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SUMMARY
A new theory in contact pressure distribution and friction limit surfaces for modeling of
hemicylindrical soft fingertips is introduced, to define the relationship between friction force and
the moment with respect to the normal axis of contact. A general pressure-distribution function is
proposed to capture material properties and contact geometry with various pressure profiles, and the
coefficient of pressure distribution over the rectangular contact area is found between π and π/2.
Combining the results of the contact mechanics model with the contact pressure distribution, the
normalized friction limit surface can be derived for anthropomorphic soft fingers. The numerical
friction limit surface of hemicylindrical soft-finger contact can be approximated by an ellipse, with
the major and minor axes as the maximum friction force and the maximum moment with respect to
the normal axis of contact, respectively. The results show that the friction limit surfaces are improved
(13%–17%), if hemicylindrical fingertips are used rather than hemispherical fingertips at the same
radius of fingertip, shape factor of the pressure profile, and applied load. Furthermore, the results of
the contact mechanics model and the pressure distribution for soft fingers facilitate the construction
of numerical friction limit surfaces, enabling to analyze and simulate the contact behaviors of
grasping and manipulation in humanoid robots, prosthetic hands, and robotic hands.

KEYWORDS: Humanoid robots; Grasping; Robotic hands; Novel applications of robotics;
Nonprehensile manipulation.

List of symbols

Symbols Definition Units
A Contact area mm2

a Half width contact of rectangular contact area for hemicylindrical
fingertips

mm

B Aspect ratio of rectangular contact –
ccy Constant that depends on the size, depth, and curvature of the

hemicylindrical fingertip
–

Ck The coefficient of pressure distribution over the contact area –
dc Displacement of the center of rotation (COR) along the X-axis mm
dA Infinitesimal contact area mm2

fx, fy Tangential force along the X-axis and Y-axis, respectively N
ft Total tangential force over the entire contact area N
k Shape factor of the pressure profile –
l Half depth contact of rectangular contact area mm
L Depth contact of rectangular contact area (i.e., L = 2l) mm
mz The moment about the Z-axis N·mm
n Stress exponent for nonlinear elastic materials (strain-hardening factor) –
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N The normal force N
P Pressure distribution Pa
u Velocity vector mm/s
x The distance from the center of rectangular contact area with 0 ≤ x ≤ l mm
y The distance from the center of rectangular contact area with 0 ≤ y ≤ a mm
X, Y, Z Citizen coordinates –
w Total wrench vector the part applies to the support N·mm
λ̃ The normalized characteristic pitches –
υ Linear velocity vector mm/s
υ̃ Unit velocity –
μ The friction coefficient at the contact patch –
γ Exponent of the power-law equation for soft hemicylindrical fingertips

contacts
–

x̃, ỹ Nondimensionalized coordinates, x̃ = x
l
, ỹ = y

a
–

�() Gamma function –

1. Introduction
Soft-finger contact mechanics plays an important role in both grasping stability and safe object
prehension and handling during manipulation. When modeling contacts in robotic grasping and
manipulation,1 different types of nonlinear contacts have been proposed for analysis of soft finger
(hemispherical soft fingertip,1,2 cylindrical soft fingertip,3 and hemicylindrical soft fingertip4). A
general framework of “limit surface” is also progressing to possess a conceptual 3D surface within
which the contact, with applicable contact interface accompanied by the applied forces and moments,
will support without slip.5–7 The limit surface became a very beneficial tool for modeling contact
interface in robotic grasping and manipulation. Point contact with or without friction was first used
to model contacts in robotics. The Coulomb friction law was used to model a point contact finger
with friction. The friction limit surface in this state is a friction cone, with half of the conical included
angle being θ = tan−1(μ), where μ is the coefficient of friction at the contact interface.8

However, when the contact patch assumes finite area, the assumption of point contact is no longer
applicable and needs to be extended to soft contact, which includes not only a friction (or traction)
force at the contact interface but also a moment sustained due to the finite area of contact.9,10 It has
been shown that the limit surface of soft-finger contact resembles an ellipsoid with friction force and
moment. As the materials and geometric design of fingertips diversify, as the materials the viscoelastic
behavior of certain types of fingertips was noticed, the modeling of such contact finds applications in
modeling of human and biomedical fingertips.11

From the literature review, it is clear that a substantial amount of work has been carried out on
robots and robotic hands. Thus, many works have been carried out on the modeling of the mechanical
contact force of anthropomorphic hemispherical and hemicylindrical soft fingertips. Also, there is
no literature available to study the modeling of contact pressure profile and friction limit surface at
contact zone for hemicylindrical soft fingers, where all literature assume the hemispherical contact
for robotic finger. Therefore, in this study, the general characteristics of contact pressure profile at the
contact zone for hemicylindrical soft fingers have been formulated; also, the limit surface in robotic
grasping and manipulation has been developed.

2. Modeling of Contact Interface
Modeling of contact interface depends on the nature of bodies in contact including material properties,
applied force, contact shape, deformation, and elastic properties.

2.1. Hertzian contact model
Elastic contact modeling was first studied and formulated more than a century ago by Hertz12 in
1882 based on contact between two linear elastic materials with a normal force, which results in very
small contact deformation. Timoshenko and Goodier13,14 studied the contact between two parallel
cylinders and found that analytically the intensity of pressure between the contacting surfaces could
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Fig. 1. (a) Contact of two parallel linear elastic cylinders; (b) pressure distribution for contacting parallel linear
elastic cylinders 14.

Fig. 2. (Colour online) (a) Geometry of contact between a hemicylindrical fingertip and a rigid surface;
(b) contact and coordinates for COR and local infinitesimal area dA for numerical integration to construct the
limit surface of soft fingers.

be represented by an elliptical (or, rather, semi-ellipsoid). For a symmetric and rectangular contact
area, the pressure distribution is

p = 2N

πaL

√
1 −

(y

a

)2
, (1)

where N is the normal force, a is the half width contact of the rectangular contact area for
hemicylindrical fingertips, L is the depth contact of the rectangular contact, and y is the distance
from the center of contact, with 0 ≤ y ≤ a, as shown in Fig. 1.14

2.2. Contact model for soft finger
A typical contact interface between a soft hemicylindrical fingertip and contact surface is illustrated
in Fig. 2(a). In typical robotic contact interfaces, the materials of the fingertips are not linear elastic.
A model that extends linear to nonlinear elastic contact was presented4 with a power-law equation,

https://doi.org/10.1017/S0263574713001215 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001215


1008 Friction limit surface contact pressure hemicylindrical fingertips robotic grasping

Fig. 3. (Colour online) Normalized pressure distribution for hemicylindrical fingertip with respect to the
normalized axis, y/a. The plot shows an axisymmetric pressure distribution with k = 1, 2, 3, 4, and 50;
the pressure profile becomes more like a uniformly distributed load.

which subsumes the Timoshenko and Goodier13 contact theory,

a = ccyN
γcy , (2)

where γcy = n
n+1 is the exponent of the normal force that has range 0 ≤ γcy ≤ 1

2 , N is the strain-
hardening exponent, and ccy is a constant depending on the size and curvature of the fingertip as well
as the material properties.

2.3. Contact pressure distribution at soft finger
The Hertzian, Timoshenko, and Goodier13 contact theory is considered. The assumed pressure
distribution for small elastic deformation is given in Eq. (1). The pressure profile for two linear
elastic cylinders in contact according to Timoshenko and Goodier13 has ellipsoidal profile (or semi-
ellipsoid). However, as the radius of curvature of the two asperities increases, and the material
properties change to hyper-elastic, the pressure distribution becomes more uniform and eventually
becomes almost square.15,16 In the present study, a general pressure-distribution function that aims
to capture material properties and contact geometry with various pressure profiles is introduced.
Therefore, the pressure distribution for a rectangular contact area can be written in general form as
follows:

p = Ck

N

πaL

(
1 −

(y

a

)k
) 1

k

, (3)

where k determines the shape of the pressure profile, and Ck is a coefficient that adjusts for the
profile of pressure distribution over the contact area to satisfy equilibrium condition. In Eq. (3), p

is defined for 0 ≤ y ≤ a. By symmetry, p(y) = p(−y), when −a ≤ y ≤ 0. When k becomes larger,
the pressure distribution approaches uniform distribution, as shown in Fig. 3. It is also required that
the integral of the pressure over the contact area be equal to the normal force, that is,

∫
A

pdA =
∫ L/2

−L/2

∫ a

−a

pdy dx = N. (4)

The coefficient Ck can be obtained by substituting Eq. (3) into Eq. (4). It is interesting to note that
when Eq. (4) is integrated, both the normal force and the half width contact of the rectangular contact
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Table I. The coefficient of the pressure distribution for hemicylindrical fingertip.

k Ck

1 Triangular 3.1416
2 Elliptical 2
3 Cubic 1.7782
4 Quadruple 1.6944
Infinity Uniform 1.5708

area vanish, leaving only the constant Ck as follows:

Ck = π
k�

(
2
k

)
[
�

(
1
k

)]2 , (5)

where k = 1, 2, 3, . . . and �() is the Gamma function.17 The numerical values of Ck for a few values
of k are listed in Table I. A normalized pressure distribution with respect to the normalized axis,
y/a, is plotted in Fig. 3. As can be seen from this figure, when k approaches infinity, the pressure
profile will become that of a uniformly distributed load with magnitude of N/(2aL), in which case
Ck = π

2 = 1.5708. Substituting values of the Gamma functions into Eq. (5), Ck can be found for any
value of k as shown in Table I.

When k = 1, the pressure distribution is triangular with Ck = π = 3.1416. For linear elastic
materials, k = 2 can be used, although it is found that k ∼ 1.8 is also appropriate in some cases.18

The general pressure-distribution function will be the same equation that was derived by Timoshenko
and Goodier13 (i.e., Eq. (1)). However, such pressure distribution is not very practical, especially
in robotic grasping and manipulation. For nonlinear elastic and visco-elastic materials, the value of
k tends to be higher, depending on the properties of the material. Combining Eqs. (3) and (5), the
general pressure distribution becomes

p = N

aL

k�
(

2
k

)
[
�

(
1
k

)]2

(
1 −

(y

a

)k
) 1

k

. (6)

3. Friction Limit Surface
Friction “limit surface” is a conceptual surface within which sliding does not occur; that is, the limit
surface is the boundary between nonsliding and sliding motions in grasping and manipulation. The
normal to the limit surface also is the instantaneous direction of sliding. Depending on contact types,
friction limit surface takes different shapes.1 A coordinate frame is defined so that the planar contact
patch is in the z = 0 plane, and let p(q) ≥ 0 be the contact pressure distribution between the part and
support as a function of the location q= (x, y). The friction coefficient at the contact patch is μ . If
the planar velocity of the part is u = [ωz, vx, vy]T , then the linear velocity at q is

υ (q) = (vx − ωzy, vy + ωzx)T , (7)

and the unit velocity is υ̃ (q) = υ (q) / ‖υ (q)‖. The infinitesimal force applied by the part to the
support at q, in the plane of sliding, is

d f (q) = [d f x (q) , d f y (q)]T = μp (q) υ̃ (q) . (8)

The total wrench the part applies to the support is

w =
⎛
⎝mz

fx

fy

⎞
⎠ =

∫
A

⎛
⎜⎝

xdfyx (q) − ydfy (q)

dfx (q)

dfy (q)

⎞
⎟⎠ dA. (9)
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In this research, Fig. 2(b) shows a rectangular contact patch with an instantaneous center of rotation
(COR). The following derivation is for the total friction force (ft ) and moment (mz) on the rectangular
contact interface for the COR at a distance dc along the X-axis. By varying the COR distance dc from
−∞ to ∞, all possible combinations of (ft , mz) can be found in order to construct the entire friction
limit surface.2,9 The tangential force over the entire contact area can be obtained by integrating shear
force on each infinitesimal areas, dA, on which Coulomb’s law of friction is observed, over the entire
contact area A. When Timoshenko and Goodier13 contact pressure distribution is considered, use
k = 2 in Eq. (1). Setting q = (x, y)T and q = q, the total tangential force can be integrated using Eq.
(8) to obtain

ft =
(

fx

fy

)
= −

∫
A

μυ̃ (q) p (q) dA, (10)

where f t is the tangential force vector with the direction shown in Fig. 2(b), μ is the coefficient of
friction, υ̃ (q) is the unit vector in the direction of the velocity vector υ (q) with respect to the COR
on the infinitesimal area dA at location q, and p (q) is the pressure distribution at distance q from
the center of contact. The minus sign denotes the opposite directions of υ̃ (q) and f t . Since they are
primarily interested in the magnitude of the friction force and moment, the sign will be omitted in
the later derivation when magnitudes are concerned.

Similarly, the moment about the Z-axis, or the normal to the contact area, is

mz =
∫

A

μ ‖q × υ̃ (q)‖ p (q) dA, (11)

where ‖q × υ̃ (q)‖ is the magnitude of the cross-product of the vectors q and υ̃ (q), whose direction
is normal to the contact surface.

The unit vector υ̃ (q) is related to the distance dc from the origin to the COR chosen on the X-axis
from Fig. 2(b), and can be written as follows:

υ̃ (q) = 1√
(x − dc)2 + y2

[ −y

(x − dc)

]
. (12)

Due to symmetry, fx = 0 for all CORs along the X-axis; therefore, the magnitude of the tangential
force in the contact tangent plane is ft = fy . On substituting Eqs. (3) and (12) into Eqs. (10) and
(11), we obtain

ft =
∫

A

μ
(x − dc)√

(x − dc)2 + y2

CkN

πaL

(
1 −

(y

a

)k
) 1

k

dA. (13)

Similarly, the moment about the Z-axis, or the normal to the contact area, is

mz =
∫

A

μ
(x2 − xdc + y2)√

(x − dc)2 + y2

CkN

πaL

(
1 −

(y

a

)k
) 1

k

dA. (14)

Equations (13) and (14) will be written in the simplest form (a normalized coordinate) so that they
can be numerically integrated by using the following variables:

x̃ = x

l
, d̃c = dc

l
, ỹ = y

a
and dA = dx dy = al dỹ dx̃, (15)

where l = L
2 and the coefficient of friction μ is assumed constant throughout the contact area.

Substituting the normalized coordinate Eq. (15) into Eq. (13) and dividing both sides by μN , one can
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Fig. 4. (Colour online) Limit surface obtained by numerical integration (N.I) and elliptical approximation (E.A).
The numerical integration is based on the pressure distribution, p(q), and the coefficient, C k. In this figure, the
pressure distributions of k = 2, 4, and 50 are used.

derive

ft

μN
= Ck

2π

∫ 1

−1

∫ 1

−1

(x̃ − d̃c)√
(x̃ − d̃c)2 +

(
ỹ

β

)2
(1 − ỹk)

1
k dỹ dx̃. (16)

On substituting again Eq. (15) into Eq. (14) and dividing both sides by aμN , we obtain

mz

aμN
= Ck

2π

∫ 1

−1

∫ 1

−1

(β2x̃2 − β2x̃d̃c + ỹ2)√
β2(x̃ − d̃c)2 + ỹ2

(1 − ỹk)
1
k dỹ dx̃, (17)

where B = l
a

is aspect ratio of rectangular contact, Eqs. (16) and (17) can be numerically integrated
for different values of dc or d̃c to yield a point on the limit surface for a prescribed pressure distribution
p (q) given by Eq. (3). Both equations involve elliptic integrals whose closed-form solutions may
not exist but can be evaluated numerically. When the COR distance2,6 dc varies from −∞ to ∞, all
possible combinations of ( ft

μN
,

mz

aμN
) can be obtained for plotting the friction limit surface.

4. Results and Discussions on the Limit Surface
Numerical integration for different values of (k) and (d̃c) yields pairs of ( ft

μN
,

mz

aμN
), as shown in

Fig. 4. The normalized limit surface in Fig. 4 shows that as dc → ∞, the normalized tangential
force, ft

μN
, approaches its maximum value of 1, whereas the normalized moment, mz

aμN
, approaches

zero. This corresponds to the case of pure translational sliding without rotation. On the other hand,
as dc becomes 0, the normalized moment approaches its maximum values (0.7114 for k = 2, 0.7442
for k = 4, and 0.7649 for k = 50). The characteristic patch of a soft contact, very significant in the
modeling of soft-finger and kinematic relationships,19 is defined as the ratio between the maximum
moment and maximum friction force, as shown in the limit surface of soft-finger; therefore, the
normalized characteristic pitches of soft fingers based on the normalized limit surface are as follows:

λ̃ = mzmax/aμN

ftmax/μN
=

0.7114, when k = 2
0.7442, when k = 4
0.7649, when k = 50

. (18)

The characteristic pitch is defined as λ̃ = mzmax/ftmax . An important result of Fig. 4 is that the contact
pressure distribution affects the limit surface and the characteristic pitch. Values of characteristic pitch
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Fig. 5. (Colour online) The comparison of the friction limit surfaces of the hemicylindrical fingertips (present
work) with those of the hemispherical fingertips,2 obtained by numerical integration (N.I) and elliptical
approximation (E.A). The numerical integration is based on the pressure distribution, p(q), and the coefficient,
C k, from Table I. In this figure, the pressure distributions of k = 2 are used.

Table II. The normalized characteristic pitch.

λ̃

K Hemispherical fingertip2 Hemicylindrical fingertip

2 0.589018 0.711375
4 0.63535 0.744213
50 0.6654 0.76494

can be obtained. Based on the results of the normalized limit surface, limit surfaces can be obtained
by multiplying the normalized moment by aμN and the normalized force by μN .

The results in Fig. 4 also suggest that the numerical integration yields a solution that is very close
to the elliptical approximation. Without loss of generality, the friction-limit surface can be written in
the form of

(
ft

μN

)2

+
(

mz

(mz)max

)2

= 1, (19)

where the maximum moment (mz)maxis

(mz)max =
∫

A

μ | q | CkN

πaL

(
1 −

(x

a

)k
) 1

k

dA. (20)

Obtained from Eq. (14) with the COR at dc = 0, this defines the quarter-elliptical curves in Fig. 4.
For example, (mz)max = 0.7114 aμN when k = 2. The half width contact of rectangular contact area
a and the normal force N are related by Eq. (2), which depends on the soft-finger materials, normal
force, contact size, and geometry.

The comparison of the friction limit surfaces of the hemicylindrical fingertips (present work) with
those of the hemispherical fingertips,2 as shown in Figs. 5–7 and Table II, with the same radius
of fingertip, shape factor of the pressure profile, and applied load, shows that the zone of friction
limit surfaces of the hemicylindrical fingertips is larger than the zone of friction limit surfaces of
the hemispherical fingertips. More precisely, the friction limit surfaces are improved (13%–17%),
as shown in Table III, if hemicylindrical fingertips are used rather than hemispherical fingertips in
robot and robotic hand applications. The half width contact of the hemicylindrical fingertip can be
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Fig. 6. (Colour online) The comparison of the friction limit surfaces of the hemicylindrical fingertips (present
work) with those of the hemispherical fingertips,2 obtained by numerical integration (N.I) and elliptical
approximation (E.A). The numerical integration is based on the pressure distribution, p(q), and the coefficient,
C k, from Table I. In this figure, the pressure distributions of k = 4 are used.

Fig. 7. (Colour online) The comparison of the friction limit surfaces of the hemicylindrical fingertips (present
work) with those of the hemispherical fingertips,2 obtained by numerical integration (N.I) and elliptical
approximation (E.A). The numerical integration is based on the pressure distribution, p(q), and the coefficient,
C k, from Table I. In this figure, the pressure distributions of k = 2 are used.

Table III. The comparison of friction limit surfaces between the hemicylindrical fingertips (present work)
and hemispherical fingertips,2 for different values of shape factor of the pressure distribution profiles

(k = 2, 4, 50).

Friction limit surface zone (nonsliding area)

K Hemispherical fingertip2 Hemicylindrical fingertip (present work) Improvement (%)

2 0.4628 0.558938 17.2001
4 0.499204 0.584739 14.6279
50 0.522814 0.601024 13.0128
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Fig. 8. (Colour online) The comparison of friction limit surfaces between the hemicylindrical fingertips (present
work) obtained by numerical integration (N.I) at different values of the aspect ratio B. The numerical integration
is based on the pressure distribution, p(q), and the coefficient, C k, from Table I. In this figure, the pressure
distributions of k = 4 are used.

dominated easily, in the case of hemicylindrical fingertip, by altering the depth of the hemicylinder
as shown in Fig. 8, while this is limited in the case of hemispherical tip due to axis symmetry. As
illustrated in Fig. 8, the limit surface reduces inward with respect to the unit normalized force, ft

μN
,

as the aspect ratio of rectangular contact B decreases, by assuming that the pressure distribution, and
thus Ck , do not change. In addition, it was found that hemicylindrical shape fingertips are desired for
the applications of robotic hands and prosthetic hands.

5. Conclusions
In this study, it is shown that the general pressure-distribution function in Eq. (3) can be used
for linear elastic contact as well as soft (nonlinear elastic) contact. If the contact is harder and
behaves more like linear elastic materials, the coefficient of pressure distribution over the contact
area will be equal to 2, reflecting the linear elastic model predicted by Timoshenko and Goodier.13

Furthermore, the coefficient of pressure distribution over the contact area is found between π and
π /2.

The normalized limit surface for a soft finger can be calculated by numerical integration with
a known pressure distribution. The numerical results are close to the elliptical approximation. In
addition, the normalized characteristic pitch is found, the ratio between the maximum normalized
moment and force is λ̃ = 0.7114 for the second-order pressure distribution at the contact, λ̃ = 0.7442
for the fourth-order pressure distribution, and λ̃ = 0.7649 for the uniform pressure distribution. It
is found that friction limit surfaces are ameliorated if hemicylindrical fingertips are used rather
than hemispherical fingertips. So, the friction limit surfaces of hemicylindrical shape fingertips are
required over hemispherical shape fingertips for robotic hand and prosthetic hand applications. The
combination of the friction-limit surface and the soft finger contact-mechanics model will help to
analyze and simulate contact behaviors of grasping and manipulation in robotics that involve contacts
with soft fingers.
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