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This paper investigates the shock-induced instability of the interfaces between gases and
dense granular media with finite length via the coarse-grained compressible computational
fluid dynamics–discrete parcel method. Despite generating a typical spike-bubble structure
reminiscent of the Richtmyer–Meshkov instability (RMI), the shock-driven granular
instability (SDGI) is governed by fundamentally different mechanisms. Unlike the RMI
arising from baroclinic vorticity deposition on the interface, the SDGI is closely associated
with the interfacial and bulk granular dynamics, which evolve with the transient coupling
between particles and gases. Consequently, the SDGI follows a growth law distinctly
different from that of the RMI, namely a semilinear slow regime followed by an
exponentially expedited regime and a quadratic asymptotic regime. We further establish
the instability criteria of the SDGI for granular media with infinite and finite lengths,
which do not exist in the RMI. A scaling growth law of the SDGI for dense granular media
with finite length is derived by normalizing the time with the rarefaction propagation
time, which successfully collapses the data from cases with varying shock strength,
particle column length and particle volume fraction and ought to hold for granular media
with varying particle parameters. The effect of the initial perturbation magnitude can
be properly considered in the scaling growth law by incorporating it into the length
normalization.
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1. Introduction

The so-called jetting or fingering instabilities of dense granular media arise from the
destabilized granular surfaces impinged by shock/blast waves (Milne, Parrish & Worland
2010; David et al. 2012; Rodriguez et al. 2013; Xue, Li & Bai 2013; Milne et al. 2014;
Kandan et al. 2017; Frost 2018; Xue et al. 2018). These instabilities have a fundamental
bearing on a range of natural phenomena and engineering processes, particularly
supernova explosions (Inoue, Yamazaki & Inutsuka 2009), volcanic eruptions (Formenti,
Druitt & Kelfoun 2003) and laser-driven inertial confinement fusion experiments
(Aglitskiy et al. 2010). The resulting particle fingers protruding into gases, reminiscent
of the heavy-fluid ‘spikes’ thrusting into a light fluid generated by the conventional
Richtmyer–Meshkov instability (RMI) (Luo et al. 2019; Li et al. 2020; Zhang et al. 2020;
Zhou et al. 2021), inspire investigators to draw a parallel between the shock-driven particle
jetting behaviour and the RMI (Vorobieff et al. 2011; McFarland et al. 2016; Osnes, Vartdal
& Pettersson Reif 2017; Fernández-Godino et al. 2019; Koneru et al. 2020; Duke-Walker
et al. 2021). Indeed, the shock-driven multiphase instability (SDMI), a variant of the RMI
arising from the shock-accelerated perturbed interface between multiphase fluid mixtures
of different effective densities, is responsible for the jetting instability of particles that have
been explosively dispersed and mixed with gases (Osnes et al. 2017; Fernández-Godino et
al. 2019; Koneru et al. 2020).

During SDMI evolution, the equilibration time between particles and gases is shorter
than the characteristic hydrodynamic time scale; therefore, a quite low particle volume
fraction, normally φp < 1 %, is required (McFarland et al. 2016; Duke-Walker et al.
2021). Evidently, this is not the case for the interfacial instabilities of dense granular
media observed in experiments where the shock-loaded particles remain closely packed
(Rodriguez et al. 2013; Kandan et al. 2017; Xue et al. 2018, 2020). Interfacial granular
flows rather than gaseous flows laden with particles result in interfacial instabilities. We
hence refer to this interfacial instability as shock-driven granular instability (SDGI) to
distinguish it from the RMI and SDMI.

In contrast with the RMI and SDMI, the initiation of the SDGI needs to satisfy a
certain instability criterion (Kandan et al. 2017). Modelling granular materials as an
isotropic elastic non-hardening Drucker–Prager solid, Kandan et al. (2017) recognized that
the instability criterion of the SDGI is equivalent to the Drucker–Prager yield criterion.
However, the continuum approximation of granular materials is called into question due
to the transient and non-equilibrium coupling between the interstitial gas phase and
the particle skeleton in this scenario (Ben-Dor et al. 1997; Britan, Shapiro & Ben-Dor
2007; DeMauro et al. 2019). Previous studies revealed a complex wave spectrum inside
a granular medium impinged head-on by an incident shock wave (Ben-Dor et al. 1997;
Britan et al. 2007; Mo et al. 2018, 2019; Koneru et al. 2020). Specifically, a much
weakened transmitted wave is trailed by a compaction wave propagating through contact
points between particles. In addition, the shock-induced gas flows through pores and
interacts with the compaction wave, contributing to the evolution of the granular dynamics
and a pressure field inside particles (Mo et al. 2018, 2019). Han, Xue & Bai (2021) found
that a consistent rheology model that can adequately account for the dense granular flows
underpinned by transient interphase coupling does not exist. Thus, to gain an in-depth
understanding of the SDGI, it is necessary to properly consider the interactions between
the shock and particles, between particles and interstitial flows and between the particles
themselves.

Our previous study investigated the SDGI of a thin particle ring driven by a central
explosion, revealing a marked correlation between the perturbation growth regimes and

930 A22-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.912


Shock-induced interfacial instabilities of granular media

the compaction/decompaction of the granular bulk, which is absent in the SDMI (Xue et
al. 2020). However, the coupling between the shock-induced flows and particles only exists
during the very early instants since the fast-expanding particle ring soon leaves the central
high-pressure gases behind. This case only involves the minimum effects of shock-induced
interstitial gas flows during most of the time of perturbation growth.

The present work aims to gain insights into both the perturbation growth law and
the underlying physics of SDGIs in a more general scenario, wherein the coupling
between shock-induced flows and particles is persistent throughout. A series of
numerical shock tube experiments involving a range of structural parameters are carried
out via the coarse-grained compressible computational fluid dynamics–discrete parcel
method (CCFD-DPM), which incorporates four-way interphase coupling and can resolve
particle-scale flow details (Sundaresan, Ozel & Kolehmainen 2018; Tian et al. 2020).
The results reveal a three-stage growth law of the SDGI for granular media with finite
length. We proceed to identify the corresponding mechanisms responsible for driving the
respective growth stage and put forward theoretical models accounting for the growth
characteristics of the first and third growth phases. An instability criterion that relates
two competing processes controlling growth initiation is proposed, shedding particle-scale
light on the macroscale instability criterion established by Kandan et al. (2017). More
importantly, after a proper scaling time with a characteristic time scale of the SDGI, the
perturbation growth data derived from different numerical experiments collapse into a
single curve, whereby a scaling law is derived.

The paper is organized as follows. The numerical method and set-up are introduced in
§§ 2 and 3, respectively. The perturbation growth laws of the SDGI and the corresponding
evolution of shock-loaded granular media are elaborated in § 4. Then, § 5 reveals the
primary driving mechanisms and their respective contributions to the distinct growth
phases of the SDGI. Theoretical models are introduced to account for instability initiation
and perturbation growth characteristics. Section 6 presents the scaling law of the SDGI
using a proper non-dimensionalization method. Finally, the results are summarized in § 7.

2. Numerical method

Numerical simulations were conducted based on CCFD-DPM, a coarse-grained
Euler–Lagrange numerical approach suitable for gas– particle flows in laboratory-scale
systems (Sundaresan et al. 2018; Koneru et al. 2020). The CCFD-DPM approach tracks
and accounts for parcel–parcel contact interactions. Each parcel consists of multiple
physical particles with the same physical and kinetic properties. The number of real
particles that represents a computational parcel is quantified using a scaling factor called
the superparticle loading, χ , whose value is set based on the volume/mass fraction of the
particles and computational memory available. For particle–gas systems, χ reported in
previous literature ranges from O(101) to O(103) (Osnes et al. 2017; Koneru et al. 2020;
Xue et al. 2020). In the present work, χ is of O(101).

For the gas phase, the volume-averaged governing equations, (2.1)–(2.3), constructed in
the Eulerian frame are based on a five-equation transport model, i.e. a simplified form of
the Baer–Nunziato model (Baer & Nunziato 1986), which has been modified to account for
compressible multiphase flows ranging from dilute to dense gas– particle flows (Carmouze
et al. 2020; Chiapolino & Saurel 2020):

∂(φf 〈ρf 〉)
∂t

+ ∇ · (φf 〈ρf 〉ũf ) = 0, (2.1)
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∂(φf ũf 〈ρf 〉)
∂t

+ ∇ · (φf 〈ρf 〉ũf ũf + φf 〈Pf 〉)

= 〈Pf 〉∇φf +
∑

i

{φp,iρp,iDp,i(ũp,i − (ũf )i)}, (2.2)

∂(φf 〈ρf 〉Ẽf )

∂t
+ ∇ · (φf 〈ρf 〉Ẽf ũf + φf 〈Pf 〉ũf )

= 〈Pf 〉∇φf · ũp +
∑

i

{φp,iρp,iDp,i(up,i − (ũf )i) · ũp,i}. (2.3)

The gas volume fraction, density, velocity and pressure and the total energy of the gas are
represented by φf , uf , ρf , Pf and Ef (Ef = ρf ef + 0.5ρf uf uf ), respectively. In (2.1)–(2.3)
〈�〉 and �̃ denote phase-averaged and mass-averaged variables, respectively; ρp.i and up,i
are the density and velocity of parcel i, Dp,i is the drag force coefficient of parcel i and
φp.i = wi,f Vp,i/Vf is the contribution of parcel i to the weighted particle volume fraction
(wi,f is the distributed weight that parcel i contributes to the particle volume fraction in
fluid cell f, and Vp,i and Vf are the volumes of parcel i and the fluid cell).

We employ the Di Felice model combined with Ergun’s equation to calculate Dp, which
is essentially a nonlinear drag force model (Di Felice 1994). The Di Felice model combined
with Ergun’s equation, which considers the effects of both the particle Reynolds number,
Rep, and the particle phase volume fraction, φp, has been widely used in particle-laden
multiphase flows. Drag force coefficient Dp is a function of Rep and φp:

Dp,i = 3
8sg

Cd
|uf − up,i|

rp
, (2.4)

Cd = 24
Rep

=
{

8.33φp
φf

+ 0.0972Rep if φf < 0.8

fbase · φ
ζ
f if φf ≥ 0.8,

(2.5)

fbase =
{

1 + 0.167Re0.687
p if Rep < 1000

0.0183Rep if Rep ≥ 1000,
(2.6)

ζ = 3.7 − 0.65 exp[−1
2 (1.5 − log10Rep)

2], (2.7)

where Cd is the dimensionless coefficient of the drag force, sg is the specific weight of
individual particles and rp is the particle radius. For dense particle flows (φf < 0.8), (2.4)
reduces to the original Ergun equation. Otherwise, Cd takes the form of the Stokes law
multiplied by a factor of fbase, which varies with Rep, as indicated by (2.6) and (2.7).

The particle phase is represented by discrete parcels whose motion is governed by
Newton’s second law (equations (2.8) and (2.9)):

dup,i

dt
= Dp,i(uf − up,i) − 1

ρp
∇〈Pf 〉 + 1

mp

∑
j

F C,ij, (2.8)

dxp,i

dt
= up,i, (2.9)

where up,i and xp,i denote the velocity and displacement of parcel i, respectively, and F C,ij
represents the collision force between parcels i and j.
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A four-way coupling strategy (Ukai, Balakrishnan & Menon 2010) was adopted
to account for the momentum and energy transfer between gases and particles.
Specifically, the particle drag force and the associated work were incorporated into the
momentum equation (2.2) and energy equation (2.3) of the gas phase as the source terms.
The particle parcels are driven by the pressure gradient force, drag force and collision force
between parcels (equation (2.8)). A soft sphere model, represented by a coupling spring
and dashpot, was employed to model the collision force between parcels (Apte, Mahesh &
Lundgren 2003). The term F C,ij hence consists of a repulsive force and a damping force:

F C,ij = kn,pδn − γn,pun,ij, (2.10)

where kn,p and γ n,p are the stiffness and damping coefficients of parcels and δn and un,ij
are the overlap and normal velocity difference between parcels in contact. Here γ n,p is a
function of the parcel restitution coefficient εp (Crowe et al. 2012):

γn,p = − 2 ln εp√
π2 + ln εp

√
mpkn,p. (2.11)

To solve the equations governing the gases, the weighted essentially non-oscillatory
(Liu, Osher, & Chan, 1994) scheme was used to reconstruct the primary flow variables.
A Riemann solver proposed by Harten, Lax & van Leer (Toro, 2009) was used to
obtain the intercell fluxes. The third-order Runge–Kutta method was applied for the time
integration. The equations describing the parcel velocity and position were discretized by
the velocity-Verlet algorithm (Kruggel-Emden et al. 2008). Bilinear/trilinear interpolation
functions were adopted to calculate the particle volume fraction and source terms on the
Eulerian grids, as well as the fluid variables on Lagrangian parcels. Numerical details with
regard to CCFD-DPM can be found in our previous works (Meng et al. 2019; Tian et al.
2020; Xue et al. 2020). The present CCFD-DPM framework has been validated against
Rogue’s experiments involving shock waves propagating through particle curtains (Tian
et al. 2020), shock tube experiments wherein particle columns are impinged head-on by
incident shocks (Tian et al. 2020) and shock dispersion of particle rings (Xue et al. 2020).

3. Simulation set-up

3.1. Problem set-up
The shock-tube-based set-up, which has been widely used to investigate the RMI and the
SDMI (McFarland et al. 2016; Kandan et al. 2017; Luo et al. 2019; Li et al. 2020), serves
as an archetypical system to investigate the initiation and growth of the SDGI for granular
columns impinged head-on by incident shocks. As presented in figure 1(a), a stationary
granular column with a length of L is placed at the driven section of the shock tube at
atmospheric pressure, P1, and ambient temperature. High-pressure gases with pressure P4
and temperature T4 fill the driver section of length L4 = 3.6 m at the left-hand end of the
tube. The front surface of the granular column is 0.6 m away from the interface between
the driver and driven sections. By varying the values of P4 and T4, we generate incident
shocks with different Mach numbers.

In addition to the two baseline cases wherein the surfaces of granular columns remain
planar and smooth, we introduce a single-mode sinusoidal perturbation into the front
surface to examine the effect of the initial perturbation amplitude. The disturbed surface
can be parameterized as x = x0 + a0 cos(πy/λ), where x0 refers to the mean x coordinate
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Figure 1. (a) Schematic diagram of the shock tube set-up in the numerical experiments. (b) Histogram of
the parcel diameter distribution. (c) Close-up images of initial particle packing coloured by the local particle
volume fraction calculated using Voronoi tessellation. Left: φ0 = 50 %; right: φ0 = 65 %.

of the front interface, a0 to the initial amplitude and λ to the wavelength and λ= D (the
tube width) in the present work.

The granular column domain is filled by computational parcels generated by the radius
expansion algorithm. This method is applied to generate a cloud of parcels within a
given region. A population of parcels with artificially small radii that ensures no particle
or wall overlap is randomly created within the specified volume. Then, all parcels are
expanded until the specified particle size distribution and desired porosity are satisfied
(Yan, Yu & Mcdowell 2009). The real particle has a diameter of 100 μm, while the
diameter of the parcel uniformly ranges from 400 to 750 μm (see the histogram of the
parcel diameter distribution in figure 1b) to avoid potential crystallization during shock
compaction. Figure 1(c) shows close-up images of particle columns with φ0 = 0.5 and 0.65
wherein the particles are coloured by the parcel-scale particle volume fraction, φp,voro,
calculated using Voronoi tessellation. A random but homogeneous arrangement of parcels
is achieved regardless of the overall volume fraction. The parcel has a density of 2500 kg
m−3 as do the real particles. The restitution coefficient, εp, is set to be 0.6, which considers
the energy dissipation inside the parcel; the normal stiffness of contacts between parcels
is set to be 2.25 × 107 N m−1.

3.2. Initial conditions
Previous experimental and numerical studies found that the momentum imparted to
shock-loaded granular columns plays a predominant role in the subsequent jetting
structures (Kandan et al. 2017; Koneru et al. 2020; Xue et al. 2020). The imparted
momentum strongly depends on the shock strength and the length (mass) of granular
columns. As the primary reflected shock acts stably and continuously on the front surface
of the granular column, its pressure (Pr), which represents the shock strength more
directly, is chosen to be one of the primary parameters to investigate together with the
length of the granular columns, L. Since the pressure gradient field governing the particle
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dynamics after the shock interaction is a function of the porosity, or equivalently the
particle volume fraction (Britan et al. 2007), the initial particle volume fraction, φ0, is also
among the investigated parameters. Finally, we examine the influence of the amplitude of
the initial interfacial perturbation, a0.

Two baseline cases involve particle columns (φ0 = 50 % and 65 %) with planar front
surfaces. They serve to demonstrate the evolution of after-shock flows and shock-loaded
particle columns with the minimum interference of the interfacial perturbation. The
numerical cases, except the baseline cases, are grouped into four categories (see table 1),
which are intended to investigate the effects of the shock strength (Group_P), the length
of the granular column (Group_L), the initial particle volume fraction (Group_φ0) and the
amplitude of the initial perturbation (Group_a0/D).

Table 1 summarizes the initial conditions of all cases, in which the cases are labelled
by four symbols, Pr (in units of atm), L (in units of mm), φ0 (in units of %) and a0/D. In
table 1, Mst represents the incident shock Mach number calculated by the normal shock
relationships for an ideal gas using the imposed P4 and T4, while Ms is derived from the
simulations. The good agreement between Mst and Ms validates the CCFD solver of our
CCFD-DPM framework. Parameter mp denotes the mass per unit length (in units of m)
along the z coordinate since the systems are two-dimensional. For each case, the average
superparticle loading, χ̄ , is calculated by averaging over all parcels with varied diameters.

In this study, the time step for the CCFD module was determined by the
Courant–Friedrichs–Lewy number, which was set to 0.25 to ensure numerical stability.
In high-Mach-number flows, the characteristic time is several microseconds, which is of
the same order of magnitude as that of the particle–particle collisions. Thus, the time step
for the DPM module was set to be the same as that for the CCFD module.

4. Results

4.1. Wave diagrams for shock interaction with granular columns in shock tubes
Figure 2 shows a typical space–time (x–t) diagram depicting the trajectories of various
waves outside and inside the granular columns for the baseline case 6-120-65-0 as a
reference for other cases. At t = 0, an incident shock (IS) of Ms = 1.56 originating from
the interface between the driver and driven sections (x = 0) propagates rightward towards
the granular column. For convenience, we hence define the positive direction of the x
axis as ‘upstream’ and the negative direction as ‘downstream’. Meanwhile, a contact
surface trails behind the IS, and a rarefaction fan propagates downstream. When the IS
impinges head-on upon the front surface of the granular column, a primary reflected shock
travels downstream as a transmitted wave (TW) propagates into the column, which is a
compression wave rather than a shock wave. This compression wave goes through the
whole column, passes across the rear surface (RS) and keeps propagating upstream. The
TW is followed by induced gas flows and a compaction wave (CW), both contributing
to the shock compaction of particles. The CW, rising from continuous compaction of
the granular column, aiming at the solid phase, makes the local particle volume fraction
increase where its front passes and propagates only inside the granular column. As it is
not able to go through the RS, it proceeds to reflect off the RS and travels downstream as a
rarefaction wave, accelerating and dilating the compacted particles in its wake. It is worth
noting that multiple compaction waves (CW2 in figure 2) and rarefaction waves (RW2 in
figure 2) alternately reverberate through the particle column with decreasing intensities
whose origin is discussed below.

The evolutions of the resulting pressure field, flow field and the dynamics of the
shock-loaded granular columns for the two baseline cases are embodied by space–time
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Group name Case name P4 (atm) T4 (K) Ms Mst Np mp (kg) χ̄

Baseline 6-120-50-0 6 578.83 1.56 1.56 11 360 4.58 21
6-120-65-0 6 578.83 1.56 1.56 11 404 5.96 27

Group_P
(φ0 = 50 %, L = 120
mm, a0/D = 0.05) 1.5-120-50-0.05 1.5 334.63 1.09 1.09 11 392 4.59 21

3-120-50-0.05 3 422.70 1.29 1.29 11 338 4.6 21
6-120-50-0.05 6 578.83 1.56 1.56 11 368 4.6 21

9.64-120-50-0.05 10 780.20 1.83 1.83 11 459 4.6 21

Group_P
(φ0 = 65 %, L = 120
mm, a0/D = 0.05) 1.5-120-65-0.05 1.5 334.63 1.09 1.09 11 391 5.97 27

3-120-65-0.05 3 422.70 1.29 1.29 11 320 5.97 27
6-120-65-0.05 6 578.83 1.56 1.56 11 453 5.98 27

9.64-120-65-0.05 10 780.20 1.83 1.83 11 392 5.97 27

Group_L (Pr = 6
atm, φ0 = 50 %,

a0/D = 0.05) 6-60-50-0.05 6 578.83 1.56 1.56 5679 2.3 21
6-120-50-0.05 6 578.83 1.56 1.56 11 368 4.6 213
6-200-50-0.05 6 578.83 1.56 1.56 18 962 7.67 21
6-400-50-0.05 6 578.83 1.56 1.56 8351 4.37 27

Group_L (Pr = 6
atm, φ0 = 65 %,

a0/D = 0.05) 6-88-65-0.05 6 578.83 1.56 1.56 11 415 5.99 27
6-120-65-0.05 6 578.83 1.56 1.56 15 140 7.96 27
6-160-65-0.05 6 578.83 1.56 1.56 18 923 9.96 27
6-200-65-0.05 6 578.83 1.56 1.56 11 360 4.58 21

Group_φ0 (Pr = 6
atm, a0/D = 0.05) 6-120-50-0.05 6 578.83 1.56 1.56 11 368 4.60 21

6-105-55-0.05 6 578.83 1.56 1.56 9975 4.42 23
6-95-60-0.05 6 578.83 1.56 1.56 9025 4.37 25

6-92-62.5-0.05 6 578.83 1.56 1.56 8673 4.4 26
6-88-65-0.05 6 578.83 1.56 1.56 8351 4.37 27

Group_a0/D (Pr = 6
atm, φ0 = 65 %,

L = 120 mm) 6-120-65-0.01 6 578.83 1.56 1.56 11 376 5.97 27
6-120-65-0.05 6 578.83 1.56 1.56 11 415 5.99 27
6-120-65-0.1 6 578.83 1.56 1.56 11 462 5.97 27
6-120-65-0.15 6 578.83 1.56 1.56 11 389 5.97 27
6-120-65-0.2 6 578.83 1.56 1.56 11 450 5.98 27

6-120-65-0.25 6 578.83 1.56 1.56 11 453 5.98 27

Table 1. Parameters in each numerical case. The case name consists of the values of the four variables in
the sequence of the reflected pressure upon the granular interface, Pr (in units of atm), the length of granular
column, L (in units of mm), the initial particle volume fraction, φ0 (in units of %), and the ratio between the
amplitude of initial perturbation and the wavelength (diameter of tube), a0/D. Parameters P4 and T4 denote
the pressure and temperature of the high-pressure driver section, respectively; Ms and Mst are obtained from
the simulations and normal shock relations, respectively; Np, mp and χ̄ denote the total number of parcels, the
mass per unit length along the z coordinate and the averaged superparticle loading, respectively.
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Figure 2. The space–time (x–t) diagram of the complex wave spectrum outside and inside granular columns
impinged head-on by a planar incident shock for baseline case 6-120-65-0. IS, incident shock; RF, rarefaction
fan; CS, contact surface; TW, transmitted wave; PRS, primary reflected shock; CW1, first compact wave; RW1,
first rarefaction wave; CW2, second compact wave; RW2, second rarefaction wave; FS, front surface; RS, rear
surface.

(x–t) diagrams of the gaseous pressure, Pf , absolute gaseous velocity, uf , particle
volume fraction, φp, and absolute particle velocity, up, as shown in figure 3(a–d). These
variables are all coarse-grained by binning the individual parcel measurements at a
given t along x (bin size 2dp) and calculating the bin averages. The trajectories of the
front and rear surfaces of the particle columns are also superimposed in figure 3(a–d).
Consistent with other studies (Eriksen et al. 2018), the pressure field inside the particles
converges into a steady diffusive pressure field during several microseconds after the shock
interaction (figure 3a), as does the gaseous flow field (figure 3b). The spatiotemporal
variations in φp (figure 3c) and up (figure 3d) manifest the propagations of the first
and follow-up compaction and rarefaction waves, denoted by CW1/CW2 and RW1/RW2
in figures 3(c) and 3(d). Consequently, the bulk averaged particle volume fraction φ̄p
fluctuates semiperiodically with quickly declining amplitudes, as shown in figure 3(e). The
reverberation of the compaction and rarefaction waves arises from the persistent pressure
gradients across the front surface, which constantly accelerate particles therein, whereby
compaction waves are formed, travel upstream, then reflect off the rear surface and become
downstream-moving rarefaction waves.

Figures 3(f ) and 3(g) plot the profiles of Pf and up along the x axis in the two baseline
cases at three typical times, namely midway through the first shock compaction (tA), the
first rarefaction (tB) and a very late time (tC), which are indicated in figures 3(a) and 3(d).
The profile of Pf at tA results from an advancing diffusive pressure field characterized by
a skin depth, sp (Eriksen et al. 2018). The profile of up at tA features a plateau around the
velocity of compacted particles, up,comp, trailing a compaction front (CF) with a narrow
width. It is worth noting that the propagation of the CF is not exactly in concert with the
progress of the diffusive pressure field. For case 6-120-50-0, the CF travels well inside
the skin depth, sp. In contrast, the CF outreaches sp for case 6-120-65-0. This is due to
the opposite effects of the particle volume fraction, φp, on the propagation speed of the
CF, ucomp, and the pressure diffusion velocity, upress. Beyond a critical φp value, ucomp
exceeds upress, leading to the CF surpassing the envelope of the diffusive pressure field, sp.
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Figure 3. Space-time (x–t) diagrams of Pf (a), uf (b), φp (c) and up (d) for the two baseline cases 6-120-50-0
(top row) and 6-120-65-0 (bottom row). (e) Temporal variations in the bulk averaged particle volume fraction,
φ̄p, for the two baseline cases. The profiles of Pf (x) and up(x) inside the particle columns at three typical times
for the baseline case 6-120-50-0 (f ) and 6-120-65-0 (g).

In the latter case (6-120-65-0), the pressure diffusive field is related to the particle volume
fraction of the compacted particles, φcomp, rather than the initial one, φ0. Therefore, the
diffusive pressure field is more localized near the front surface, yielding steeper pressure
gradients therein. Accordingly, the ensuing compaction waves become stronger and last
longer. The upstream travelling rarefaction wave leaves behind accelerating and dilating
particle packs characterized by a sloping upward profile of up(x) at tB. The slope of the
up(x) profile at tB is reduced in case 6-120-50-0 since the rarefaction effect is partially
offset by the more diffusive pressure field, which imposes countering pressure gradient
forces throughout the column. At late time tC, the up(x) profiles for both cases display
a plateau, indicating a collective mobilization of particles (DeMauro et al. 2019). The
pressure profiles P(x) at tC vary little from those at tB.

4.2. Unscaled perturbation growth law of the SDGI
Figure 4 displays the morphological evolutions of the single-mode perturbed granular
surfaces in cases 6-120-50-0.05 (figure 4a), 6-120-65-0.05 (figure 4b) and 6-120-65-0.25
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Figure 4. Morphological evolutions of the single-mode perturbed granular surfaces in three cases, where (a)
and (b) have differing volume fractions while (b) and (c) have differing perturbation amplitudes. The colour
code represents the time of the snapshot.

(figure 4c). The delineation of the destabilized surface is elaborated in Appendix A. During
the early times, the perturbations in cases 6-120-50-0.05 and 6-120-65-0.25 grow slowly.
At the end of the early time stage (for cases 6-120-50-0.05 and 6-120-65-0.25, t = 3.71
and 1.58 ms), the perturbation amplitudes increase by 14.46 % and 6.87 %, respectively.
Meanwhile, no discernible perturbation growth occurs in case 6-120-65-0.05, and the
perturbation amplitudes increase 1.05 % at t = 1.58 ms. An expedited growth phase, which
is elaborated later, soon takes over in all three cases, leading to the formation of finger-like
particle protrusions. These particle fingers become progressively longer and thinner, and
their elongation rates seemingly become steady at later times. Eventually, an initially
sinusoidal interface configuration evolves into a profile consisting of a singular protrusion
flanked by two flat shoulders. In the following, the finger-like protrusion is referred to as a
‘spike’, while the flattened shoulders are referred to as ‘bubbles’, as conventionally termed
in the RMI and SDMI.

Temporal variations in the perturbation amplitude, �a(t) = a(t) − a0, for different
groups are plotted in Figure 5. In line with the shape evolution of the destabilized interface
shown in figure 4, �a(t) undergoes three sequential phases with distinct characteristics,
namely a slow or minimum growth stage (see the close-up insets in figure 5a–f ), an
expedited growth stage and an asymptotic growth stage. These three regimes are well fitted
by linear, exponential and quadratic polynomial functions, respectively, as demonstrated
in figure 5. The specific forms of the fitting functions chosen here are justified in § 5. As
shown in figure 5, the two kinks in the �a(t) curves indicating the transitions of the fitting
curves define the two critical times delimiting the three growth stages, which are denoted
as tLE and tEQ, respectively (Figure 6).

Upon further inspection of the dynamics of shock-loaded particle columns (figure 3c,d)
and the perturbation growth laws (figure 5a–f ), we discern a strong correlation
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Figure 5. Temporal variations in the perturbation amplitude of the single-mode front surface, �a(t), for
various studies: pressure study, φ0 = 50 % (a), pressure study, φ0 = 65 % (b), column length study, φ0 = 50 %
(c), column length study, φ0 = 65 % (d), column length and volume fraction study (e), perturbation amplitude
study, φ0 = 50 % (f ). Insets in (a–f ): close-up plots of �a(t) during the early times. The filled circular symbols
in (a–f ) indicate the transition times between the first and second growth stages, tLE.

between them. Specifically, the first growth stage lasts through the first shock compaction
and the ensuing rarefaction. Time tLE corresponds to the time at which the reflected
rarefaction wave arrives at the front surface. An expedited growth stage commences
thereafter and persists through the following multiple reverberations of the compaction and
rarefaction waves. Alongside the rapid decay of the secondary compaction and rarefaction
waves, the velocity differences among particles inside the columns are significantly
reduced. As shown in figure 7, the particle temperature, Tp(t) = 〈�up〉/ūp, substantially
decreases after a first handful of reverberations of the compaction and rarefaction waves,
albeit periodic fluctuations persist throughout. The minimum values of Tp(t), namely
Tp(t) < 0.01, signify that the particle column is travelling collectively like a jammed plug.
Correspondingly, the perturbation growth is ushered into a third growth regime. The
time at which Tp(t) becomes less than 0.01 is designated as the transition time between
the second and third growth regimes, tEQ. Exact values of tLE and tEQ for all cases are
presented in table 2 in § 5.6.
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Group Case name tLE (ms) tEQ (ms) trare
(ms)

�aEQ
(mm)

ub,EQ
(m s−1)

us,EQ
(m s−1)

R2
III

Group_P
(φ0 = 50 %,
L = 120 mm,
a0/D = 0.05) 1.5-120-50-0.05 8.00 9.37 0.78 14.04 1.30 2.96 0.97

3-120-50-0.05 7.21 7.96 0.60 35.42 3.45 9.76 0.99
6-120-50-0.05 3.71 7.88 0.58 79.31 8.23 25.28 1.00

9.64-120-50-0.05 2.88 5.75 0.56 64.87 12.61 33.54 1.00

Group_P
(φ0 = 65 %,
L = 120 mm,
a0/D = 0.05) 1.5-120-65-0.05 4.67 10.95 1.37 3.59 1.61 2.72 0.97

3-120-65-0.05 2.56 8.42 0.75 17.68 3.67 7.77 0.97
6-120-65-0.05 1.98 5.94 0.69 18.30 6.91 14.50 0.99

9.64-120-65-0.05 1.78 5.67 0.68 39.36 10.57 24.74 0.99

Group_L
(Pr = 6 atm,
φ0 = 50 %,

a0/D = 0.05) 6-60-50-0.05 1.98 3.71 0.35 40.00 7.05 25.44 0.97
6-120-50-0.05 3.71 7.88 0.58 79.31 8.23 25.28 1.00
6-200-50-0.05 6.11 9.44 0.89 44.08 7.57 18.70 0.99

Group_L
(Pr = 6 atm,
φ0 = 65 %,

a0/D = 0.05) 6-88-65-0.05 1.52 5.10 0.58 20.54 7.39 16.73 0.99
6-120-65-0.05 1.98 5.94 0.69 18.30 6.91 14.50 0.99
6-160-65-0.05 2.56 7.77 0.81 27.80 6.30 14.19 0.99
6-200-65-0.05 3.19 9.77 0.98 32.40 6.58 14.13 0.97

Group_φ0
(Pr = 6 atm,
a0/D = 0.05) 6-120-50-0.05 3.71 7.88 0.58 79.31 8.23 25.28 1.00

6-105-55-0.05 2.90 6.53 0.58 53.39 6.61 21.74 0.99
6-95-60-0.05 2.27 6.29 0.58 46.22 6.76 21.09 1.00

6-92-62.5-0.05 1.93 5.22 0.58 26.60 7.47 17.23 0.99
6-88-65-0.05 1.52 5.10 0.58 20.54 7.39 16.73 0.99

Group_a0/D
(Pr = 6 atm,
φ0 = 65 %,

L = 120 mm) 6-120-65-0.01 1.98 6.06 0.69 11.61 9.77 14.09 0.99
6-120-65-0.05 1.98 5.94 0.69 18.30 6.91 14.50 0.99
6-120-65-0.1 1.98 5.94 0.69 32.56 4.13 14.76 1.00
6-120-65-0.15 1.98 5.81 0.69 37.06 2.98 15.02 1.00
6-120-65-0.2 1.98 5.81 0.69 41.20 2.82 15.00 1.00

6-120-65-0.25 1.98 5.70 0.69 41.44 2.19 15.21 0.98

Table 2. Variables regarding the perturbation growth laws in all cases. Times tLE and tEQ represent the
transition times between the three sequential growth stages; trare refers to the time it takes for the rarefaction
wave to encompass the whole column; �aEQ, ub,EQ and us,EQ denote the perturbation amplitude increment
and the bubble and spike velocities at tEQ, respectively; R2

III is the coefficient of determination of the fitting
function (5.15) to the third growth stage.
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Figure 6. The three sequential growth stages of the perturbation amplitude for three typical cases are fitted by
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Figure 7. Temporal variations in the granular temperature, Tp, for three typical cases. Time tEQ corresponds
to the time at which Tp becomes minimum, Tp < 0.01.

5. Physics underlying SDGI

5.1. Driving forces in SDGI
As alluded to in § 1, the SDGI is prescribed by interfacial granular flows rather than the
gaseous vortices that are found to be irrelevant in the SDGI, as detailed in Appendix B. In
this section, we reveal the mechanisms driving the interfacial granular flows responsible
for the SDGI. In addition, the transitions of the distinct growth stages entail the
corresponding crossovers of the driving mechanisms, which are also a focus of this section.

The perturbation growth is the result of the persistent velocity differential between
particles enclosed by the spike tip and the bubble edge, �ub−s = ub − us. Hence,
understanding the causes of this velocity differential is of significance to shed light on the
initiation and growth of perturbations. Figure 8 presents the dynamics of the two volume
elements, Ωs and Ωb, which are aligned with the symmetric axes of the spike and the
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Figure 8. Schematic diagram of force balances for two representative volume elements, Ωb and Ωs, located
along the symmetric lines of the spike and the bubbles, respectively. Insets: typical axial (x direction, top) and
transverse (y direction, bottom) particle velocity fields.

bubbles, respectively. Applying Newton’s second law to the particle phase in a specific
volume element along the x direction, the change in momentum in Ω during a very short
time (�t) should equal the total force and can be expressed as follows:

[mΩ(x) + 2ṁin(x)Δt](upx,s(x) + u̇px,s(x)Δt) − mΩ(x) · upx,s(x)
Δt

= −Fpx,Ω(x)+Ffx,Ω(x).

(5.1)
Then, we obtain

[mΩ(x) + 2ṁin(x)�t]u̇px,s(x) = −2ṁin(x)upx,s(x) − Fpx,Ω(x) + Ffx,Ω(x). (5.2)

Ignoring the second, higher-order term on the left, the final force balance equations in Ωs
and Ωb are

mΩs(x)u̇px,s(x) = −2ṁin(x)upx,s(x) − Fpx,Ωs(x) + Ffx,Ωs(x), (5.3)

mΩb(x)u̇px,b(x) = −2ṁout(x)upx,b(x) − Fpx,Ωb(x) + Ffx,Ωb(x), (5.4)

where mΩs (mΩb) and upx,s (upx,b) are the mass and the x component of particle velocity
of Ωs (Ωb); Fpx,Ωs (Fpx,Ωb) and Ffx,Ωs (Ffx,Ωb) are the x components of the interparticle
and gas– particle forces exerted on Ωs (Ωb); and ṁin (ṁout) are the mass flow-in (flow-out)
rates across the boundaries of Ωs (Ωb). Since two derivative terms about time exist in
(5.3) and (5.4), the accuracy depends on whether the time step is small enough. In our
simulation, several microsecond time steps ensure that the errors of derivative terms are
less than 5.1 %.

Conspicuous transverse mass flows (along the y axis) from the bubble to the spike,
albeit one order of magnitude smaller than their counterparts in the shock-loaded direction
(along the x axis), are observed throughout the perturbation growth, as demonstrated
in the bottom inset of figure 8. Therefore, the net mass flux, ṁin, flows into Ωs, while
Ωb suffers a net mass flux flowing out, ṁout. Force F f consists of the pressure gradient
force and the drag force, F∇P and F drag, respectively, both arising from the interaction
between the interstitial gas flows and particle skeletons. Since the diffusive pressure fields
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and the resulting gas flows inside the granular columns are governed by the consistent
models, F drag is proportionate to F∇P, as deduced in Appendix C. The interparticle forces,
Fpx, exerted on the downstream and upstream boundaries of Ωb (Ωs) cancel each other
out as long as φp is inside Ωb (Ωs) and does not drastically change across boundaries.
Therefore, ub, and us, and the resulting �ub−s primarily depend on the first and third
terms on the right-hand side of (5.3) and (5.4), namely the mass flow-in/flow-out effect
and the gas– particle forces. The relative importance of ṁin (ṁout) and Ff ,x varies markedly
across different growth regimes, as will be seen below. The flow-in/flow-out mass effect
is particularly relative when the shock loading is so transient that the interphase coupling
quickly diminishes.

5.2. Driving mechanism in the first growth stage
Figure 9(a–f ) shows the temporal variations in the absolute velocities of the spike tips and
the bubble cusps, us and ub, respectively, for the different groups. For the cases with the
successful initiation of the SDGI during the first growth stage, both us and ub jump at the
very early instants and then level off. The corresponding �ub−s spikes simultaneously and
plateaus thereafter, resulting in a linear growth of �a during most of the first growth stage
(see insets in figure 5a–f ). Examining the concurrent evolution of the pressure fields (see
figure 10), we find that the reflection of the incident shock off the front surface corresponds
to the jump of us and (ub), while as the reflected shock travels away, us and (ub) converge
to steady values.

Figure 10(a–d) displays highly localized pressure fields and the corresponding pressure
gradient fields across the front surface upon reflection of the incident shocks. In contrast
with the shock crossing the interface between pure gases and gases laden with a minute
fraction of particles without much hindrance, an incident shock reflects off the dense
granular medium surface as if it impinges on a solid surface. Shock focusing occurs on
the concave segments (bubble edges) of the single-mode perturbed interface, and the
pressures therein are elevated. In contrast, particles enclosed by the convex segment (spike
edge) of the interface endure a lower and more uniform pressure field, as indicated by
sparsely spaced pressure contour lines. Consequently, the pressure gradient contours form
two ridges just beyond the upper and lower concave edges of the interface and a trough
spanning the area protruding into the gases. As the amplitude of the initial perturbation,
a0, increases, the shock focusing is increasingly enhanced, whereby the pressure gradient
field becomes more localized with increased magnitude (figure 10b–d). In the meantime,
the pressure gradient forces F∇P, whose directions are opposite to local pressure gradients,
are further directed towards the central symmetric axis (figure 10b–d).

The drag force fields, F drag, share characteristics similar to those of the pressure gradient
fields (see figure 11a–d) since F drag is proportional to F∇P. Similar to F∇P, F drag also has
the non-trivial y component pointing towards the central symmetric axis, which increases
with a0. The y components of F∇P and F drag bring about transverse granular flows from
the bubble to the spike, which become stronger with increasing a0 (figure 11b–d) and
decreasing φ0 (figure 11a,b).

Stronger pressure gradients and drag forces pushing the concave segments of the front
surface (bubble cusps) contribute to faster particle velocities therein, ub, causing the
velocity differential between the spike and bubbles, �ub−s. However, the flow-in/flow-out
mass effect invoked by transverse granular flows plays an equally crucial role in �ub−s.
We quantify the flow-in/flow-out mass effect by defining a transverse mass flux in the
interfacial region, ṁy, which manifests the transverse particle velocity and the mass
involved. The definition and calculation of ṁy are given in Appendix D. Figure 12 shows
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Figure 9. Temporal variations in the particle velocities at the spike tip, us, and the bubble cusp, ub, for various
studies: pressure study, φ0 = 50 % (a), pressure study, φ0 = 65 % (b), column length study, φ0 = 50 % (c),
column length study, φ0 = 65 % (d), column length and volume fraction study (e), perturbation amplitude
study, φ0 = 50 % (f ).

the explicit correlations between ṁy(t) and �ub−s(t) during the first and second growth
regimes for three typical cases 6-120-50-0.05 (figure 12a), 6-120-65-0.05 (figure 12b)
and 6-120-65-0.25 (figure 12c). During the first growth stage, the jumps of �ub−s in
cases 6-120-50-0.05 (figure 12a) and 6-120-65-0.25 (figure 12c) correspond to the peak
values of ṁy, which plunge during the following plateau of �ub−s. In contrast, �ub−s in
case 6-120-65-0.05 remains nearly zero during the first growth stage, coinciding with the
suppression of ṁy (figure 12b).

Figure 13 plots the maximum values of �ub−s during the first stage, �ub−s,max,
versus the corresponding cumulative transverse mass flux my = ∫ tjump

0 ṁy dt for all cases,
revealing a semilinear dependence of �ub−s,max on my. The cases in which the SDGI
is not initiated yet during the first stage (�ub−s,max ∼ 0) have negligible my, suggesting
a pivotal role played by the transverse granular flow in the instability criterion. Note
that the symbols representing cases wherein the SDGI fails to be initiated during the
first growth stage are overlaid in figure 13 (see the bottom left inset in figure 13). The
overlapping results of Group_L (Pr = 6 atm, φ0 = 50 %, a0/D = 0.05; see the top right inset
of figure 13) indicate that the length of the granular column has no appreciable effect on the
perturbation growth of the SDGI during the first growth regime. Indeed, the �a(t < tLE)
curves for the cases in Group_L (Pr = 6 atm, φ0 = 50 %, a0/D = 0.05) coincide with each
other despite tLE varying with the column length (figure 5c).
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Figure 10. Pressure (top row) and pressure gradient (bottom row) fields upon the incident shocks reflect off
the front surfaces (thick pink lines) for four typical cases. Cases 6-120-50-0.05 (a) and 6-120-65-0.05 (b) have
the same a0 and display similar pressure and pressure gradient fields. The pressure and pressure gradient fields
change markedly from (b) to (d) with increasing a0.

5.3. Upper limit of the perturbation growth rate during the first stage
After the reflected shock travels away from the interface, the spatial distributions of
pressure, Pf , pressure gradient, ∇Pf , gaseous flows, ug, drag forces, Fdrag, and solid
stresses, σ p, evolve into steady states as shown in figure 14(a–e). A typical diffusive
pressure field dominates the bulk of the granular column except for the spike-like
protrusion, which is encompassed by a much more uniform pressure field (figure 14a).
Lacking sufficient pressure gradients (figure 14b), gas flows become stagnant throughout
the spike regions (figure 14c). Therefore, particles constituting the spike are driven by
much lower F∇P and Fdrag values than those in the column bulk (see figure 14d). In
addition, dense force chain networks percolate through the compacted column bulk, while
the solid stresses are barely discernible inside the spikes (figure 14e). As a result, the whole
particle column behaves like two separate parts. The compacted column bulk materials
are driven by the diffusive pressure field and the compaction wave, while the protruding
spikes are left behind, and they become increasingly loosely packed and shed particles
along the way. Since the concave segments of the front surface (bubble cusps) are part of
the compacted column bulk, the bubble velocity, ub, is identical to the particle velocity of
the compacted bulk, up,comp.

The growth rate of the first semilinear growth regime is dictated by the velocity
differential between the bubbles and the spike, �ub−s = ub − us. Thus, ub, or equivalently
up,comp, provides an upper limit for the perturbation growth rate. The dynamics of
the column bulk undergoing shock compaction is presented in figure 15, wherein the
compaction wave travels at a velocity of ucomp. Particles compacted by the compaction
wave gain the velocity of up,comp. The momentum equation of the compacted part of the
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column is given by

∫ xcomp

0
(ρpφcomp)u̇p,comp(x) dx = −(ρpφ0)ucompup,comp

+
∫ xcomp

0
F∇P(x) · (ρpφcomp) dx +

∫ xcomp

0
Fdrag(x) · (ρpφcomp) dx, (5.5)
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Figure 15. Schematic diagram of the shock compaction of the uncompacted particle column.

where ρp is the particle density. The first term on the right-hand side of (5.5) comes from
the growing mass of the compacted pack. The second and third terms on the right-hand
side of (5.5) represent the x components of the pressure gradient force and the drag force
exerted on the compacted pack with a cross-section of unit area. Forces F∇P and Fdrag
are the pressure gradient force and the drag force exerted on granular media with units of
mass, respectively, which are related by (see Appendix D)

Fdrag = 1 − φcomp

φcomp
· F∇P, (5.6)

where F∇P = ∇xP/ρp. For steady-state compaction, ucomp and up,comp are unvaried so that
the term on the left-hand side of (5.5) diminishes. Additionally, ucomp and up,comp satisfy
the Rankine–Hugoniot relationship:

ucomp = up,comp

(
1 + φ0

φcomp − φ0

)
. (5.7)

Substituting (5.6) and (5.7) into (5.5), we obtain up,comp and ucomp:

up,comp =
√

(Pr − P1)

ρp

φcomp − φ0

φ0φcomp
, (5.8)

ucomp =
√

(Pr − P1)

ρp

φcomp

(φcomp − φ0)φ0
. (5.9)

Equations (5.8) and (5.9) formulate the dependence of up,comp and ucomp on the strength
of the incident shock, Pr − P1, the particle density, ρp, the initial particle volume fraction,
φ0, and the compacted particle volume fraction, φcomp. Figure 16 plots the scaled up,comp
for all cases derived from simulations which agree well with the theoretical predictions
(equation (5.8)).

5.4. Instability criterion for a granular column with infinite length
The initiation of the perturbation growth during the first growth stage is particularly
relevant to a granular column with infinite length wherein the SDGI only has the first

930 A22-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.912


J. Li, K. Xue, J. Zeng, B. Tian and X. Guo

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

Symbol

Case name

1.5-120-50-0.05

6-120-50-0.05

1.5-120-65-0.05

6-120-65-0.05

6-60-50-0.05

6-400-50-0.05

6-200-65-0.05

6-95-60-0.05

6-88-65-0.05

6-120-65-0.10

6-120-65-0.20

3-120-50-0.05

9.64-120-50-0.05

3-120-65-0.05

9.64-120-65-0.05

6-200-50-0.05

6-160-65-0.05

6-105-55-0.05

6-92-62.5-0.05

6-120-65-0.01

6-120-65-0.15

6-120-65-0.25

Symbol

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

u p,
co

m
p/

�(
P r 

–
 P

1
)/
ρ

p

�(φcomp – φ0)/φ0φcomp

Figure 16. Particle velocities during the shock compaction scaled by
√

(Pr − P1)/ρp for all numerical cases,
up,comp/

√
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growth stage. As suggested in figure 13 the occurrence of sustained transverse granular
flows is a prerequisite for perturbation growth initiation. The effect of φ0 on the transverse
granular flows is well explored by examining the cases in Group_φ0 wherein φ0 increases
from 0.5 to 0.65 (close to φcomp). As φ0 approaches φcomp, the transverse granular flows
become progressively suppressed and eventually cease (see figure 13). In addition to φ0,
the initial perturbation amplitude, a0, also plays a critical role in initiating transverse
granular flows, as discussed in § 6.

For densely packed particle columns (φ0 ∼φcomp), the transverse granular flows are
sustained only when the associated time scale, ttr, is smaller than the compaction time
scale, tcomp. Otherwise, the interfacial particles are compacted to the jammed pack state
so fast that no discernible transverse granular flows can survive. The transverse granular
flow time scale, ttr, given by (5.10) represents the time it takes for a particle to fall into a
hole of size dp under the pressure gradient force ∇yP · dp, where ∇yP is the y component
of the pressure gradient:

ttr = dp√∇yP · dp/ρp
. (5.10)

Note that ∇yP is a function of the shock strength, Pr, and the perturbation amplitude, a0:
∇yP = ∇yP(Pr, a0/D). The compaction time scale tcomp is described by

tcomp = a0/ucomp, (5.11)

where ucomp can be predicted by (5.9). The ratio between the two time scales yields a
dimensionless parameter, τ :

τ = ttr
tcomp

= dp · ucomp

a0
√∇yP · dp/ρp

. (5.12)
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Substituting (5.9) into (5.12), we obtain the dependence of τ on a range of structural
parameters:

τ = 1
a0

√
φcomp

(φcomp − φ0)φ0

√
dp(Pr − P1)

∇yP
. (5.13)

A τ smaller than unity means that the axial compaction is slow compared to the
microscopic transverse granular flows, enabling sustained transverse granular flows and
the ensuing growth initiation. Accordingly, τ = 1 leads to an instability criterion whereby
a critical pressure gradient normal to the compaction direction, ∇yPcr, is derived:

∇yPcr =
(

1
a0

)2 φcomp(Pr − P1)dp

(φcomp − φ0)φ0
. (5.14)

A ∇yP smaller than ∇yPcr is insufficient to initiate the SDGI during the first growth
regime. The dependences of ∇yPcr on a0 with different φ0 values are plotted in figure 17(a)
wherein Pr = 6 bar. Here ∇yPcr drastically decreases with increasing a0. On the other
hand, the perturbed interfaces with increased a0 values spontaneously invoke higher
pressure gradients normal to the compaction direction (see figure 10). Therefore, the
perturbed interfaces with increased a0 values are much more prone to become destabilized.
Figure 17(b) shows the dependence of ∇yPcr on φ0 with Pr = 6 bar and a0 = 0.05D.
Clearly, the initiation of the SDGI in loosely packed particles with smaller φ0 demands
weaker incident shock since it takes a longer time for the loosely packed particles to be
fully shock compacted.

Figures 17(a) and 17(b) are complemented by the simulated values of ∇yP averaged over
the ridge areas in the pressure gradient fields delineated by the pressure gradient contour
|∇P| = 500 atm m−1, ∇yPsim. Indeed, values of ∇yPsim of cases wherein perturbation
growth is not initiated are below the ∇yPcr curves, suggesting that axial compaction
overwhelms the potential transverse granular flows to suppress the initiation of the SDGI.
Note that the instability criterion given in (5.14) holds only if the particle packs are
dense enough so that the incident shock reflects off the front surface as if it reflects off
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Figure 18. Transverse granular flows in terms of upy for case 6-120-65-0.25 at different times.

a solid surface. Hence, there exists a minimum φ0, φ0,min, for the validity of the proposed
instability criterion (equation (5.14)). For particle packs with a φ0 smaller than φ0,min,
the coupling between particles and interstitial gas flows deviates from being governed by
the infiltration process. The transmitted wave effect should be considered. Particle packs
with φ0 smaller than φ0,min can hardly be mechanically stable and are regarded as dense
granular media.

5.5. Driving mechanism during the second and third growth stages
The first growth regime comes to its end at tLE, the time that the rarefaction wave
arrives at the front surface of the particle column. The ensuing decompaction of the
interfacial particles immediately activates the transverse granular flows, as indicated by
the significant ramp-up of the transverse mass flux ṁy after tLE (figure 12). The mass
flow-in/flow-out effect is substantially amplified. Therefore, we observe an increase of
the bubble velocity ub after tLE, while the spike velocity us barely changes (figure 9). The
velocity differential �ub−s = ub − us grows at an expected rate, terminating the semilinear
perturbation growth mode during the first growth stage. Instead, an exponential growth
mode takes hold (see the exponential fitting during tLE < t < tEQ in figure 5g), signifying
the commencement of the second growth stage. Notably, the second compaction in the
cases of Group IV temporarily suppresses the transverse granular flows (see figure 12),
giving rise to minor kinks in the ub(t) (figure 9) and �ub−s(t) (figure 12) curves. However,
the perturbation growth during the second growth stage is largely unaffected by the
alternating compaction and rarefaction waves reverberating through the particle columns.

Alongside the elongation of the spike, intense transverse granular flows move from the
root of the spike to its stem, as shown in figure 18. The mass flow-in/flow-out effect hence
is decoupled from the dynamics of the column bulk. Similar to the first growth stage after
the shock interaction, the spike and the column bulk behave like separate entities. The
column bulk is accelerated by the diffusive pressure field as a whole, while the spike is
left behind without adequate driving forces. From then on, the perturbation growth crosses
over to a third asymptotic growth stage, solely controlled by the distinct pressure and gas
flow fields governing the column bulk and the spike.

As mentioned in § 4.2, the onset of the third growth stage, tEQ, coincides with the time
that the granular temperature inside the column bulk diminishes. Afterwards, the work
done by the pressure gradient and drag forces is predominately converted to the kinetic
energy of the compacted column bulk. Driven by the steady diffusive pressure and gas
flow fields throughout the column bulk, as shown in figures 3(a) and 3(b), the bubble
edge alongside the column bulk accelerates with a constant value, u̇b,III . Therefore, the
perturbation growth law during the third stage ought to follow a quadratic function:

�a = a − a0 = �aEQ + (ub,EQ − us,EQ)(t − tEQ) + u̇b,III(t − tEQ)2 t > tEQ, (5.15)
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Figure 19. Dependence of u̇b,III/[(Pr − P1)/ρp] on 1/φcompLcomp predicted by (5.17) (dashed line) in
comparison with the simulated results for all cases.

where �aEQ is the amplitude increment of perturbation at tEQ and ub,EQ and us,EQ are the
instantaneous velocities of the bubble edges and the spike tip at tEQ.

5.6. Growth rate during the third asymptotic growth stage
In this section, we attempt to deduce u̇b,III , which characterizes the third quadratic growth
stage from a simplified force balance equation of the column bulk:

φcompLcompu̇b,III =
∫ Lcomp

0
F∇P(l) · φcomp dl +

∫ Lcomp

0
Fdrag(l) · φcomp dl, (5.16)

where Lcomp is the length of the compacted column bulk. Substituting (5.6) into (5.16) and
integrating the terms on the right-hand side of (5.16) yield a simple analytical solution:

u̇b,III = Pr − P1

ρpφcompLcomp
= Pr − P1

mcol
, (5.17)

where u̇b,III is a function of the shock strength, Pr − P1, and the column mass, mcol.
Equation (5.17), albeit having a quite simple form, provides a fairly good approximation
of the acceleration of the column bulk during the third stage, as suggested in figure 19.

We proceed to fit the growth curves of �a(t) after tEQ using (5.15) wherein tEQ, �aEQ,
ub,EQ and us,EQ are attained from simulations while u̇b,III is calculated by (5.17). Table 2
in Appendix F tabulates the values of tEQ, �aEQ, ub,EQ and us,EQ for all cases. The fitting
curves of the third growth regime for three typical cases are demonstrated in figure 5(g). A
fairly high fitting accuracy is achieved for all cases since the coefficient of determination
values, R2

III , presented in table 2 in Appendix F are all near unity.
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6. Discussion

The three-stage growth law of the SDGI distinctly differs from that of the RMI and
SDMI characterized by the linear regime and the following nonlinear regime (Luo et
al. 2019; Li et al. 2020; Zhou et al. 2021). More importantly, the SDGI is dictated
by granular dynamics rather than vortices deposited along the interface. The granular
dynamics vary dramatically across the different growth stages and they are coupled
with the shock-induced flows. The early instants of the first growth stage, namely the
shock interaction phase, and the whole second growth stage are most affected by intense
interfacial transverse granular flows. In contrast, most of the first semilinear growth stage
is underpinned by the steady compaction process. The third asymptotic growth stage is
dictated by the acceleration of the column bulk in the steady diffusive pressure field.

For granular media of finite length, the propagation of the rarefaction wave ensuing from
the reflection of the compaction wave sets off the expedited growth stage, which serves as
a transitional phase between the first and third growth stages. The rarefaction propagation
time, trare, the time it takes for the rarefaction wave to traverse the whole particle column,
is comparable to the duration of the second expedited growth regime, which is the linchpin
to the overall perturbation growth. Thus, trare provides a time scale pivotal to the SDGI.
The calculation of trare from the axial particle velocity profiles is given in Appendix E.
Values of trare for all cases are presented in table 2 in Appendix F. It is worth noting that
trare varies markedly from one combination of the incident shock and granular medium to
another. Basically, trare depends on the particle column length and the propagation speed
of the rarefaction front, which manifests the release rate of the elastic energies stored inside
the compacted particles. The elastic energy, or configuration energy, as referred to in other
literature (Baer & Nunziato 1986), is a function of the particle packing fraction. Denser
packs of the shock-loaded particles are compacted, and larger elastic energy is conserved
inside, leading to a stronger and faster rarefaction wave. Presumably, the shock strength
and initial packing fraction both contribute to the compacted packing fraction, φcomp, and
eventually in trare, as suggested in table 2 in Appendix F. Among other factors, particle
morphology, especially particle shape and roughness, plays a non-trivial role in φcomp
and eventually trare, which hence guarantees more attention in follow-up studies (Cho,
Dodds & Santamarina 2006). On the other hand, rarefaction waves have more difficulties
accelerating heavier particles and thereby become increasingly weaker. Therefore, the
particle density, ρp, should be accounted for as a determining factor of trare.

Subjected to the persistent diffusive pressure field, the upstream propagation of the
rarefaction wave in particle columns may well be countered, even arrested by the
downstream travelling secondary compaction wave emanating from the front surface,
resulting in a prolonged or even infinite trare. This counteracting effect is more significant
for cases involving weaker rarefaction waves and/or longer columns. Figure 20 compares
the rarefaction propagation in cases 6-120-65-0.05, 1.5-120-65-0.05 and 6-120-65-0.05-H,
wherein ρp is doubled compared to other cases while other parameters remain identical
to those of case 6-120-65-0.05. The particles in the wake of rarefaction waves in cases
6-120-65-0.05-H (figure 20a) and 1.5-120-65-0.05 (figure 20b) gain substantially smaller
acceleration and display flattened velocity profiles compared with their counterparts in
case 6-120-65-0.05 (figure 20c). In both cases, the rarefaction waves are halted midway by
the countering compaction waves, leading to the absence of the expedited growth regime
and infinite trare. Therefore, the SDGI in cases 6-120-65-0.05-H and 1.5-120-65-0.05
cannot be initiated altogether.

The aforementioned analysis may justify the experimental observations reported
by Kandan et al. (2017). Specifically, SDGI occurs in a shock-loaded dry
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Figure 20. Velocity fields (top row) and axial velocity profiles (bottom row) of cases 6-120-65-0.05-H (a),
1.5-120-65-0.05 (b) and 6-120-65-0.05 (c) during the rarefaction process. The rarefaction waves are halted
midway by the countering compaction wave in (a) and (b).

polytetrafluoroethylene (PTFE) column (ρp,PTFE = 1460 kg m−3) when the incident shock
is strong enough, while a dry sand column (ρp,sand = 2750 kg m−3) of the same length
impinged by an equally strong shock retains an intact surface. Since weaker incident
shocks and heavier particles both contribute to incomplete rarefaction propagation, there
must exist a shock strength threshold for the occurrence of the SDGI in a specific granular
column. An incident shock that initiates the SDGI in a light granular column (PTFE
column) may fail to give rise to the SDGI in a heavy granular column (dry sand column).

The discussion above highlights the significance of trare as the characteristic time to the
SDGI in terms of the initiation and the overall perturbation growth rate. The scaled time
is hence obtained by normalizing the time by trare, t* = t/trare. Since trare is a function of
an exhaustingly large parameter space and often interferes with the secondary compaction
wave, it is almost impossible to derive an analytical expression of trare. We thus refrain
from attempting to formulate trare, which would be the subject of further investigations.

The perturbation amplitude increment is scaled by the perturbation wavelength, λ, while
taking into account the effects associated with the shock strength and initial perturbation
amplitude as prescribed in (6.1):

α∗ = �a/λ

F(a0/λ) · P4/P1
, (6.1)

where F(a0/λ) accounts for the effect of the initial perturbation amplitude, a0. As shown
in figure 5(f ), a0 is found to have a negligible effect until a0 exceeds a critical value, acr,
beyond which the effects almost dissipate. Hence,

F(a0/λ) = 1, a0/λ ≥ acr/λ
F(a0/λ) < 1, a0/λ < acr/λ

}
, (6.2)

where F(0) represents the cases with unperturbed surfaces. Note that F(a0/λ) is only a
function of a0/λ, and it is independent of other variables. Thus, the derivation of F(a0/λ)
from cases in Group_ a0/D (Pr = 6 atm, L = 120 mm, φ0 = 0.65) wherein acr/λ= 0.25
is applicable to other cases with varied parameter sets (Pr, L, φ0). By collapsing the
scaled perturbation growth curves in Group_a0/D (Pr = 6 atm, L = 120 mm, φ0 = 0.65)
into a single curve, namely the scaled growth curve of case 6-120-65-0.25, we derive the
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Figure 21. Temporal evolution of the perturbation amplitude. Scaled master curve of the scaled amplitude
increment, a*, versus the scaled time, t*. Inset: the perturbation amplitude increment, �a, versus time.

expression of F(a0/λ) as described by (6.3), which satisfies the requirements in (6.2):

F(a0/λ) = 1 − 0.687e−17.05(a0/λ). (6.3)

For the situation in the other groups, they have the same initial perturbation amplitude,
a0/λ= 0.05, yielding a consistent value of F(a0/λ), F(a0/λ) = 0.71 according to (6.3). It is
worth noting that the expression of F(a0/λ) given in (6.3) merely manages to normalize
out the effect of a0 via a limited number of cases with varying a0, no physical implications
or rigorous formations being involved. The exact expression of F(a0/λ) needs more
calibrations by inspecting a larger number of cases with varying a0.

Employing the scaled time and the scaled increment of perturbation amplitude, all data
in figure 5 are scaled onto a single curve as shown in figure 21. The collapse indicates
that we successfully normalize out the effects brought by the shock strength (via trare and
(6.1)), the length of the granular column (via trare), the initial porosity (via trare) and the
initial perturbation magnitude (via F(a0/λ)). The predictability of the scaled growth law
lies in the validity and generality of the time and length scaling methods. The former is
guaranteed by the universality of trare, as the characteristic time of the SDGI as long as trare
can be well defined. The length non-dimensionalization given in (6.1) is appropriate when
the wavelength λ is the only relevant length scale that holds in the present study. However,
it is challenging to determine λ for the initially unperturbed granular interface, wherein the
scales associated with the surface roughness may well be a candidate for the characteristic
length. Additionally, one should be wary of applying the length scaling method using λ on
granular media with intrinsic internal scales, such as scales pertinent to the internal fabric,
since these scales probably cause significant effects on the SDGI.

As addressed in § 5.4, the SDGI is initiated when the microscopic transverse particle
rearrangement outpaces the macroscopic shock compaction. This microscopic instability
criterion is essentially in line with the macroscopic criterion proposed by Kandan et al.
(2017), wherein the granular materials are modelled as an isotropic elastic–plastic J2 flow
theory solid. Kandan et al. argued that the pressure gradient behind the transmitted wave
front should be sufficiently high to cause plastic deformations therein, a precursor for
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the SDGI. For granular materials, the macroscopic plastic deformations are mediated
by microscopic particle rearrangements. Based on the dimensionless number τ , we also
demonstrate that a threshold pressure gradient as expressed in (5.12) is required for growth
initiation. Furthermore, our instability criterion sheds new light on the instability map
constructed by Kandan et al. in terms of the macroscopic properties of granular materials,
namely the bulk density (ρb), Young’s modulus (E), yield stress (σ y) and friction angle
(μ). The first three macroscopic properties, ρb, E, σ y, are functions of the microscopic
parameters, ρp, φ0, dp, whose influences are quantified in our instability criterion. More
importantly, other structural parameters, such as the perturbation amplitude, a0, and the
shock compacted particle volume fraction, φcomp, which is especially relevant to loosely
packed particles, are incorporated into our instability criterion. The follow-up work will
further consider the interparticle friction and the particle morphology and the microscopic
parameters affecting the macroscopic friction angle of granular materials.

7. Conclusion

This study reveals a novel shock-induced interfacial instability involving dense granular
media, the SDGI, which has unique initiation criteria and perturbation growth laws
distinctly different from those of RMI or SDMI. In contrast with the interfacial vortex
deposition mechanism, the SDGI arises from heterogeneous interfacial granular flows
governed by the evolving coupling between the shock, interstitial gas flows and particles.
The crossovers between three sequential perturbation growth regimes characterized by
linear, exponential and quadratic polynomial growth curves correspond to the transitions
of the dominant mechanisms featuring the shock interaction, rarefaction acceleration
and semisteady diffusive pressure field, respectively. Theoretical models are proposed
to predict the upper limit of the growth rate during the first stage and the characteristic
growth rate during the third stage. A scaled growth law is found after normalizing the time
by the rarefaction propagation time and properly accounting for shock strength and initial
perturbation effects in the length non-dimensionalization. The findings shed fundamental
light on transient multiphase flows involving complicated wave spectra and the resultant
interfacial instabilities.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jiarui Li http://orcid.org/0000-0002-5148-7715.

Appendix A. Delineation of the granular column surface

Only if the destabilized surface of the granular column is properly defined can the
growth rate of the perturbation amplitude be correctly derived. One major task is to
remove the scattered particles breaking away from the finger-like protrusion or the column
bulk, as shown in figure 22. A dual criterion is adopted to distinguish the scattered
particles from densely compacted particles. Specifically, for densely packed particles, the
instantaneous local particle volume fraction, φp,voro, ought to be greater than φ0 − 0.1,
while its coordination number n ought to be greater than 2. We use Voronoi tessellation
(obtained with Voro++; Rycroft, 2009) to calculate the φp,voro values of each parcel
(defined as the parcel’s area divided by the area of its Voronoi cell). Figures 22(a) and
22(b) show the spatial distributions of φp,voro and n in the neighbourhood of the front
surface, respectively. We segment parcels in figures 22(a) and 22(b) such that all parcels
that satisfy both criteria φp,voro >φ0 − 0.1 and n > 2 are assigned the value 1 (white),
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Figure 22. Images of the elongating spikes consisting of particles coloured by the local particle volume
fraction, φp,voro (a), and coordinate number (b). (c) Binarized image of the spike using the dual criterion.
The profiles of spikes extracted via the φp,voro criterion, the coordinate number criterion and the dual criterion
are superimposed in (a–c), respectively.

while the rest are assigned the value 0 (black). The result of this image segmentation is
shown in figure 22(c) which yields a well-defined envelope of the column surface. We
proceed to bin the particle column at a given t along the y axis and locate the leftmost
parcel (with the smallest x coordinate) in each bin. These parcels constitute the envelope
of the downstream surface, as illustrated in figure 22(c). The morphological evolutions of
the downstream surfaces of particle columns derived in this way are shown in figure 4.

Appendix B. Vortices along the shock-impinged granular surface

Figure 23(a–c) shows instantaneous snapshots of vorticity fields upon and after the shock
interaction for cases 6-120-65-0.05, 6-120-65-0.15 and 6-120-65-0.25. For the case with a
small perturbation amplitude (6-120-65-0.05), upon shock interaction, two vortex pairs
emerge at the upper and lower half of the front surface. Each pair consists of two
counter-rotating vortices on either side of the front surface. The clockwise vortex in the
upper pair and the counter-clockwise vortex in the lower pair, both enclosed by the front
surface, potentially contribute to the reversal of the convex perturbation. As the reflected
shock travels far away from the surface, the two vortex pairs are reduced to one pair
consisting of an upper counter-clockwise vortex and a lower clockwise vortex with much
reduced intensities. The evolution of vortex pairs near the surface undergoes dramatic

930 A22-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.912


Shock-induced interfacial instabilities of granular media

t = 0.03 ms t = 0.09 ms
(a) 

(b)

(c) 

5 mm

y

x

ω
z (

s–
1
)

ω
z (

s–
1
)

ω
z (

s–
1
)

–4

4

4

–4

–3

–2

–1

0

1

2

3

4

–4

–3

–2

–1

0

1

2

3

2

0

–2

–4

4

6

–6

2

0

–2

20

–20

–15

–10

–5

15

10

5

0

40

30

20

10

–10

–20

–30

–40

0

Figure 23. Instantaneous snapshots of the vorticity fields upon the shock interaction (left) and as the reflected
shock travels away from the surface (right) for cases 6-120-65-0.05 (a), 6-120-65-0.15 (b) and 6-120-65-0.25(c).

changes with increasing a0. For case 6-120-65-0.025, the shock interaction induces one
vortex pair consisting of an upper counter-clockwise vortex and a lower clockwise vortex,
which transitions to two vortex pairs with much lower intensities as the reflected shock
travels far away. The interfacial gaseous vortices evolve with the gas flows induced by the
shock interaction with the perturbed surface. Hence, vorticity deposition is not the driving
mechanism of the SDGI but rather the result of the interference of the granular surface on
the shocked flows.
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Appendix C. Relation between the pressure gradient force

The diffusive pressure field in the wake of the transmitted wave propagating through
particles is dominated by the shock-induced gas flows through particles. Ergun developed
a nonlinear model accounting for the pressure drop associated with the infiltration-flow
behaviour, as given in (C1):

∇P = 150
μgφ

2
p

(1 − φp)
2

1
d2

p
(ug − up) + 1.75

ρgφp

1 − φp

|ug − up|
dp

· (ug − up), (C1)

where μg, ρg and ug are the dynamic viscosity, density and velocity of gases, respectively.
In the case wherein the compaction front exceeds the reach of the diffusive pressure field,
the particle volume fraction φp = φcomp. Otherwise, the pressure gradient curve becomes
piecewise since φp =φcomp for compacted particles and φp =φ0 for particles beyond the
compaction front. The first term on the right-hand side represents the linear dependence
on the velocity difference, while the second term introduces a nonlinear dependence.
Equation (C2) incorporates both the Darcy and Forchheimer mechanisms. The pressure
gradient force exerted on particles per unit mass, F∇P, becomes

F∇P = ∇P/ρp = 150
μg

ρp

φ2
p

(1 − φp)
2

1
d2

p
(ug − up) + 1.75

ρg

ρp

φp

1 − φp

|ug − up|
dp

· (ug − up).

(C2)
Note that units of F∇P are m s−2.

The drag force of particles is calculated by the Di Felice model combined with Ergun’s
equation as expressed in (C3):

Fdrag = 150
μf

ρp

φp

1 − φp

1
d2

p
(uf − up) + 1.75

ρf

ρp

|uf − up|
dp

· (uf − up). (C3)

Comparing the formulations of F∇P (equation (C2)) and Fdrag (equation (C3)), there exists
a relationship between F∇P and Fdrag:

Fdrag = 1 − φp

φp
F∇P. (C4)

Appendix D. Characterization of the transverse granular flows

The transverse granular flows from bubbles to spikes dramatically evolve in terms of the
velocities and spatial distributions. Thus, we define a transverse flux integral, ṁy(t), to
characterize the instantaneous intensity values of the transverse granular flows:

ṁy(t) =
Ny(t)∑
i=1

mp,i(xi)upy,i(xi), (D1)

where Ny(t) is the total parcel number inside the interfacial area wherein the transverse
granular flows are non-trivial. This interfacial area is denoted as Ωtran. As expressed in
(D1), ṁy(t) sums up the particle mass flux inside Ωtran. We first determine the boundary
of Ωtran by examining the variations in the coarse-grained transverse particle velocity
(|upy|) along the x axis, as shown in figure 24(b). The front beyond which |upy| becomes
negligible is defined as the far end of Ωtran. The temporal variations in ṁy(t) are plotted
in figure 12.
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Figure 24. Transverse granular flows in terms of upy and the boundary of Ωtran (a) and the variations in the
coarse-grained transverse particle velocity (|upy|) along the x axis (b).
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Figure 25. (a–c) Snapshots of the particle columns during the upstream propagation of the rarefaction front
denoted by the dashed lines for case 6-120-50-0.05, wherein particles are rendered according to the magnitude
of particle velocities. The times of (a–c) are 3.25, 3.48 and 3.71 ms, respectively. (d) The |upx|(x) profiles at
times corresponding to (a–c), wherein the filled and open circles denote the locations of the front surfaces and
the rarefaction fronts, respectively.
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Appendix E. Approach to obtain the rarefaction time

The rarefaction time, trare, is defined as the time it takes for the rarefaction wave to
propagate from the rear surface of the column to the front surface. The start time of
the rarefaction wave corresponds to the time the compaction wave reflects off the rear
surface, trare,start. The time at which the upstream-propagating rarefaction wave reaches the
front surface, trare,end, is determined from the axial variations in the particle velocity. As
shown in figure 25(a–c), particles in the wake of the rarefaction front undergo a persistent
acceleration, while particles ahead of the rarefaction front remain compact and have a
constant velocity. Accordingly, the profiles of the coarse-grained axial particle velocity
(|upx|) along the x axis display a plateau followed by a gradually elevated segment, as
shown in figure 25(d). The deflection points between these two segments indicate the
locations of the rarefaction front. Hence, we can detect the moment the rarefaction front
arrives at the front surface, more specifically the root of the surficial protrusion, from the
|upx|(x) profiles, as indicated in figure 25(d). For case 6-120-50-0.05, trare,start = 3.13 and
trare,end = 3.71 ms, leading to trare = 0.58. The rarefaction times for all cases obtained in
this way are summarized in table 2 in Appendix F.

Appendix F. Characteristic variables of the perturbation growth laws

To provide more details for the whole growth history of the perturbation amplitude,
table 2 summarizes the values of some key variables that characterize the growth laws
for all investigated cases. Times tLE and tEQ define the transition times between the three
consequent growth regimes that feature different growth laws. Since the third growth
regime exhibits a quadratic polynomial growth of perturbation amplitude as formulated
in (5.15), we can predict �a(t) (t > tEQ) via the values of �aEQ, ub,EQ and us,EQ, which
denote the perturbation amplitude increment and the bubble and spike velocities at tEQ,
respectively. Values of the pertinent parameters except u̇b,III , together with the coefficient
of determination, R2

III , are given in table 2. The fairly high coefficients of determination
guarantee the validity of the predictions by (5.15) and corroborate our arguments.
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