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USING ALMOST-EVERYWHERE THEOREMS
FROM ANALYSIS TO STUDY RANDOMNESS

KENSHI MIYABE, ANDRÉ NIES, AND JING ZHANG

Abstract. We study algorithmic randomness notions via effective versions of almost-
everywhere theorems fromanalysis and ergodic theory. The effectivization is in termsof objects
described by a computably enumerable set, such as lower semicomputable functions. The
corresponding randomness notions are slightly stronger thanMartin–Löf (ML) randomness.
We establish several equivalences. Given a ML-random real z, the additional randomness

strengths needed for the following are equivalent.
(1) all effectively closed classes containing z have density 1 at z.
(2) all nondecreasing functions with uniformly left-c.e. increments are differentiable at z.
(3) z is a Lebesgue point of each lower semicomputable integrable function.
We also consider convergence of left-c.e. martingales, and convergence in the sense of

Birkhoff’s pointwise ergodic theorem. Lastly, we study randomness notions related to density
of Π0n and Σ

1
1 classes at a real.

§1. Introduction. Several theorems in analysis and ergodic theory express
that all functions in a certain class are well-behaved at almost every point.
For instance, Lebesgue published the following theorem in 1904. It is often
covered in textbooks on analysis, e.g., [8, Chapter 20].
Theorem 1.1 ([26]). Let f : [0, 1]→ R be a nondecreasing function. Then
f is differentiable almost-everywhere.
Another example of such a result is Birkhoff’s ergodic theorem; see e.g.,
[23, Theorem 2.3] for a textbook reference.
Theorem 1.2 ([5]). LetT be ameasure preserving operator on a probability
space X . Let f be an integrable function on X . Then for almost every point
z ∈ X , the average of f(z), f(T (z)), . . . , f(Tn−1(z)) converges as n → ∞.
If the operator is ergodic then this limit is the integral of f.
The theorems involve a null set of exceptions which usually depends on
given objects, such as T and f in Theorem 1.2. By an effective version of
such a theorem, we mean the following. If the given objects are algorithmic
in some sense, then the resulting null set is also algorithmic. (A slightly
stronger effective version of such a theorem would also ask that the null set
be obtained uniformly from a presentation of the given objects, without the
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assumption that it is algorithmic; this is usually the case for the examples
we consider.)
Brattka, Miller, andNies [7], in their Theorem 4.1 combined with Remark
4.7, show the following effective version of Lebesgue’s theorem. The given
object is a computable function.

Theorem 1.3 ([7]). Suppose a nondecreasing function f : [0, 1] → R is
computable. There exists a computable martingale that succeeds on the binary
presentation of each real z such that f′(z) fails to exist.

We explain the terms used in this theorem.

(a) The computability of a function is taken in the usual sense of com-
putable analysis [40]. As shown in the last section of the longer
arXiv version of [7], the weaker hypothesis is sufficient that f(q)
be a computable real uniformly in a rational q.

(b) In randomness theory, a martingale is a functionM : 2<� → R+0 such
that 2M (�) = M (�0) +M (�1). A martingaleM succeeds on a bit
sequence Z if the value ofM on initial segments of Z is unbounded.
The success set is a null set which is effective in caseM is computable.

A real on which no computable martingale succeeds is called computably
random, a notion introduced by Schnorr [38]; for a recent reference see
[33, Chapter 7] or [12]. The theorem above shows that f′(z) exists for each
computably random real z and each nondecreasing computable function f.
Brattka et al. also show that conversely, if a real z is not computably ran-
dom, then some computable monotonic function f fails to be differentiable
at z. In this way, this effective form of Lebesgue’s Theorem 1.1 is matched
to computable randomness. This is an instance of a more general princi-
ple: effective versions of “almost-everywhere” theorems often correspond to
well-studied algorithmic randomness notions.
Pathak, Rojas, and Simpson [35, Theorem 3.15] matched a particular
effective form of the Lebesgue differentiation theorem to Schnorr random-
ness (the direction where a function is turned into a test was indepen-
dently proven in [18, Theorem 5.1]). We will discuss this in more detail in
Subsection 5.1.
V’yugin [39], Gács et al. [19], Bienvenu et al. [2], Franklin et al. [16],
and Franklin and Towsner [17] all studied effective versions of Birkhoff’s
theorem. For instance, in the notation above, if an ergodic operator T
is computable, and the integrable function f is lower semicomputable as
defined below, then the corresponding notion is Martin–Löf randomness
by [2, 16].
Matching such theorems to algorithmic randomness notions has been
useful in two ways:

(a) to determine the strength of the theorem, and
(b) to understand the randomness notion.

For an example of (a), Demuth [11] (see [7] for a proof in modern language)
showed that Jordan’s extension of Lebesgue’s result to functions of bounded
variation corresponds to Martin–Löf randomness. This notion is stronger
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than computable randomness; so in a sense this extension is harder to obtain.
For an example of (b), Brattka et al. [7] used their results to show that
computable randomness of a real does not depend on the choice of base in
its digit expansion, even though martingales (which can also be defined with
respect to bases other than 2) bet on such an expansion.
The main purpose of this paper is to examine effective versions of almost-
everywhere theorems that do not correspond to known randomness notions.
This apparently occurred for the first time when Bienvenu et al. showed in
[4, corollary 5.10] that the randomness notion corresponding to the Denjoy–
Young–Saks theorem implies computable randomness, but is incomparable
with Martin–Löf randomness.
We base our study on Lebesgue’s theorems mentioned earlier, and on the
following two results. The first, Lebesgue’s density theorem [26], asserts that
for almost every point z in a measurable class C ⊆ [0, 1], the class is “thick”
around z in the sense that the relative measure of C converges to 1 as one
“zooms in” on z. The second, Doob’s martingale convergence theorem [14],
says that a martingale converges on almost every point.
The main given object will only be effective in the weak sense of com-
putable enumerations. We consider the Lebesgue density theorem for effec-
tively closed sets of reals (the complement is an open set that can be
computably enumerated as a union of rational open intervals). We consider
Doob’s convergence theorem for martingales that uniformly assign left-c.e.
reals to strings.
A group or researchers working at the University of Wisconsin at
Madison, consisting of Andrews, Cai, Diamondstone, Lempp, and Miller,
showed in 2012 that for a real z the following two conditions are equivalent,
thereby connecting the two theorems.

(1) z is Martin–Löf random and every effectively closed class containing
z has density 1 at z.

(2) every left-c.e. martingale converges along the binary expansion of z.

In this paper we provide two further conditions on a real z that are
equivalent to the ones above. They are also linked to well-known classical
results of the “almost-everywhere” type where the main given object is in
some sense computably enumerable. The conditions are:

(3) every interval-c.e. function f is differentiable at z.
(4) z is Martin–Löf random and a Lebesgue point of each integrable
lower semicomputable function g : [0, 1]→ R ∪ {∞}.

By default, functions will have domain [0, 1]. In (3), the relevant classical
result is Lebesgue’s theorem on monotonic functions discussed above. To
say that a monotonic function f is interval-c.e. means that f(0) = 0 and
f(q) − f(p) is left-c.e. uniformly in rationals p < q. In (4), the classical
result is Lebesgue’s differentiation theorem, which extends the density
theorem. A function g is lower semicomputable if {x : g(x) > q} is Σ01
uniformly in a rational q.
The new randomness notion identifying the strength of each of the
conditions (1)–(4) will be called density randomness.
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The analytic notion of density has already been very useful for resolving
open problems on the complexity of sets of numbers, asked for instance
in [30]. It was applied in [9] to show that K-triviality coincides with ML-
noncuppability. It was further used to solve the so-called covering problem
that every K-trivial is Turing below an incomplete ML-random oracle, and
in fact below a single such oracle that also is Δ02. See the survey [1] for more
detail and references.
Sections 2–6 of the paper are based on the almost-everywhere theorems
that serve as an analytic background for our algorithmic investigations:
Lebesgue density theorem, Doob martingale convergence, differentiability
of monotonic functions [26], Lebesgue differentiation theorem [27], and
Birkhoff’s theorem [5]. In a final section wewill study density for classes that
have descriptional complexity higher than Π01.
This work is a mix of survey and research paper. Section 2 introduces the
notion of density of a class at a point in detail, and contains basic results
on effective aspects of density, some of them new. Section 3 contains a proof
of the unpublished 2012 result of the Madison group (with permission).
Section 4 elaborates on a conference paper of Nies [34]. The remainder of
the paper consists of new results.

§2. Lebesgue density theorem. This section presents backgroundmaterial
and some initial results.We discuss the theorem that leads to the definition of
two central notions for this paper, density-one points, and density random-
ness. We also look at these notions in the setting of Cantor space. M. Khan
and J. S. Miller (see [22]) have shown that among the ML-random reals, this
choice of a setting does not make a difference.We show that lowness for den-
sity randomness is the same as lowness forML-randomness, or equivalently,
K-triviality.

2.1. Density in the setting of reals. The definitions below follow [4]. Let �
denote Lebesgue measure.

Definition 2.1. We define the lower Lebesgue density of a set C ⊆ R at a
point z to be the quantity

�(C|z) := lim inf
�,�→0+

�([z − �, z + �] ∩ C)
� + �

.

Note that 0 ≤ �(C|z) ≤ 1.
Theorem 2.2 (Lebesgue [26]). Let C ⊆ R be a measurable set. Then
�(C|z) = 1 for almost every z ∈ C.
When C is open, then the lower Lebesgue density is clearly 1. Thus, the
simplest nontrivial case is when C is closed. We use this case to motivate our
central definition.

Definition 2.3. We say that a real z ∈ [0, 1] is a density-one point if
�(C|z) = 1 for every effectively closed class C containing z. We say that z is
density random if z is a density-one point and Martin–Löf random.
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As noted in e.g., [4], being a density-one point by itself is not a reasonable
randomness notion: for instance, every 1-generic real is a density-one point,
but fails the law of large numbers.
By the Lebesgue density theorem and the fact that there are only countably
many effectively closed classes, almost every real z is density random. Recall
that a real is weakly-2-random if it does not lie in any Π02 null class. In fact,
any such real is density random: for any effectively closed C and rational
q < 1, the null class {z ∈ C : �(C | z) ≤ q} is Π02.
We say that z is a positive density point if �(C|z) > 0 for every effectively
closed class C containing z. The difference between positive and full density
is typical for our algorithmic setting. In classical analysis, null sets are
usually negligible, so everything is settled by Lebesgue’s theorem. In effective
analysis, a result of Day and Miller [10] separates the two cases: for a ML-
random real z, to be a full density-one point is a stronger randomness
condition than to be a positive density point.
Bienvenu et al. [4] have shown that a ML-random real z is a positive
density point if and only if z is Turing incomplete. In contrast, for density-
onepoints, no characterisation in terms of computational complexity among
the ML-random reals is known at present.

2.2. Density in the setting of Cantor space. We let 2N denote the usual
product probability space of infinite bit sequences. For Z ∈ 2N we let Z �n
(or Z � n in subscripts) denote the first n bits of Z. Variables �, �, 	 range
over strings in 2<�. We denote by � 	 � that � is an initial segment of �;
� ≺ � denotes that � is a proper initial segment of �; � ≺ Z that � is an
initial segment of the infinite bit sequence Z.
For each � we let [�] denote the clopen set of extensions of �. For C ⊆ 2N
we let ��(C) = 2|�|�(C ∩ [�]) denote the local measure of C inside [�].
Consider a measurable set C ⊆ 2N and Z ∈ 2N. The lower density of
Z ∈ 2N in C is defined to be

�
2
(C|Z) = lim inf

n→∞ �Z�n(C).
We say that a real z ∈ [0, 1] is a dyadic density-one point if its dyadic
expansion is a density one point in Cantor space. We will use the following
result.
Theorem 2.4 (Khan and Miller [22]). Let z be a ML-random dyadic
density-one point. Then z is a full density-one point.
Thus, by the usual identification of irrational real numbers in [0, 1] with
elements in Cantor space, we can equivalently define density randomness for
a real as in Definition 2.3, or for the corresponding bit sequence in Cantor
space using lower dyadic density.

2.3. Lowness for density randomness. We say that a Turing oracleA is low
for density randomness if whenever Z ∈ 2N is density random, Z is already
density random relative to A. Here, z is density random relative to A if z
is ML-random relative to A, and �(C|z) = 1 for every A-effectively closed
class C containing z. We will show that this is equivalent to lowness for
ML-randomness.
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ByW2R we denote the class of weakly-2-random sets, i.e., sets that do not
lie in any Π02-null class of sets. Low(W2R,MLR) denotes the class of oracles
A such thatW2R ⊆ MLRA. Downey, Nies, Weber, and Yu [13] have shown
that Low(W2R,MLR)=Low(MLR).

Lemma 2.5 (Day and Miller [9]). Suppose Z is Martin–Löf random, A is
low for ML-randomness, andP is aΠ0,A1 class containingZ. Then there exists
a Π01 class Q ⊆ P such that A ∈ Q.
Theorem 2.6. A ∈ 2N is low for ML-randomness⇔

A is low for density randomness.
Proof. ⇐: Let DenseR denote the class of density random sets. Since

W2R ⊆ DenseR ⊆ MLR and by the result in [13], we have

Low(DenseR) ⊆ Low(W2R,MLR)=Low(MLR).

⇒: Suppose thatA is not low for density randomness, i.e., there exists a setZ
that is density random but not density random relative toA. IfZ is not even
Martin–Löf random relative to A, then A is not low for ML-randomness.
Otherwise, Z is Martin–Löf random relative to A but not density random
relative to A. Hence there exists a Π0,A1 class P containing Z such that
�
2
(P|Z) < 1. By Lemma 2.5, there is a Π01 class Q ⊆ P such that Z ∈ Q.
Then �

2
(Q|Z) ≤ �

2
(P|Z) < 1, soZ is not density random, contradiction. �

2.4. Upper density. The upper density of C ⊆ 2N at Z is:
�2(C|Z) = lim sup

n→∞
�Z�n(C).

Bienvenu et al. [3, Proposition 5.4] have shown that for any effectively
closed set P and ML-random Z ∈ P , we have �2(P | Z) = 1. Actually
ML-randomness of Z was too strong an assumption. The weaker notion
of partial computable randomness, defined in terms of partial computable
martingales, already suffices. See [33, Chapter 7] for background on this
notion.

Proposition 2.7. Let P ⊆ 2N be effectively closed. Let Z ∈ P .
(i) If Z is partial computably random, then �2(P | Z) = 1.
(ii) Suppose that, in addition, �P is computable. IfZ is Kurtz random, then
�2(P | Z) = 1.

Proof. Suppose that there is a rational q < 1 and an n∗ ∈ N such that
�	(P) < q for each 	 ≺ Z with |	| ≥ n∗.
(i). We define a partial computable martingale M that succeeds on Z.
LetM (	) = 1 for all strings 	 with |	| ≤ n∗. Now suppose that M (	) has
been defined, butM is as yet undefined on any extensions of 	. Search for
t = t	 > |	| such that p := |F |2−(t−|	|) ≤ q, where

F = {� � 	 : |�| = t ∧ [�] ∩ Pt �= ∅}.
If t	 and F are found, bet all the capital existing at 	 along the strings in F .
That is, for � � 	, |�| ≤ t, let

M (�) =M (	) · |{� ∈ F : � � �}|/p.
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Then M (�) = M (	)/p ≥ M (	)/q for each � ∈ F . Now continue the
procedure with all such strings � � 	 of length t.
For each 	 ≺ Z of length at least n∗, we have �	(P) < q, so a t	 as above
will be found. Since Z ∈ P ,M never decreases along Z. Then, since q < 1,
M succeeds on Z.
(ii). Under the extra hypothesis on P , we can make M total, and also
bound from below its growth at an infinite computable set of positions
along Z. This will show that Z is not Kurtz random (see Downey and
Hirschfeldt [12, Theorem 7.2.13]).
Note that �	(P) is a computable real uniformly in 	. Pick rationals q′ <
q < 1 and an n∗ ∈ N such that �	(P) < q′ for each 	 ≺ Z with |	| ≥ n∗. In
the same situation as above, search for t	 > |	| such that we see �	(P) > q′
at stage t	, or F is found. One of the cases must occur. If the former case is
seen first, we letM (�) =M (	) for all � � 	, � ≤ t	. Otherwise, we proceed
as above.
For the lower bound on the growth, define a computable function by

g(n) = max{t	 : n∗ ≤ |	| ≤ n},
for n ≥ n∗, and g(n) = 0 otherwise. Let r(k) = g(2k)(n∗). Then
M (Z � r(k)) ≥ q−k for each k. �
It is not known at present whether the partiality ofM in (i) is necessary.

Question 2.8. Is there aΠ01 class P and a computably randomZ ∈ P such
that �2(P | Z) < 1?
In Subsection 5.1 we will continue the study of Π01 classes of computable
measure.We show that such a class has density one at every Schnorr random
member.

§3. Martingale convergence theorem. For background on martingales in
probability theory, see for instance Durrett [14, Chapter 4]. The martingale
convergence theorem goes back to work of Doob. Recall that for a random
variable Y one defines Y+ = max(Y, 0).

Theorem 3.1. Let 〈Xn〉n∈N
be a martingale with supn EX

+
n < ∞. Then

X (w) := limn Xn(w) exists almost surely, and E|X | <∞.
The standard proof (see e.g., [14, Chapter 4, (2.10)]) uses Doob’s upcross-
ing inequality. In randomness theory, researchers have so far only used
the very restricted form of the powerful notion of a martingale defined
in the introduction: The probability space is Cantor space with the usual
product measure. The filtration 〈Fn〉n∈N

is defined by letting Fn be the
set of events that only depend on the first n bits. If 〈Xn〉 is adapted to
〈Fn〉n∈N

, then Xn has constant value on each [�] for |�| = n. LetM (�) be
this value. The martingale condition E(Xn+1 | Fn) = Xn now turns into
∀� M (�0) +M (�1) = 2M (�). One also requires that the values be non-
negative (so that one can reasonably define that a martingale succeeds along
a bit sequence).
Note thatEX0 =M (〈〉) <∞. Thus, Theorem3.1 turns into the following.

https://doi.org/10.1017/bsl.2016.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.10


312 KENSHI MIYABE, ANDRÉ NIES, AND JING ZHANG

Theorem 3.2. Let M : 2<� → R+0 be a martingale in the restricted sense
above. Then for almost every Z ∈ 2N, X (Z) = limn M (Z �n) exists and is
finite. Furthermore, EX <∞.
If limn M (Z �n) exists and is finite, we say thatM converges along Z.
We can now analyze the theorem in the effective setting, according to the
main plan of the paper. Firstly we discuss the effective form of Theorem 3.2
in terms of computable martingales. It is not hard to show that a computable
martingale converges along any computably random bit sequenceZ (see [12,
Theorem7.1.3]). Inotherwords, boundedness of all computablemartingales
along a bit sequence Z already implies their convergence. For the converse
see the proof of [18, Theorem 4.2], where success of a computable martingale
is turned into oscillation of another. Thus, this effective form of Theorem 3.2
is matched to computable randomness.
Next, we weaken the effectiveness to a notion based on computable enu-
merability. A martingale L : 2<� → R+0 is called left-c.e. if L(�) is a left-c.e.
real uniformly in �. Note that Z is Martin–Löf-random iff every such mar-
tingale is bounded alongZ (see e.g., [33, Proposition 7.2.6]). Unlike the case
of computable martingales, convergence requires a stronger form of algo-
rithmic randomness than boundedness. For instance; let U = [0,Ω), where
Ω is a left-c.e. Martin–Löf-ranom real, and let L(�) = ��(U); then the
left-c.e. martingale L is bounded by 1 but diverges on Ω because Ω is Borel
normal.
The following theoremmatches left-c.e. martingale convergence to density
randomness. It is due to unpublished 2012 work of the “Madison Group”
consisting of Andrews, Cai, Diamondstone, Lempp and Joseph S. Miller.
Recall that by Theorem 2.4, a ML-random z is a full density-one point iff z
is a dyadic density-one point.

Theorem 3.3 (Madison group). The following are equivalent for a ML-
random real z ∈ [0, 1] with binary expansion 0.Z.
(i) z is a dyadic density-one point.
(ii) Every left-c.e. martingale converges along Z.

The writeup of the proof below, due to Nies, is based on discussions
with Miller, and Miller’s slides for his talks at a Semester dedicated to
computability, complexity and randomness at Buenos Aires in 2013 [29].
Nies supplied the technical details of the verifications.

Proof. The easier implication (ii)→ (i) was proved in [3, Corollary 5.5].
Simply note that for a Π01 class P , the function M (�) = 1 − ��(P) is a
left-c.e. martingale. Convergence ofM along Z means that 
(P | Z) exists.
Proposition 2.7 implies that the upper density 
(P | Z) equals 1. Therefore

(P | Z) = 1.
(i)→ (ii). We can work within Cantor space because the dyadic density of
a classP ⊆ [0, 1] at z is the sameas the density ofP atZ whenP is viewedas a
subclass of Cantor space. We use the technical concept of a “Madison test.”
Such a test is intended to capture the oscillation of a left-c.e. martingale
along a bit sequence. We will now introduce and motivate this concept.
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We define the weight of a set X ⊆ 2N by
wt(X ) =

∑
�∈X
2−|�|.

Let �≺ = {� ∈ 2<� : � ≺ �} denote the set of proper extensions of a
string �.

Definition 3.4. A Madison test is a computable sequence 〈Us〉s∈N
of

computable subsets of 2<� such that U0 = ∅, there is a constant c such that
for each stage s we have wt(Us) ≤ c, and for all strings �, �,
(a) � ∈ Us −Us+1 → ∃� ≺ � [� ∈ Us+1 −Us ],
(b) wt(�≺ ∩Us) > 2−|�| → � ∈ Us .
Note that by (a), U (�) := lims Us(�) exists for each �; in fact, Us(�)
changes at most 2|�| times.
We say that Z fails the test 〈Us〉s∈N

if Z �n∈ U for infinitely many n;
otherwise Z passes 〈Us〉s∈N

.

We show that wt(Us ) ≤ wt(Us+1), so that wt(U ) = sups wt(Us) < ∞ is
a left-c.e. real. Suppose that � is minimal under the prefix relation such that
� ∈ Us+1 −Us . By (b) and since � �∈ Us , we have wt(�≺ ∩ Us) ≤ 2−|�|. So
enumerating � adds 2−|�| to the weight, while the weight of all the strings
above � that are removed from Us is at most 2−|�|.
The implication (i)→(ii) is proved in two steps.
Step 1. Lemma 3.5 shows that if Z ∈ 2N is a ML-random dyadic density-
one point, then Z passes all Madison tests.
Step 2. Lemma 3.8 shows that if Z passes all Madison tests, then every
left-c.e. martingale converges along Z.

Lemma 3.5. Let Z be a ML-random dyadic density-one point. Then Z
passes each Madison test.

Proof. Suppose that a ML-random bit sequence Z fails a Madison test
〈Us〉s∈N

.Wewill build aML-test
〈Sk〉

k∈N
such that ∀� ∈ U [��(Sk) ≥ 2−k],

and therefore

�(2N − Sk | Z) ≤ 1− 2−k.
Since Z is ML-random we have Z �∈ Sk for some k. So Z is not a dyadic
density-one point, as witnessed by the Π01 class 2

N − Sk .
To define

〈Sk〉
k∈N
we construct, for each k, t ∈ � and each string � ∈ Ut ,

clopen sets Ak�,t ⊆ [�] given by strong indices for finite sets of strings com-
puted from k, �, t, such that �(Ak�,t) = 2−|�|−k for each � ∈ Ut . We will let
Sk be the union of these sets over all � and t. The clopen sets for k and a
final string � ∈ U will be disjoint from the Π01 class Sk . Condition (b) on
Madison tests ensures that during the construction, a string � can inherit
the clopen sets belonging to its extensions �, without risking that the Π01
class becomes empty above �.
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Construction of clopen sets Ak�,t ⊆ [�] for � ∈ Ut .
At stage 0 no sets need tobedefinedbecauseU0 = ∅.At stage t+1, suppose
that � ∈ Ut+1 − Ut . For each � � � such that � ∈ Ut −Ut+1, put Ak�,t into
an auxiliary clopen set Ãk�,t+1. Since � �∈ Ut , by condition (b) on Madison
tests, we have wt(�≺ ∩ Ut) ≤ 2−|�|. Inductively we have �(Ak�,t) = 2−|�|−k

for each �, and hence
�(Ãk�,t+1) ≤ 2−|�|−k .

Now, to obtain Ak�,t+1 we simply add mass from [�] to Ãk�,t+1 in order to
ensure equality as required.
Let

Skt =
⋃
�∈Ut

Ak�,t .

Then Skt ⊆ Skt+1 by condition (a) on Madison tests. Clearly
�Skt ≤ 2−kwt(Ut) ≤ 2−k.

So Sk = ⋃
t Skt determines a ML-test. Since Z is ML-random, we have

Z �∈ Sk for some k. If � ∈ U then by construction �Ak�,s = 2−|�|−k for
almost all s . Thus ��(Sk) ≥ 2−k as required. �
We now take the second step of the argument. We begin with a remark on
Madison tests.

Remark 3.6. Consider a computable rational-valued martingale B ; that
is, B(�) is a rational uniformly computed (as a single output) from �.
Suppose that c, d are rationals, 0 < c < d , B(〈〉) < c, and B oscillates
between values less than c and greater than d along a bit sequence Z. An
upcrossing (for these values) is a pair of strings � ≺ � such that B(�) < c,
B(�) > d , and B(	) ≤ d for each 	 such that � 	 	 ≺ �.
Dubins’ inequality from probability theory limits the amount of oscilla-
tion a martingale can have; see, for instance, [14, Exercise 2.14 on p. 238].
(Note that this inequality implies a version of the better-known Doob
upcrossing inequality by taking the sum over all k.) In the restricted setting
of martingales on 2<�, Dubins’ inequality shows that for each k

�{X : there are k upcrossings alongX} ≤ (c/d )k. (1)

See [3, Lemma 5.8] for a proof of this fact using notation close to the one of
the present paper.
Suppose now that 2c < d . We define a Madison test that Z fails. Strings
never leave the computable approximation of the test, so (a) holds.
We put the empty string 〈〉 into U1. If � ∈ Us−1, put into Us all strings 	
such thatB(�) > d andB(	) < c for some � � � chosen prefixminimal, and
	 � � chosen prefix minimal. Let U = ⋃

Us (which is in fact computable).
For each �, by the inequality (1) localised to [�], we have wt(�≺ ∩ U ) ≤
2−|�|∑

k≥1(c/d )
k < 2−|�|, so (b) is satisfied vacuously.

As noted in [3, Section 5], if B = supBs is a left-c.e. martingale where
〈Bs〉s∈N

is a uniformly computable sequence of martingales, an upcrossing
apparent at stage s can later disappear becauseB(�) increases.We will see in

https://doi.org/10.1017/bsl.2016.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.10


USING THEOREMS FROM ANALYSIS TO STUDY RANDOMNESS 315

the proof of Lemma 3.8 that in this case, the full power of the conditions (a)
and (b) is needed to obtain a Madison test from the oscillatory behaviour
of B .
We use Remark 3.6 for an intermediate fact, which is not as obvious as
one might expect.

Lemma 3.7. Suppose that Z passes each Madison test. Then Z is
computably random.
Proof. Suppose Z is not computably random. Then some computable
rational-valued martingaleM with the savings property succeeds on Z (see
[33, Ex. 7.1.14 andProposition 7.3.8] or [12]). The proof of [18, Theorem4.2]
turns success of such a martingale into oscillation of another computable
rational-valued martingale B . Slightly adapting the (arbitrary) bounds for
the oscillation given there, we may assume that B is as in Remark 3.6
for c = 2, d = 5: if M succeeds along Z, then there are infinitely many
upcrossings � ≺ 	 ≺ Z, B(�) < 2 and B(	) > 5. Therefore Z fails the
Madison test constructed in Remark 3.6. �
We are now ready for the main part of the second step.

Lemma 3.8. Suppose that Z passes each Madison test. Then every left-c.e.
martingale L converges along Z. In particular, Z is ML-random.
Proof. Let L be a left-c.e. martingale. Then L(�) = sups Ls(�) where

〈Ls〉 is a uniformly computable sequence of martingales, and L0 = 0
and Ls(�) ≤ Ls+1(�) for each � and s . Since Z is computably random,
limn Ls(Z �n) exists for each s . IfL diverges alongZ, then limn L(Z �n) =∞
or there is a positive ε < L(〈〉) such that

lim sup
n
L(Z �n)− lim inf

n
L(Z �n) > ε.

Based on this fact we define a Madison test that Z fails. Along with the Us
we define a uniformly computable labelling function �s : Us → {0, . . . , s}.
If limn L(Z �n) =∞ set ε = 1. The construction is as follows.
LetU0 = ∅. For s > 0 we put the empty string 〈〉 intoUs and let �s(〈〉) = 0.
If already � ∈ Us with �s(�) = t, then we also put intoUs all strings � � �
that are minimal under the prefix ordering with Ls(�) − Lt(�) > ε. Let
�s(�) be the least r with Lr(�)− Lt(�) > ε.

Note that �s(�) records the greatest stage r ≤ s at which � entered Ur .
Intuitively, this construction attempts to find upcrossings between values
(arbitrarily close to) lim infn L(Z �n) and lim supn L(Z �n). Clearly

limn Lt(Z �n) ≤ lim infn L(Z �n).
So, if a string � ≺ Z as above is sufficiently long, then we have an upcrossing
of the required kind.
We verify that 〈Us〉s∈N

is a Madison test. For condition (a), suppose that
� ∈ Us−Us+1. Let �0 ≺ �1 ≺ . . . ≺ �n = � be the prefixes of � inUs . We can
choose a least i < n such that �i+1 is no longer the minimal extension of �i at
stage s +1. Thus there is 	 with �i ≺ 	 ≺ �i+1 and Ls+1(	)−L�s (�i )(	) > ε.
Then 	 ∈ Us+1 and 	 ≺ �, as required.
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We verify condition (b). We fix s , and for t ≤ s write
Mt(	) = Ls(	)− Lt(	).

ThusMt is the increase of L from t to s . Note thatMt is a martingale.
Claim 3.9. For each 	 ∈ Us , where �s(	) = r, we have

2−|	|Mr(	) ≥ ε · wt(Us ∩ 	≺).
In particular, if 	 = 〈〉 then r = 0; we obtain that wt(Us) is bounded by
a constant c = L(〈〉)ε−1 + 1 (the “+1” is for the empty string in Us), as
required.
For � ∈ Us and k ∈ N, let U�s (k) be the set of strings properly extending
� and at a distance to � of at most k, that is, the set of strings � such that
there is � = �0 ≺ · · · ≺ �m = � on Us with m ≤ k and �i+1 a child (i.e.,
immediate successor) of �i for each i < m. To establish the claim, we show
by induction on k that

2−|	|Mr(	) ≥ ε · wt(U	s (k)).
If k = 0 then U	s (k) is empty so the right hand side equals 0. Now suppose
that k > 0. Let F be the set of of children of 	 on Us . For � ∈ F write
r� = �s(�). Then s ≥ r� > r by the definition of the function �s . By the
inductive hypothesis, we have for each � ∈ F

2−|�|Mr(�) = 2−|�|[(Lr�(�)− Lr(�)) +Mr� (�)] (2)

≥ 2−|�| · ε + ε · wt(U�s (k − 1)).
Then, taking the sum over all � ∈ F ,

2−|	|Mr(	) ≥
∑
�∈F
2−|�|Mr(�) ≥ ε · wt(U	s (k)).

The first inequality holds by a general fact about for martingales attributed
to Kolmogorov (see [33, 7.1.8]), and uses that F is an antichain. For the
second inequality we have used (2) and that U	s (k) = F ∪⋃

�∈F U
�
s (k − 1).

This completes the induction and shows the claim.
Now, to obtain (b), suppose that wt(Us ∩ �≺) > 2−|�|. We show that
� ∈ Us . Assume otherwise. Let 	 ≺ � be in Us with |	| maximal, and let
r = �s(	). Let now F be the set of prefix minimal extensions of � inUs , and
r� = �s(�). Then Lr� (�)− Lr(�) > ε for � ∈ F . Since � ∈ Us , we can apply
Claim 3.9 to �. We now argue similar to the above, but with � instead of 	,
and using in the last line that Us ∩ �≺ = F ∪⋃

�∈F (Us ∩ �≺):
2−|�|Mr(�) ≥

∑
�∈F
2−|�|Mr(�)

=
∑
�∈F
2−|�|[Lr�(�)− Lr(�) +Mr� (�)]

≥
∑
�∈F
2−|�|[ε + ε · wt(Us ∩ �≺)]

≥ ε · wt(Us ∩ �≺).
Since wt(Us ∩�≺) > 2−|�|, this implies thatMr(�) > ε. Hence some 	′ with
	 ≺ 	′ ≺ � is in Us , contrary to the maximality of 	.
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This concludes the verification that 〈Us〉s∈N
is a Madison test. As men-

tioned, for each r there are infinitely many n with L(Z �n) − Lr(Z �n) > ε.
This shows that Z fails this test: suppose inductively that we have � ≺ Z
such that there is a least r with � ∈ Ut for all t ≥ r (so that �t(�) = r for
all such t). Choose n > |�| for this r. Then from some stage on � = Z �n
is a viable extension of �, so �, or some prefix of it that is longer than �, is
in U . �
This concludes our proof of Theorem 3.3. �

§4. Differentiability of nondecreasing functions. We consider an effective
version, in the sense of computable enumerability, of Lebesgue’s Theorem1.1
that nondecreasing functions are almost everywhere differentiable. Freer,
Kjos-Hanssen, Nies and Stephan [18] studied a class of nondecreasing func-
tions they called interval-c.e.They showed (with J. Rute) that the continuous
interval-c.e. functions are precisely the variation functions of computable
functions.

Definition 4.1. A nondecreasing function f : [0, 1] → R is interval-c.e.
if f(0) = 0, and f(y) − f(x) is a left-c.e. real, uniformly in all rationals
x < y.

We match an effective version of Lebesgue’s theorem, stated in terms of
interval-c.e. functions, to density randomness. This result is due to Nies in
the conference paper [34]. We give a more detailed proof here.
Theorem 4.2 ([34]). z ∈ [0, 1] is density random⇔

f′(z) exists for each interval-c.e. function f : [0, 1]→ R.
⇐: If z is not density random then by Theorem 3.3 a left-c.e. martingale
M diverges along the binary expansion of z. Let �M be the measure on
[0, 1] corresponding to M , which is given by �[�] = 2−|�|M (�), and let
cdfM (x) = �M [0, x). Then cdfM is interval-c.e. and (cdfM )′(z) fails to exist.
The rest of this section is devoted to proving the implication ⇒. This
combines purely analytical arguments with effectiveness considerations.

4.1. Slopes and martingales. First we need notation and a few definitions,
mostly taken from [7] or [4]. For a function f : [0, 1] → R, the slope at a
pair a, b of distinct reals in its domain is

Sf(a, b) =
f(a) − f(b)
a − b .

For a nontrivial interval A with endpoints a, b, we also write Sf(A) instead
of Sf(a, b).
We let �, � range over (binary) strings. For such a string �, by [�] we
denote the closed basic dyadic interval [0.�, 0.�+2−|�|]. The corresponding
open basic dyadic interval is denoted (�).

Derivatives. If z is in an open neighborhood of the domain of f, the upper
and lower derivatives of f at z are

Df(z) = lim sup
h→0

Sf(z, z + h) and Df(z) = lim inf
h→0

Sf(z, z + h),
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where h ranges over reals. The derivative f′(z) exists if and only if these
values coincide and are finite.
We will also consider the upper and lower pseudo-derivatives defined by:

D̃f(x) = lim sup
h→0+

{Sf(a, b) | a ≤ x ≤ b ∧ 0 < b − a ≤ h},

D˜f(x) = lim infh→0+
{Sf(a, b) | a ≤ x ≤ b ∧ 0 < b − a ≤ h},

where a, b range over rationals in [0, 1]. We use them because in our argu-
ments it is often convenient to consider rational intervals containing x,
rather than intervals that have x as an endpoint.

Remark 4.3. Brattka et al. [7, after Fact 2.4 ] verified that

Df(z) ≤ D˜f(z) ≤ D̃f(z) ≤ Df(z)
for any real z ∈ [0, 1]. To show D̃f(z) ≤ Df(z), given any real z and
rationals a ≤ z ≤ b with a < b, we have

Sf(a, b) = b−z
b−a Sf(b, z) +

z−a
b−a Sf(z, a) ≤ Df(z).

The inequality Df(z) ≤ D˜f(z) can be shown in a similar way.Iff is nondecreasing one can in fact verify equality, so the lower and upper
pseudoderivatives of f coincide with the usual lower and upper derivatives.

We will use the subscript 2 to indicate that all the limit operations are
restricted to the case of basic dyadic intervals containing z. Thus,

D̃2f(x) = lim sup
|A|→0

{Sf(A) | x ∈ A ∧ A is a basic dyadic interval},

D˜ 2f(x) = lim inf|A|→0
{Sf(A) | x ∈ A ∧ A is a basic dyadic interval}.

4.2. Porosity and upper derivatives. We say that a set C ⊆ R is porous at
z via the constant ε > 0 if there exist arbitrarily small 
 > 0 such that
(z − 
, z + 
) contains an open interval of length ε
 that is disjoint from C.
We say that C is porous at z if it is porous at z via some ε > 0. This notion
originated in the work of Denjoy. See for instance [6, 5.8.124] (but note the
typo in the definition there).

Definition 4.4 ([4]). We call z a porosity point if some effectively closed
class to which it belongs is porous at z. Otherwise, z is a nonporosity point.

Clearly, if C is porous at z then �(C|z) < 1, so z is not a density-one point.
The converse fails: every Turing incomplete Martin–Löf random real is a
nonporosity point by [4]. By [10] there is such a real such that �(C|z) < 1 for
some Π01 class C. We also note that it is unknown whether a Turing complete
Martin–Löf random real can be a nonporosity point. If not, then the sets of
positive density and nonporosity ML-random reals coincide.
We show that if the dyadic and full upper/lower derivatives at z are
different, then some closed set is porous at z. This extends the idea in the
proof of Theorem 2.4 due to Khan andMiller. We begin with the easier case
of the upper derivative. The other case will be supplied in Subsection 4.4.

https://doi.org/10.1017/bsl.2016.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.10


USING THEOREMS FROM ANALYSIS TO STUDY RANDOMNESS 319

Proposition 4.5. Let f : [0, 1] → R be interval-c.e. If z is a nonporosity
point, then D̃2f(z) = D̃f(z).

Proof. Suppose that D̃2f(z) < p < D̃f(z) for a rational p. Choose
k ∈ N such that p(1 + 2−k+1) < D̃f(z).
Let �∗ ≺ Z be any string such that ∀� [�∗ 	 � ≺ Z ⇒ Sf([�]) ≤ p]. It
is sufficient to establish the following.

Claim 4.6. The closed set

C = [�∗]−
⋃

{(�) | Sf([�]) > p},
which contains z, is porous at z.
If f is interval-c.e., the function � → Sf([�]) is a left-c.e. martingale. In
particular, C is effectively closed, and porous at z.
The proof of the claim is purely analytical, and only uses that f is non-
decreasing. We show that there exist arbitrarily large n such that some basic
dyadic interval [a, ã] of length 2−n−k is disjoint from C, and contained in
[z − 2−n+2, z + 2−n+2]. In particular, we can choose 2−k−2 as a porosity
constant.
By choice of k there is an interval I � z of arbitrarily short positive length
such that p(1 + 2−k+1) < Sf(I ). Let n be such that 2−n+1 > |I | ≥ 2−n.
Let a0 be greatest of the form �2−n−k , � ∈ Z, such that a0 < min I . Let
av = a0 + v2−n−k. Let r be least such that ar ≥ max I .
Since f is nondecreasing and ar − a0 ≤ |I |+ 2−n−k+1 ≤ (1 + 2−k+1)|I |,
we have

Sf(I ) ≤ Sf(a0, ar)(1 + 2−k+1),
and therefore Sf(a0, ar) > p. Since Sf(a0, ar) is the average of the slopes
Sf(au, au+1) for u < r, there is a u < r such that

Sf(au, au+1) > p.

Since (au, au+1) = (�) for some string �, this gives the required ‘hole’ in C
which is near z ∈ I and large on the scale of I : in the definition of porosity
at the beginning of this subsection, let 
 = 2−n+2 and note that we have
[au, au+1] ⊆ [z − 2−n+2, z + 2−n+2] because z ∈ I and |I | < 2−n+1. �
4.3. Basic dyadic intervals shifted by 1/3. We will use a basic ‘geometric’
fact observed, for instance, by Morayne and Solecki [32]. Form ∈ N letDm
be the collection of intervals of the form

[k2−m, (k + 1)2−m],

where k ∈ Z. Let D̂m be the set of intervals (1/3) + I where I ∈ Dm .
Lemma 4.7. Let m ≥ 1. If I ∈ Dm and J ∈ D̂m, then the distance between
an endpoint of I and an endpoint of J is at least 1/(3 · 2m).
To see this, assume that |k2−m − (p2−m + 1/3)| < 1/(3 · 2m). This yields

|3k − 3p − 2m|/(3 · 2m) < 1/(3 · 2m), and hence 3|2m, a contradiction.
In order to apply Lemma 4.7, we may need values of nondecreasing func-
tions f : [0, 1] → R at endpoints of any such intervals, which may lie
outside [0, 1]. So we think of f as extended to [−1, 2] via f(x) = f(0) for
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−1 ≤ x < 0 andf(y) = f(1) for 1 < y ≤ 2. Being interval-c.e. is preserved
by this because it suffices to determine the values of the function at rationals.

4.4. Porosity and lower derivatives. We complete the proof of the implica-
tion “⇒” in Theorem 4.2. We may assume that z > 1/2. Note that z − 1/3
is a ML-random density-one point, hence a dyadic density-one point. In
particular, both z and z − 1/3 are nonporosity points. Also, Theorem 3.3,
all left c.e. martingales converge on the binary expansions of the reals z and
z − 1/3.
LetM = Mf be the left-c.e. martingale given by � → Sf([�]). ThenM
converges on z (recall that we write M (z) for the limit). Thus D˜ 2f(z) =
D̃2f(z) =M (z).
Let f̂(x) = f(x+1/3), and let M̂ =M

f̂
. Then M̂ converges on z−1/3.

Claim 4.8. M (z) = M̂ (z − 1/3).
IfM (z) < M̂ (z−1/3) then D̃2f(z) < D̃f(z). However, z is a nonporos-
ity point, so this contradicts Proposition 4.5. If M̂ (z − 1/3) < M (z) we
argue similarly using that z − 1/3 is a nonporosity point. This establishes
the claim.
We have already shown thatD˜ 2f(z) = D̃2f(z) = D̃f(z), so to completethe proof of “⇒” in Theorem 4.2, it suffices to show thatD˜f(z) = D˜ 2f(z).Then, since f is nondecreasing, f′(z) exists by Remark 4.3.
Assume for a contradiction that if D˜f(z) < D˜ 2f(z). We will show thatone of z, z − 1/3 is a porosity point. First we define porosity in Cantor
space.

Definition 4.9. For a closed set C ⊆ 2N, we say that C is porous atY ∈ C
if there is r ∈ N as follows: there exists arbitrarily large m such that

C ∩ [(Y �m)ˆ�] = ∅ for some � of length r.
Clearly this implies that C viewed as a subclass of [0, 1] is porous at 0.Y (now
“holes” on both sides of 0.Y are allowed). We will actually define Π01 classes
E and Ê in Cantor space such that E is porous at the binary expansion of z,
or Ê is porous at the binary expansion of z − 1/3.
We employ a method similar to the one in Subsection 4.2, but now take
into account both dyadic intervals, and dyadic intervals shifted by 1/3 of
the same length. Recall that D˜ 2f(z) =M (z).We can choose rationals p, q such that

D˜f(z) < p < q < M (z) = M̂ (z − 1/3).
Let k ∈ N be such that p < q(1− 2−k+1). Let u, v be rationals such that

q < u < M (z) < v and v − u ≤ 2−k−3(u − q).
Recalling the notation in Subsection 4.3, let n∗ ∈ N be such that for each
n ≥ n∗ and any interval A ∈ Dn ∪ D̂n containing z, we have Sf(A) ≥ u. Let

E = {X ∈ 2N : ∀n ≥ n∗M (X �n) ≤ v},
Ê = {W ∈ 2N : ∀n ≥ n∗M̂(W �n) ≤ v}.
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Since f is interval-c.e.,M and M̂ are left-c.e. martingales, so these classes
are effectively closed.
Let Z be the bit sequence such that z = 0.Z. By the choice of n∗ we have
Z ∈ E . Let Y be the bit sequence such that 0.Y = z − 1/3. We have Y ∈ Ê .
Consider an interval I � z of positive length≤ 2−n∗−3 such that Sf(I ) ≤
p. Let n be such that 2−n+1 > |I | ≥ 2−n. Let a0 be least of the form w2−n−k
where w ∈ Z, such that a0 ≥ min(I ). Similarly, let b0 be least of the form
w2−n−k + 1/3 such that b0 ≥ min(I ). Let

ai = a0 + i2−n−k and bj = b0 + j2−n−k .

Let r, s be greatest such that ar ≤ max(I ) and bs ≤ max(I ).
Since f is nondecreasing and

ar − a0 ≥ |I | − 2−n−k+1 ≥ (1− 2−k+1)|I |,
we have Sf(I ) ≥ Sf(a0, ar)(1− 2−k+1), and therefore Sf(a0, ar) < q. Then
there is an i < r such that Sf(ai , ai+1) < q. Similarly, there is j < s such
that Sf(bj, bj+1) < q.

Claim 4.10. One of the following is true.

(i) z, ai , ai+1 are all contained in a single interval from Dn−3.
(ii) z, bj, bj+1 are all contained in a single interval from D̂n−3.
For suppose that (i) fails. Then there is an endpoint of an interval A ∈

Dn−3 (that is, a number of the formw2−n+3 withw ∈ Z) between min(z, ai )
andmax(z, ai+1). Note that min(z, ai ) andmax(z, ai+1) are in I . By Fact 4.7
and since |I | < 2−n+1, there can be no endpoint of an interval Â ∈ D̂n−3 in
I . Then, since bj, bj+1 ∈ I , (ii) holds. This establishes the claim.
Suppose I is an interval as above and 2−n+1 > |I | ≥ 2−n, where n ≥ n∗+3.
Let 	 = Z �n−3 and 	̂ = Y �n−3.
If (i) holds for this I then there is a string α of length k + 3 (where
[	α] = [ai , ai+1]) such that M (	α) < q. So by the choice of q < u < v
and sinceM (	) ≥ u there is 
 of length k + 3 such thatM (	
) > v. (The
decrease along 	α of the martingale M must be balanced by an increase
along some 	
 .) This yields a “hole” in E , large and near Z on the scale of
I , as required for the porosity of E atZ; in the notation of the Definition 4.9
above, E is porous at Z via m = |	| and r = k + 3.
Similarly, if (ii) holds for this I , then there is a string α of length k + 3
(where [	̂α] = [bj, bj+1]) such that M (	̂α) < q. So by the choice of q <
u < v and since M̂ (	̂) ≥ u, there is a string 
 of length k + 3 such that
M̂ (	̂
) > v. This yields a hole in Ê , large and near Y on the scale of I , as
required for the porosity of Ê at Y .
Thus, if case (i) applies for arbitrarily short intervals I , then E is porous
at Z, whence z is a porosity point. Otherwise (ii) applies for intervals below
a certain length. Then Ê is porous at Y , whence z − 1/3 is a porosity point.
Both cases are contradictory. This concludes the proof of Theorem 4.2.
Nies [34] also uses porosity for an effective version of Lebesgue’s
theorem 1.1 in the setting of polynomial time computable functions and
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martingales. The proof can be easily adapted to the original setting of com-
putable functions and martingales, thereby providing a simpler proof of the
main result in Brattka et al., Theorem 1.3.

§5. Lebesgue differentiation theorem. This section is centred around an
effective version, in the c.e. setting, of another result obtained by Lebesgue
in 1904 [25].

Definition 5.1. Given an integrable non-negative function g on [0, 1], a
point z in the domain of g is called a weak Lebesgue point of g if

limQ→z 1
�(Q)

∫
Q
g

exists, where Q ranges over open intervals containing z with length �(Q)
tending to 0; z is called a Lebesgue point of g if this value equals g(z).

We note that also a variant of this definition can be found in the literature,
whereQ is centred at z. This is in fact equivalent to the definition given here;
see for instance [37, Theorom 7.10].

Theorem 5.2 (Lebesgue [25]). Suppose g is an integrable function on [0, 1].
Then almost every z ∈ [0, 1] is a Lebesgue point of g.
Equivalently, the function f(z) =

∫
[0,z] gd� is differentiable at almost

every z, and f′(z) = g(z).
Several years later, Lebesgue [27] extended this result to higher dimen-
sions; the variable Q now ranges over open cubes containing z.

5.1. Effective Lebesgue differentiation theorem via L1-computability.
Pathak, Rojas and Simpson [35, Theorem 3.15] studied an effective version
ofLebesgue’s theorem,where the given function isL1-computable, as defined
in [36] (or see [35, Definition 2.6]). They showed that

z is Schnorr random⇔
z is a weak Lebesgue point of each L1-computable function.

The implication “⇒” was independently obtained in [18, Theorem 5.1].
Using this result, we observe that if a Π01 class has computable measure, it
has density 1 at every Schnorr random member.

Proposition 5.3. Let P ⊆ [0, 1] be an effectively closed set such that �P is
computable. Let z ∈ P be a Schnorr random real. Then �(P | z) = 1.
Proof. Let P =

⋂
s Ps for a computable sequence 〈Ps〉 of finite unions

of closed intervals. There is a computable function g such that �(Pg(n)−P)
≤ 2−n. Hence the characteristic function 1P is L1-computable. Now by [35,
Theorem 3.15] or [18, Theorem 5.1], the density of P at z exists, that is
�(P | z) = �(P | z).
The binary expansion Z of the real z is Kurtz random, so by Proposi-
tion 2.7(ii) we have �2(P | Z) = 1. Therefore �(P | z) = 1. �
5.2. Dyadic Lebesgue points and integral tests. Recall that an open basic
dyadic interval in [0, 1] has the form (i2−n, (i + 1)2−n), where i < 2n. If
a string � of length n is the binary expansion of i , we also write (�) for
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this interval. We say that z is a (weak) dyadic Lebesgue point if the limit in
Definition 5.1 exists when Q is restricted to open basic dyadic intervals.
As usual let R = R ∪ {−∞,∞}. For a function f : [0, 1] → R and
z ∈ [0, 1], let

E(f, �) =

∫
(�) f d�

2−n
.

Then, z is a dyadicLebesguepoint iff limn E(f,Z �n) = f(z)where z = 0.Z.
Recall from the introduction that a function g : [0, 1] → R ∪ {∞} is
lower semicomputable if f−1({z : z > q}) is effectively open, uniformly
in a rational q. (This is an effective version of lower semicontinuity.) It is
well-known that such functions can be used to characterise Martin–Löf
randomness; see for instance Li and Vitányi [28, Subsection 4.5.6].

Definition 5.4. An integral test is a non-negative lower semicomputable
function g : [0, 1]→ R such that

∫
g d� <∞.

Theorem 5.5 (Levin). A real z is Martin-Löf random if and only if
g(z) <∞ for each integral test g.

Note that if f is an integral test, the function � �→ E(f, �) is a left-c.e.
martingale. Since f is integrable, f−1({∞}) is a null set.
In Definition 5.1 of [weak] Lebesgue points, we allow functions g that
can take the value ∞. For z to be a (weak) Lebesgue point, the limit as
the intervals approach z is required to be finite. First we show that for an
integral test g, the dyadic versions of the weak and strong conditions in
Definition 5.1 coincide at a ML-random real z.

Lemma 5.6. Let g be an integral test, and let z be a Martin–Löf random
real. If z is a dyadic weak Lebesgue point of g, then z is in fact a dyadic
Lebesgue point of g.

Proof. Let 〈gs〉s∈N
be an increasing computable sequence of step func-

tions with dyadic points of discontinuity and rational values such that
sup gs(z) = g(z) for each dyadic irrational (see Miyabe [31, Lemmas
4.6, 4.8], a variant of [39, Proposition 2]). Then, there is a nondecreasing
computable function u : N → N such that for each � with |�| ≥ u(s)

E(gs , �) = E(gs , �0) = E(gs , �1).

Unless z is a dyadic rational, we have gt(z) = limn E(gt, Z �n), where, as
usual, 0.Z is the binary expansion of z.
By hypothesis, limn E(g,Z �n) =: r exists. Clearly g(z) ≤ r, because for
each t

gt(z) = lim
n
E(gt, Z �n) ≤ lim

n
E(g,Z �n). (3)

Suppose for a contradiction that g(z) < r, and let q be a rational number
such that g(z) < q < r. We build an integral test h such that h(z) = ∞,
which contradicts our assumption that z isML-random. To do so, we define
a uniformly c.e. sequence of sets Sn ⊆ 2<� ×�. Let S0 = {(〈〉, 0)}. Suppose
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now that n ≥ 1 and Sn−1 has been defined. Uniformly in (�, s) ∈ Sn−1, let
B ⊆ 2<� be a c.e. antichain of strings of length ≥ u(s) such that

[B]≺ = [{� � � : |�| ≥ u(s) ∧ ∃t E(gt, �) > q}]≺.
For each � ∈ B let t > s be the least corresponding stage and put 〈�, t〉 into
Sn.
Let 1A denote the characteristic function of a set A. For each (�, t) ∈ Sn,
let

h� = (q − E(gs , �))1[�],
where (�, s) ∈ Sn−1 and � ≺ �. We define h by

h =
∑
n

∑
(�,t)∈Sn

h�.

We aim to show that h is an integral test and h(z) = ∞. So z is not
ML-random contrary to our assumption.
To see that h is an integral test, note that h is lower semicomputable. So it
suffices to show that, for every N ,

N∑
n=0

∑
(�,t)∈Sn

∫
h� d� ≤

∫
g d� <∞.

If (�, t) ∈ Sn, for n > 0, let (��,t , s�,t) ∈ Sn−1 be the corresponding element
for which (�, t) is enumerated into Sn+1.
Notice that∫

h� d� ≤ (E(gt , �)− E(gs�,t , �))2−|�| =
∫
[�]
(gt − gs�,t)d�,

whence∑
(�,t)∈Sn

∫
h�d� ≤

∑
(�,t)∈Sn

∫
[�]
(g − gs�,t)d� ≤

∑
(�,s)∈Sn−1

∫
[�]
(g − gs)d�.

Then, in case N ≥ 2,
N∑

n=N−1

∑
(�,t)∈Sn

∫
h�d� ≤

∑
(�,t)∈SN−1

∫
[�]
(g − gt)d�+

∑
(�,t)∈SN−1

∫
[�]
(gt − gs�,t)d�

≤
∑

(�,t)∈SN−1

∫
[�]
(g − gs�,t)d�

≤
∑

(�,t)∈SN−2

∫
[�]
(g − gt)d�.

By iterating this argument for sums starting atN − 2, N − 3, . . . , 2, we have
N∑
n=0

∑
(�,t)∈Sn

∫
h�d� ≤

∑
(�,t)∈S0

∫
[�]
(g − gs)d� =

∫
g d� <∞.
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Finally, since limn E(g,Z �n) = r > q, for each n there exists (�n, tn) ∈ Sn
such that �n ≺ z. Then

h(z) =
∑
n

(q − E(gs , �n)) ≥
∑
n

(q − g(z)) =∞.
�

Remark 5.7. The proofs of Lemma 5.6 and of Theorem 3.3 are related.
In the notation of Lemma 5.6, we have a left-c.e. martingaleL(�) = E(g, �)
and uniformly computable martingales Ls(�) = E(gs , �) so that L(�) =
sups Ls(�). By definition of the gs as dyadic step functions, we have a
computable function u on N such that Ls(�) = Ls(� �u(s)) whenever |�| ≥
u(s). Let us say that a left-c.e. martingale L of this kind is stationary in
approximation. The obvious inequality

sup
s
L(Z �u(s)) ≤ lim inf

n
L(Z �n)

corresponds tof(z) ≤ r before (3). IfZ is density random then limn L(Z �n)
exists, and equals sups L(Z �u(s)) by an argument similar to the one in the
proof of Lemma 5.6.

5.3. Effective Lebesgue differentiation theorem via lower semi-
computability. We show that density randomness is the same as being a
Lebesgue point of each integral test. We use as a basic fact: if g is a non-
negative integrable function, then� → E(g, �) is amartingale. By definition,
z is a weak dyadic Lebesgue point of g iff this martingale converges alongZ.
Theorem 5.8. The following are equivalent for z ∈ [0, 1]:
(i) z is density random.
(ii) z is a dyadic Lebesgue point of each integral test.
(iii) z is a Lebesgue point of each integral test.
We could equivalently formulate (ii) and (iii) in terms of integrable lower
semicomputable functions, rather than the seemingly more restricted inte-
gral tests. For, any lower semicontinuous function on a compact domain is
bounded below. So any integrable lower semicomputable function on [0, 1]
becomes an integral test after adding a constant.
Proof. (ii) ⇒ (i). By definition g(z) is finite for each integral test g,
whence z is ML-random.
Let C be a Π01 class containing z. Clearly the function g = 1 − 1C is an
integral test. Since z is a Lebesgue point for g, C has dyadic density one at z.
Then, by Theorem 2.4, z is a density-one point.

(i) ⇒ (ii). Let g be an integral test. Then � → E(g, �) is a left-c.e. mar-
tingale. By Theorem 3.3, limn E(g,Z � n) exists, whence z is a dyadic weak
Lebesgue point for g. By Lemma 5.6, z is a dyadic Lebesgue point for g.

(ii) ⇒ (iii). Let g be an integral test. The function f(x) = ∫
[0,x] g d� is

interval-c.e. by the aforementioned result of Miyabe [31, Lemmas 4.6, 4.8].
The real z is density random by (ii)→(i), so f′(z) exists by Theorem 4.2.
In particular, limQ→z �(Q)

−1∫
Q
f d� exists and equals limn 2n

∫
(Z�n)f d� =

f(z). Hence, z is a Lebesgue point for g.
The implication (iii)⇒ (ii) holds by definition. �
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§6. Birkhoff’s theorem. We give an effective version, in the c.e. setting, of
Birkhoff’s Theorem 1.2. Franklin and Towsner [17] considered the case of
a not necessarily ergodic measure-preserving operator T on Cantor space
2N with the uniform measure, and a lower semicomputable function f.
They showed that the limit of the averages in the sense of Theorem 1.2
exists for each weakly 2-random point z. Under an additional, hypothetical
assumption, in [17, Theorem 5.6] they were able to obtain convergence on
the weaker assumption that z is balanced random in the sense of [15].
We work in the more general setting of Cantor space 2N with a computable
probability measure �. That is, �[�] is a left-c.e. real uniformly in a string �.
For background see Hoyrup and Rojas [20].
Bienvenu, Greenberg,Kučera, Nies, andTuretsky [3,Definition 2.5] intro-
duced a randomness notion that implies density randomness. A left-c.e.
bounded test over � is a nested sequence 〈Vn〉 of uniformly Σ01 classes such
that for some computable sequence of rationals 〈
n〉 and 
 = supn 
n ≤ 1
we have �(Vn) ≤ 
 − 
n for all n. Z fails this test if Z ∈ ⋂

n Vn. Z is
�-Oberwolfach (OW) random if it passes each left-c.e. bounded test.
Let � = � be the uniform measure; it is known that balanced randomness
in the sense of [15] implies OW randomness, which implies density random-
ness. The converse of the first implication fails, as noted in [3]: some low
ML-random is not balanced random [15]; on the other hand, any such set is
OW random. It is unknown whether the converse of the second implication
holds.
In the following let � be a probability measure on 2N which is computable
in the strong sense of [39] that �[�] is a computable real uniformly in a
string �. Note that this is equivalent to the weaker condition above that
�[�] is uniformly left-c.e., in the case that the boundary of any open set is a
null set.

Theorem 6.1. Let T be a computable measure preserving operator on
(2N, �). Let f be a non-negative integrable lower semicomputable function
on X . Let Anf(x) be the usual ergodic average

1
n

∑
i<n

f ◦ T i (x).

For every �-Oberwolfach random point z ∈ X , limn Anf(z) exists.
Note that we do not assume that the operator T is total. However, being
measure preserving, its domain is conull. Since T is computable, the domain
is also Π02. So T (x) is defined whenever x is �-Kurtz random, namely, x is
in no Π01 class P with �P = 0.
Proof. By V’yugin [39, Proposition 2], we have f(z) = supt ft(z) for
every z ∈ X that is Kurtz random w.r.t. �, where 〈ft〉 is a computable
nondecreasing sequence of simple functions (namely, there is a partition of
2N into finitely many clopen sets such that ft has constant rational value on
each of them).
Since simple functions are computable, by the main result of V’yugin
[39, Theorem 2], limn Anft(x) exists for each t and each ML-random
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point x. By the maximal ergodic inequality (see e.g., Krengel [23, Cor. 2.2]),
for each non-negative integrable function g and each r > 0, we have

�{x : ∃n Ang(x) > r} < 1
r

∫
gd�.

Since z is weakly random, for each n the value Anf(z) exists. Thus, if
limn Anf(z) fails to exists, there are reals a < b such that Anf(z) < a for
infinitely many n, and Anf(z) > b for infinitely many n.
Let

Vt = {x : ∃k Ak(f − ft) > b − a}.
Then 〈Vt〉t∈N

is a sequence of uniformly Σ01 open sets in X with Vt ⊇ Vt+1.
By the maximal ergodic inequality we have �Vt ≤ 1/(b − a)

∫
(f − ft)d�.

Finally, limn Anft(z) exists for each t, and limn Anft(z) ≤ a. Therefore
z ∈ ⋂

t Vt . �

§7. Density-one points for Π0n classes and Σ11 classes. In this section we
work again in the setting of Cantor space. So far we have looked at the
density of Π01 classes at points. Now we will consider classes of higher
descriptional complexity. Firstly, we look at Π0n classes. It turns out that if
Z is density random relative to ∅(n−1), then each Π0n class has density 1 atZ.
Thereafter we consider the density of Σ11 classes at Z. This complexity
forms a natural bound for our investigation because Σ11 classes are measur-
able (Lusin; see e.g., [33, Theorem 9.1.9]), which is no longer true within
ZFC for more complex classes.

7.1. Density of Π0n classes at a real. Recall that Z is n-random if Z is
ML-random relative to ∅(n−1). By a Π0,X1 class we mean a Π01 class relative

to X . Every Π0,∅
(n−1)

1 class is Π0n. We show that for an n-random Z, it is

sufficient to consider Π0,∅
(n−1)

1 classes in order to obtain that every Π0n class
has density one atZ. To do so, we rely on a lemma about the approximation
in terms of measure of Π0n classes by Π

0,∅(n−1)
1 subclasses. This can be seen

as an effective form of regularity for Lebesgue measure. See [12, Theorem
6.8.3] for a recent write-up of the proof.

Lemma 7.1 (Kurtz [24], Kautz [21]). From an index of a Π0n class P and

q ∈ Q+, ∅(n−1) can compute an index of a Π0,∅(n−1)1 class V ⊆ P such that
�(P)− �(V ) < q.
Theorem 7.2. Suppose n ≥ 1 and Z ∈ 2N is density random relative to

∅(n−1). Let P beΠ0n class such that Z ∈ P. Then �
2
(P|Z) = 1.

Proof. Let P =
⋂
s Us where 〈Us : s ∈ �〉 is a nested sequence of

uniformly Σ0n−1 classes. It suffices to show that there exists a Π
0,∅(n−1)
1 class

Q ⊆ P such that Z ∈ Q.
We define a Solovay test relative to ∅(n−1). By Lemma 7.1, effectively in

∅(n−1) we obtain an index of a Π0,∅(n−1)1 class Qs ⊆ Us such that
�(Us )− �(Qs) < 2−n.
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The sequence of uniformly Σ0,∅
(n−1)

1 classes

〈Us\Qs : s ∈ N〉
is a Solovay test relative to ∅(n−1) since �(Us\Qs) ≤ 2−s . NoticeZ ∈ P ⊆ Us
for each s ∈ N. SinceZ is Martin-Löf random relative to ∅(n−1), there exists
k ∈ N such that for all j ≥ k, Z ∈ Qj . Since 〈Qj : j ≥ k〉 is a uniform
sequence of Π0,∅

(n−1)
1 classes, V =

⋂
j≥k Qj is itself a Π

0,∅(n−1)
1 class. Also

V ⊆ ⋂
i∈N
Ui = P because Qj ⊆ Uj . We have found a Π0,∅

(n−1)
1 class V ⊆ P

that contains Z. �
Relativizing Theorem 3.3 to ∅(n−1) we obtain:
Corollary 7.3. An n-random set Z is a density one point forΠ0n classes if
and only if every left-∅(n−1)-c.e. martingale converges along Z.
7.2. Higher randomness. The adjective “higher” indicates that algorith-
mic tools are replaced by tools from effective descriptive theory. See e.g.,
[33, Chapter 9] for background. The work of the Madison group described
in Section 3 can be adapted to this setting. For a higher version of density
randomness, instead of Π01 classes we now look at Σ

1
1 classes containing the

real in question. Similar to the foregoing case of Π0n classes, it does not
matter whether the Σ11 class is closed.
We use the following fact due to Greenberg (personal communication).
It is a higher analog of the original weaker version of Proposition 2.7(i)
proved in Bienvenu et al. [3, Proposition 5.4]. The hypothesis on Z could be
weakened to a higher notion of partial computable randomness as well.

Proposition 7.4 (Greenberg, 2013). Let C ⊆ 2N be Σ11. Let Z ∈ C be
Π11-ML-random. Then �2(C | Z) = 1.
Proof. If �2(C | Z) < 1 then there is a positive rational q < 1 and n∗
such that for all n ≥ n∗ we have �Z�n(C) < q. Choose a rational r with
q < r < 1. We define Π11-antichains in Un ⊆ 2<�, uniformly in n. Let
U0 = {〈Z �n∗〉}. Suppose Un has been defined. For each � ∈ Un, at a stage
α such that ��(Cα) < q, we obtain effectively a hyper-arithmetical antichain
V of extensions of � such that Cα ∩ [�] ⊆ [V ]≺ and ��([V ]≺) < r. Put V
into Un+1.
Clearly �[Un]≺ ≤ rn for each n. Also, Z ∈ ⋂

n[Un]
≺, so Z is not Π11-ML-

random. �
A martingale L : 2<� → R+0 is called left-Π

1
1 if L(�) is a left-Π

1
1 real

uniformly in �. We provide a higher analog of Theorem 3.3.

Theorem 7.5. Let Z be Π11-ML-random. The following are equivalent.

(i) �
2
(C | Z) = 1 for each Σ11 class C containing Z.

(ii) �
2
(C | Z) = 1 for each closed Σ11 class C containing Z.

(iii) Each left-Π11 martingale converges along Z to a finite value.

Proof. (iii)→ (i): The measure of a Σ11 set is left-Σ11 in a uniform way (see
e.g., [33, Theorem 9.1.10]). Therefore M (�) = 1 − ��(C) is a left-Π11
martingale. Since M converges along Z, and since by Proposition 7.4
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lim infn M (Z �n) = 0, it converges along Z to 0. This shows that �2(C |
Z) = 1.
(ii)→ (iii).We follow the proof of theMadison group’s Theorem 3.3 given
above. All stages s are now interpreted as computable ordinals. Computable
functions are now functions �CK1 → L�CK1 with Σ1 graph. Constructions are
now assignments of recursive ordinals to instructions.
Definition 7.6. AΠ11-Madison test is a Σ1 over L�CK1 function 〈Us〉s<�CK1
mapping ordinals to (hyperarithmetical) subsets of 2<� such that U0 = ∅,
for each stage s we have wt(Us) ≤ c for some constant c, and for all strings
�, �,

(a) � ∈ Us −Us+1 → ∃� ≺ � [� ∈ Us+1 −Us ],
(b) wt(�≺ ∩Us) > 2−|�| → � ∈ Us .
Also Ut(�) = lims<t Us(�) for each limit ordinal t.
The following well-known fact can be proved similar to [33, 1.9.19].

Lemma 7.7. LetA ⊆ 2N be a hyperarithmetical open set. Given a rational q
with q > �A, we can effectively determine fromA, q a hyperarithmetical open
S ⊇ A with �S = q.
We provide an analog of Lemma 3.5. Its proof is a variant of the former
argument.

Lemma 7.8. Let Z be a Π11 ML-random such that �2(C | Z) = 1 for each
closed Σ11 class C containing Z. Then Z passes each Π11-Madison test.
The sets Ak�,s are now hyperarithmetical open sets computed from k, �, s .
Suppose � ∈ Us+1 − Us . The set Ãk�,s is defined as before. To effectively
obtain Ak�,s+1, we apply Lemma 7.7 to add mass from [�] to Ãk�,s+1 in order
to ensure that �(Ak�,s+1) = 2−|�|−k .
As before, let Skt =

⋃
�∈Ut Ak�,t . Then Skt ⊆ Skt+1 by condition (a) on

Π11-Madison tests. Clearly �Skt ≤ 2−kwt(Ut) ≤ 2−k . So Sk = ⋃
t<�CK1

Skt
determines a Π11 ML-test.
By construction �

2
(2N − Sk | Z) ≤ 1 − 2−k . Since Z is ML-random we

haveZ �∈ Sk for some k. So �
2
(C | Z) < 1 for the closed Σ11 class C = 2N−Sk

containing Z.
The analog of Lemma 3.8 also holds.

Lemma 7.9. Suppose that Z passes each Π11-Madison test. Then every
left-Π11 martingale L converges along Z.

We wrote the proof of Lemma 3.8 in such a way that this works. If
L : 2<� → R is a left-Π11 martingale, then L(�) = sups Ls(�) for a
nondecreasing sequence 〈Ls〉 of hyperarithmetical martingales computed
uniformly from s < �CK1 . The labelling functions �s : Us → �CK1 are now
uniformly hyperarithmetical.
We may assume that Lt(�) = lims<t Ls(�) for each limit ordinal t. This
implies Ut(�) = lims<t Us(�) for each limit ordinal t as required in the
definition of higher Madison tests. �
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