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The Riemann–Hilbert–Poincaré problem with general coefficient for the
inhomogeneous Cauchy–Riemann equation on the unit disc is studied using Fourier
analysis. It is shown that the problem is well posed only if the coefficient is
holomorphic. If the coefficient has a pole, then the problem is transformed into a
system of linear equations and a finite number of boundary conditions are imposed in
order to find a unique and explicit solution. In the case when the coefficient has an
essential singularity, it is shown that the problem is well posed only for the Robin
boundary condition.

1. Introduction

The ∂̄-equation has been studied intensively and extensively not only for spe-
cial domains such as the polydisc and the unit ball [5, 6, 17], but also for general
domains [12,13]. As for the Neumann problem, there are some results for the poly-
disc [15] and the unit ball [3]. Notwithstanding these results, very little is known
about the Riemann–Hilbert–Poincaré (RHP) problem and the Robin problem for
either the polydisc or the unit ball. Despite some results in [16] for the polydisc
and in [2] for the unit disc in C, the research on these problems is far from being
complete and a complete understanding of the Riemann–Hilbert–Poincaré problem
for the unit disc in C is necessary before tackling the problem for higher dimensions.

The Riemann–Hilbert–Poincaré problem for holomorphic functions has some
exciting features [2,7,8], which are in sharp contrast with the known results hitherto
described [4, 20]. Impressive results are obtained in [2] by reducing the Riemann–
Hilbert–Poincaré problem for holomorphic functions to a Fuchsian-type differential
equation. However, the analysis in [2] does not cover the Riemann–Hilbert–Poincaré
problem with general coefficient.

Let D be the unit disc {z ∈ C : |z| < 1} in C and let ∂D be its boundary. We are
interested in finding a function v in C1(D) such that

(∂̄v)(z) = f(z), z ∈ D,

Re
[

∂v

∂νζ
+ α(ζ)v(ζ)

]
= γ0(ζ), ζ ∈ ∂D,

⎫⎪⎬
⎪⎭ (1.1)
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where ∂̄ = 1
2 (∂/∂x + i∂/∂y) and ∂v/∂νζ denotes the outward normal derivative of

v at the point ζ on ∂D, f ∈ C(D̄), α and γ0 are Hölder continuous functions on
∂D. The problem (1.1) is known as the Riemann–Hilbert–Poincaré problem for the
inhomogeneous Cauchy–Riemann equation on the unit disc D.

Since α is Hölder continuous on ∂D, we can write

α(z) = α+(z) + α−(z), z ∈ ∂D, (1.2)

where

α+(z) =
∞∑

k=1

α−kzk and α−(z) =
m∑

k=0

αkz−k.

It is understood that α0, α±1, α±2, . . . are the Fourier coefficients of α and m � ∞.
The choice of ‘+’ and ‘−’ for the subscripts of the Fourier coefficients of α− and
α+, respectively, is to simplify the notation in the computations involving α− later.
It is well known that the smoothness of α on the boundary ∂D is related to the
decay of the Fourier coefficients α−k when k is large. The continuation of α to a
holomorphic function inside the disc is the same as the vanishing of the Fourier
coefficients with positive subscripts, and in this case we say that α is holomorphic
on D. We say that α has a pole at the origin in D if 1 � m < ∞ and α has an
essential singularity at the origin in D if m = ∞.

In [2], problem (1.1) is solved for the case when f(z) = 0, z ∈ D and α is
holomorphic, and also for the case when f(z) = 0, z ∈ D and

α(z) = αmz̄m + α0, z ∈ ∂D, (1.3)

where αm and α0 are complex constants. In this paper we study problem (1.1) first
for

α(z) = α−(z) =
m∑

j=0

αj z̄
j , z ∈ ∂D, (1.4)

where α0, α1, . . . , αm are complex constants and m < ∞. Then we consider prob-
lem (1.1) for m = ∞. We show that problem (1.1) with α given by (1.2) can be
reduced to one with α given by (1.4).

The case when α is a holomorphic function is satisfactorily solved not only for
the unit disc in C [2] but also for the polydisc in C

n [16]. Problem (1.1) for the
case (1.4) when α is an ‘anti-polynomial’ is much more difficult. The difficulty can
already be seen even for the very special case (1.3) studied in [2]. The level of
difficulty increases dramatically from the special two-term case (1.3) to the general
anti-polynomial case (1.4) in this paper. This is due to the fact that we have to
come to grips with full matrices in the latter instead of diagonal matrices in the
former. Full matrices present more theoretical and numerical challenges. Moreover,
the general anti-polynomial case is more natural and should find more applications
than the two-term situation.

There are some results [4,20] on problem (1.1) based on the assumption that the
norm of α is sufficiently small.

In this paper we show that the number of solutions and the solvability conditions
depend not on the smoothness of the function α on the boundary ∂D, but on its
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interior continuation property. In order to obtain a unique solution, different kinds
of boundary conditions need to be imposed even when the norm of α is small.

We show that, for the case when α is holomorphic on D, the RHP problem is well
posed. As for the case when α has a pole or an essential singularity at the origin in
D, we show that the RHP problem is not well posed and multiple solutions occur.
The technique is that instead of treating the equation with a pole or an essential
singularity in D, we transform the equation into a regular equation on ∂D. In doing
so, the difficulty in tackling with a pole or an essential singularity is avoided. It
is also shown that, in the case of an essential singularity, only the Robin problem
turns out to be well posed.

The results in this paper play an important role in the study of the third
boundary-value problem for pluriharmonic systems on polydiscs (see also [18] for
the connections with Hele-Shaw moving boundary-value problems). The closely
related Riemann–Hilbert problem with applications to orthogonal polynomials can
be found in [9, 10].

2. Homogenization

By [1, theorem 28, p. 84], we know that the general solution to the Cauchy–Riemann
equation (1.1) is given by the Pompeiu formula to the effect that

v(z) = u(z) + v0(z), z ∈ D, (2.1)

where u is an arbitrary holomorphic function on D and

v0(z) = − 1
π

∫
D

f(ζ)
ζ − z

dζ, z ∈ C. (2.2)

See [1, 19] in this connection. For a holomorphic function u, it is clear that, for all
ζ in ∂D,

∂u

∂νζ
= ζ

du

dζ
.

Thus, by (2.1), the second equation in (1.1) becomes

Re
[
ζ
du

dζ
+ α(ζ)u

]
= γ(ζ), ζ ∈ ∂D, (2.3)

where

γ(ζ) = γ0(ζ) − Re
[
∂v0

∂νζ
+ α(ζ)v0

]
, ζ ∈ ∂D.

Thus, to find v, it is enough to find the solution u to the RHP problem for f(z) = 0,
z ∈ D, the given function α and the function γ just introduced.

3. The Fuchsian-type equation

Let γ be a given function on ∂D. The problem of finding a holomorphic function G
on D such that

Re[G(z)] = γ(z), z ∈ ∂D, (3.1)
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is known as the Schwarz problem for the unit disc D. A solution G to the Schwarz
problem (3.1) is given by

G(z) =
1

2πi

∫
∂D

γ(ζ)
[

2
1 − z/ζ

− 1
]
dζ

ζ
+ iγ0,

where γ0 is an arbitrary real constant. Let us write

G(z) =
∞∑

k=0

gkzk, z ∈ D,

and assume in this section that (1.4) is satisfied.

3.1. Pole

Suppose that m < ∞. Comparing (3.1) with (2.3), we have

Re
[
zu′(z) +

(
α0 +

α1

z1 +
α2

z2 + · · · +
αm

zm

)
u(z)

]
= Re[G(z)], z ∈ ∂D. (3.2)

Since the function u is holomorphic on D, the function zu′(z) + α(z)u(z) is holo-
morphic on D \ {0} and has a pole of order at most m at 0. Therefore, by (3.2)
and [1, 11,14], there exist constants a1, a2, . . . , am such that

zu′(z) +
(

α0 +
α1

z1 +
α2

z2 + · · · +
αm

zm

)
u(z) =

m∑
k=1

(
ak

zk
− ākzk

)
+ ic0 + G(z)

for all z in D \ {0}. So, we can write

zu′(z) + Pm

(
1
z

)
u(z) = P ∗

m

(
1
z̄

)
− P ∗

m(z) + G(z), z ∈ D \ {0}, (3.3)

where

Pm

(
1
z

)
=

(
α0 +

α1

z1 +
α2

z2 + · · · +
αm

zm

)
, z ∈ D \ {0},

P ∗
m(z) =

m∑
k=0

ākzk, z ∈ D,

and the constant ic0 is absorbed into P ∗
m by just noting that

ic0 = a0 − ā0.

The problem is then reduced to the determination of the holomorphic function u
and the coefficients a1, a2, . . . , am.

Since (3.3) remains the same if G(z) =
∑∞

k=0 gkzk is replaced by Gm−1(z) =∑m−1
k=0 gkzk as in [2], in this case we need to solve only the equation

zu′(z)+
(

α0+
α1

z1 +
α2

z2 + · · ·+ αm

zm

)
u(z) =

m∑
k=1

(
ak

zk
− ākzk

)
+ic0+

m−1∑
k=0

gkzk (3.4)

for all z in D.
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3.2. Essential singularity

Suppose that m = ∞. This means that

α−(z) =
∞∑

k=0

αkz−k = lim
m→∞

Pm

(
1
z

)
, z ∈ ∂D,

and so in this case (3.3) becomes

zu′(z) + α−(z)u(z) = α∗
(

1
z̄

)
− α∗(z) + G(z), z ∈ D \ {0}, (3.5)

and we are confronted with the problem of finding the two holomorphic functions
u and α∗ from (3.5).

4. Reduction

In this section, we show that the RHP problem for the case of the general coefficient
α given by (1.2) can be reduced to the case when α = α−.

Theorem 4.1. The problem (2.3) for the case of the general coefficient α given
by (1.2) can be reduced to the case when α is given by (1.4).

Proof. We first assume that

α−(z) = Pm

(
1
z

)
=

(
α0 +

α1

z1 +
α2

z2 + · · · +
αm

zm

)
, z ∈ ∂D.

By (2.3) and (3.1), we have

Re
[
zu′(z) +

(
α+(z) + α0 +

α1

z1 +
α2

z2 + · · · +
αm

zm

)
u(z)

]
= Re[G(z)] (4.1)

for all z in ∂D. Since the function u is holomorphic on D, the function

zu′(z) +
(

α+(z) + Pm

(
1
z

))
u(z)

is holomorphic on D\{0} and has a pole of order at most m at 0. Therefore, by (4.1),
we have [1, 11,14]

zu′(z) +
(

α+(z) +
m∑

j=0

αj

zj

)
u(z) =

m∑
k=1

(
ak

zk
− ākzk

)
+ ic0 + G(z)

for all z in D \ {0}. Thus,

zu′(z) +
(

α+(z) + Pm

(
1
z

))
u(z) = P ∗

m

(
1
z̄

)
− P ∗

m(z) + G(z) (4.2)

for all z in D\{0}, where we recall that P ∗
m(z) =

∑m
k=0 ākzk, ak, k = 0, 1, 2, . . . , m,

are arbitrary complex constants and

ic0 = a0 − ā0.
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Using the change of variables from u to w given by

w(z) = u(z) exp
{ ∫ z

0

α+(ζ)
ζ

dζ

}
, z ∈ C,

(4.2) becomes

zw′(z) + Pm

(
1
z

)
w(z) =

{
P ∗

m

(
1
z̄

)
− P ∗

m(z) + G(z)
}

exp
{ ∫ z

0

α+(ζ)
ζ

dζ

}
(4.3)

for all z in D \ {0}. We let E be the function on D defined by

E(z) exp
{ ∫ z

0

α+(ζ)
ζ

dζ

}
, z ∈ D,

and we write E in terms of its power series as

E(z) =
∞∑

k=0

ekzk = Em(z) + Er(z), z ∈ D,

where

Em(z) =
m∑

k=0

ekzk, z ∈ D,

and

Er(z) = zm
∞∑

k=1

ek+mzk, z ∈ D.

Then, for all z in D \ {0},
{

P ∗
m

(
1
z̄

)
− P ∗

m(z) + G(z)
}

exp
{ ∫ z

0

α+(ζ)
ζ

dζ

}

= P ∗
m

(
1
z̄

)
Em(z) + P ∗

m

(
1
z̄

)
Er(z) + E(z){G(z) − P ∗

m(z)}

=
m∑

t=0

{ m−t∑
k=0

ak+tek

}
z−t +

m−1∑
t=1

{ m−t∑
k=0

akek+t

}
zt

+
m−1∑
t=0

{ m−t∑
k=1

at+kek+m

}
zm−t +

m−1∑
t=0

{ t∑
k=0

ek(gt−k − āt−k)
}

zt + O(zm).

If we let

ct =
m−t∑
k=0

ak+tek, t = 0, 1, 2, . . . , m,

then we can find constants f0, f1, . . . such that, for all z ∈ D \ {0},
{

P ∗
m

(
1
z

)
− P ∗

m(z) + G(z)
}

exp
{ ∫ z

0

α+(ζ)
ζ

dζ

}
=

m∑
t=0

(ctz
−t − ctz

t) +
∞∑

k=0

fkzk.
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Then, as in [2], equation (4.3) is equivalent to

zw′(z) + Pm

(
1
z

)
w(z) =

m∑
t=0

(
ct

zt
− c̄tz

t

)
+

m−1∑
k=0

fkzk, z ∈ D \ {0}. (4.4)

Let m → ∞. Then

α−(z) = lim
m→∞

Pm

(
1
z

)
=

∞∑
k=0

αkz−k, z ∈ ∂D,

and (4.3) turns out to be

zw′(z) + α−(z)w(z) =
{

α∗
(

1
z̄

)
− α∗(z) + G(z)

}
exp

{ ∫ z

0

α+(ζ)
ζ

dζ

}
(4.5)

for all z in D \ {0}, where

α∗(z) =
∞∑

k=0

ākzk, z ∈ D.

Taking into account the fact that

α∗
(

1
z̄

)
E(z) =

∞∑
t=0

{ ∞∑
k=0

at+kek

}
z−t +

∞∑
t=1

{ ∞∑
k=0

akek+t

}
zt, z ∈ D \ {0},

denoting
∑∞

k=0 at+kek by ct and writing

{G(z) − α∗(z)} exp
{ ∫ z

0

α+(ζ)
ζ

dζ

}
+

∞∑
t=1

{ ∞∑
k=0

akek+t

}
zt +

∞∑
t=0

c̄tz
t =

∞∑
k=0

fkzk

for all z in D, we can rewrite the equation (4.5) as

zw′(z) + α−(z)w(z) =
∞∑

t=0

{ctz
−t − c̄tz

t} +
∞∑

k=0

fkzk, z ∈ D \ {0}. (4.6)

This completes the proof.

5. Free parameters

If αk = 0, k = 1, 2, . . . , then the problem is a Schwarz problem for a holomor-
phic function and therefore the boundary condition (2.3) is enough to determine
the holomorphic function u essentially uniquely (see [2]). Otherwise, we have two
essentially different cases: (3.3) with poles and (3.5) with essential singularities.

Since equation (3.3) can be transformed into a system of linear equations, it may
have a unique solution or several solutions. However, for equation (3.5), there are
no known methods available in the literature.
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If we look at equations (3.3), (3.5), (4.3) and (4.5) on the boundary, then we have

ζu′(ζ) + Pm(ζ̄)u(ζ) = G(ζ) − 2i Im[P ∗
m(ζ)], ζ ∈ ∂D, (5.1)

ζu′(ζ) + α−(ζ)u(ζ) = G(ζ) − 2i Im[α∗(ζ)], ζ ∈ ∂D, (5.2)

ζw′(ζ) + Pm(ζ̄)w(ζ) = {G(ζ) − 2i Im[P ∗
m(ζ)]} exp

{ ∫ ζ

0

α+(η)
η

dη

}
, ζ ∈ ∂D,

(5.3)

and

ζw′(ζ) + α−(ζ)w(ζ) = {G(ζ) − 2i Im[α∗(ζ)]} exp
{ ∫ ζ

0

α+(η)
η

dη

}
, ζ ∈ ∂D.

(5.4)

Now we have to fix two holomorphic functions from one equation. Usually a half-
boundary condition has to be appended to fix one holomorphic function. So, by the
Riemann–Hilbert–Poincaré condition (2.3) on the boundary, only one holomorphic
function can be fixed and the other remains free. This means that problem (2.3)
is not well posed, and therefore the existence of arbitrarily many solutions of the
problem is obvious in this case. It is well posed only in the case when α(ζ) is
holomorphic. Thus, we see that properties often assumed for the coefficient α, such
as smoothness or positivity, are irrelevant for the solvability of the problem.

Thus, besides the boundary condition (1.1), we impose another boundary condi-
tion on v, i.e.

Im
[
ζ
dv

dζ
+ α(ζ)v

]
= γ0(ζ), ζ ∈ ∂D. (5.5)

So, taking (2.1) into account, the above condition (5.5) becomes

Im[ζu′(ζ) + α(ζ)u(ζ)] = γ∗(ζ), ζ ∈ ∂D, (5.6)

where

γ∗(ζ) = γ0(ζ) − Im
[
∂v0

∂νζ
+ α(ζ)v0(ζ)

]
, ζ ∈ ∂D.

However, condition (5.6) means that, for w in (5.4),

Im
{

[ζw′(ζ) + α−(ζ)w(ζ)] exp
{

−
∫ ζ

0

α+(η)
η

dη

}}
= γ∗(ζ), ζ ∈ ∂D. (5.7)

Theorem 5.1. If the condition (5.5) is fulfilled, then the function α∗ can be deter-
mined uniquely from equations (5.2) and (5.4) up to one constant term.

Proof. Taking the imaginary parts on both sides of (5.2) and (5.4), and using (5.6)
and (5.7), we have

Im[α∗(ζ)] = γ∗(ζ), ζ ∈ ∂D, (5.8)

where
γ∗(ζ) = 1

2 [γ∗(ζ) − Im G(ζ)], ζ ∈ ∂D.
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Since this is a Schwarz problem for the holomorphic function α∗, we have

α∗(z) =
1

2πi

∫
∂D

γ∗(ζ)
[

2
1 − z/ζ

− 1
]
dζ

ζ
+ ic∗

0, z ∈ D, (5.9)

where c∗
0 is an arbitrary real constant. Write

1
2πi

∫
∂D

γ∗(ζ)
[

2
1 − z/ζ

− 1
]
dζ

ζ
+ ic∗

0 =
∞∑

k=0

γ∗
kzk, z ∈ D.

Since

α∗(z) =
∞∑

k=0

ākzk, z ∈ D,

it follows that

ak = γ∗
k , k = 1, 2, . . . .

Thus, the complex constants ak, k = 1, 2, . . . , are uniquely determined and it
remains to determine Im a0 = c∗

0. This completes the proof.

This theorem implies that the boundary conditions (5.5) and (1.1) are sufficient to
determine the holomorphic function α∗ uniquely up to the real part of its zero-order
term. In fact, the combination of these two boundary conditions is exactly the Robin
boundary condition. This means that the Cauchy–Riemann equation with the Robin
boundary condition, in the case when the coefficient has an essential singularity, is
well posed provided that the holomorphic function u can be determined uniquely.
It will be shown in the following that this is indeed the case.

In the next section, we give the solution for the case when

deg α− = m < ∞.

6. Solution for a pole

We look for a solution u on D given by

u(z) =
∞∑

k=0

ukzk, z ∈ D.

Then, by (3.4), we have

∞∑
k=1

kukzk +
(

α0 +
α1

z
+

α2

z2 + · · · +
αm

zm

) ∞∑
k=0

ukzk

=
m∑

k=1

(
ak

zk
− ākzk

)
+ ic0 +

m−1∑
k=0

gkzk, z ∈ D
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or, equivalently,

∞∑
k=1

kukzk+m + (α0z
m + α1z

m−1 + · · · + αm−1z + αm)
∞∑

k=0

ukzk

=
m∑

k=1

(akzm−k − ākzk+m) + ic0z
m +

m−1∑
k=0

gkzk+m, z ∈ D. (6.1)

Thus, by comparing the coefficients of z0, zm−k, k = 1, 2, . . . , m − 1, zm, zk, k =
m + 1, . . . , 2m − 1, z2m and zk, k � 2m + 1, on both sides of (6.1), we get a system
of linear equations given, respectively, by

αmu0 = am, (6.2)
m∑

t=k+1

αtut−k = ak − αku0, k = m − 1, . . . , 2, 1, (6.3)

α1u1 + · · · + αm−1um−1 + αmum = ic0 + g0 − α0u0, (6.4)

(k − m + α0)uk−m +
m∑

j=1

αjuk−m+j = gk−m − āk−m, k = m + 1, . . . , 2m − 1,

(6.5)

(α0 + m)um + α1um+1 + · · · + αm−1u2m−1 + αmu2m = −ām, (6.6)

(k − m + α0)uk +
m∑

j=1

αjuk−m+j = 0, k � 2m + 1. (6.7)

Denoting ic0 + g0 by a0 and using matrices, (6.2)–(6.4) can be written succinctly
as ⎛

⎜⎜⎜⎝
αm 0 · · · 0

αm−1 αm · · · 0
...

...
. . .

...
α1 α2 · · · αm

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1

u2
...

um

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

am−1

am−2
...

a0

⎞
⎟⎟⎟⎠ − u0

⎛
⎜⎜⎜⎝

αm−1

αm−2
...

α0

⎞
⎟⎟⎟⎠ . (6.8)

If we denote the m×m matrix on the left-hand side by A(m, 1), then its determinant
|A(m, 1)| is given by

|A(m, 1)| = αm
m.

Since αm �= 0, it follows that A(m, 1)−1 exists. Suppose that

A(m, 1)−1 =

⎛
⎜⎜⎜⎝

β11 0 · · · 0
β21 β22 · · · 0
...

...
. . .

...
βm1 βm2 · · · βmm

⎞
⎟⎟⎟⎠ .

Then

βjj = α−1
m , j = 1, 2, . . . , m,

β(j+1)j = −αm−1α
−2
m , j = 1, 2, . . . , m − 1,
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and, for k = 2, 3, . . . , m − 1, j = 1, 2, . . . , m − k,

β(i+k)i = (−1)kα−k−1
m

∣∣∣∣∣∣∣∣∣∣∣

αm−1 αm 0 · · · 0 0
αm−2 αm−1 αm · · · 0 0

...
...

...
. . .

...
...

αm−k+1 αm−k+2 αm−k+3 · · · αm−1 αm

αm−k αm−k+1 αm−k+2 · · · αm−2 αm−1

∣∣∣∣∣∣∣∣∣∣∣
.

Since αm �= 0, for equation (6.8) we obtain

U(1, m) = A(m, 1)−1γ(m − 1, 0), (6.9)

where

U(1, m) =

⎛
⎜⎜⎜⎝

u1

u2
...

um

⎞
⎟⎟⎟⎠ and γ(m − 1, 0) =

⎛
⎜⎜⎜⎝

am−1

am−2
...

a0

⎞
⎟⎟⎟⎠ − am

αm

⎛
⎜⎜⎜⎝

αm−1

αm−2
...

α0

⎞
⎟⎟⎟⎠ .

For (6.5), (6.6), we have

g(1, m) − ā(1, m) − M(1, m)U(1, m) = A(m, 1)U(m + 1, 2m), (6.10)

where

g(1, m) =

⎛
⎜⎜⎜⎜⎜⎝

g1

g2
...

gm−1

0

⎞
⎟⎟⎟⎟⎟⎠

, ā(1, m) =

⎛
⎜⎜⎜⎜⎜⎝

ā1

ā2
...

ām−1

ām

⎞
⎟⎟⎟⎟⎟⎠

,

M(1, m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α0 + 1 α1 α2 · · · αm−2 αm−1

0 α0 + 2 α1 · · · αm−3 αm−2

0 0 α0 + 3 · · · αm−4 αm−3
...

...
...

. . .
...

...
0 0 0 · · · α0 + m − 1 α1

0 0 0 · · · 0 α0 + m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

U(m + 1, 2m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

um+1

um+2

um+3
...

u2m−1

u2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then (6.7) is equivalent to the matrix equation

A(m, 1)U((	+1)m+1, (	+2)m) = −M(	m+1, (	+1)m)U(	m+1, (	+1)m), (6.11)
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where 	 � 1. For 	 � 1, let C� = (C�
ij) be the matrix defined by

C� = A−1(m, 1)M(	m + 1, (	 + 1)m) = (C�
ij).

Then, by (6.11), for 	 � 1, we obtain

U((	 + 1)m + 1, (	 + 2)m) = −C�U(	m + 1, (	 + 1)m)

=
[
(−1)�

�∏
h=1

C�−h+1
]
U(m + 1, 2m). (6.12)

Now, we look at the elements of C� = (C�
ij) in detail. It is easy to see that, for

j � i,

C�
ij = βi1αj−1 + βi2αj−2 + · · · + βi(j−1)α1 + βij(α0 + 	m + j)

=
j−1∑
t=1

βitαj−t + βij(α0 + 	m + j)

and, for j > i,

C�
ij = βi1αj−1 + βi2αj−2 + · · · + βiiαj−i =

i∑
t=1

βitαj−t.

One can see that above the diagonal of the matrix C� none of the elements C�
ij

include the α0 + 	m terms and that below and on the diagonal every element C�
ij

includes only one α0 + 	m + j term.

Theorem 6.1. Equation (3.4) has a unique polynomial solution which is given in
terms of the given function α and the polynomial P ∗

m. The polynomial P ∗
m has to

be determined from a system of linear equations which may have a unique solution,
infinitely many solutions or no solutions.

From (6.9)–(6.12) we can see that the function u can be determined uniquely in
terms of α, a and g. Now, ā(0, m), the coefficient of P ∗

m(z), has to be determined and
the properties of the solution u have to be studied. We show that the higher order
terms of the solution u have zero coefficient and thus a(0, m) can be uniquely deter-
mined from the available equations and the finite number of additional pointwise
boundary conditions where necessary. These issues are addressed by the lemmas in
the following two separate cases.

6.1. Case A: α0 + k �= 0 for all k � m + 1

6.1.1. Properties of solutions

Lemma 6.2. Suppose that

α0 + k �= 0, k � m + 1. (6.13)

Then

uk = 0, k � m + 1. (6.14)
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Proof. If we denote C�C�−1 by C(�,�−1), then

C
(�,�−1)
11 =

m∑
k=1

C�
1kC�−1

k1

=
[
β11(α0 + 	m + 1) +

m−1∑
k=1

αkβ(k+1)1

]
β11(α0 + (	 − 1)m + 1).

Among C
(�,�−1)
11 , C

(�,�−1)
12 , . . . , C

(�,�−1)
1m , C

(�,�−1)
11 is the only element that includes a

second-order term of 	. The others only include first-order terms of 	 due to the fact
that the upper triangles of the matrices do not have any 	 terms. So, for C(�,�−1)

the second-order terms of 	 do not appear in the upper triangle. They occur only in
the lower triangle and along the diagonal. The second-order term of C

(�,�−1)
11 comes

from C�
11C

�−1
11 . Let C(�,�−1,...,2,1) = C�C�−1 · · ·C2C1. Then it is easy to see that the

highest order term of 	, i.e.

C�
11C

�−1
11 · · ·C2

11C
1
11

= β�
11(α0 + 	m + 1)(α0 + (	 − 1)m + 1) · · · (α0 + 2m + 1)(α0 + m + 1)

is in C
(�,�−1,...,2,1)
11 and that if um+1 �= 0, then

u�m+1 = C
(�,�−1,...,2,1)
11 um+1 + C

(�,�−1,...,2,1)
12 um+2 + · · · + C

(�,�−1,...,2,1)
1m u2m

= C
(�,�−1,...,2,1)
11 um+1 → ∞

as 	 → ∞. This means that um+1 = 0. Next,

C
(�,�−1)
21 =

m∑
k=1

C�
2kC�−1

k1

=
[
β21(β11(α0 + 	m + 1) + β22(α0 + 	m + 2))

+ β2
21α1 +

m∑
k=3

(β21αk−1 + β22αk−2)β31

]
(α0 + (	 − 1)m + 1)

and

C
(�,�−1)
22 =

m∑
k=1

C�
2kC�−1

k2

= β2
22(α0 + 	m + 2)(α0 + (	 − 1)m + 2)
+ β21α1[β11(α0 + 	m + 1)

+ β22(α0 + (	 − 1)m + 2) + β22(α0 + lm + 2)]

+ β2
21α

2
1 +

m∑
k=3

(β21αk−1 + β22αk−2)(βk1α1 + βk2(α0 + (	 − 1)m + 2)).

In the element

C
(�,�−1)
23 =

m∑
k=1

C�
2kC�−1

k3 ,
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the order terms of 	 cannot appear and therefore only first-order terms of 	 can
occur here. This is also true also for C

(�,�−1)
24 , . . . , C

(�,�−1)
2m . Thus, again it is not

difficult to see that C
(�,�−1,...,2,1)
21 has the same rate of growth 	 as C

(�,�−1,...,2,1)
11 .

Now, assuming that um+2 �= 0 and taking into account the fact that um+1 = 0, we
have

u�m+2 = C
(�,�−1,...,2,1)
21 um+1 + C

(�,�−1,...,2,1)
22 um+2 + · · · + C

(�,�−1,...,2,1)
2m u2m

= C
(�,�−1,...,2,1)
21 um+1 + C

(�,�−1,...,2,1)
22 um+2 = C

(�,�−1,...,2,1)
22 um+2 → ∞

as 	 → ∞. This means that um+2 = 0. Similarly, we obtain

um+3 = 0, . . . , u2m = 0,

and the proof is complete.

Clearly, C(�,�−1,...,1) has diagonal dominance for sufficiently large 	.

6.1.2. Solvability and boundary conditions

By (6.2), we have u0 = am/αm. By lemma 6.2 and (6.6) we have

um = − ām

α0 + m

if α0 + m �= 0. So, by (6.4), we have

α0

αm
am − αm

α0 + m
ām = (ic0 + g0) − α(1, m − 1)TU(1, m − 1), (6.15)

where α(1, m−1) is the column matrix (α1, α2, . . . , αm−1)T and the superscript ‘T’
denotes the transpose of a matrix.

Substituting U(1, m − 1) from (6.8) into (6.15), we have

α0 − α#

αm
am − αm

α0 + m
ām = (ic0 + g0) − α(1, m − 1)TA(m, 2)−1a(m − 1, 1),

(6.16)

where α# = α(1, m − 1)TA(m, 2)−1α(m − 1, 1), a(m − 1, 1) is the column matrix
(am−1, . . . , a2, a1)T and A(m, 2) is the matrix obtained after the mth row and mth
column of A(m, 1) are deleted. Now, if

|α0 − α#||α0 + m| �= |αm|2, (6.17)

then

am = γ#σ0 − ᾱ0 − ᾱ#

ᾱm
α̃(1, m − 1)Ta(m − 1, 1) − αm

α0 + m
α̃(1, m − 1)Tā(m − 1, 1),

(6.18)
where

α̃(1, m − 1)T = α(1, m − 1)TA(m, 2)−1,

σ0 =
[
ᾱ0 − ᾱ#

ᾱm
(ic0 + g0) +

αm

α0 + m
(−ic0 + ḡ0)

]
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and

γ# =
|αm|2|α0 + m|2

|α0 − α#|2|α0 + m|2 − |αm|4 .

Since uk = 0, k � m + 1, we get

g(1, m − 1) − ā(1, m − 1) − M(1, m − 1)U(1, m − 1) − α(m − 1, 1)um = 0. (6.19)

From (6.2), (6.3), we have

A(m, 2)U(1, m − 1) = a(m − 1, 1) − am

αm
α(m − 1, 1). (6.20)

Substituting first um = −ām/(α0 + m) into (6.19), then U(1, m − 1) from (6.20)
and am from (6.18) into (6.19), we get

C1a(m − 1, 1) + C2ā(m − 1, 1) = g(1, m − 1) + c∗α(m − 1, 1), (6.21)

where

c∗ =
γ#σ0

αm
C0(1, m − 1) +

γ̄#σ̄0

α0 + m
,

C0(1, m − 1) = M(1, m − 1)A(m − 1, 2)−1,

C1(1, m − 1) = C0(1, m − 1)
[
1 +

ᾱ0 − ᾱ#

|αm|2 C0(1, m − 1)
]

+
ᾱm

|α0 + m|2 C0(1, m − 1),

C2(1, m − 1) = Iπ/2 +
[

1
α0 + m

C0(1, m − 1) +
ᾱ0 − ᾱ#

(α0 + m)αm

]
C#(1, m − 1).

In the above formulae,

C0(1, m − 1) = α(m − 1, 1)α̃(m − 1, 1)T,

C#(1, m − 1) = α(m − 1, 1)α̃(m − 1, 1)T

and

Iπ/2a(1, m − 1) = a(m − 1, 1).

If (6.17) does not hold, then

(α0 − α#)(ᾱ0 + m) = |αm|2

or

(α0 − α#)(ᾱ0 + m) = −|αm|2.

If (α0 − α#)(ᾱ0 + m) = |αm|2, then equation (6.16) becomes

Im
[

ᾱm

ᾱ0 + m
am

]
=

1
2i

[(ic0 + g0) − α̃(1, m − 1)Ta(m − 1, 1)] (6.22)
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and a compatibility condition

Re[g0] = Re[α̃(1, m − 1)Ta(m − 1, 1)] (6.23)

must be satisfied.
Both Im am and Re am must be fixed in terms of the right-hand sides. Thus, an

additional half-boundary condition on the real part or on the imaginary part has
to be imposed. Suppose that

Re
(

1
2πi

∫
∂D

[
∂v

∂ν
+ α(ζ)v

]
ζm dζ

ζ

)
= hm. (6.24)

Then we get Re am = h0
m, where h0

m = hm − h∗
m and

h∗
m = Re

(
1

2πi

∫
∂D

[
∂v0

∂ν
+ α(ζ)v0

]
ζm dζ

ζ

)
.

Substituting Re am into (6.22), we get

(Im am)
(

Re
(

αm

α0 + m

))

=
{

1
2i

[(ic0 + g0) − α̃(1, m − 1)Ta(m − 1, 1)] + Im
(

αm

α0 + m

)
h0

m

}
.

Now, am is slightly different from the am in (6.18), but equations (6.19), (6.20) are
unchanged and so we can again obtain an equation for a(m−1, 1) similar to (6.21).

If
(α0 − α#)(ᾱ0 + m) = −|αm|2,

then equation (6.16) becomes

Re
[

ᾱm

ᾱ0 + m
am

]
= − 1

2 [(ic0 + g0) − α̃(1, m − 1)Ta(m − 1, 1)] (6.25)

and the compatibility condition

c0 + Im[g0] = Im[α̃(1, m − 1)Ta(m − 1, 1)] (6.26)

must be satisfied.
The treatment of the rest of (6.25) is similar to the above case (6.22) and this

time an additional half-boundary condition on the imaginary part can be imposed.
This again leads to an equation similar to (6.21).

If α0 + m = 0, then am = 0 and u0 = 0. As in the case α0 + m �= 0, we again
obtain equation (6.21) with c∗ = −(ic0 + g0)/αm,

C1 = M(1, m − 1)A(m, 2)−1 − 1
αm

α(m − 1, 1)α(1, m − 1)TA(m, 2)−1

and
C2 = Iπ/2.

Thus, in all the cases above we can uniquely determine am either by means of
the available equations or by imposing an additional half-boundary condition. For
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the latter case some compatibility conditions may apply. The remaining task is to
determine a(1, m − 1) from (6.21). This means that we have to determine 2(m − 1)
real unknowns from a system of 2(m−1) real equations. This procedure is actually
similar to the case of am. The difference is that if all 2(m−1) real unknowns cannot
be determined by the available equations, then we need to determine some real parts
and some imaginary parts by imposing some half-boundary conditions and the same
number of compatibility conditions attached to the problem. To wit, suppose that
we need to determine Re aσ1 , . . . ,Re aσt

and Im aµ1 , . . . , Im aµτ
, 1 � σt, µτ � m−1.

Then we need to impose

Re
(

1
2πi

∫
∂D

[
∂v

∂ν
+ α(ζ)v

]
ζσj

dζ

ζ

)
= hσj

, j = 1, 2, . . . , t, (6.27)

and

Im
(

1
2πi

∫
∂D

[
∂v

∂ν
+ α(ζ)v

]
ζµl

dζ

ζ

)
= hµl

, τ = 1, 2, . . . , τ. (6.28)

Together with these t + τ half-boundary conditions we have the same number of
compatibility conditions.

The last number we have to fix is ic0 = a0 − ā0. Therefore, we need

Im
(

1
2πi

∫
∂D

[
∂v

∂ν
+ α(ζ)v

]
dζ

ζ

)
= h0. (6.29)

Then we obtain c0 = h0
0, where h0

0 = h0 − h∗
0 and

h∗
0 = Im

(
1

2πi

∫
∂D

[
∂v0

∂ν
+ α(ζ)v0

]
dζ

ζ

)
.

6.2. Case B: α0 + k0 = 0 for some k0 � m + 1

Lemma 6.3. Suppose that

α0 + k0 = 0, k0 � m + 1. (6.30)

Then
uk = 0, k � m + 1, k �= m + k∗

0 , (6.31)

where k∗
0 �= 0 and

k∗
0 = k0 mod m.

If k∗
0 = 0, then k �= m + k∗

0 must be replaced by k �= 2m.

Proof. Without loss of generality, we assume that 0 � k∗
0 � m − 1. Then there

exists a non-negative integer t such that k0 = tm + k∗
0 . As in case A, by (6.12) we

obtain
um+1 = 0, um+2 = 0, . . . , um+k∗

0−1 = 0.

Of particular interest is the term um+k∗
0
. A distinct feature here (and not in case A)

is that the term C
(t,t−1)
k∗
0k∗

0
does not give a second-order term of t. Now, by straight-

forward but tedious computations, we can write

C
(t,t−1)
k∗
0k∗

0
= A(α0 + (t − 1)m + k∗

0) + B
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for some constants A and B which do not depend on t. For case B, the highest
order term of t in C

(�,�−1,...,t,t−1,...,2,1)
k∗
0k∗

0
not only lacks the term βk∗

0k∗
0
(α0 + tm + k∗

0)
as in case A, but it can be zero due to the linear term C

(t,t−1)
k∗
0k∗

0
. Therefore, we may

not get um+k∗
0

= 0 and u�m+k∗
0

= 0 immediately as in case A. However, looking at
the equations for u�m+k∗

0+1, . . . , u�m+m, we see that the main term, i.e. the term
on the diagonal, has the dominant part, which is the highest order term of 	. So,
in the same way as in case A, we get

um+k∗
0+1 = u�m+k∗

0+1 = 0, . . . , u2m = u�m+m = 0.

Now, at this stage, the equation for u�m+k∗
0

is simplified to

C
(�,�,...,2,1)
k∗
0k∗

0
um+k∗

0
= u�m+k∗

0

and if A(α0 + (t − 1)m + k∗
0) + B = 0, then we get

u�m+k∗
0

= 0.

If A(α0 + (t − 1)m + k∗
0) + B �= 0, then the highest order term of 	 in C�,�−1,...,2,1

goes to ∞ as 	 → ∞. Thus,
u�m+k∗

0
= 0.

This completes the proof.

From lemma 6.3, it is clear that um+k∗
0

is the only term that may not be 0 and
the remaining analysis is similar to that in case A.

7. Solution for an essential singularity

We begin by rewriting α− in the form

α−(ζ) = α0 + ζα−
1 (ζ), ζ ∈ ∂D,

where

α−
1 (ζ) =

∞∑
k=1

αkζ−k−1, ζ ∈ ∂D.

By changing the function u to w by means of

w(z) = u(z) exp
{ ∫ z

∞
α−

1 (ζ) dζ

}
, z ∈ D \ {0},

equation (3.5) becomes

zw′(z) + α0w(z) = F (z), z ∈ D \ {0}, (7.1)

where

F (z) = H∗(z) + G∗(z), z ∈ D \ {0},

H∗(z) =
{

α∗
(

1
z̄

)
− α∗(z)

}
exp

{
−

∫ z

∞
α−

1 (ζ) dζ

}
, z ∈ D \ {0},
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and

G∗(z) = G(z) exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}
, z ∈ D \ {0}.

Write

H∗(z) =
∞∑

k=−∞
hkzk, z ∈ D \ {0},

G∗(z) =
∞∑

k=−∞
g∗

kzk, z ∈ D \ {0},

F (z) =
∞∑

k=−∞
fkzk, z ∈ D \ {0},

and from (7.1),

w(z) =
∞∑

k=−∞
wkzk, z ∈ D \ {0}.

Let H+
∗ , H−

∗ , G+
∗ , G−

∗ , F+, F−, w+ and w− be functions defined by

H+
∗ (z) =

∞∑
k=0

hkzk, z ∈ D,

H−
∗ (z) =

∞∑
k=1

hkz−k, z ∈ D \ {0},

G+
∗ (z) =

∞∑
k=0

g∗
kzk, z ∈ D,

G−
∗ (z) =

∞∑
k=1

g∗
−kz−k, z ∈ D \ {0},

F+(z) =
∞∑

k=0

fkzk, z ∈ D,

F−(z) =
∞∑

k=1

f−kz−k, z ∈ D \ {0},

w+(z) =
∞∑

k=0

wkzk, z ∈ D,

and

w−(z) =
∞∑

k=1

w−kz−k, z ∈ D \ {0}.

Then equation (7.1) becomes

zw+′(z) + α0w
+(z) = F+(z), z ∈ D, (7.2)
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and

zw−′(z) + α0w
−(z) = F−(z), z ∈ D \ {0}, (7.3)

where

F+(z) = H+
∗ (z) + G+

∗ (z), z ∈ D,

F−(z) = H−
∗ (z) + G−

∗ (z), z ∈ D \ {0}.

Since equations (7.2) and (7.3) are different in character, we treat them separately
in the following subsections.

7.1. The homogeneous problem

In this subsection, we assume that

F (z) = 0, z ∈ D \ {0}.

Furthermore, we assume that

G(z) = 0, z ∈ D \ {0},

in (7.1) and we can solve the corresponding homogeneous equation.

7.1.1. The singular equation

Lemma 7.1. Let w− be holomorphic on D \ {0} and satisfy

zw−′(z) + α0w
−(z) = 0, z ∈ D \ {0}. (7.4)

If w− is not identically zero, then α0 must be an integer.

Proof. Let ∂D be positively oriented. By (7.4), we have

1
2πi

∫
∂D

w−′(z)
w−(z)

dz =
1

2πi

∫
∂D

−α0

z
dz.

Therefore,
1

2πi

∫
∂D

w−′(z)
w−(z)

dz = −α0.

Thus, by the argument principle, α0 is an integer.

Lemma 7.2. If α0 is a negative integer and satisfies (7.4), then

w−(z) = 0, z ∈ D \ {0}.

Proof. If α0 is a negative integer, then by (7.4) we have

(zα0w−(z))′ = α0z
α0−1w−(z) + zα0w−′(z) = zα0−1(α0w

−(z) + zw−′(z)) = 0

for all z in D \ {0}. This means that zα0w−(z) is equal to a constant for all z in
D \ {0}. Since

w−(z) =
∞∑

k=1

w−kz−k, z ∈ D \ {0},

the proof is complete.
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We need three additional lemmas. Since the proofs are straightforward, we omit
them.

Lemma 7.3. Let α0 be a non-negative integer satisfying (7.4). Then

w−(z) = Cz−α0 , z ∈ D \ {0},

where C is an arbitrary complex constant.

Lemma 7.4. If α0 − k �= 0, k ∈ N, then

w−(z) =
∞∑

k=1

h−k

α0 − k
z−k, z ∈ D \ {0},

is a solution to the differential equation

zw−′(z) + α0w
−(z) = H−

∗ (z), z ∈ D \ {0}. (7.5)

Lemma 7.5. Suppose that there exists a non-negative integer k0 such that α0−k0 =
0 and w− is holomorphic on D \ {0} satisfying

zw−′(z) + α0w
−(z) = C0z

−k0 , z ∈ D, (7.6)

where C0 is a constant. Then C0 = 0 and hence

w−(z) = Cz−k0 , z ∈ D \ {0},

where C is an arbitrary constant.

7.1.2. The non-singular equation

We need five preliminary lemmas before the formulation of theorems 7.11 and
7.12. They are analogues of the lemmas from § 7.1.1.

Lemma 7.6. Let w+ be holomorphic on D and satisfy

zw+′(z) + α0w
+(z) = 0, z ∈ D. (7.7)

If w+ is not identically zero, then α0 must be an integer.

Lemma 7.7. If α0 is a positive integer satisfying (7.7), then

w+(z) = 0, z ∈ D.

Lemma 7.8. Let α0 be a non-positive integer satisfying (7.7). Then

w+(z) = Cz−α0 , z ∈ D,

where C is an arbitrary complex constant.

Lemma 7.9. If α0 + k �= 0, k ∈ N ∪ {0}, then

w+(z) =
∞∑

k=0

hk

α0 + k
zk, z ∈ D,

is a solution to the differential equation

zw+′(z) + α0w
+(z) = H+

∗ (z), z ∈ D. (7.8)
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Lemma 7.10. Suppose that there exists a non-negative integer k0 such that α0+k0 =
0 and w+ is a holomorphic function on D satisfying

zw+′(z) + α0w
+(z) = C0z

k0 , z ∈ D, (7.9)

where C0 is a constant. Then C0 = 0 and hence

w+(z) = Czk0 , z ∈ D,

where C is an arbitrary constant.

From the preceding lemmas, we have the following theorems.

Theorem 7.11.

(i) If α0 /∈ Z, then the homogeneous equation (3.5) with G(z) = 0 has a non-
trivial solution u given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}[ ∞∑
k=0

hk

α0 + k
zk +

∞∑
k=1

h−k

α0 − k
z−k

]
, z ∈ D\{0}.

(ii) If there exists a non-negative integer k0 such that α0 + k0 = 0, then we have
the following two cases.

(a) If h−α0 �= 0, then the homogeneous equation (3.5) with G(z) = 0 and
H+

∗ (z) = 0 has a non-trivial solution u given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}[
Cz−α0 +

∞∑
k=1

hk

α0 − k
z−k

]
, z ∈ D \ {0},

where C is an arbitrary complex constant.

(b) If h−α0 = 0, then equation (3.5) has a non-trivial solution u given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}

×
[
Cz−α0 +

∑
k�0,k �=−α0

hk

α0 + k
zk +

∞∑
k=1

h−k

α0 − k
z−k

]

for all z in D \ {0}, where C is an arbitrary constant.

Theorem 7.12. If there exists a positive integer k0 such that α0 − k0 = 0, then we
have the following two cases.

(i) If h−α0 �= 0, then equation (3.5) has a non-trivial solution u given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}[
Cz−α0 +

∞∑
k=0

hk

α0 + k
zk

]
, z ∈ D \ {0},

where C is an arbitrary complex constant.

https://doi.org/10.1017/S0308210507000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210507000108


Solutions of the RHP and Robin problem 179

(ii) If h−α0 = 0, then equation (3.5) has a non-trivial solution u given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}[
Cz−α0 +

∑
k�1,k �=α0

h−k

α0 − k
z−k +

∞∑
k=0

hk

α0 + k
zk

]

for all z in D \ {0}, where C is an arbitrary constant.

Remark 7.13. If

exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}

is replaced by

exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}
−

∫ z

0

α+(ζ)
ζ

dζ,

then the above two theorems are also true for equation (4.5) with G(z) = 0, z ∈
D \ {0}.

7.2. The inhomogeneous problem

It is an elementary fact that if we can find a special solution to equation (7.1),
then we have the general solution to equation (3.5).

Theorem 7.14. (i) If α0 /∈ Z, then the inhomogeneous equation (3.5) is solvable
and the solution u is given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}[ ∞∑
k=0

hk + g∗
k

α0 + k
zk +

∞∑
k=1

h−k + g∗
−k

α0 − k
z−k

]

for all z in D \ {0}.

(ii) If there exists a non-negative integer k0 such that α0 + k0 = 0, then the
inhomogeneous equation (3.5) is solvable if and only if

h−α0 + g∗
−α0

= 0.

If this condition is satisfied, then the solution u to equation (3.5) is given by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}

×
[
Cz−α0 +

∑
k�0,k �=−α0

hk + g∗
k

α0 + k
zk +

∞∑
k=1

h−k + g∗
−k

α0 − k
z−k

]

for all z in D \ {0}, where C is an arbitrary constant.

(iii) If there exists a positive integer k0 such that α0 −k0 = 0, then the inhomogen-
eous equation (3.5) is solvable if and only if hα0 + g∗

−α0
= 0. If this condition

is satisfied, then the solution u to the inhomogeneous equation (3.5) is given
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by

u(z) = exp
{

−
∫ z

∞
α−

1 (ζ) dζ

}

×
[
Cz−α0 +

∞∑
k=1,k �=α0

h−k + g∗
−k

α0 − k
z−k +

∞∑
k=0

hk + g∗
k

α0 + k
zk

]

for all z in D \ {0}, where C is an arbitrary constant.
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