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Abstract

The Shuangjianzishan vein-type Ag-Pb-Zn deposit in the southern Great Xing’an Range
(GXR), NE China, is hosted in the slate of the Lower Permian Dashizhai Formation intruded
by granite porphyry. In this paper, U–Pb zircon ages and bulk-rock and isotope (Sr, Nd, Pb
and Hf) compositions are reported to investigate the derivation, evolution and geodynamic
setting of this granite porphyry. It is closely associated with Pb-Zn-Ag mineralization in the
southern GXR and contains important geological information relating to regional tectonic
evolution. Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS)
zircon U–Pb dating yields an emplacement age of 131 ± 1 Ma for the granite porphyry.
Bulk-rock analyses show that the Shuangjianzishan granite porphyry is characterized by high
Si, Na and K contents but low Mg and Fe contents, and that the enrichment of Zr, Y and Ga
suggests an A-type granite affinity. Most of the studied samples have relatively low 87Sr/86Sr
values (0.70549–0.70558), with positive ϵNd(t) (0.71–0.88) and ϵHf(t) (4.9–6.9) values. The
Sr–Nd isotope modelling results, in combination with the young TDM2 ages of Nd and Hf
(850–864 and 668–778 Ma, respectively), reveal that the Shuangjianzishan granite porphyry
may be derived from the melting of mantle-derived juvenile component, with minor lower
crustal components; this finding is also supported by Pb isotopic compositions. Considering
the widespread presence of granitoids with coeval volcanic rocks and regional geology data,
we propose that the Shuangjianzishan granite porphyry formed in a post-orogenic exten-
sional environment related to the upwelling of asthenospheric mantle following the closure
of the Mongol–Okhotsk Ocean.

1. Introduction

NE China is located in the eastern section of the Central Asian Orogenic Belt (CAOB)
(Fig. 1a) and has been jointly influenced by the Palaeo-Asian Ocean, Mongol–Okhotsk
Ocean and Palaeo-Pacific tectonic–metallogenic domains (Ouyang et al. 2014; Zeng
et al. 2015; Tang et al. 2016; Chen et al. 2017; Liu et al. 2017). The Palaeo-Asian Ocean
was located between the Siberian Craton and the North China Craton (NCC), and the final
closure of the Palaeo-Asian Ocean is marked by suturing between the Songliao Block and the
Liaoyuan Terrane (Fig. 1b). The closure of the Mongol–Okhotsk Ocean occurred to the NW
(current position, F7 in Fig. 1b), and subduction of the Palaeo-Pacific oceanic plate to the
east (current position) (Ouyang et al. 2015). The distribution of granite in the Great Xing’an
Range (GXR), an important part of NE China, is mainly controlled by the different tectonic
activities that occurred in different periods. The post-orogenic extension during the Triassic
Period followed the closure of the Palaeo-Asian Ocean (Liu et al. 2016). The northern
Mongol–Okhotsk Ocean between the Siberian Craton and NE China closed during
Middle–Late Jurassic time (Kravchinsky et al. 2002; Cogné et al. 2005), and mass subduction
of the southeastern Palaeo-Pacific Plate beneath NE China started during the Early
Cretaceous Epoch (Zorin, 1999; Wu et al. 2007; Wang et al. 2018). Accordingly, it has been
reported by previous researchers that the southern GXR is characterized by widespread
Jurassic–Cretaceous (Yanshanian) granites and a small amount of Hercynian granitoids
(Wu et al. 2000, 2005a; Sui et al. 2007; Zhang et al. 2010), bounded by the Hegenshan–
Heihe Suture to the north, the Xilamulun–Changchun Suture to the south and the
Nenjiang Fault to the east (Fig. 1b, c). These immense volumes of granitic rocks have mostly
been considered A-type granites (Li & Yu, 1993; Sun et al. 2000; Jahn et al. 2001; Wu et al.
2002; Zhang et al. 2007; Yang et al. 2013). In addition, geochronological and isotopic studies
in the southern GXR (Wang et al. 2018) have shown that many contemporaneous and
A-type granite-related hydrothermal vein-type ore deposits are comparable with those of
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the adjacent skarn deposits (e.g. the Shuangjianzishan vein-type
Ag-Pb-Zn deposit and Haobugao skarn Fe-Zn deposit) and that
the magmatism and associated mineralization were coevally
generated during the Early Cretaceous Epoch (Zhai et al.
2014; Mei et al. 2014, 2015; Ruan et al. 2015). The origin of these
A-type granites therefore has important geological significance
and economic potential because of the close association of
A-type granites with skarn and epithermal deposits in the
southern GXR (Ouyang et al. 2013, 2014; Zhai et al. 2014;
Mei et al. 2015; Ruan et al. 2015).

The super-large Shuangjianzishan Pb-Zn-Ag deposit, located in
southwestern Ganzhuermiao between the Baiyinnuoer and
Haobugao deposits (Fig. 1c), is reported to be a typical epithermal
vein-type deposit associated with hidden granite porphyry (Wu
et al. 2013; Liu et al. 2016; Gu et al. 2017). However, whether the
Shuangjianzishan granite porphyry is an A-type granite, and the geo-
dynamic setting and genetic mechanism of this granite, remains
ambiguous. Two main possible models are at the centre of this con-
troversy: (1) delamination of the lower crust and lithospheric mantle
induced by the subduction of the Palaeo-Pacific Plate (Wu et al.
2005b; Wang et al. 2006a; Zhang et al. 2008; Tian et al. 2014;
Wang et al. 2016b); and (2) post-orogenic lithospheric extension
related to the closure of the Mongol–Okhotsk Ocean (Fan et al.
2003; Meng, 2003; Ying et al. 2010; Wang et al. 2018). We consider
that it may be feasible to determine which of the two possible models
is more likely by investigating the Shuangjianzishan granite porphyry.
In this paper, the formation time, evolution and geodynamic signifi-
cance of Shuangjianzishan granite porphyry (depth greater than
1000 m) and its high affinity with A-type granite are defined by pre-
senting its zircon U–Pb ages and Sr, Nd, Pb and Hf isotopes and
whole-rock geochemical data.

2. Geological setting

NE China consists of the Erguna, Xing’an, Songliao, Jiamusi and
Nadanhada massifs (Fig. 1b; Fritzell et al. 2016; Wang et al.
2006b, 2016b). The Erguna Block is of Neoproterozoic age, and
Jurassic basalts are widely distributed as dykes (Wu et al.
2005c). The oldest basement in the Xing’an Block comprises
Palaeozoic amphibolite- to greenschist-facies metamorphic rocks
(Miao et al. 2007). The underlying basement of the Songliao
Basin is composed of Palaeoproterozoic meta-gabbro and meta-
granite (Pei et al. 2007). The Jiamusi Block contains the
Proterozoic Mashan complex and the Early–Late Palaeozoic gran-
itoids (Zhang et al. 2010). The Nadanhada Terrane comprises the
Raohe complex (a Late Palaeozoic – Jurassic volcano-sedimentary
sequence) and undeformed Mesozoic granitoids (Zhang et al.
2010;Wu et al. 2011). All of thesemassifs were separated by a series
of NE-trending faults (Fig. 1b).

As an important component of NE China, the southern Great
Xing’an Range is bounded by the Nenjiang, Hegenshan–Heihe
and Xilamulun–Changchun sutures (Fig. 1c). The Palaeo-Asian
Ocean, Palaeo-Pacific and Mongol–Okhotsk subductions
(Kelty et al. 2008; Wang et al. 2015; Tang et al. 2016; Chen
et al. 2017; Liu et al. 2017) have jointly developed a suite of
NE-trending and E–W-trending large-scale faults, which strongly
controlled the regional stratigraphic sequence, magmatism and
polymetallic mineralization in this region (Fig. 1c). A widespread
Permian succession of sedimentary and volcanic rocks makes up
much of the GXR, and also the significant ore-bearing strata
regionally. Intense magmatic activities produced widespread
NE-trending granite bodies, mainly the Yanshanian granitoids,
in the southern GXR (Fig. 1c). Wu et al. (2003) showed that
Mesozoic volcanic rocks and granites in the southern GXR have

Fig. 1. (Colour online) (a) Location of the Central Asian Orogenic
Belt (after Liu et al. 2016). (b) Tectonic sketch of NE China (after
Wu et al. 2011). (c) Regional geological map of the southern Great
Xing’an Range (GXR) (after Mei et al. 2014).
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low initial 87Sr/86Sr ratios (0.7045 ± 0.0015), positive ϵNd(t) values
(þ1.3 to þ2.8) and young Sm–Nd model ages (720–840 Ma). Liu
et al. (2020) reported that the Wulanba granite in the southern
GXR originated from partial melting of juvenile crust derived
from the depleted mantle with a minor input of old crust.
However, Tang et al. (2020) suggested that upper Mesozoic vol-
canic rocks of the GXR were derived from the partial melting of a
mantle wedge that was modified by previously subducted slab-
derived fluids, and that the magma was likely introduced with
limited crustal contamination. Ouyang et al. (2015) identified
three magmatic stages of the Mesozoic granitoids that occurred
during 255–220 Ma, 184–160 Ma and 155–120 Ma. The intrusive
activities peaked during late Mesozoic time (155–120 Ma) and
were accompanied by large-scale mineralization. For example,
the mineralized Huanggang granite has an age of 135–137 Ma
(Mei et al. 2014; Zhai et al. 2014), the mineralized Baiyinnuoer
granite has an age of 135–139 Ma (Jiang et al. 2011; Shu et al.
2013), the mineralized Haobugao granite has an age of 138–
139 Ma (Wang et al. 2018) and the mineralized Weilasituo gran-
ite has an age of 133–136 Ma (Pan et al. 2009; Zhai et al. 2016).
The magmatic and mineralizing activity at Shuangjianzishan has
been dated at 133–136Ma (Zhai et al. 2020). Several studies of the
Shuangjianzishan deposit have addressed the ore deposit geology
(Kuang et al. 2014), mineralogy (Wu et al. 2014), whole-rock geo-
chemistry (Liu et al. 2016; Gu et al. 2017), magmatic rock and ore
geochronology (Wu et al. 2013; Liu et al. 2016; Ouyang et al. 2016;
Wang et al. 2016a; Wang et al. 2018; Zhang, 2018; Zhai et al.
2020) and S–Pb isotope geochemistry (Jiang et al. 2017; Wang
et al. 2018). However, questions related to the petrogenesis and
the tectonic setting of the Shuangjianzishan granite porphyry
remain unresolved. For example, Liu et al. (2016) suggested that
the porphyritic granodiorite is interpreted as being adakitic and
related to the subduction of the Palaeo-Pacific oceanic plate,
whereas Gu et al. (2017) proposed that granite porphyry formed

in a post-orogenic extensional environment related to the upwell-
ing of asthenospheric mantle due to the deep break of the sub-
ducting plate of Mongolia–Okhotsk.

The Shuangjianzishan Pb-Zn-Ag deposit is located in the central
part of the Songliao Block (Fig. 1c), which mainly consists of the
Upper Jurassic Manketouebo Formation, the Middle Jurassic
Xinmin Formation, the Lower Permian Dashizhai Formation and
the Quaternary Holocene Formation (Fig. 2b). The Dashizhai
Formation comprises tuffaceous and silty slate, and the southeastern
Xinmin Formation consists of a suite of volcaniclastic rocks. The
northwestern Manketouebo Formation is composed of pyroclastic
rocks, felsic lava and andesite. The zircon U–Pb ages of the
Manketouebo Formation volcanic rocks are 150–160 Ma (Yang et al.
2012). Quaternary sediments, located in the valleys, mainly consist of
proluvial and alluvial materials. A large amount of Yanshanian gran-
ites are distributed in the northwestern periphery of the mining area
(Fig. 2a). An unexposed granite porphyry was discovered by drilling
exploration (ZK12-37 in Zhai et al. 2020; ZK12-50 in Gu et al. 2017).
Since the discovery of the Shuangjianzishan deposit, several studies on
the geochronology have been completed (Table 1). There are three
magmatic periods described by the Shuangjianzishan deposit
(254–239 Ma, 169–159 Ma and 135–128 Ma) and there is no final
consensus on the age of the granite porphyry. For example,
Ouyang et al. (2016) consider that U–Pb zircon ages of the granite
porphyry are 159 ± 2 Ma. However, most studies suggested that
the age of granite porphyry is c. 130 Ma (Liu et al. 2016; Wang et al.
2016a; Gu et al. 2017; Zhai et al. 2020).

3. Core and sample descriptions

Zhai et al. (2020) subdivided the granite porphyry into lower coarse-
grained facies and upper fine-grained facies, and Gu et al. (2017)
described the mineral composition of the granite hand specimens.
According to our observations, the granite porphyry was found in

Fig. 2. (Colour online) (a) Geological map of the
Shuangjianzishan Pb-Zn-Ag deposit (after Liu et al. 2016). (b)
Large-scale geological map of the Shuangjianzishan mining area.
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the core of drill hole ZK12-50 from a depth of 1011m to the bottom at
1023 m, and presents uniform coarse-grained facies without facies
change at depth. The granite porphyry is in intrusive contact with
the Lower Permian Dashizhai Formation and the contact is an intru-
sive breccia, with xenoliths of Permian slate within the granite. The
main alteration in the granite near the contact zone is pyritization
(at 1011 m), and the overlying slates have undergone strong chloritic
and silicic alteration (from 967 to 952 m) and contain numerous Pb–
Zn veins (Fig. 3). From the granite porphyry to the country rock, the
alteration varies from pyritization, chloritic to silicic alteration. Under
the influence of the magmatic–hydrothermal activity, abundant brec-
cias cemented byminor quartz-calcite occur in the Permian slate, and
the ore bodies are lenticular ore-bearing veinlets (Fig. 3). The number
of samples is limited as the core column was badly damaged. Nine
rock samples from ZK12-50, collected from 1011–1023 m depths
at an interval of about 1 m, were analysed for their zircon U–Pb dates
and whole-rock and isotope compositions (Table 2). The granite por-
phyry is red and has a porphyritic texture (Fig. 4a). The phenocrysts
are euhedral plagioclase (15–20 vol%), subhedral K-feldspar
(10–15 vol%) and subhedral quartz (20–25 vol%) (Fig. 4b, d, e).
The dark minerals observed in hand specimens are mainly flake
biotite (> 10 vol%). The matrix (30–35 vol%) consists of quartz,
plagioclase and K-feldspar with minor hornblende and accessory
minerals (< 2 vol%) including rutile, pyrite, zircon and apatite
(Fig. 4f). The plagioclase is partially altered to sericite, and the biotite
is partially altered to chlorite (Fig. 4c).

4. Analytical methods

4.a. Zircon U–Pb dating

A total of 21 zircon grains in three samples from drill hole ZK12-50
(depth, 1020 m) were separated using conventional heavy liquid and
magnetic techniques andmounted in epoxy blocks. These blockswere
then polished to obtain an even surface before analysis by laser

ablation – inductively coupled plasma – mass spectrometry
(LA-ICP-MS). All the zircons were documented via transmitted
and reflected light micrographs and cathodoluminescence (CL)

Table 1. Ages of magmatism in Shuangjianzishan deposit, all determined by
zircon U–Pb dating

Sample details Age (Ma) References

Weakly Mo-mineralized granite porphyry 134 ± 1 Zhai et al. (2020)

Diorite–granodiorite dykes 250 ± 2 Zhai et al. (2020)

Dacite 134 ± 1 Zhai et al. (2020)

Ore-bearing prophyritic monzogranite 252–254 Liu et al. (2016)

Rhyolitic crystal–vitric ignimbrite 169 ± 3 Liu et al. (2016)

Altered porphyritic granodiorite 130 ± 6 Liu et al. (2016)

Granite porphyry 159 ± 2 Ouyang et al. (2016)

Granite porphyry 133 ± 1 Gu et al. (2017)

Granite porphyry 131 ± 1 Wang et al. (2018)

Biotite granite 134 ± 2 Zhang et al. (2018)

Syenogranite 128 ± 2 Zhang et al. (2018)

Granite porphyry 135 ± 2 Zhang et al. (2018)

Diorite porphyrite 239–246 Wang et al. (2016a)

Diorite porphyrite 249 ± 2 Cui (2015)

Granite in the north of the mining area 134 ± 1 Wu et al. (2014)

Quartz porphyry 239 ± 1 Wu et al. (2014)

Table 2. Sample collection in Shuangjianzishan deposit, all coarse-grained
granite

Sample Depth (m) Analytical methods

ZK12-50-1 1012 Whole-rock analyses

50-1 1013.5 Sr-Nd-Pb isotopic analyses

ZK 50-1 1014.5 U–Pb dating and Hf isotopic analyses

ZK12-50-2 1015 Whole-rock analyses

50-2 1016.5 Sr-Nd-Pb isotopic analyses

ZK 50-2 1017 U–Pb dating and Hf isotopic analyses

ZK12-50-3 1018 Whole-rock analyses

50-3 1019.5 Sr-Nd-Pb isotopic analyses

ZK 50-3 1021 U–Pb dating and Hf isotopic analyses

Fig. 3. (Colour online) Simplified drill columnar section and photographs of intrusive
contact relation.
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images to reveal their internal structures. These procedures were per-
formed at the State Key Laboratory of Geological Processes and
Mineral Resources (GPMR), China University of Geosciences
(Wuhan). Zircon U-Th-Pb measurements were carried out under a
32-μm diameter laser beam at the GPMR, and a Geo Las 2005
System was used. An Agilent 7700a ICP-MS instrument was
employed to acquire ion-signal intensities with a 193-nm Ar-F exci-
mer laser and a homogenizing, imaging optical system (Micro Las,
Göttingen, Germany). A detailed description of the instrumentation
and analytical accuracy can be found in Liu et al. (2008, 2010).
Concordia diagrams were generated and weighted mean calculations
were performed using Isoplot/Ex_ver3 (Ludwig, 2003).

4.b. Whole-rock geochemical analyses

Because the rock lithology is relatively uniformwithout obvious dark
enclaves, the sample set is enough when combined with previous
studies of the congenetic granites. Three whole-rock samples were
crushed and powdered in an agate mill to c. 200 mesh. Major-
element analyses were carried out at ALS Chemex (Guangzhou)
Co., Ltd. by spectrofluorimetry with relative analytical errors of<
5%. The samples created for trace-element analyses were from
the same set as for major-element analysis, and digested by
HFþHNO3 in Teflon bombs and analysed with an Agilent 7500a
ICP-MS at the GPMR. The detailed sample-digesting procedure
for ICP-MS analyses and the analytical precision and accuracy of
the trace-element analyses are as described by Liu et al. (2008).

4.c. Sr-Nd-Pb and Hf isotopic analyses

Three isotope samples were crushed and powdered in an agate mill
to c. 200 mesh. Sr and Nd isotopic analyses were carried out via a
Micromass Isoprobe multicollector (MC) ICP-MS at the
Guangzhou Institute of Geochemistry, Chinese Academy of

Sciences (GIGCAS); the analytical procedures regarding the Sr
and Nd isotopes are described in detail by Wei et al. (2002) and
Li et al. (2004). The chemical separation of Sr and Nd was per-
formed via a method similar to the methods described by Li &
McCulloch (1998) and Xu et al. (2002). Sample powders (50–
100 mg) were digested with distilled HF-HNO3 in screw-top
PFA beakers at 120°C for 15 days. Sr and rare earth elements
(REEs) were then separated using cation columns, followed by
the separation of Nd from the REE fraction using di-2-ethylhexyl
phosphoric acid (HDEHP) columns. The 87Sr/86Sr value of the
NBS987 standard and 143Nd/144Nd value of the JNdi-1 standard
were 0.710288 ± 28 (2σ) and 0.512109 ± 12 (2σ), respectively;
all the measured 143Nd/144Nd and 87Sr/86Sr values were corrected
to 143Nd/144Nd= 0.7219 and 87Sr/86Sr= 0.1194, respectively. Pb
isotopic compositions were measured by thermal ionization mass
spectrometry (TIMS) using a procedure similar to that described
by Xu & Castillo (2004). Pb isotopic ratios were corrected for frac-
tionation using replicate analyses of the standard NBS 981. In situ
Hf isotopic analyses on the same set of zircons were conducted
using a Neptune Plus MC-ICP-MS equipped with a Geolas-2005
193-nm Ar-F excimer laser, also at the GPMR. A laser repetition
rate of 10Hz at 100mJwas used with a spot size of 44 μm.Details of
the analytical technique are described by Hu et al. (2012).

5. Results

5.a. Zircon U–Pb geochronology

The CL images of selected zircons are shown in Figure 5. The
LA-ICP-MS zircon U–Pb analytical data are summarized in
Table 3 and illustrated in the concordia diagram (Fig. 6). The zir-
con grains from the granite are grey, prismatic and euhedral with
oscillatory zoning, showing typical magmatic zircons. Most of
these grains have high Th/U ratios ranging from 0.34 to 2.10

Fig. 4. (Colour online) Hand-specimen photograph, photomicrographs and back-scatter electron image for the Shuangjianzishan granite porphyry: (a) porphyritic texture; (b)
quartz phenocryst and matrix quartz; (c) sericite and chlorite alteration; (d) plagioplase phenocryst; (e) K-feldspar phenocryst; and (f) biotite and accessory minerals. Pl – pla-
gioclase; Bi – biotite; Qtz – quartz; Kfs – K-feldspar; Ser – sericite; Ab – albite; Chl – chlorite; Hb – hornblende; Ap – apatite; Zrn – zircon; Py – pyrite; Rt – rutile.

Granite porphyry, Shuangjianzishan deposit, NE China 999

https://doi.org/10.1017/S0016756820001065 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820001065


(Table 4), which supports their magmatic origin (Pupin, 1980;
Koschek, 1993). A total of 23 analyses from 21 grains yielded con-
cordant results with a weighted mean 206Pb/238U age of 131 ± 1Ma
(mean square weighted deviation (MSWD) = 0.46, n= 23) (Fig. 6),
which is interpreted as the crystallization age of the
Shuangjianzishan granite porphyry.

5.b. Major- and trace-element geochemistry

The major- and trace-element abundances of three samples are
provided in Table 4. All the samples have relatively high concen-
trations of SiO2 (69.63–70.32 wt%), Na2O (4.37–4.38 wt%) and
K2O (3.92–4.29 wt%), with K2O/Na2O ratios of 0.90–0.98, indicat-
ing their high-K calc-alkaline composition (Fig. 7a; Peccerillo &
Taylor, 1976). The granite porphyry is metaluminous and weakly
peraluminous with A/CNK (molar ratio of Al2O3/
(CaOþNa2OþK2O)) and A/NK ratios ranging over 0.98–1.01
and 1.21–1.24, respectively (Fig. 7b; Maniar & Piccoli, 1989).

The granite porphyry exhibits moderate REE contents rang-
ing from 151.61 to 156.41 ppm, is enriched in light REEs
(LREEs) and depleted in heavy REE (HREEs), has (La/Yb)N
ratios of 3.16–8.93 and has significant negative Eu anomalies
(Eu/Eu* = 0.37–0.40) (Table 4). These samples are rich in
large-ion lithophile elements (LILE), but depleted in high-
field-strength elements (HFSE), displaying strong negative

anomalies of Ba, Sr, P and Ti (Fig. 7c, d). These features imply
the occurrence of apatite and ilmenite fractional crystallization
or the presence of residual apatite and ilmenite minerals in the
magma source, and the high Rb concentrations (208–220 ppm)
suggest that the Shuangjianzishan granite porphyry may have
undergone high crystal fractionation (Fig. 7d).

5.c. Sr-Nd-Pb isotopes

Three samples were analysed for Sr-Nd-Pb isotopic compositions,
and the results are presented in Tables 5 and 6. The
Shuangjianzishan granite porphyry samples show low (87Sr/86Sr)t val-
ues of 0.7055–0.7056 and positive ϵNd(t) values of 0.71–0.88 (Table 5).
The two-stage Ndmodel ages (TDM2) of the Shuangjianzishan granite
porphyry are 850–864 Ma. Meanwhile, the Shuangjianzishan granite
porphyry samples are characterized by high radiogenic Pb isotope
ratios with (206Pb/204Pb)t= 18.12–18.25, (207Pb/204Pb)t= 15.52–
15.53 and (208Pb/204Pb)t= 38.00–38.11 (Table 6).

5.d. Zircon Hf isotopic composition

The in situ Hf isotopic analysis results of the zircons from the
Shuangjianzishan granite porphyry are listed in Table 7. A total
of 15 spots of zircon grains obtained from sample ZK12-50 were
measured, giving initial 176Hf/177Hf ratios ranging from 0.282833
to 0.282888 with corresponding ϵHf(t) values of 4.9–6.9. The fLu/Hf

Fig. 5. Representative cathodoluminescence (CL) images of zir-
cons from the Shuangjianzishan granite porphyry. Numbers and
ages on zircon grains are the analysed spots in Table 3.
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values range over −0.98 to −0.96, which are much lower than the
fLu/Hf values of oceanic crust and continental upper crust (−0.34

and−0.72, respectively) (Amelin et al. 2000). The two-stage model
ages (TDM2) vary from 668 to 778 Ma (Table 7).

6. Discussion

6.a. Late Jurassic – Early Cretaceous granitic magmatism

The results of the zircon LA-ICP-MS U–Pb dating at
Shuangjianzishan yield a diagenetic age of 131 ± 1Ma for the gran-
ite porphyry, consistent with the age of 131–135 Ma presented in
previous reports (Table 1). Wu et al. (2013) reported a sphalerite
Rb–Sr isochron age of 133 ± 4 Ma, and Zhai et al. (2020) dated a
molybdenite Re–Os age of 134.9 ± 3.4 Ma. The magmatic events
that occurred slightly before 130 Ma are therefore coeval with the
Pb-Zn-Ag mineralization. In addition, this paper does not contra-
dict the views of Liu et al. (2016), Ouyang et al. (2016) or Wang
et al. (2016a) on the possibility of superimposed mineralization
via two periods of mineralization (at c. 165Ma and c. 130 Ma).
However, the major mineralization of the Shuangjianzishan
deposit was triggered by the granite porphyry intrusion, which
occurred over a short interval during the Early Cretaceous Epoch.

6.b. Petrogenesis and evolution of the Shuangjianzishan
granite porphyry

Granitoids have traditionally been classified as I-, S- and A-types
based on chemical and mineralogical compositions (Chappell &

Table 3. LA-ICP-MS zircon U–Pb Shuangjianzishan granite porphyry data

Sample or
spot

232Th
(ppm)

238U
(ppm) Th/U 207Pb/235U 1σ (%) 206Pb/238U 1σ (%) 207Pb/206Pb 1σ (%)

207Pb/235U
time (Ma) 1σ

206Pb/238U
time (Ma) 1σ

SJ-1 551 1215 0.45 0.12965 0.00482 0.02044 0.00026 0.0461 0.0017 124 4 130 2

SJ-2 495 907 0.55 0.13693 0.00646 0.02058 0.00026 0.0491 0.0025 130 6 131 2

SJ-3 307 760 0.40 0.13422 0.00632 0.02062 0.00035 0.0478 0.0023 128 6 132 2

SJ-4 647 1407 0.46 0.14051 0.00510 0.02078 0.00029 0.0497 0.0020 133 5 133 2

SJ-5 1146 3003 0.38 0.16403 0.00592 0.02038 0.00023 0.0574 0.0019 154 5 130 1

SJ-6 489 1058 0.46 0.13601 0.00615 0.02036 0.00027 0.0488 0.0023 129 6 130 2

SJ-7 866 2166 0.40 0.13569 0.00390 0.02022 0.00023 0.0486 0.0015 129 3 129 1

SJ-8 716 1889 0.38 0.14329 0.00501 0.02056 0.00031 0.0507 0.0018 136 4 131 2

SJ-9 587 1697 0.35 0.15101 0.00436 0.02056 0.00024 0.0531 0.0016 143 4 131 2

SJ-10 968 2574 0.38 0.14477 0.00369 0.02048 0.00023 0.0509 0.0013 137 3 131 1

SJ-11 795 2526 0.31 0.13514 0.00386 0.02035 0.00019 0.0478 0.0014 129 3 130 1

SJ-12 563 1316 0.43 0.14124 0.00513 0.02092 0.00028 0.0493 0.0020 134 5 133 2

SJ-13 685 1711 0.40 0.14011 0.00477 0.02074 0.00031 0.0487 0.0016 133 4 132 2

SJ-14 917 1868 0.49 0.13754 0.00463 0.02030 0.00026 0.0490 0.0017 131 4 130 2

SJ-15 889 1735 0.51 0.13906 0.00436 0.02049 0.00024 0.0489 0.0016 132 4 131 2

SJ-16 726 2145 0.34 0.14038 0.00485 0.02050 0.00025 0.0493 0.0017 133 4 131 2

SJ-17 1552 2132 0.73 0.14725 0.00482 0.02074 0.00032 0.0515 0.0016 139 4 132 2

SJ-18 364 1181 0.31 0.13433 0.00535 0.02056 0.00029 0.0472 0.0019 128 5 131 2

SJ-19 706 1973 0.36 0.14056 0.00436 0.02090 0.00028 0.0486 0.0015 134 4 133 2

SJ-20 1257 1925 0.65 0.13820 0.00423 0.02050 0.00028 0.0491 0.0016 131 4 131 2

SJ-21 922 2096 0.44 0.13777 0.00399 0.02058 0.00026 0.0489 0.0016 131 4 131 2

SJ-22 575 1177 0.49 0.15797 0.00571 0.02037 0.00026 0.0568 0.0022 149 5 130 2

SJ-23 322 788 0.41 0.15557 0.00640 0.02045 0.00029 0.0556 0.0023 147 6 131 2

Fig. 6. (Colour online) Zircon U–Pb concordia diagrams for the Shuangjianzishan
granite porphyry. The concordia age, mean age and mean square weighted deviation
(MSWD) are shown in each figure.
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White 1974, 1992; Hineab et al. 1978; Whalen et al. 1987). As the
emplacement ages of the regional Yanshanian granite and the adja-
cent Haobugao granite are mainly concentrated within Early
Cretaceous time, plotting the chemical composition of these gran-
ites is useful for comparison of the Shuangjianzishan granite por-
phyry with the pervasive Early Cretaceous magmatism. Samples
from the Shuangjianzishan granite porphyry are metaluminous
to peraluminous (Fig. 7b) and plot within the high-K calc-alkaline
series (Fig. 7a), consistent with the adjacent Haobugao granite and
most of the Yanshanian granite. Chondrite-normalized REE
patterns show that the samples are obviously enriched in
LREEs, depleted in HREEs, and have strongly negative
Eu anomalies (Fig. 7c). Compared with primitive mantle, the
Shuangjianzishan granite porphyry is enriched in Zr, Hf, Rb, Th
and U and depleted in Ba, Sr, P and Ti (Fig. 7d), which is similar
to typical A-type granite (Li et al. 2014). S-type granites always
containmore Al than that required to form feldspar, and the excess
Al is hosted in Al-rich biotite, generally accompanied by more
Al-rich minerals such as cordierite or muscovite (Chappell,
1984; Chappell et al. 2012). However, the Shuangjianzishan granite
porphyry has a low biotite content (Fig. 4f). In addition, the mea-
sured A/CNK values are no less than 1.1 (Fig. 7b), indicating that
the samples are A-type or I-type granites, not S-type granites
(Chappell & White, 1992; Chappell, 1999).

A-type granites are widely distributed and closely associated with
I-type granites in NE China. Due to the uncertainty and diversity of
geological processes and the geochemical behaviour of elements,
many researchers (Tian et al. 2014) have found that it is difficult
to distinguish the A- and I-types in the GXR based on only the dis-
crimination diagrams. In addition, the A-type granites have the
same Sr–Nd isotopic characteristics as the I-type granites, indicating
that they are derived from the same source (Wu et al. 2002; Wang
et al. 2018). A-type granites are usually formed under conditions of
high temperature and low pressure (Collins et al. 1982; Clemens
et al. 1986), and therefore generally contain relatively high-temper-
ature anhydrous minerals, such as pyroxene, fayalite and interstitial
biotite (Collins et al. 1982; Whalen et al. 1987; Eby, 1992) and are
enriched in HFSEs such as Zr, Nb, Y, REE and Ga. Wu et al. (2002)
found that A-type granites in NE China usually contain alkali mafic
minerals, such as sodic pyroxene, or contain annite and Fe-rich cal-
cic amphibole. From microscopic observation, many biotite and
hornblende grains were found in the Shuangjianzishan granite por-
phyry (Fig. 4a, d). In the diagrams of K2OþNa2O, FeO*/MgO, Nb
versus Ga/Al, all the Shuangjianzishan granite porphyry and
regional granite samples plot in the A-type field, suggesting that they
are A-type granites (Fig. 8a–c). Moreover, in the Nb-Y-Ce diagram
(Fig. 8d), all the granite samples plot in the A2 group, suggesting a
post-collisional tectonic setting.

As mentioned, the most striking features of the Shuangjianzishan
granite porphyry are its low initial 87Sr/86Sr ratios, positive ϵNd(t) val-
ues, Nd TDM2 ages (850–864 Ma) and high zircons ϵHf(t) values
(Tables 5 and 6), suggesting a high proportion of juvenile material
in its petrogenesis. In order to provide a more generalized picture
for the southern GXR, we further plotted additional published data
describing the adjacent Haobugao deposit granite and regional
Mesozoic granites for their Sr-Nd-Hf isotopic compositions.
As shown in Figure 9a, all ϵHf(t) spot results from the
Shuangjianzishan granite porphyry, consistent with those of
Haobugao, deviate from the ancient crustal evolution lines, suggesting
that the Shuangjianzishan granite porphyry was derived from the

Table 4. Major- (wt%) and trace-element (ppm) contents of the
Shuangjianzishan granite porphyry

ZK12-50-1 ZK12-50-2 ZK12-50-3

SiO2 70.32 70.19 69.63

TiO2 0.33 0.35 0.36

Al2O3 14.29 14.08 14.42

Fe2O3 2.86 2.99 3.12

MnO 0.05 0.05 0.06

MgO 0.58 0.63 0.64

CaO 1.47 1.68 1.45

Na2O 4.38 4.37 4.38

K2O 4.29 3.92 4.10

P2O5 0.08 0.09 0.09

LOI 1.12 1.06 1.09

Total 99.77 99.41 99.34

A/CNK 0.98 0.97 1.01

A/NK 1.20 1.23 1.24

Rb 214.00 208.00 220.00

Ba 534.00 465.00 555.00

Th 22.00 21.90 20.40

U 8.20 8.15 7.34

Ta 2.30 1.80 1.70

Nb 12.90 13.10 14.00

Sr 271.00 273.00 275.00

Nd 25.20 25.90 25.00

Zr 167.00 188.00 194.00

Hf 5.60 5.80 6.10

La 32.20 31.30 30.00

Ce 66.80 66.80 64.80

Pr 7.03 7.17 6.92

Sm 5.27 5.55 5.54

Eu 0.66 0.65 0.70

Ga 22.60 24.50 24.50

Gd 4.70 5.03 5.09

Tb 0.79 0.86 0.86

Dy 4.76 4.96 4.97

Ho 0.99 1.01 0.96

Er 2.70 3.02 2.83

Tm 0.44 0.45 0.47

Yb 3.02 3.23 3.02

Lu 0.45 0.48 0.45

Y 30.70 32.60 31.80

Eu/Eu* 0.40 0.37 0.40

(La/Yb)N 7.65 6.95 7.13

ΣREE 155.01 156.41 151.61
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Table 5. Sr–Nd isotopic compositions of the Shuangjianzishan granite porphyry

Sample
Rb

(ppm)
Sr

(ppm) 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)t
Sm

(ppm)
Nd

(ppm) 147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)t ϵNd(t) TDM2

50-1 220 275 2.319 0.709774 16 0.70549 5.54 25 0.134 0.512621 10 0.512621 0.71 864

50-2 208 273 2.209 0.709663 16 0.70558 5.55 25.9 0.13 0.512626 10 0.512626 0.88 850

50-3 214 271 2.289 0.709795 22 0.70557 5.27 25.2 0.126 0.512619 12 0.512619 0.8 857

*Note: initial Sr and Nd isotopic ratios are calculated based on t= 131 Ma.

Fig. 7. (Colour online) (a) SiO2–K2O discriminant plot (after Peccerillo & Taylor, 1976) for the Shuangjianzishan (SJZS) granite porphyry; (b) A/CNK–A/NK diagram (after Maniar &
Piccoli, 1989) for the discriminant of metaluminous, peraluminous and peralkaline rocks; (c) chondrite-normalized REE pattern; and (d) primitive-mantle-normalized trace-
element patterns. Primitive mantle and chondrite data are from Sun & McDonough (1989). Haobugao data are from Wang et al. (2018), the data represented by the square
are from the SJZS granite (Gu et al. 2017) and Yanshanian granites data describing the southern GXR are from Mei et al. (2014), Ruan et al. (2015), Wang et al. (2016a) and
Liu et al. (2017).

Table 6. Pb isotopic compositions of the Shuangjianzishan granite porphyry

Sample U (ppm) Th (ppm) Pb (ppm) 206Pb/204Pb 2σ 208Pb/204Pb 2σ 207Pb/204Pb 2σ (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t

50-1 7.34 20.4 16 18.7196 10 38.532 12 15.5559 8 18.124 15.527 37.99

50-2 8.15 21.9 17 18.7413 14 38.5787 16 15.5584 12 18.118 15.528 38.03

50-3 8.2 22 26 18.6594 10 38.4653 12 15.5519 8 18.25 15.532 38.106

*Note: (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t are Pb isotopic ratios at t= 131 Ma for the whole-rock of the Shuangjianzishan granite samples, calculated from the measured whole-rock
U, Th and Pb contents and whole-rock Pb isotopic ratios.
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melting of mantle-derived juvenile component. The potential for an
enrichedmantle source could not be ruled out, asWang et al. (2006b)
proposed thatMesozoic volcanic rocks in the Songliao Basin could be
derived from an enriched mantle source. The zircons of the
Shuangjianzishan granite porphyry have similar Hf isotopic features
as the Phanerozoic igneous rocks in the eastern CAOB (Fig. 9a;Wu&
Sun, 1999; Yang et al. 2006; Sui et al. 2007), distinct from those in the
NCC (Fig. 9a; Yang et al. 2006). Based on themixingmodel proposed
by Wu et al. (2000, 2002), it is obvious that most samples from the
Shuangjianzishan granite porphyry plot close to the mixing lines of
the mantle-derived juvenile components (c. 80%) and the lower crust
(c. 20%), similar to those of regional Mesozoic A-type granites (Wu
et al. 2003); this finding is also supported by the Pb isotopic compo-
sitions (Fig. 9c, d). The calculation by no means indicates that the
granites were formed by mixing depleted mantle (DM) and lower
continental crust (LCC) melts in such proportions. Rather, it suggests
that the granitic magmas were produced by melting of a mixed lith-
ology containing lower crustal components intruded or underplated
by mantle-derived magma in such a proportion (Wu et al. 2003).
Furthermore,maficmicrogranular enclaves, which are significant evi-
dence of magma mixing (Barbarin, 2005), have not been observed in
this granite porphyry. Typical mineralogical textures representing
magma mixing, such as quartz ocelli rimmed by hornblende and/
or biotite and acicular apatite (Baxter & Feely, 2002), have not been
found either (Fig. 4a). Accordingly, the small amount of crustal com-
ponents involved in themagma formationmay be due to assimilation
occurring in the magma chamber or during magma uprising. Some
studies suggested that the generation of such voluminous granites
should be related to the melting of heated crust induced from upwell-
ing of the asthenosphere in the late stage of orogenesis or subduction
(Wu et al. 2000).We propose that, following oceanic closure, astheno-
spheric mantle melting during the Neoproterozoic Era led to mafic
underplating in the lower crust, with which it interacted; these were
subsequently melted to produce the Shuangjianzishan granite
porphyry.

6.c. Tectonic implications

The peak of the outbreak of volcanic rocks and A-type granites in
NE China occurred during the Cretaceous Period, which was also
an important period for asthenospheric upwelling, lithospheric thin-
ning and crustal stretching (Wu et al. 2002), as well as the peak of
large-scale magma-thermal events in the Xingmeng Orogenic Belt
(Wu et al. 2005a; Wang et al. 2006a; Zhang et al. 2010). In the
southern GXR, a special geological structure was developed where
the Palaeo-Asian and the Palaeo-Pacific tectonic domains overlap.
The tectonic setting for the Shuangjianzishan deposit, the
Haobugao deposit, and other deposits could be revealed by the pres-
ence of A-type granites associated with mineralization, which can
form in both post-orogenic and anorogenic settings (Sylvester,
1989; Bonin, 1990; Eby, 1992; Nedelec et al. 1995). Eby (1992)
sub-divided A-type granites into A1 and A2 groups; the A1 group
represents an anorogenic setting and the A2 group represents a vari-
ety of tectonic environments. The Shuangjianzishan granite sam-
ples, consistent with the Haobugao granite, mainly fall within the
A2 group (Figs 8d, 10a, b), suggesting that they formed in a post-oro-
genic extensional environment.

As mentioned in Section 6.b, the Shuangjianzishan granite por-
phyry was the result of extensive partial melting of mantle-derived
juvenile crust, synchronous with the Early Cretaceous magmatism
spanning the entire GXR, which is envisaged to have formed in a
lithospheric extensional environment (Li et al. 2008). In addition,
widespread volcanic rocks (137 Ma) exposed around
Shuangjianzishan are basically coeval with the Early Cretaceous
granite porphyry (Wang et al. 2018). It was recognized by previous
researchers that the intrusive rocks formed in an extensional envi-
ronment (Wang et al. 2018). Furthermore, the generation of A-
type granites requires a high melting temperature (Clemens
et al. 1986), and the upwelling of the asthenosphere could provide
the heat necessary to produce a considerable volume of A-type
granites in NE China during late Mesozoic time in this extensional
setting (Wu et al. 2002).

Table 7. Zircon Lu–Hf isotopic data of the Shuangjianzishan granite porphyry

Sample 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ ϵHf(0) 1σ ϵHf(t) 1σ TDM1 (Ma) TDM2 (Ma) fLu/Hf

1 0.282854 0.00002 0.000975 0.00001 0.031904 0.000307 2.9 0.9 5.7 0.9 564.4 736 −0.97

2 0.282866 0.000018 0.001293 0.000025 0.042981 0.001027 3.3 0.8 6.1 0.8 551 712 −0.96

3 0.282888 0.000021 0.000969 0.000039 0.02925 0.001483 4.1 0.9 6.9 0.9 515.7 668 −0.97

4 0.282873 0.00002 0.000959 0.00002 0.033785 0.000785 3.6 0.9 6.4 0.9 536.7 698 −0.97

5 0.282875 0.000018 0.001234 0.000011 0.040007 0.000331 3.6 0.8 6.4 0.8 538.2 696 −0.96

6 0.282833 0.000018 0.000989 0.00003 0.032094 0.000977 2.1 0.8 4.9 0.8 594.4 778 −0.97

7 0.282859 0.000018 0.001013 0.000016 0.032956 0.000705 3.1 0.8 5.9 0.8 556.7 725 −0.97

8 0.282865 0.000021 0.001345 0.000026 0.044177 0.000727 3.3 0.9 6.1 0.9 553.2 714 −0.96

9 0.282852 0.000016 0.000672 0.000005 0.02225 0.000135 2.8 0.8 5.6 0.8 562.7 738 −0.98

10 0.282854 0.000016 0.000884 0.000004 0.028714 0.000316 2.9 0.8 5.7 0.8 562.9 735 −0.97

11 0.282851 0.000015 0.000831 0.000007 0.026662 0.00039 2.8 0.7 5.6 0.7 565.6 740 −0.97

12 0.282853 0.000018 0.001363 0.000074 0.04343 0.002247 2.9 0.8 5.6 0.8 570.5 738 −0.96

13 0.28286 0.000017 0.000837 0.000008 0.028088 0.000537 3.1 0.8 5.9 0.8 553.2 722 −0.97

14 0.28285 0.000018 0.001111 0.000009 0.035443 0.000391 2.8 0.8 5.5 0.8 571.8 744 −0.97

15 0.282862 0.000017 0.00067 0.000004 0.026462 0.000587 3.2 0.8 6 0.8 548.4 718 −0.98

*Note: All spots are calculated based on t = 131 Ma for the Shuangjianzishan granite porphyry.
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To date, two possible models have been proposed for this exten-
sional setting: (1) delamination of the lower crust induced by the
subduction of the Palaeo-Pacific Plate (Wu et al. 2005b;Wang et al.
2006a; Zhang et al. 2008, 2010); and (2) post-orogenic lithospheric
extension related to the closure of the Mongol–Okhotsk Ocean
(Fan et al. 2003; Meng, 2003). As previous studies have suggested,
the Mongol–Okhotsk Ocean closed during the Middle and Late
Jurassic epochs (Zorin, 1999), and the Pacific Plate has expanded
considerably since the Late Cretaceous Epoch (Larson et al. 1985),
so the Shuangjianzishan granite porphyry U–Pb age of 131 Ma
coincides with post-orogenic extension following the closure of
the Mongol–Okhotsk Ocean. Furthermore, Mesozoic volcanic
magmatism in the southern GXR shows a NE-trending linear dis-
tribution that gradually ages from west to east (125–160 Ma)
(Wang et al. 2006b), consistent with the Mongol–Okhotsk
Ocean closing direction from west to east (Metelkin et al. 2010).
Gu et al. (2017) believe the regional tectonic stress in the southern
GXR is tensional and that the Mongol–Okhotsk Ocean closing
direction favours the reduction in pressure within the plate.

However, the subduction of the Palaeo-Pacific Ocean Plate caused
large-scale back-arc extension of NE China and is not dominant in
this region (Dong et al. 2014;Ma et al. 2015). Accordingly, it can be
conjectured that the Early Cretaceous extensional setting in the
southern GXR mainly resulted from the upwelling of astheno-
spheric mantle in the post-orogenic period of Mongol–Okhotsk
Ocean closure.

7. Conclusions

1. Zircon LA-ICP-MS U–Pb dating confirms that the
Shuangjianzishan granite porphyry in the southern GXR
formed during the Early Cretaceous Epoch (131 ± 1 Ma).

2. The petrography, geochemistry and isotope compositions indi-
cate that the Shuangjianzishan granite porphyry belongs to
metaluminous to peraluminous high-K calc-alkaline A-type
granite, and is derived from the partial melting of mantle-
derived juvenile component (c. 80%), contaminated by assimi-
lation of a low proportion of the lower crust (c. 20%).

Fig. 8. (Colour online) Discrimination diagrams of (a) Nb versus 10 000×Ga/Al; (b) Na2OþK2O versus 10 000×Ga/Al; (c) FeO/MgO versus 10 000×Ga/Al; (d) Nb-Y-Ce (after Whalen
et al. 1987; Eby, 1992). Triangle points are from Wang et al. (2018) and the square from Gu et al. (2017). A1 – anorogenic setting; A2 – post-collisional setting.
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Fig. 9. (Colour online) (a)Mantle: plotof ϵHf(t) versus t (Ma) for the zircons fromtheShuangjianzishan granite porphyry. CAOB – theCentral AsianOrogenic Belt; YFTB– Yanshan Foldand
Thrust Belt (Yang et al. 2006). (b) Orogene: ϵNd(t) versus (87Sr/86Sr)t isotopic ratio plot showingmixing proportions between two end-members (after Wu et al. 2003): (1) depletedmantle or
juvenile components (DM – upper mantle peridotite; B – basalt) and (2) crustal components (LCC – lower continental crust; UCC – upper continental crust; both represented by the
Mashan gneisses in the Jiamusi Block; Wu et al. 2000). The grey area represents Mesozoic granites from Wu et al. (2003). (c) Upper crust: 207Pb/204Pb versus 206Pb/204Pb diagram
and (d) lower crust: 208Pb/204Pb versus 206Pb/204Pb diagram for distinguishing tectonic setting (after Zartman & Doe, 1981). Haobugao data Wang et al. (2018).

Fig. 10. (Colour online) (a) (Rb/30)-Hf-3Ta discrimination diagram (after Harris et al. 1986); (b) Rb versus (YbþTa) discrimination diagram (after Pearce, 1996). VAG – volcanic-arc
granite; ORG – ocean-ridge granite; WPG –within-plate granite; COLG – collision granite; POG – post-collision granite. Triangle points are from Wang et al. (2018), the square from
Gu et al. (2017) and the grey-shaded squares from Mei et al. (2014), Ruan et al. (2015), Wang et al. (2016a) and Liu et al. (2017).
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3. The Shuangjianzishan granite porphyry was emplaced in a
post-orogenic extensional environment related to the astheno-
sphere upwelling followed theMongol–Okhotsk Ocean closure.
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