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We explore visit-order policies in nonsymmetric polling systems with switch-in and
switch-out times, where service is in batches of unlimited size+We concentrate on
so-called “Hamiltonian tour” policies in which, in order to give afair treatment to
the various users, the server attends every nonempty queue exactly once during each
round of visits~cycle!+The server dynamically generates a new visit schedule at the
start of each round, depending on the current state of the system~number of jobs in
each queue! and on the various nonhomogeneous system parameters+We consider
three service regimes,globally gated, ~locally! gated,and exhaustive,and study three
different performance measures: ~1! minimizing the expected weighted sum of all
sojourntimes of jobs within a cycle; ~2! minimizing the expected length of thenext
cycle,and~3! maximizing the expected weightedthroughputin a cycle+For each com-
bination of performance measure and service regime,we derive characteristics of the
optimal Hamiltonian tour+Some of the resulting optimal policies are shown to be ele-
gant index-type rules+ Others are the solutions of deterministic NP-hard problems+
Special cases are reduced to assignment problems with specific cost matrices+ The
index-type rules can further be used to construct fixed-order,cyclic-type polling tables
in cases where dynamic control is not applicable+

1. INTRODUCTION

We study optimal scheduling policies in heterogeneous polling systems with switch-
in and switch-out times, where service is in batches of unlimited size+We concen-
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trate onfair policies, called “Hamiltonian-tours,” where in each new round the server
must attend every nonempty queue exactly once, but is free to determine the order of
visits+

Polling systems—a set of queues attended by a single server—play a central
role in the modeling and analysis of various problems in communications, computer
software and hardware, database systems, manufacturing, maintenance manage-
ment, and road traffic control+ Much of the literature deals with occasions when
service is given toone job at a time+ For a comprehensive treatment of such models,
as well as a description of various applications and extensive literature, we refer to
Takagi@15–19# +Several surveys dealt with applications and optimization~Levy and
Sidi @12# !, applications in communications~Grillo @11# !, applications in computer
networks~Takagi@17# !, analysis and optimization~Boxma@5# !, and analysis and
control ~Yechiali @22# !+ Most of the works considered “open” polling systems in
which all jobs are “transient”~i+e+, they arrive to, are served by, and leave the system,
never to return!+ A few works analyzed “closed” networks with “permanent” jobs
that are routed from one queue to another, but never leave the system~Altman and
Yechiali @2# , Dror and Yechiali@8# !+ Hybrid systems with both permanent and tran-
sient jobs were analyzed by Armony and Yechiali@4# +

Unlimited batch-service models were considered in the literature as applica-
tions to videotex, telex,and TDMA~Time Division MultipleAccess! systems@3,9,13# ,
as well as for central database operations@20# + Ammar and Wong@3# considered a
teletext system withN queues, where queuei receives a Poisson stream of requests
with ratel i +Service times in all queues aredeterministic~slotted, unit of time each!,
batches areunlimited, and there areno switching times+ The service discipline is
~locally! gated+ Using a homogeneous linear cost function~one unit of cost for each
outstanding request at the beginning of a slot! and applying the Markov decision
process formulation, they showed that the policy that minimizes the mean response
time is of a cyclic nature,with cycle length ofL $ N slots, in which queuei is visited
ki times, (i51

N ki 5 L+ Yet, the problem of finding theexactlengthL was only par-
tially resolved+

Liu and Nain@13# examined the~locally! gated and exhaustive regimes for the
case ofzero switching timesand a homogeneous arrival process to all queues,whereas
Dykeman et al+ @9# indicated~after using Howard’s policy-iteration algorithm! that
even with equal and deterministic service requirements and with no switching times,
the structure of the optimal policycould be very complicated+Van Oyen and Teneketzis
@20# formulated a central database system and an automated guided vehicle~AGV !
as a polling system with an infinite-capacity batch server and zero switching times,
where the controller observes only the length of the queue at which the server is
located+ A review titled “Scheduling with Batching” is presented in@14# + Batches
there, however, arefinite and are defined as the “maximal set of jobs that are sched-
uled to be servedcontinuously, one at a time,on a machine and share a setup+” The
concentration there is on “classification of problems as polynomially or pseudopoly-
nomially solvable, binary, or unitary~NP-hard!, or open+”

Recently, Xia,Michailidis, Bambos, and Glynn@21# considered the problem of
dynamic allocation of a single server withfinite batch processing capability to a set
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of parallel queues+ The independent arrival processes are Poisson, but with equal
rates+ The service times of batches are exponentially distributed andidentical+ Zero
switching times are incurred by the server when moving from one queue to another+
They restrict attention to the set ofnonanticipative, nonpreemptive, and nonidling
policies and show that when buffers are infinite, allocating the server to the longest
queue stochastically maximizes the aggregate throughput of the system+

Our work was motivated by a tape reading problem in a system in which large
amounts of information are stored on tapes+ Irregularly, requests arrive for data on
one of these tapes+ In order to read the data, the tape has to be mounted, read, and
then dismounted+ If there is more than one request for a tape, they can all be read at
~more or less! the same time, thus suggesting modeling as a batch service with
unlimitedbatch size+ Nevertheless, the models we present in this work aregeneral
and can be applied to all of the above-mentioned unlimited-batch service systems+
Without loss of generality, we will use the “tape language” throughout the article+

The goal is to establish “fair” dynamic visit-order policies so as to optimize
various performance measures+ Our special fairness approach is to visit the queues
in a Hamiltonian way+ ~See Browne and Yechiali@7# +! In each new Hamiltonian
cycle, only those queues are visited that are nonempty at the start of the cycle, and
each such queue is visitedexactly once+What is to be decided at the beginning of
each cycle is the order in which the queues are visited+ For a cycle with durationC,
we define the “sojourn time of a jobJ within a cycle” as the total time thatJ resides
in the system duringC+ We will consider the following performance measures:
~1! minimizing the expected~weighted! sum of allsojourn timesof all jobs within a
cycle, ~2! minimizing the expected duration of thenext cycle, and~3! maximizing
the expected weightedthroughputwithin the cycle+Criterion 2 is a proper one since,
given the fairness considerations leading to Hamiltonian tours and as a result of the
unlimited batch service, the duration of the current cycle isindependentof the order
of visits+ Thus, one can only influence the duration of thenext cycle+

We formulate the problem as a polling system with unlimited batch size service
and consider globally gated, ~locally! gated, and exhaustive service regimes+ Some
of the optimization problems turn out to be NP-hard, some yield simple, elegant,
index-type rules, and others are transformed into classical assignment problems, but
with special costs involving the parameters of the problem+

The structure of the article is as follows+ In Section 2, we present the model,
describe the assumptions, and discuss various gating procedures+ Minimizing the
weighted expectedsojourn times is treated in Section 3, where all three service
regimes are considered+ Section 4 deals with minimizing the expected duration of
thenextcycle,whereas Section 5 aims at maximizing the expected weightedthrough-
put in a cycle+ The analytical results and their implications are summarized in Sec-
tion 6, and conclusions are discussed in Section 7+

2. THE MODEL

There is a set of queues~tapes!, numbered 1 toN+ Requests~ jobs! arrive to queuel
at a Poisson ratel l +A single server visits the queues according to some order+When
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a queue is visited, all jobs are served simultaneously+ This service time is indepen-
dent of the number of jobs served+ The total visit time at queuel consists of three
parts: a timeRl to reach~mount! the tape, a timeBl to read~serve! the tape if the
queue is gated, or several repetitions ofBl if the service is exhaustive, and, finally, a
time Dl to dismount the tape~exit the queue to some “base” position!+ The order in
which the queues are visited is completely free+

Hamiltonian Cycle Approach

In order to give a fair service to all queues, in each cycle the server performs a
Hamiltonian tour in which everynonemptyqueue is visitedexactly once; that is, if at
the beginning of the cycle, there arenl $ 0 jobs in queuel, the server visits only those
queues for whichnl is positive+ Thus, even if during the cycle, jobs arrive to a queue
that was empty at the beginning of the cycle, this queue is not included in the cycle+
This process then repeats itself with a new Hamiltonian tour, where the server visits
only queues for which thenew nl are positive+

We consider several service regimes:

• Globally gated: All queues are simultaneously gated~closed! at the start of
the cycle+

• ~Locally! gated: A queue is gated only when the server arrives+
• Exhaustive: The server continues serving a visited queue until it becomes

empty+

In the two gated regimes, jobs arriving to a queue after its gate is closed will be
served only during the next cycle+The same applies in the exhaustive regime for jobs
arriving after the server leaves the queue+ For a gated queuel, a visit requires a time
Rl 1 Bl 1 Dl +We defineHl 5 Rl 1 Bl 1 Dl , hl 5 E@Hl # , hl

~2! 5 E@Hl
2#, and EHl ~a! 5

E@e2aHl # + Similarly we definerl , rl
~2! , ERl ~a!, bl , and so forth+

Without loss of generality, we assume that at the beginning of the cycle, nl is
positive for queuesl 51, + + + , L and thatnl 50 for l 5L11, + + + ,N+Then, for the gated
cases, the duration of the cycle is(l51

L Hl , independentof the order in which the first
L queues are visited+ Moreover, for the exhaustive case as well, since the service is
in batches, the duration of the cycle is alsoindependentof the order of visits+

3. MINIMIZE THE WEIGHTED EXPECTED SOJOURN TIMES

In this section,we consider the criterion ofminimizing the expected weighted sum of
sojourn times of all jobs in the cycle+ ~It is important to note that under batch service,
minimizing sojourn times is not always equivalent to minimizing waiting times+! We
will analyze the three service regimes introduced earlier+

3.1. Globally Gated

Under theglobally gated regime~cf+ Boxma, Levy, and Yechiali@6# !, there is only
one thing to look at: the sojourn times of the jobs present at the beginning of the
cycle+ This follows because the distribution of the cycle time is independent of the
visit order, implying that the waiting times of those jobs that arrive during this cycle
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~and are not served! are not influenced by the order+ A visit order~policy! is deter-
mined by a permutationp 5 $p~1!,p~2!, + + + ,p~l !, + + + ,p~L!% of the set$1,2, + + + , L% ,
wherep~l ! indicates the index of the queue which isl th to be visited during a
Hamiltonian tour+ In order to find the optimal order, we start with the policyp1 for
whichp~l ! 5 l+The total expected weighted sojourn times for the jobs present at the
beginning of the cycle is denoted byC~p1!+ Then, with wl denoting the weight
associated with the sojourn times of jobs in queuel,

C~p1! 5 (
l51

L

wl nlSS(
j51

l21

hjD1 rl 1 blD+
Theorem: The optimal policy is to visit the queues according to a nonincreasing
order of the index wi ni 0hi.

Proof: Look at the policyp1
' , which has the same order asp1 except that queuesi

andi 11 are interchanged; that is,p1
' is the order~1,2, + + + , i 21, i 11, i, i 1 2, + + + , L!+

Now, the difference in sojourn “costs” for these two strategies is

C~p1! 2 C~p1
' ! 5 wi11ni11hi 2 wi ni hi11+

For this to be nonpositive~i+e+, for strategyp1 to be at least as good asp1
' !, we must

have

wi ni

hi

$
wi11ni11

hi11

+

Repeatedly applying the interchange argument, the optimal visit order is determined
by anindex rule: Serve the queues in a nonincreasing order ofwi ni 0hi + n

Note that if allhi are equal and allwi are the same, the optimal order is according
to thelongest queue firstpolicy, which is the consequence of the batch servicing+

This result may be compared with the result of Liu and Nain@13# for the ~lo-
cally! gated case, who showed that for afully symmetricpolling system withzero
switching times, “the so-called Most Customers First policy~in which the server
always visits the queue with the largest number of customers! minimizes, in the
sense of strong stochastic ordering, the vector of the number of customers in each
queue whose components are arranged in decreasing order+” Note that in their treat-
ment, the server is free of “fairness” considerations and is entitled to choose the next
queue to visit when exiting a served queue, whereas in our approach, the order
within each new cycle isdetermined at the cycle’s beginning+

3.2. Locally Gated

Gating queuel just beforeRl or just beforeBl is not essentially different+ We
consider the case of gating just beforeBl + Gating just beforeRl is then a special
case withRl

' 5 0 andBl
' 5 Rl 1 Bl +

As indicated, in the locally gated regime~similarly to the globally gated case!,
the batch servicing implies that the duration of the cycle, (l51

L Hl , is not influ-
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enced by the order in which the queues are visited+ Therefore, we can ignore
queuesL 1 1, + + + ,N+ The difference, compared to the globally gated case, is that
now we also have to consider new arrivals~during the cycle! to queues 1 toL+
Assume again that the visit order is according to policyp1 5 ~1,2, + + + , L!+

Consider queuel and defineSl to be the total sojourn time of all queue-l jobs
in the cycle+ Then, Sl is comprised of four terms+ The first one is thesojourn time
of thenl jobs present at the start of the cycle+ The second term is thewaiting time
of all jobs that arrive~during the cycle! beforethis queue is gated+ The third term
contains theservice timeof the jobs that arrivebefore gating, and the fourth
term consists of thesojourn time, until the end of the cycle, of those jobs that
arrive after the queue is gated+

For the second and fourth term, we use the following well-known result+

Lemma: Let X1,X2, + + + be the arrival instants of a Poisson process with arrival rate
l and let Y be a nonnegative random variable independent of the process$Xi %. Let
N~Y! be the number of Poisson arrivals in~0,Y!; that is, N~Y! 5 max$k6Xk , Y%.
Then

EF (
j51

N~Y!

~Y2 Xj !G 5 EF (
j51

N~Y!

XjG5
l

2
E@Y2# +

Combining the above described four terms and followingp1, we have

E@Sl # 5 nlS(
j51

l21

hj 1 rl 1 blD1
l l

2
E@~H1 1 {{{ 1 Hl21 1 Rl !

2#

1 l lS(
j51

l21

hj 1 rlDbl 1
l l

2
E@~Bl 1 Dl 1 Hl11 1 {{{ 1 HL !2# + (1)

Thus, the total expected sojourn cost is

(
l51

L

wl E@Sl # 5 (
l51

L

wl HnlS(
j51

l21

hj 1 rl 1 blD1
l l

2
E@~H1 1 {{{ 1 Hl21 1 Rl !

2#

1 l lS(
j51

l21

hj 1 rlDbl 1
l l

2
E@~Bl 1 Dl 1 Hl11 1 {{{ 1 HL !2#J + (2)

The objective function~2! can be simplified by omitting all terms of the form
(l51

L gl which are order independent+
We first rewrite the second term in~2!:

(
l51

L l l wl

2
E@~H1 1 {{{ 1 Hl21 1 Rl !

2#

5 (
l51

L l l wl

2 Srl
~2! 1 2rl (

j51

l21

hj 1 (
j51

l21

hj
~2! 1 (

j51

l21

(
k51

l21

hj hk 2 (
j51

l21

hj
2D+ (3)

Clearly, the first term in the right-hand side of~3! is order independent+
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Now consider the fourth term in~2!+We can write it as

(
l51

L l l wl

2 H~bl
~2! 1 2bl dl 1 dl

~2! ! 1 2~bl 1 dl ! (
j5l11

L

hj

1 (
j5l11

L

hj
~2! 1 (

j5l11

L

(
k5l11

L

hj hk 2 (
j5l11

L

hj
2J +

Thus, in ~2!, we can omit not only the terms(l wl nl ~rl 1 bl !, (l wl l l r l bl ,
(l l l wl rl

~2!02, and (l l l wl ~bl
~2! 1 2bl dl 1 dl

~2! !02 but also the combined terms
(l l l wl (jÞl hj

~2!02 and(l l l wl (jÞl hj
202+

Writing h@k,m# 5 (j5k
m hj , the goal is to find a permutationp that minimizes

(
l51

L

wp~l !~np~l ! 1 lp~l ! bp~l ! !h@p~1!,p~l 2 1!#

1 (
l51

L

wp~l ! lp~l !Hrp~l !h@p~1!,p~, 2 1!# 1 ~bp~l ! 1 dp~l ! !h@p~l 1 1!,p~L!#

1
1

2
~h@p~1!,p~l 2 1!# !2 1

1

2
~h@p~l 1 1!,p~L!# !2J + (4)

This is combinatorially a NP-hard problem, as we prove in the Appendix+
We now show that the symmetric case leads to a special assignment problem,

which is solvable inO~L3! time @1# +

A symmetric case. Supposebl 5b, dl 5d, andrl 5 r, so thathl 5h ~this might
be the case when all tapes are similar!+ One can verify that the objective can be
simplified to finding the permutationp that minimizes

(
l51

L

wp~l !~np~l ! 1 lp~l ! b!hl 1 (
l51

L

wp~l ! lp~l ! $ @2rh 2 ~L 1 2!h2# l 1 h2l 2%

5 (
l51

L

ap~l ! l 1 (
l51

L

bp~l ! l
2,

with ap~l ! 5 wp~l !~np~,! 1 lp~,!b!h 1 wp~l !lp~l ! @2rh 2 ~L 1 2!h2# andbp~l ! 5
wp~l !lp~l !h

2+ It follows that this problem can be formulated and readily solved as an
assignment problem with costsCij 5 Cp~i !, j 5 ap~i ! j 1 bp~i ! j

2 for i, j 5 1,2, + + + , L+

3.3. Exhaustive Regime

In the exhaustive regime, servicing in queuel is repeated until the queue is empty+
This means that if during the service timeBl , one or more new jobs arrive~with
probability *0

`~1 2 e2l l t ! dP~Bl # t ! 5 1 2 DBl ~l l !!, then after completing the
present service time, a new service time is started+ This can be repeated several
times in a geometric fashion+
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Let El denote this geometric sum of service times in queuel,with repetition rate
12 DBl ~l l !, meanel , second momentel

~2! , and Laplace transformEEl ~a!+ Then,

el 5
bl

DBl ~l l !
+

The Laplace transformEEl ~a! is derived as follows+
For given valuesBl1,Bl 2, + + + , all distributed asBl , we haveEl 5 (j51

k Blj , with
probability) j51

k21~1 2 e2l l Blj !e2l l Blk, k 5 1,2, + + + + Thus,

EEl ~a! 5 (
k51

`

EFe2aS (
j51

k

BljD )
j51

k21

~12 e2l l Blj !e2l l BlkG
5 DBl ~a 1 l l ! (

k51

`

@ DBl ~a! 2 DBl ~a 1 l l !#
k21

5
DBl ~a 1 l l !

12 DBl ~a! 1 DBl ~a 1 l l !
+

By differentiation, we get

el
~2! 5

1

DBl ~l l !
~bl

~2! 1 2bl el 1 2el DBl
'~l l !!+

LetGl be the total visit time to queuel:Gl 5Rl 1El 1Dl +Then, for the weighted
sojourn time criterion, there is only a slight difference between the gated and the
exhaustive cases+ If in the analysis of the gated model,we replaceHl , hl , andhl

~2! by
Gl , gl , andgl

~2! , respectively, and we add the term for the sojourn times of the jobs
served during the repetitions~on the average, l l el jobs, each requiring one residual
and one normal service time!, then for policyp1, we get~cf+ ~2!!

(
l51

L

wl E @Sl # 5 (
l51

L

wl HnlS(
j51

l21

gj 1 rl 1 blD1
l l

2
EFS(

j51

l21

Gj 1 RlD2G
1 l lS(

j51

l21

gj 1 rlDbl 1 l l elSbl
~2!

2bl

1 blD
1

l l

2
EFSDl 1 (

j5l11

L

GjD2GJ + (5)

The structure of this expression looks similar to~2!, but, in fact, it is even more
involved than in the~locally! gated case+ Even for the symmetric case, when allRl ,
Bl , andDl are the same, the DBl ~l l ! terms cause us to no longer have an assignment
problem as a solution of~5!+
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3.4. Extension: Modifying the Hamiltonian Tour

A possibly improved procedure~within the framework of Hamiltonian tours! is the
following+ Suppose the visit order dictated by the performance measure and the
gating procedure is 1,2, + + + , L+ Then, after exiting queue 1, the rule can be reapplied
with regard to theremaining L21 queues, taking into account the new values of the
nl ’s+Accordingly, the next queue to be visited will be determined, continuing in this
manner until the last queue~among the originalL! is serviced+ Note, however, that
such a modified procedure will violate the main purpose of the globally gated regime
aimed atnot letting jobs arriving during the current cycle to be servicedbeforejobs
that have arrived during the previous cycle+ Considering for a moment a Markov
decision process approach, which aims at acting optimally at each step, one can
apply a new visit-order rule~e+g+, the nonincreasingwl nl 0hl policy! after each visit
of a queue, doing it in a continuous routine while neglecting the Hamiltonian tour
restriction and generating a dynamic, although erratic, polling visit table~for more
about polling tables, see Yechiali@22# !+

4. MINIMIZE THE NEXT CYCLE DURATION

Since in all three service regimes the duration of each Hamiltonian cycle is inde-
pendent of the order of visits, a criterion which seems to look a bit further ahead is
to minimize the expected duration of the next Hamiltonian cycle+ In addition to short
cycles being clearly good, this criterion also implies that we are trying to serve new
arrivals already in the first cycle+

A possibly different way of looking one cycle ahead is tominimize the expected
number of nonempty queues at the beginning of the next cycle+ These two problems
are, as we will see, closely related+

Consider again the strategyp1 which serves the queues in the order 1,2, + + + , L+
For this strategy, we will compute the expected duration of the next cycle+ In order
to do so,we need the probability that a specific queue will be empty in the beginning
of the next cycle+ Define

pl 5 Prob$Queuel is empty at the start of the next cycle%+

We emphasize again that for the globally and locally gated regimes, as well as
for the exhaustive case, the duration of the present Hamiltonian cycle does not de-
pend on the visit order within the cycle+ First, consider queues not visited in this
cycle+ The probability that queuel, l . L, is empty in the beginning of the next cycle
is independent of the order+Formally, defining for the gated regimesH ~L! 5(j51

L Hj ,
we have

pl 5 E@e2l l H ~L!
# 5 EH ~L! ~l l !, l . L+

In the exhaustive regime, we get a similar expression withG~L! 5 (l51
L Gl +
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4.1. Globally Gated

When simultaneously gating at the beginning of the cycle, thepl for l 51, + + + , L also
satisfypl 5 EH ~L!~l l !+ Hence, in this case, all orders are stochastically identical~and
optimal!+

4.2. Locally Gated

Similar to the sojourn times criterion, the gating is just beforeBl + Then, for l # L, pl

is the probability that there are no arrivals into queuel during the remaining duration
of the present cycleBl 1 Dl 1 Hl11 1 {{{ 1 HL+ Hence,

pl 5 DBl ~l l ! EDl ~l l ! )
j5l11

L

EHj ~l l !+

The expected duration of the next cycle underp1 is

(
l51

N

~12 pl !hl 5 (
l51

N

hl 2 (
l51

L

DBl ~l l ! EDl ~l l !hl )
j5l11

L

EHj ~l l ! 2 (
l5L11

N

EH ~L! ~l l !hl + (6)

We immediately observe that, in contrast to the “minimizing the sojourn time” per-
formance measure, the above expression isindependentof the number of jobs present
at the start of the cycle+

The first and third terms in~6! are order independent, so we consider

V~p1! 5 (
l51

L

DBl ~l l ! EDl ~l l !hl )
j5l11

L

EHj ~l l !

and wish to find a permutationp that maximizes

V~p! 5 (
l51

L

DBp~l !~lp~l ! ! EDp~l !~lp~l ! !hp~l ! )
j5l11

L

EHp~ j !~lp~l ! !+

In general, this expression is hard to maximize+ Therefore, we consider two special
cases:

1+ All l l are equal, sayl l 5 l+
2+ All Hl are identical+

4.2.1. Case 1: All l l are equal. Assumel l 5 l for all l+ As previously,
compare two strategies, p1 andp1

' , which differ only in the order in which queuesi
andi 1 1 are visited+ In p1, the order isi, i 1 1, and inp1

' the order is reversed+
ComparingV~p1! and V~p1

' !, the contributions for queuesl less thani and
larger thani 1 1 are the same+We only have to compare the expressions fori and
i 1 1 in the two orders+
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It follows thatp1 is better thanp1
' if , simplifying the notation toaj :5 EHj ~l! and

cl 5 DBl ~l! EDl ~l!hl ,

V~p1! 2 V~p1
' ! 5 ~ci ai11 1 ci11 2 ci11ai 2 ci ! )

l5i12

L

al . 0;

that is, if

ci11

12 ai11

2
ci

12 ai

. 0+

Therefore, if all arrival rates are equal, the optimal visit schedule follows a nonde-
creasing order of the index

cl

12 al

5
DBl ~l! EDl ~l!hl

12 EHl ~l!
+

4.2.2. Case 2: All Rl , Bl , and Dl are identical. If all Rl , Bl ,Dl , and, therefore,
Hl are identical,writing fl 5 DBl ~l l ! EDl ~l l !handgl 5 EH~l l !, the expression forV~p1!
simplifies to

V~p1! 5 (
l51

L

fl gl
L2l +

Thus, similar to the consideration in Section 3, if queuei is in positionj in the visit
order, then its “contribution” isfi gi

L2j+ Therefore, in order to maximizeV~p!, one
has to solve an assignment problem with rewardsCij 5 Cp~i !, j 5 fp~i ! gp~i !

L2j +
Note that this case is more involved than case 1, but essentially simpler than the

general case in which the terms in the objective function depend not only onp~i !
andj but also on the order of the other queues+

4.3. Exhaustive Regime

The time to visit a queue now consists ofGl 5 Rl 1 El 1 Dl instead ofHl 5 Rl 1 Bl 1
Dl + Due to the exhaustive discipline~and under p1!, we have pl 5
EDl ~l l !) j5l11

L EHj ~l l ! for l # L+ Thus,writing gl 5 rl 1 el 1 dl , the expression equiv-
alent toV~p1! in Section 4+2 is

(
l51

L

EDl ~l l !~rl 1 el 1 dl ! )
j5l11

L

ERj ~l l ! EEj ~l l ! EDj ~l l !+

This leads to essentially the same optimization problem as for the locally gated
variant+
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The case where alll l are equal is the same as earlier, implying that the optimal
visit schedule is determined by the nondecreasing order of

EDl ~l!gl

12 EHl ~l!
5

EDl ~l!~rl 1 el 1 dl !

12 ERl ~l! EEl ~l! EDl ~l!
+

However, for case 2~all Hl equal!, there is a significant difference in the meaning of
the assumption thatRl 1 El 1 Dl is the same for alll+ It implicitly implies that if the
Hl are the same and theEl are the same, then alll l are the same as well+Hence, in this
case, all queues are stochastically identical and all visit orders are optimal+

4.4. Number of Nonempty Queues

As was indicated, the problem of minimizing the expected number of nonempty
queues at the beginning of the next cycle is not very different from the problem of
minimizing the expected duration of the next cycle+ The only difference is that in
the expression for the objective function given in~6!, the termshl disappear because
the expected number of nonempty queues equals(l51

N ~1 2 pl !+ Thus, the structure
of the optimization problem is exactly the same+

5. MAXIMIZE THE WEIGHTED THROUGHPUT IN A CYCLE

A third objective for optimization is to maximize the expected weighted throughput
during the cycle+This objective may seem to be more interesting from the viewpoint
of the system operator than from the viewpoint of the requester+ However, the more
jobs that are served in the current cycle, the fewer jobs are left to wait until the next
cycle+ Thus, this objective is an interesting one for the requesters as well+ For the
globally gated case, the cycle throughput is order independent+Also, as we will see,
the structure of the optimization problem is the same for the locally gated and for the
exhaustive regimes+

Note, again, that for all service disciplines, the duration of the cycle is indepen-
dent of the order in which the queues are visited, implying that one can ignore the
queuesL 1 1 up toN+

5.1. Locally Gated

Let p1 be again the order 1,2, + + + , L+ Define M~p1! to be the expected weighted
throughput during the cycle under orderp1+ Then, gating just beforeBl ,

M~p1! 5 (
l51

L

wl nl 1 (
l51

L

wl l lS(
j51

l21

hj 1 rlD+
Now, similar to what we have seen previously, the optimal visit order is an index rule
and is independent ofnl : Visit the queues in a nondecreasing order of

wl l l

hl

+
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Note that this rule does not affect the long-run weighted throughput, which is fixed
and equal to(l wl l l , but focuses on theearly weighted throughput+

Remark: If all wl are the same and alll l are equal, then the optimal order is in a
nonincreasing order ofhl , enabling accumulation of as many jobs as possible in
queues to be visited later in the cycle+ Similarly, if all wl andhl are equal, the queues
are visited in a nondecreasing order ofl l , again in order to generate as many jobs as
possible in the most active queues+

5.2. Exhaustive Regime

The result here is very similar to the one derived for the locally gated case+ The
corresponding expression forM~p1! changes into

M~p1! 5 (
l51

L

wl nl 1 (
l51

L

wl l lS(
j51

l21

gj 1 rl 1 elD+
Therefore, the optimal visit schedule follows a nondecreasing order of

wl l l

gl

+

6. SUMMARY OF RESULTS

Table 1 summarizes the analytical results considering the optimal policies~visit-
order rules! for the various combinations of performance measure and gating pro-
cedure+ The criterion “minimizing the weighted expected sojourn times~during a
Hamiltonian tour!” leads to rules involving the values of thenl ’s ~i+e+, the number of
requests present at the start of the cycle in each queue!+ This implies that the visit
order will change from one cycle to another as a result of the dynamic evolution of
the system+ Furthermore, it may enable one to modify the visit order for the remain-
ing queues in the cycle each time the server exits a queue+One can possibly exercise
a one-step look-ahead procedure~following the relevant rule! and apply it repeat-
edly without being confined by the Hamiltonian tour restriction+ The objectives
“minimizing the expected duration of the next cycle” and “maximizing the expected
weighted throughput” lead to Hamiltonian procedures that donot involve thenl ’s+
Thus, if we try to modify the visit order within a cycle, we will come up with the
same visit order that has been determined at the start of the cycle+However, one can
use rules which arel l dependent to determine static, fixed-order, cycles in cases
where dynamic control is not applicable+

7. CONCLUSIONS

We have considered the problem of finding dynamic visit-order rules for a polling
system with unlimited batch servicing, where service times are independent of the
batch sizes+We adopt a “fair” dynamic Hamiltonian cycle approach in which a new
visit order is determined in each new cycle, based on the dynamic evolution of the
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Table 1. Optimal Policies for the Various Combinations of the Performance Measure and Gating Procedure

Gating Procedure
Performance Measure Globally Gating Locally Gating Exhaustive

Minimize weighted expected
sojourn times~Sect+ 3!

Index rule: decreasingwl nl 0hl Hard combinatorial problem
involving thenl ’s

Hard combinatorial problem
involving thenl ’s

Special case:hl 5 h; distinct
l l ’s: assignment problem
with costscij ’s involving
thenl ’s

Minimize expected duration of
next cycle~Sect+ 4!

All policies are stochastically
equal

Hard combinatorial problemnot
involving thenl ’s

Hard combinatorial problemnot
involving thenl ’s

Special case 1:l l 5 l Special case 1:l l 5 l

Index rule: increasing

DBl ~l! EDl ~l!hl

@12 EHl ~l!#

Index rule: increasing

EDl ~l!gl

@12 EGl ~l!#

Special case 2:hl 5 h: assign-
ment problem with rewards
cij ’s not involving thenl ’s

Special case 2:hl 5 h, el 5 e:
fully symmetric, all policies
stochastically equal

Maximize expected weighted
throughput in a cycle
~Sect+ 5!

All policies are stochastically
equal

Index rule: increasingwl l l 0hl Index rule: increasingwl l l 0gl

3
6

4
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system+ Within the cycle, we have considered various performance measures and
various gating procedures+ Some of the Hamiltonian cycle problems lead to elegant
solutions in the form of an index rule+Some lead to an assignment problem,whereas
others result in combinatorial hard problems+ Furthermore, thenl -dependent rules
may be reapplied within a cycle to modify it or as a one-step look-ahead repeated
procedure+ The non-nl -dependent index rules can be used to construct fixed-order
cyclic polling tables in cases where static rules are required+

Acknowledgment
We thank Professor Arie Tamir for very helpful discussions regarding the NP-Hard property+

References

1+ Ahuja, R+K+,Magnanati, T+L+, & Orlin , J+B+ ~1993!+ Network flows, theory, algorithms and applica-
tions+ Englewood Cliffs, NJ: Prentice–Hall+

2+ Altman, E+ & Yechiali, U+ ~1994!+ Polling in a closed network+ Probability in the Engineering and
Informational Sciences8~3!: 327–343+

3+ Ammar, M+H+ & Wong, J+W+ ~1987!+ On the optimality of cyclic transmission in teletext systems+
IEEE Transactions on Communications35~1!: 68–73+

4+ Armony, R+ & Yechiali, U+ ~1999!+ Polling systems with permanent and transient customers+ Sto-
chastic Models15~3!: 395–427+

5+ Boxma,O+J+ ~1991!+Analysis and optimization of polling systems+ In J+W+Cohen & C+D+Pack~eds+!,
Queueing, performance and control in ATM+ Amsterdam: North-Holland, pp+ 173–183+

6+ Boxma, O+, Levy, H+, & Yechiali, U+ ~1991!+ Cyclic reservation schemes for efficient operation of
multiple-queue single-server systems+ Annals of Operations Research36: 187–208+

7+ Browne, S+ & Yechiali, U+ ~1989!+ Dynamic priority rules for cyclic-type queues+ Advances in Ap-
plied Probability21: 432–450+

8+ Dror, H+ & Yechiali, U+ ~2000!+ Closed polling models with failing nodes+ Queueing Systems35:
55–81+

9+ Dykeman, H+D+, Ammar, M+H+, & Wong, J+W+ ~1986!+ Scheduling algorithms for videodex systems
under broadcast delivery+ In Proceedings of the International Conference on Communications
(ICC’86), pp+ 1847–1851+

10+ Garey, M+R+ & Johnson, D+S+ ~1979!+ Computers and intractability: A guide to the theory of NP-
completeness+ New York:W+H+ Freeman+

11+ Grillo, D+ ~1990!+ Polling mechanism models in communications systems—Some applications and
examples+ In H+ Takagi~ed+!, Stochastic analysis of computer and communication systems+Amster-
dam: North-Holland, pp+ 659–698+

12+ Levy,H+& Sidi,M+ ~1990!+Polling systems:Applications,modeling, and optimization+ IEEE Trans-
actions on Communications38: 1750–1760+

13+ Liu, Z+ & Nain, P+ ~1992!+ Optimal scheduling in some multiqueue single-server systems+ IEEE
Transactions on Automatic Control37~2!: 247–252+

14+ Potts, C+N+ & Kovalyov, M+Y+ ~2000!+ Scheduling with batching: A review+ European Journal of
Operational Research120: 228–249+

15+ Takagi, H+ ~1986!+ Analysis of polling systems+ Cambridge, MA : MIT Press+
16+ Takagi, H+ ~1990!+ Queueing analysis of polling systems: An update+ In H+ Takagi~ed+!, Stochastic

analysis of computer and communication systems+ Amsterdam: North-Holland, pp+ 267–318+
17+ Takagi, H+ ~1991!+ Application of polling models to computer networks+ Computer Networks and

ISDN Systems22: 193–211+
18+ Takagi, H+ ~1997!+ Queueing analysis of polling models: Progress in 1990–1994+ In J+H+ Dshalalow

~ed+!, Frontiers in queueing: Models and applications in science and engineering+ Boca Raton, FL:
CRC Press, pp+ 119–146+

DYNAMIC VISIT-ORDER RULES 365

https://doi.org/10.1017/S0269964803173044 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964803173044


19+ Takagi, H+ ~1998!+ Queueing analysis of polling models+ ACM Computing Surveys20: 5–28+
20+ Van Oyen, M+P+ & Teneketzis, D+ ~1996!+ Optimal batch service of a polling system under partial

information+ Method and Models in OR44~3!: 401–419+
21+ Xia, C+H+, Michailidis, G+, Bambos, N+, & Glynn, P+W+ ~2002!+ Optimal control of parallel queues

with batch service+ Probability in the Engineering and Informational Sciences16~3!: 289–307+
22+ Yechiali, U+ ~1993!+ Analysis and control of polling systems+ In L+ Donatielo & R+ Nelson~eds+!,

Performance evaluation of computer and communication systems+ New York: Springer-Verlag,
pp+ 630–650+

APPENDIX

The Scheduling Problem (4) is NP-Hard

We wish to show that the scheduling-optimization problem~4! of finding a permutationp so
as to

MinimizeH(
l51

L

vp~l !~np~l ! 1 lp~l ! bp~l ! !S(
j51

l21

hp~ j !D
1 (

l51

L

vp~l ! lp~l !Frp~l !S(
j51

l21

hp~ j !D1 ~bp~l ! 1 dp~l ! !S (
j5l11

L

hp~ j !D
1

1

2S(
j51

l21

hp~ j !D2

1
1

2S (
j5l11

L

hp~ j !D2GJ (A.1)

is NP-hard+
To prove this assertion, we consider a special instance of the problem where, for all l,

bl 5 0, dl 5 rl , andwl 5 1+ Then problem~A+1! is reduced to minimizing

f ~p! 5 (
l51

L

np~l !S(
j51

l21

hp~ j !D1
1

2 (
l51

L

lp~l !FS(
j51

l21

hp~ j !D2

1S (
j5l11

L

hp~ j !D2G + (A.2)

It is known@10# that the followingpartition problem is NP-complete+

Input: a1,a2, + + + ,ak are positive integers~k $ 2!+

Output: For(j51
k aj 5 A, is there a subsetS# $1,2, + + + , k% such that(j[S aj 5 A02?

That is, the process of finding an answer Yes or No to the above output question is NP-hard+
We start with transforming the partition problem into the polling-optimization schedul-

ing problem by takingL 5 k 11; nl 51 for l 51, + + + , k 11; hl 5 al for l 51,2, + + + , k; hk11 5
hL 5 1; l l 5 1 for l 5 1,2, + + + , k, andlk11 5 lL 5 M 5 4~k 1 1!A2+

We now prove the following+

Claim: The output for the partition problem is Yes if and only if there exists a permutationTp
of $1,2, + + + , k11% such that f~ Tp!, the objective value of the respective scheduling-optimization
problem, satisfies

f ~ Tp! # ~k 1 1!A 1
k

2
A2 1

MA2

4
5 B, (A.3)

where M5 4~k 1 1!A2.
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Proof: Assume that there exists a partition and construct a permutationTp satisfyingf ~ Tp! #
B+ Suppose that the setS# $1,2, + + + , k% is a partition; that is, (j[S aj 5 (j[S hj 5 A02+ Let
6S65 m+ Let Tp be a permutation of$1,2, + + + , k 1 1% satisfying

Tp~ j ! [ S for j 5 1,2, + + + ,m ~m# k 2 1!,

Tp~m1 1! 5 L,

Tp~ j ! [ $1,2, + + + , k% 2 S for j 5 m1 2, + + + , k 1 1+

Substituting for Tp in f ~{!, we obtain

f ~ Tp! 5 (
l51

L S(
j51

l51

h Tp~ j !D1
1

2 (
l51

lÞm11

L FS(
j51

l21

h Tp~ j !D2

1S (
j5,11

L

h Tp~ j !D2G
1

1

2
lLFS(

j51

m

h Tp~ j !D2

1S (
j5m12

L

h Tp~ j !D2G
# LA 1

1

2
~L 2 1!S(

j51

k

hjD2

1
1

2
MFS(

j[S

ajD2

1S(
jÓS

ajD2G
5 LA 1

L 2 1

2
A2 1

1

2
MFS A

2D
2

1 S A

2D
2G5 LA 1

L 2 1

2
A2 1

M

4
A2 5 B+ (A.4)

The inequalities follow since, given hj 5 aj positive integers forj 5 1,2, + + + , L 2 1, and
hL 5 1, (j51

l21 h Tp~ j ! # (j51
L21 aj 5 A for everyl 5 2,3, + + + , L+

Next, suppose that the answer to the output problem is No; that is, there is no parti-
tion such that(j[S aj 5 A02+We will show that foranypermutationp, f ~p! . B+ Consider
an arbitrary permutationp of $1,2, + + + , k 1 1 5 L% and suppose thatp~m! 5 k 1 1 5 L for
somem+ Then

f ~p! $
1

2
lp~m!FS (

j51

m21

hp~ j !D2

1S (
j5m11

L

hp~ j !D2G +
Since there is no partition,(j51

m21 hp~ j ! [ xÞ A02 and(j5m11
L hp~ j ! [ yÞ A02, wherex1 y5

(j51
k aj 5 A+

Hence, sincex andy are integers, x2 1 y2 $ ~A022 1
2
_!2 1 ~A021 1

2
_!2 ~this follows from

the convexity and symmetry of the program min$x2 1 y2% s+t+ x1 y5 A;x, y$ 0!+ Therefore,

f ~p! $
1

2
MFS A

2
2

1

2D
2

1 S A

2
1

1

2D
2G

5
M

2
S A2

2
1

1

2
D5

M

4
A2 1

M

4
5

M

4
A2 1 ~k 1 1!A2

5
M

4
A2 1

k

2
A2 1 S k

2
1 1DA2 .

M

4
A2 1

k

2
A2 1 ~k 1 1!A 5 B+ (A.5)

The last inequality follows since, for k $ 2 andA a positive integer satisfyingA $ 2,
~k02 1 1!A2 . ~k 1 1!A+ n

To summarize, solving our polling scheduling-optimization problem is equivalent to
solving the partition problem, which is NP-hard+
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