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We explore visit-order policies in nonsymmetric polling systems with switch-in and
switch-out timeswhere service is in batches of unlimited si¥¢e concentrate on
so-called “Hamiltonian tour” policies in whiglin order to give dair treatment to

the various userghe server attends every nonempty queue exactly once during each
round of visits(cycle). The server dynamically generates a new visit schedule at the
start of each roundiepending on the current state of the systaomber of jobs in
each queueand on the various nonhomogeneous system paraméfersonsider
three service regimeglobally gated(locally) gatedand exhaustiveand study three
different performance measuré$) minimizing the expected weighted sum of all
sojourntimes of jobs within a cyclg(2) minimizing the expected length of timext
cycle and(3) maximizing the expected weightdttoughpuin a cycle For each com-
bination of performance measure and service regiveelerive characteristics of the
optimal Hamiltonian toutlSome of the resulting optimal policies are shown to be ele-
gant index-type rulethers are the solutions of deterministic NP-hard problems
Special cases are reduced to assignment problems with specific cost matnees
index-type rules can further be used to construct fixed-oeogelic-type polling tables

in cases where dynamic control is not applicable

1. INTRODUCTION

We study optimal scheduling policies in heterogeneous polling systems with switch-
in and switch-out timeswhere service is in batches of unlimited si¥¢e concen-
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trate orfair policies called “Hamiltonian-tourd where in each new round the server
must attend every nonempty queue exactly ghaeis free to determine the order of
visits.

Polling systems—a set of queues attended by a single server—play a central
role in the modeling and analysis of various problems in communicatonsputer
software and hardwayelatabase systemmanufacturing maintenance manage-
ment and road traffic controlMuch of the literature deals with occasions when
service is given tone job at a timeFor a comprehensive treatment of such models
as well as a description of various applications and extensive literavereefer to
Takagi[15-19. Several surveys dealt with applications and optimizatlavy and
Sidi[12]), applications in communicatior(§&rillo [11]), applications in computer
networks(Takagi[17]), analysis and optimizatio(Boxma[5]), and analysis and
control (Yechiali[22]). Most of the works considered “open” polling systems in
which all jobs are “transient(i.e., they arrive toare served hynd leave the system
never to returp A few works analyzed “closed” networks with “permanent” jobs
that are routed from one queue to anoftbert never leave the systefAltman and
Yechiali[2], Dror and Yechial{8]). Hybrid systems with both permanent and tran-
sient jobs were analyzed by Armony and Yechiéli.

Unlimited batch-service models were considered in the literature as applica-
tions to videotextelex and TDMA(Time Division Multiple Accespsystem$3,9,13],
as well as for central database operatif2®. Ammar and Wond 3] considered a
teletext system witiN queueswhere queue receives a Poisson stream of requests
with rate);. Service times in all queues adleterministidslotted unit of time each,
batches arenlimited and there ar@o switching times The service discipline is
(locally) gated Using a homogeneous linear cost functione unit of cost for each
outstanding request at the beginning of a)séotd applying the Markov decision
process formulatigrthey showed that the policy that minimizes the mean response
time is of a cyclic naturgwith cycle length oL = N slots in which queua is visited
ki times S, k; = L. Yet, the problem of finding thexactlengthL was only par-
tially resolved

Liu and Nain[13] examined thélocally) gated and exhaustive regimes for the
case ofero switching timeand a homogeneous arrival process to all quemesreas
Dykeman et al[9] indicated(after using Howard’s policy-iteration algorithrthat
even with equal and deterministic service requirements and with no switching times
the structure of the optimal poli@pould be very complicatetfan Oyen and Teneketzis
[20] formulated a central database system and an automated guided vAlidie
as a polling system with an infinite-capacity batch server and zero switching times
where the controller observes only the length of the queue at which the server is
located A review titled “Scheduling with Batching” is presented|it¥]. Batches
there howeverarefinite and are defined as the “maximal set of jobs that are sched-
uled to be servedontinuously, one at a timen a machine and share a setufhe
concentration there is on “classification of problems as polynomially or pseudopoly-
nomially solvablebinary or unitary(NP-hard, or open”

Recently Xia, Michailidis, Bambosand Glynn 21] considered the problem of
dynamic allocation of a single server wifinite batch processing capability to a set
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of parallel queuesThe independent arrival processes are Poissonhwith equal
rates The service times of batches are exponentially distributeddsmdical Zero
switching times are incurred by the server when moving from one queue to another
They restrict attention to the set nbnanticipative, nonpreemptive, and nonidling
policies and show that when buffers are infin@#ocating the server to the longest
gueue stochastically maximizes the aggregate throughput of the system

Our work was motivated by a tape reading problem in a system in which large
amounts of information are stored on tapesegularly requests arrive for data on
one of these tape# order to read the dat¢he tape has to be mounteegad and
then dismountedf there is more than one request for a taghey can all be read at
(more or lessthe same timethus suggesting modeling as a batch service with
unlimitedbatch sizeNeverthelessghe models we present in this work ayeneral
and can be applied to all of the above-mentioned unlimited-batch service systems
Without loss of generalitywe will use the “tape language” throughout the article

The goal is to establish “fair” dynamic visit-order policies so as to optimize
various performance measur€ur special fairness approach is to visit the queues
in a Hamiltonian way(See Browne and Yechia]i7].) In each new Hamiltonian
cycle only those queues are visited that are nonempty at the start of the apdle
each such queue is visitekactly onceWhat is to be decided at the beginning of
each cycle is the order in which the queues are visked a cycle with duratiolC,
we define the “sojourn time of a jabwithin a cycle” as the total time thdtresides
in the system duringC. We will consider the following performance measures
(1) minimizing the expecte@veighted sum of allsojourn timef all jobs within a
cycle, (2) minimizing the expected duration of tmext cycleand(3) maximizing
the expected weightatiroughputwithin the cycle Criterion 2 is a proper one since
given the fairness considerations leading to Hamiltonian tours and as a result of the
unlimited batch servicehe duration of the current cycleiisdependentf the order
of visits. Thus one can only influence the duration of thext cycle

We formulate the problem as a polling system with unlimited batch size service
and consider globally gate@locally) gated and exhaustive service regim&ome
of the optimization problems turn out to be NP-hasdme yield simplgelegant
index-type rulesand others are transformed into classical assignment propeins
with special costs involving the parameters of the problem

The structure of the article is as followls Section 2 we present the model
describe the assumptigrend discuss various gating procedurgnimizing the
weighted expectedojourntimes is treated in Section, 8vhere all three service
regimes are considere8ection 4 deals with minimizing the expected duration of
thenextcycle whereas Section 5 aims at maximizing the expected weightedgh-
putin a cycle The analytical results and their implications are summarized in Sec-
tion 6, and conclusions are discussed in Section 7

2. THE MODEL

There is a set of queuéapes, numbered 1 tdN. Requestgjobs) arrive to queué
at a Poisson ratg,. A single server visits the queues according to some ovidieen
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a queue is visitedall jobs are served simultaneoushhis service time is indepen-
dent of the number of jobs servebhe total visit time at queukconsists of three
parts a timeR, to reach(moun) the tapea timeB, to read(serve the tape if the
queue is gatear several repetitions d, if the service is exhaustivand finally, a
time D, to dismount the tapéexit the queue to some “base” positjofihe order in
which the queues are visited is completely free

Hamiltonian Cycle Approach

In order to give a fair service to all queyes each cycle the server performs a
Hamiltonian tour in which evergonemptyjueue is visite@xactly oncethat is if at
the beginning of the cycléhere aran, = 0 jobs in queug the server visits only those
gueues for whiclm, is positive Thus even if during the cyclgobs arrive to a queue
that was empty at the beginning of the cydlds queue is not included in the cycle
This process then repeats itself with a new Hamiltonian tobere the server visits
only queues for which theew n are positive

We consider several service regimes

« Globally gatedAll queues are simultaneously gatédosed at the start of
the cycle

* (Locally) gated A queue is gated only when the server arrives

e Exhaustive The server continues serving a visited queue until it becomes
empty

In the two gated regimegobs arriving to a queue after its gate is closed will be
served only during the next cyclEhe same applies in the exhaustive regime for jobs
arriving after the server leaves the quelser a gated queuea visit requires a time
R + B, + D,. We defineH, =R, + B, + D;, hy = E[H,], h® = E[H?], andH, («) =
E[e " ]. Similarly we definer,, r|(2), R (a), b, and so forth

Without loss of generalitywe assume that at the beginning of the cycles
positive for queueb=1,...,Landthan, =0forl=L+1,...,N. Then for the gated
casesthe duration of the cycle i, H,, independenof the order in which the first
L queues are visitedMoreover for the exhaustive case as wedince the service is
in batchesthe duration of the cycle is alsndependentf the order of visits

3. MINIMIZE THE WEIGHTED EXPECTED SOJOURN TIMES

In this sectionpwe consider the criterion afinimizing the expected weighted sum of
sojourntimes of all jobs in the cycl@tis important to note that under batch service
minimizing sojourn times is not always equivalent to minimizing waiting tirnése
will analyze the three service regimes introduced earlier

3.1. Globally Gated

Under theglobally gated regimécf. Boxma Levy, and Yechiali 6]), there is only

one thing to look atthe sojourn times of the jobs present at the beginning of the
cycle This follows because the distribution of the cycle time is independent of the
visit order implying that the waiting times of those jobs that arrive during this cycle
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(and are not servedre not influenced by the ordex visit order (policy) is deter-
mined by a permutatior = {7 (1), 7(2),...,7(l),...,7(L)} of the se{1,2,...,L},
wheres (1) indicates the index of the queue whichlik to be visited during a
Hamiltonian tourIn order to find the optimal ordewe start with the policyr, for
whicha (1) =I. The total expected weighted sojourn times for the jobs present at the
beginning of the cycle is denoted I§(7;). Then with w; denoting the weight
associated with the sojourn times of jobs in qugue

C(’?Tl) = iW| n ((I_Elh]> + r +b|>
=1 j=1

THEOREM: The optimal policy is to visit the queues according to a nonincreasing
order of the index w; /h;.

Proor: Look at the policyry, which has the same order ag except that queuds
andi +1 are interchangedhat is 7} isthe ordef1,2,...,i —1,i + 1 i,i +2,...,L).
Now, the difference in sojourn “costs” for these two strategies is

C(my) — C(mr1) = Wip Mg —winyhig .

For this to be nonpositivé.e., for strategyr, to be at least as good a3), we must
have
Wi N
—_— =
i hi+1

Wit1 Ny

Repeatedly applying the interchange argumirgt optimal visit order is determined
by anindex rule Serve the queues in a nonincreasing ordexaf /h;. |

Note that if allh; are equal and all; are the samehe optimal order is according
to thelongest queue firgbolicy, which is the consequence of the batch servicing

This result may be compared with the result of Liu and Ndi8] for the (lo-
cally) gated casewho showed that for &ully symmetrigolling system withzero
switching times“the so-called Most Customers First poli¢iyn which the server
always visits the queue with the largest number of custopmaisimizes in the
sense of strong stochastic ordetitige vector of the number of customers in each
queue whose components are arranged in decreasing’didés that in their treat-
ment the server is free of “fairness” considerations and is entitled to choose the next
gueue to visit when exiting a served quewdhereas in our approackhe order
within each new cycle idetermined at the cycle’s beginning

3.2. Locally Gated

Gating queud just beforeR, or just beforeB, is not essentially differentwe
consider the case of gating just befdge Gating just beforeR, is then a special
case withRl = 0 andB| = R, + B;.

As indicatedin the locally gated regimésimilarly to the globally gated cage
the batch servicing implies that the duration of the cy8g_, H,, is not influ-
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enced by the order in which the queues are visitBoerefore we can ignore
queues. + 1,...,N. The differencecompared to the globally gated casethat
now we also have to consider new arrivétkiring the cyclé to queues 1 td..
Assume again that the visit order is according to policy= (1,2,...,L).

Consider queuéand defineS to be the total sojourn time of all queligabs
in the cycle Then § is comprised of four termsThe first one is thesojourn time
of then, jobs present at the start of the cycléhe second term is theaiting time
of all jobs that arrivelduring the cyclg beforethis queue is gatedrhe third term
contains theservice timeof the jobs that arrivebefore gating and the fourth
term consists of thesojourn time until the end of the cycleof those jobs that
arrive after the queue is gated

For the second and fourth teymve use the following well-known result

LEMMA: Let X, X,,... be the arrival instants of a Poisson process with arrival rate
A and let Y be a nonnegative random variable independent of the pro¥gsd et
N(Y) be the number of Poisson arrivals (8,Y); that is, N(Y) = max{k| X, < Y}.
Then

N(Y) N(Y) A
E[ 2 (Y—xj)] = E{ 2 xj} =5 E[Y?].
j=1 j=1

Combining the above described four terms and followingwe have

-1

A
E[S]= n|<2h + +b.> + EE[(H1+ v+ H_;+R)?]

(fh+r.>b.+—E[(B.+D.+H|+1+ -+ H)?]. (1)

J

Thus the total expected sojourn cost is

1-1

DWE[S]= EN{”I(E hy+r, +b|> +%E[(H1+ -+ +H_; +R)?]
= =1 =1

-1
A.(Z h; + r.>b| + % E[(B, + D, +Hj 1+ -+ + HL)Z]}. (2)

j=1

The objective function2) can be simplified by omitting all terms of the form
S i_17y Which are order independent
We first rewrite the second term {2):

2 M E[(Hy+ - + H_1 + R)?]

I=1

W, I-11-1 1-1
-y (r.<>+zr.zh I URESLTEDS I G
=1
Clearly, the first term in the right-hand side 63) is order independent
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Now consider the fourth term i2). We can write it as

AW @ S

=1 j=1+1

L L L L
SOREESI LT )
j=1+1 j=1+1k=1+1 j=1+1
Thus in (2), we can omit not only the term&, wyn(r;, + by), >, W A1, b,
Siawn?/2, and S, 4w (b2 + 2bd + d®)/2 but also the combined terms
E| )\|W| 2j¢| h](Z)/Z andz| /\| W| Ej#l hJ2/2.

Writing h[k, m] = X h;, the goal is to find a permutatiom that minimizes

L
|2 W,y (Nza) + Ay b)) hl7 (1), 7 (1 — 1)]
-1
L
+ |2 Wy Az {rw(uh[ﬂ'(l),ﬂ'(f = D]+ (byq) + dgphl7 (I +1),7(L)]
-1

1 1
+ 5 (hr @, 7 (1 = 11)* + 2 (h[7 (1 + 1),7T(L)])2}- (4)

This is combinatorially a NP-hard probleims we prove in the Appendix
We now show that the symmetric case leads to a special assignment problem
which is solvable irD(L?) time[1].

A symmetric case. Supposé, = b, d, =d, andr, =r, so thath, = h (this might
be the case when all tapes are simil@ne can verify that the objective can be
simplified to finding the permutatiosr that minimizes

L L
2 W7(|)(n7.,.(|) + /\ﬂ.(|)b)h| + 2 Ww(|))\,,(|){[2rh - (L + 2)h2]| + h2|2}
=1 =1

L L
=D ayl + X B3
=1 =1

with Ar()y = Wﬂ.(|)(n,n.({/) + Aﬂ.(()b)h + Wﬂ(|))\7<|)[2rh — (L + 2)h2] andﬂﬂ.(n =
W) A-a)h?. It follows that this problem can be formulated and readily solved as an
assignment problem with cosB = C..i) j = @»i)j + Bxi)l 2fori,j=12,...,L.

3.3. Exhaustive Regime

In the exhaustive regimeervicing in queuéis repeated until the queue is empty
This means that if during the service tirBg one or more new jobs arrivgvith
probability [5°(1 — e M) dP(B, = t) = 1 — B(A))), then after completing the
present service timea new service time is starte@his can be repeated several
times in a geometric fashion
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Let E; denote this geometric sum of service times in quewdth repetition rate
1— B/(A,), meang, second momerﬁﬁ@), and Laplace transfortg, («). Then

b

E-YO%%

The Laplace transforrf, («) is derived as follows
For given value®, 4, By, ..., all distributed a$3,, we havek, = E}‘:l By, with
probabilityI[[=1 (1 — e "B )e NP k=1,2,.... Thus

_ 0 Kk k—1
k=1 j=1
=Bi(a+ )\|);1[B|(a) —Bi(a+A)]<?

B(a+A)
1-B(a)+B(a+ i)

By differentiation we get

1
@ _ _ @ 4 420 B .
€ B(\) (by 2b e + 26 B/(A)))

LetG, be the total visit time to queueG, = R, + E, + D,. Then for the weighted
sojourn time criterionthere is only a slight difference between the gated and the
exhaustive casel in the analysis of the gated modele replaceH,, h,, andh® by
G, 9, andgl(z), respectivelyand we add the term for the sojourn times of the jobs
served during the repetitiorien the average\, g jobs each requiring one residual
and one normal service timehen for policyr,, we get(cf. (2))

IiW,E[S] = liw,{m(ggj +r+ b|> +%E[<"1Gj N RI>2}
=1 =1 =1 =1

]

-1 bI(Z)
+)\|<j_1gj+r,)b|+)\,q<2—bl+b|>
/\I L 2
+EEKD.+2 G,-) ]} (5)
j=I+1

The structure of this expression looks similar(®), but, in fact, it is even more
involved than in the€locally) gated caseEven for the symmetric casehen allR;,

B, andD; are the sameheB,(\,) terms cause us to no longer have an assignment
problem as a solution db).
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3.4. Extension: Modifying the Hamiltonian Tour

A possibly improved procedur@gvithin the framework of Hamiltonian touyss the
following. Suppose the visit order dictated by the performance measure and the
gating procedure is,2,..., L. Then after exiting queue,the rule can be reapplied
with regard to theemaining L— 1 queuestaking into account the new values of the
n;’s. Accordingly the next queue to be visited will be determinedntinuing in this
manner until the last queyamong the original ) is servicedNote, howevey that

such a modified procedure will violate the main purpose of the globally gated regime
aimed anotletting jobs arriving during the current cycle to be servibedforejobs

that have arrived during the previous cycd&onsidering for a moment a Markov
decision process approaolthich aims at acting optimally at each steme can
apply a new visit-order rulée.g., the nonincreasing, n, /h, policy) after each visit

of a queuedoing it in a continuous routine while neglecting the Hamiltonian tour
restriction and generating a dynamadthough erraticpolling visit table(for more
about polling tablessee Yechial[22]).

4. MINIMIZE THE NEXT CYCLE DURATION

Since in all three service regimes the duration of each Hamiltonian cycle is inde-
pendent of the order of visita criterion which seems to look a bit further ahead is
tominimize the expected duration of the next Hamiltonian cyeladdition to short
cycles being clearly gogdhis criterion also implies that we are trying to serve new
arrivals already in the first cycle

A possibly different way of looking one cycle ahead isiimimize the expected
number of nonempty queues at the beginning of the next Gyrodse two problems
arg as we will seeclosely related

Consider again the strategy which serves the queues in the ordg2,1.., L.
For this strategywe will compute the expected duration of the next cytteorder
to do sgwe need the probability that a specific queue will be empty in the beginning
of the next cycleDefine

p = Prob{Queud is empty at the start of the next cytle

We emphasize again that for the globally and locally gated regiasesell as
for the exhaustive casthe duration of the present Hamiltonian cycle does not de-
pend on the visit order within the cycl€irst, consider queues not visited in this
cycle The probability that queuel > L, is empty in the beginning of the next cycle
is independent of the orddformally, defining for the gated regimés-) = jL:l H;,
we have

p=Ele " I=AYQ), 1>L

In the exhaustive regimeve get a similar expression with”) = 31, G,.

https://doi.org/10.1017/50269964803173044 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803173044

360 J. van der Wal and U. Yechiali

4.1. Globally Gated

When simultaneously gating at the beginning of the cyttlep, for1 =1,..., L also
satisfyp, = H®(A,). Hence in this caseall orders are stochastically identi¢ahd
optimal).

4.2. Locally Gated

Similar to the sojourn times criterigthe gating is just beforB,. Then for <L, p,
is the probability that there are no arrivals into quedering the remaining duration
of the present cycl®, + D, + H,,, + --- + H_. Hence

p=B)D) ] Hj(AI)'

j=1+1

The expected duration of the next cycle undelis

N N L L N
2(1_ ph = Z h — 2 Bi(A)D(A)h, H F'j(/h) - E H®(A)h. (6)
=1 =1 =1 j=l+1 I=L+1
We immediately observe thah contrast to the “minimizing the sojourn time” per-
formance measuythe above expressionirsdependendf the number of jobs present
at the start of the cycle
The first and third terms i(6) are order independergo we consider

V(Tfl) = I:21§|(/\|)[’5|()\|)h| H Hj()\l)

j=1+1

and wish to find a permutatiof that maximizes

L L
V(m) = 2 Brr(l)(/\fn-(l))ljfn—(l)()\ﬂ-(l))hw(l) H Hw(])()\w(l))-
=1 j=l+1

In generalthis expression is hard to maximiZEherefore we consider two special
cases

1. All A, are equalsayi, = A.
2. All H, are identical

4.2.1. Case 1: All A, are equal. Assume); = A for all I. As previously
compare two strategies, ands1, which differ only in the order in which queugés
andi + 1 are visitedIn 7, the order ig, i + 1, and in#r; the order is reversed

ComparingV(w,) andV(71), the contributions for queudsless than and
larger than + 1 are the samaNe only have to compare the expressionsifand
i +1inthe two orders
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Itjolloyvs thats, is better thanr; if, simplifying the notation t@; := FIJ- (A)and
¢ =B (A)D(Mh,

L
V() = V(i) = (G aiq + Cuag— G —G) [] & >0
I=it2
that is if

G+1 G ~ 0.
l-a,, 1-4

Thereforeif all arrival rates are equathe optimal visit schedule follows a nonde-
creasing order of the index

G B (A)D(M)h,

1-a  1-HAO)
4.2.2. Case 2:AllR), B, and D, are identical. ~If all R, B, D,, and therefore
H, are identicalwriting f, = B, (A,)D,(A;)handg, = H(A,), the expression fov ()
simplifies to

V(my) = 2:1 fig-".

Thus similar to the consideration in SectioniBqueuei is in positionj in the visit
order then its “contribution” isf; g-~I. Therefore in order to maximize/(#), one
has to solve an assignment problem with rewdgls= C. i, ; = fw(wg;;;.

Note that this case is more involved than cagaut essentially simpler than the
general case in which the terms in the objective function depend not onty(ion
andj but also on the order of the other queues

4.3. Exhaustive Regime

The time to visit a queue now consists@f= R, + E, + D, instead oH, =R, + B, +
D,. Due to the exhaustive disciplindand under 7;), we have p, =
Dy (A4, F;(A)) for | = L. Thus writing g, = r, + & + d;, the expression equiv-
alent toV(7r,) in Section 42 is

lelf)l(/\.)(n +e+d) [] ﬁj(Al)Ej(Al)ﬁj(Al)-

j=1+1

This leads to essentially the same optimization problem as for the locally gated
variant
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The case where al, are equal is the same as eatlierplying that the optimal
visit schedule is determined by the nondecreasing order of
Di (Mg Dy (A)(r, + & +d)

1-H Q)  1-RWEMWD A

However for case Qall H, equa), there is a significant difference in the meaning of
the assumption th&®, + E, + D, is the same for all. It implicitly implies that if the

H, are the same and tligare the samehen allA, are the same as weHencein this
case all queues are stochastically identical and all visit orders are optimal

4.4. Number of Nonempty Queues

As was indicatedthe problem of minimizing the expected number of nonempty
queues at the beginning of the next cycle is not very different from the problem of
minimizing the expected duration of the next cyclée only difference is that in

the expression for the objective function giverié, the termdh, disappear because
the expected number of nonempty queues eqiigls(1 — p;). Thus the structure

of the optimization problem is exactly the same

5. MAXIMIZE THE WEIGHTED THROUGHPUT IN A CYCLE

Athird objective for optimization is to maximize the expected weighted throughput
during the cycleThis objective may seem to be more interesting from the viewpoint
of the system operator than from the viewpoint of the requedtarever the more
jobs that are served in the current cydtee fewer jobs are left to wait until the next
cycle Thus this objective is an interesting one for the requesters as Wwellthe
globally gated casehe cycle throughput is order independéiso, as we will see
the structure of the optimization problem is the same for the locally gated and for the
exhaustive regimes

Note again that for all service disciplineshe duration of the cycle is indepen-
dent of the order in which the queues are visitetplying that one can ignore the
queued. + 1 up toN.

5.1. Locally Gated

Let 7, be again the order,2,...,L. Define M(7,) to be the expected weighted
throughput during the cycle under ordey. Then gating just beforé3,,

L L 1-1
M(7T1)=|§:W|n|+I§:W|)\|<Zh]+I‘|).
=1 =1 =1

Now, similar to what we have seen previoughe optimal visit order is an index rule
and is independent af: Visit the queues in a nondecreasing order of

Wi A
h
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Note that this rule does not affect the long-run weighted throughyhith is fixed
and equal t@®), w, A, but focuses on thearly weighted throughput

Remark: If all w; are the same and all, are equalthen the optimal order is in a
nonincreasing order dfj, enabling accumulation of as many jobs as possible in
queues to be visited later in the cyc&milarly, if all w; andh, are equalthe queues
are visited in a nondecreasing ordengfagain in order to generate as many jobs as
possible in the most active queues

5.2. Exhaustive Regime

The result here is very similar to the one derived for the locally gated Gdse
corresponding expression fbt(7,) changes into

L L |—1
M () — 2w.n.+zw.m(zgj+n +a>.
=1 =1 j=1

Therefore the optimal visit schedule follows a nondecreasing order of
Wi A
g

6. SUMMARY OF RESULTS

Table 1 summarizes the analytical results considering the optimal pol\d&ts
order rule$ for the various combinations of performance measure and gating pro-
cedure The criterion “minimizing the weighted expected sojourn tinjgsring a
Hamiltonian tou)” leads to rules involving the values of thgs (i.e., the number of
requests present at the start of the cycle in each qu&hes implies that the visit
order will change from one cycle to another as a result of the dynamic evolution of
the systemFurthermoreit may enable one to modify the visit order for the remain-
ing queues in the cycle each time the server exits a qU@uwecan possibly exercise

a one-step look-ahead procedyf@lowing the relevant ruleand apply it repeat-
edly without being confined by the Hamiltonian tour restrictidine objectives
“minimizing the expected duration of the next cycle” and “maximizing the expected
weighted throughput” lead to Hamiltonian procedures thahoianvolve then,’s.

Thus if we try to modify the visit order within a cycleve will come up with the
same visit order that has been determined at the start of the eimleever one can

use rules which are, dependent to determine statfixed-order cycles in cases
where dynamic control is not applicable

7. CONCLUSIONS

We have considered the problem of finding dynamic visit-order rules for a polling
system with unlimited batch servicingshere service times are independent of the

batch sizeswWe adopt a “fair” dynamic Hamiltonian cycle approach in which a new

visit order is determined in each new cydimsed on the dynamic evolution of the
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TaBLE 1. Optimal Policies for the Various Combinations of the Performance Measure and Gating Procedure

Gating Procedure
Performance Measure

Globally Gating

Locally Gating

Exhaustive

Minimize weighted expected
sojourn timegSect 3)

Minimize expected duration of
next cycle(Sect 4)

Maximize expected weighted
throughput in a cycle
(Sect 5)

Index rule: decreasingy,n,/h;

All policies are stochastically
equal

All policies are stochastically
equal

Hard combinatorial problem
involving then,’s

Special caseh, = h; distinct
Ay's: assignment problem
with costsc;; 's involving
then/’s

Hard combinatorial problemot
involving then,’s

Special case 1A, = A

Index rule: increasing
B()Di(Wh,
[1-HW]

Special case 2h, = h: assign-

ment problem with rewards
Cj’s notinvolving then,’s

Index rule: increasingm A, /h,

Hard combinatorial problem
involving then,’s

Hard combinatorial problemot
involving then,’s

Special case 1A, = A

Index rule: increasing

Di(Mg
[1-GW]
Special case 2h;=h, g = e
fully symmetrig all policies
stochastically equal

Index rule: increasingw, A /g,
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system Within the cycle we have considered various performance measures and
various gating procedureSome of the Hamiltonian cycle problems lead to elegant
solutions in the form of an index rul8ome lead to an assignment probjevhereas
others result in combinatorial hard problerfsirthermorethe n,-dependent rules
may be reapplied within a cycle to modify it or as a one-step look-ahead repeated
procedureThe nonn-dependent index rules can be used to construct fixed-order
cyclic polling tables in cases where static rules are required
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APPENDIX
The Scheduling Problem (4) is NP-Hard

We wish to show that the scheduling-optimization probldiof finding a permutationr so
as to

L -1
Mlnlmlze{z (1),.,(|)(nﬂ.(|) + /\‘”U)bﬂ“)) ( Z h,,(j))
=1 =1

j=1+1

1 -1 2 1 L 2
+‘<Ehwm> +‘< > hm)) H (A1)
2\i21 2\ i
is NP-hard

To prove this assertignve consider a special instance of the problem whieneall |,
b =0, d =r,, andw; = 1. Then problem(A.1) is reduced to minimizing

L -1 1 L -1 2 L 2
f(m) = Enﬁm(E hw(j)) +§2Mm[<2 hwm) + (2 hw(j)) ] (A.2)
=1 =1 =1 =1 =11

L -1 L
+|21%<l>/\w<l>[rw<l><Elhwm) +(b,r(|)+d,,<|))< > hw(i))
- j=

It is known[10] that the followingpartition problem is NP-complete

Input: as,a,,...,axare positive integer&k = 2).
Output: ForE}Ll a, = A isthere asubs&@C {1,2,...,k} such thalcsa; = A/2?

That is the process of finding an answer Yes or No to the above output question is NP-hard
We start with transforming the partition problem into the polling-optimization schedul-
ing problem by takind. =k+1;n=1forl =1,....k+ 1L h =g forl =12,...,k hy1 =
ho=1; A4 =1forl =12,....k andA,.1 = AL =M = 4(k + 1) A%,
We now prove the following

Cramv: The output for the partition problem is Yes if and only if there exists a permut&tion
of{1,2,...,k+1} suchthat{#), the objective value of the respective scheduling-optimization
problem, satisfies

k MA?2
f(ﬁ')S(k+1)A+EA2+ 2 =B, (A.3)

where M= 4(k + 1) A2,
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Proor: Assume that there exists a partition and construct a permutatsatisfyingf (7) <
B. Suppose that the s&C {1,2,...,k} is a partition that is Xjcsa; = Xjesh; = A/2. Let
|S| = m. Let 77 be a permutation of1,2,...,k + 1} satisfying

7(j)ES forj=12,....m(m=k—1),
a(m+1) =L,
7(j)e{1,2,....k} =S forj=m+2,...,k+ 1

Substituting for in f(-), we obtain

@3 Shan) 13 3 [(Sree) (B

l#m

NE NI
<LA+%(L_1)<ihi> +}M[<1625aj>2+<m23a1>2]

L-1 1 A\2 A\2 L
=LA+ A+ -M[|lz]) +|(z) |=LA+
2 2 2 2

The mequalmes follow smceglven h; = a; positive mtegers fojf = 1,2,...,L — 1, and
=1 3T1h,) =3iia = Afor everyl =2.3,.
Next, suppose that the answer to the output problem istNat is there is no parti-
tion such thal;cs a, = A/2. We will show that forany permutationr, f () > B. Consider
an arbitrary permutatiosr of {1,2,...,k + 1 = L} and suppose that(m) = k + 1 = L for

somem. Then
1 m—1 2 2
f(m) = EAv(m)|:< by hm)) < > hwm) ]
ji=1 =m+1

Slpce there is no partltloli‘,J o h,jH=x#A/2 and}‘,l m+1 Nz =Y # A/2, wherex+y =
2ilia=A

Hence sincex andy are integersx? + y2 = (A/2 — 3)2+ (A/2 + %)2 (this follows from
the convexity and symmetry of the program iR + y?} s.t. x + y = A; X, y = 0). Therefore

{432
(m) =7 2 2 22

M
A+ A=B  (A4)

M[/AZ 1 M M M
=—(=+Z)=—A+—=— A+ (k+ A
2\ 2 2 4 4 4
M k k M K
= — A2+ A2+ (- +1|A2> — A2+ - A2+ (k+1)A=B. (A.5)
4 2 2 4 2

The last inequality follows singdor k = 2 andA a positive integer satisfying = 2,
(k/2+1)A% > (k+1)A. [ |

To summarizgsolving our polling scheduling-optimization problem is equivalent to
solving the partition problenwhich is NP-hard
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