sliding action

Lλ,τ : [0, 1)× T2
→ [τ, τ + λ)× T2

(x, y, z) 7→ (λx + τ, y, z).

Now suppose that we wish to construct an example of a diffeomorphism f : T3
→ T3

satisfying the NUE-condition and exhibiting precisely k physical measures. All we need to
do is identify T3 with [0, 1)× T2 in the obvious way and take f to be the diffeomorphism
satisfying

f |[i/k,(i+1/k)) = L1/k,i/k ◦ g ◦ L−1
1/k,i/k, i = 0, . . . , k.

PROPOSITION 5.1. Having condition (1.5) or (1.6) satisfied on a set of full Lebesgue
measure is not a robust property.

Proof. Pick any 0< ε < 1 and define fε by

fε(x, y, z)= L1−ε,0 ◦ g ◦ L−1
1−ε,0(x, y, z), x ∈ [0, 1− ε)

fε(x, y, z)= (x, A(y, z)), x ∈ [1− ε, 1).

By construction, fε approaches g as ε→ 0 in any Cr topology, but none of the fε satisfy
the NUE-condition. �

PROPOSITION 5.2. Having condition (1.5) or (1.6) satisfied on a set of positive Lebesgue
measure is not a robust property.

Proof. Let f be a diffeomorphism on T3 obtained by gluing two blocks, as above, with
different sign on their central Lyapunov exponents. More precisely, let f be such that

f |[0,1/3)×T2 = L1/3,0 ◦ g ◦ L−1
1/3,0

and
f |[1/3,1)×T2 = L2/3,1/3 ◦ g−1

◦ L−1
2/3,1/3.

Then both f satisfies (1.5) and (1.6) on a set of positive measure. Note that the
integrated central Lyapunov exponent of f is negative. From [23], we know that, for every
r > 1, there is a Cr diffeomorphism f̃ arbitrarily close to f in the Cr topology such that f̃
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is ergodic. In particular, the central Lyapunov exponent of f̃ is constant Lebesgue almost
everywhere. Since f̃ is C1 close to f , this Lyapunov exponent is negative. In particular,
f̃ fails to satisfy conditions (1.5) and (1.6) on a set of positive Lebesgue measure. �

PROPOSITION 5.3. Having condition (1.5) or (1.6) satisfied on a set of full measure does
not imply that the number of physical measures varies upper semi-continuously with the
dynamics.

Proof. To prove this claim, we need to show that the number of physical measures can
undergo an explosion. All we have to do to accomplish that is to modify fε in Claim 1 on
[1− ε, 1)× T2: that is,

fε(x, y, z)= L1−ε,0 ◦ g ◦ L−1
1−ε,0(x, y, z), x ∈ [0, 1− ε), (5.1)

fε(x, y, z)= Lε,1−ε ◦ g′ ◦ L−1
ε,1−ε(x, y, z), x ∈ [1− ε, 1), (5.2)

where g′ : [0, 1] × T2 is a diffeomorphism satisfying all the properties of g and is
sufficiently close to F in the Cr topology. The resulting fε has two physical measures
and is arbitrarily close to g (which has one). �

6. Derived-from-Anosov example
Here we show that a classical example of a non-hyperbolic robustly transitive
diffeomorphism due to Mañe [15] satisfies our notion of partial hyperbolicity with mostly
expanding central direction in the strong sense. We do that following the ideas developed
in [7].

We start with a linear Anosov diffeomorphism f0 : T3
→ T3 with three different

eigenvalues
λs < 1/3< 1< λc� 3< λu .

We consider the splitting
TT3
= E s

0 ⊕ Ec
0 ⊕ Eu

0

into eigenspaces corresponding to these eigenvalues. Let p0 ∈ T3 be a fixed point of
f0 and consider δ > 0 (to be fixed later). We deform f0 along a one-parameter family
of diffeomorphisms ft , t ≥ 0, by isotopy inside V = B(p0, δ) to make it go through a
pitchfork bifurcation. The expansion in the strong unstable subbundle Eu

t remains large
everywhere and the same is true for the contraction in the strong stable subbundle E s

t .
More precisely, for every parameter t ≥ 0,

|D ft |E s
t |< 1/3< 3< |D ft |Eu

t |.

Then the distortion along the strong unstable leaves remains uniformly bounded in the
whole family ft .

The center subbundle Ec
t restricted outside V also remains expanding: that is,

3> |D ft (x)|Ec
t (x)| ≥ ηc(t) > 1 for every x ∈ T3

\ V, (6.1)

where ηc(0)= λc > 1. Moreover, for every parameter 0≤ t < t0, the deformation can be
done in a such a way that (6.1) can be extended to every x ∈ T3 by choosing carefully the
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FIGURE 1. Deformation of f0 along the Ec
0 direction in the point p0.

constant ηc(t) > 1 and so ft is expanding along the central direction Ec
t . If we denote by

pt , t ≥ 0, the continuation of the hyperbolic fixed point p0 of f0 inside the neighborhood
V , the eigenvalue λc(pt ) > 1 if 0≤ t < t0 becomes λc(pt0)= 1. Then, for parameters
t0 + ε > t > t0 slightly greater than t0, the continuation pt is a saddle point whose stable
index changes from one to two, and two other saddle points q1

t , q2
t ∈ V , of stable index

one, are created (see Figure 1).
Note that, for every β > 0, we can choose ε > 0 such that for every 0≤ t < t0 + ε and

every x ∈ V ,
|D ft (x)|Ec

t (x)|> 1− β.

Then, for 0≤ t < t0 + ε, the diffeomorphism ft is partially hyperbolic. Hence there
exist unique foliations F s

t and Fu
t tangential to E s

t and Eu
t , respectively. Moreover, it

follows from [14] that ft has an invariant central foliation Fc
t tangential to the central

direction Ec
t , 0≤ t < t0 + ε. Since it remains normally contracting all the way during the

isotopy, the center-unstable foliation Fcu
t is leaf conjugate to the unstable foliation Fcu

0 ,
which means that there exists a homeomorphism h : T3

→ T3 which sends leaves of Fcu
t

into leaves of Fcu
0 and conjugates the dynamics of the leaves. More precisely,

h(W cu
t ( ft (x)))=W cu

0 ( f0(h(x))).

If we fix a diffeomorphism ft with t slightly greater than t0 in the family above, we
obtain a C1-open set U of diffeomorphisms containing ft such that every f ∈ U satisfies
the following.
(i) f is partially hyperbolic and uniquely integrable. We have an D f -invariant splitting

into three non-trivial subbundles

TT3
= E s

⊕ Ec
⊕ Eu

satisfying
|D f |E s

|< 1/3< 3< |D f |Eu
|, (6.2)

and, for every x ∈ V ,
|D f (x)|Ec(x)|> 1− β. (6.3)

https://doi.org/10.1017/etds.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2017.17


2856 M. Andersson and C. H. Vásquez

(ii) There exist unique foliations F∗ tangential to E∗, respectively, where ∗ = s, c, u.
(iii) f has three hyperbolic fixed saddles inside V contained in a same central leaf Fc(p):

two saddles with stable index one and one saddle with stable index two.
Recall that for a u-segment γ , by (6.2),

length( f (γ ))≥ 3 · length(γ ),

so we can assume that there are constants L ≥ 0 such that, given any u-segment γ with

length(γ )≥ L ,

there is an integer k = k(γ )≥ 1 such that we may write

f (γ )= γ1 ∪ · · · ∪ γk

as the disjoint union of u-segments γi satisfying

2L ≥ length(γi )≥ L , i = 1, . . . , k.

By redefining V , if necessary, we can assume that there is 0< τ0 < 1 such that, given
any u-segment γ with length(γ )≥ L , if IV = {i : γi ∩ V 6= ∅, i = 1, . . . , k(γ )}, then∑

j∈IV

length(γ j )≤ τ0 · length( f (γ )).

Of course, L ≥ 0 can be chosen close the size of V , so the image of any u-segment with
length bigger than L spends a positive fraction 1− τ0 (in length) outside V .

For any integer k ≥ 1 and 0< α < 1, we define

M(k, α)=
{

x ∈ γ :
1
k

k−1∑
j=0

1V ( f j (x))≥ α
}
,

where 1V is the characteristic function of V . Note that x ∈ M(k, α) if its orbit spends a
fraction of time bigger than α > 0 inside V (until time k). Of course, the complement of
the set ⋂

n≥1

⋃
k≥n

M(k, α)

corresponds to the set of points x ∈ γ that spend at least a fraction 1− α outside V .

LEMMA 6.1. There is 0< α0 < 1, depending on α0 = α0(τ0, |D f |Eu
|), such that, for

every u-segment γ and every α0 ≤ α < 1, the set

Mγ :=

⋂
n≥1

⋃
k≥n

M(k, α)

has zero Lebesgue measure in γ .

The proof of Lemma 6.1 can be found in [7, §6.3]. We need to remark that α0 is
a constant such that it essentially depends on the distortion bound along the unstable
direction. That allows us to fix α > α0 and to choose β close to zero such that

3(1−α)(1− β)α = λ > 1. (6.4)
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PROPOSITION 6.2. Let f ∈ U be as above. Then, for any u-segment γ and Lebesgue
almost every point x ∈ γ ,

lim sup
n→∞

1
n

log |(D f n
|Ec

x )
−1
|< 0.

In particular, f is mostly expanding.

Proof. Let γ be a u-segment and consider x ∈ γ . Since Ec is a one-dimensional
subbundle,

|D f n(x)|Ec(x)| =
n−1∏
j=0

|D f ( f j (x))|Ec( f j (x))|.

If we denote by JV (x)= { j : f j (x) ∈ V, 0≤ j ≤ n − 1} the iterates of x belonging to V ,
then, by (6.3), the derivative of f j (x) along the center direction is controlled, if j ∈ JV (x),
by

|D f ( f j (x))|Ec( f j (x))|> 1− β.

For the iterated j /∈ JV (x), by (6.2),

|D f ( f j (x))|Ec( f j (x))|> 3.

Then
|D f n(x)|Ec(x)|> 3n−|JV (x)|(1− β)|JV (x)|.

It follows from Lemma 6.1 that for Lebesgue almost every x ∈ γ \ Mγ , that is, there exist
N ≥ 1 such that, for every n ≥ N ,

|JV (x)|
n
≤ α < 1.

Then, taking into account (6.4),

|D f n(x)|Ec(x)|> 3n−|JV (x)|(1− β)|JV (x)|

> 3(1−α)n(1− β)αn

> λn > 1.

Finally,
1
n

log |D f n(x)|Ec(x)|> log λ > 0.

Then we obtain
lim inf
n→∞

1
n

log |D f n(x)|Ec(x)|> log λ > 0.

�

Remark. The previous example can be generalized to Tn+2, n ≥ 1, beginning from a linear
Anosov diffeomorphism f0 with decomposition

TT3
= E s

0 ⊕ Ec
0 ⊕ Eu

0 ,

where dim Eu
0 = dim Ec

0 = 1 and dim E s
0 = n.
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[15] R. Mañé. Contributions to the stability conjecture. Topology 17(4) (1978), 383–396.
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